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Abstract
Result diversification is extensively studied in the context of search, recommendation, anddata exploration.There are numerous
algorithms that return top-k results that are both diverse and relevant. These algorithms typically have computational loops
that compare the pairwise diversity of records to decide which ones to retain. We propose an access primitiveDivGetBatch()
that replaces repeated pairwise comparisons of diversity scores of records by pairwise comparisons of “aggregate” diversity
scores of a group of records, thereby improving the running time of these algorithms while preserving the same results.
We integrate the access primitive inside three representative diversity algorithms and prove that the augmented algorithms
leveraging the access primitive preserve original results. We analyze the worst and expected case running times of these
algorithms. We propose a computational framework to design this access primitive that has a pre-computed index structure
I-tree that is agnostic to the specific details of diversity algorithms. We develop principled solutions to construct and maintain
I-tree. Our experiments on multiple large real-world datasets corroborate our theoretical findings, while ensuring up to a 24×
speedup.

Keywords Diversification · Top-k algorithms · Query processing

1 Introduction

Diversity has a wide variety of applications in search, rec-
ommendation [1,2,20,35,42,43] and data exploration. The
goal of diversification algorithms is to return results that are
relevant as well as cover user intent. In the data manage-
ment community, returning top-k diverse results of a query
has been extensively studied, and there exists many seminal
works [14,23,49] that propose objective functions and effi-
cient algorithms to achieve a trade-off between relevance and
diversity.

The original implementation of many representative algo-
rithms, such as, GMM [23], MMR [23], SWAP [49] that do
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not make any assumptions on the nature of the diversity func-
tions, is iterative in nature andmakes the decision of updating
the top-k set by making a greedy choice based on the current
top-k set and the remaining records that are not yet in top-k.
These representative algorithms go through the cumbersome
step of pairwise diversity computation of records between
and across these two sets even to make a single update in the
top-k set. Indeed, for a large database containing N records,
this repetitive computation is expensive O(N ), since typi-
cally k << N . We are also aware of a handful of existing
works [21,32] that are specifically designed on geometric
space and avoid this repetitive computation. However, to the
best of our knowledge, most of the existing works assume
this expensive computation to be necessary, when diversity is
designed for arbitrary non-metric functions or even studied in
general metric space. Contrarily, our effort here is to reduce
that computation without making any explicit assumptions
about the diversity function, that is, considering diversity
functions to be fully arbitrary or even non-metric.

Our first contribution lies in identifying one major com-
putational bottleneck in existing popular diversification algo-
rithms and how to accelerate that process (Sect. 2.1). In
Sect. 2.2, we identify the basic ingredients of developing
DivGetBatch() as an access primitive such that it remains
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agnostic to any specific underlying diversity or distance
computation function. This primitive is also guaranteed to
produce identical top-k results as of the original diversity
algorithms. The fundamental idea is to make the compari-
son go over a group of records, as opposed to record pairs,
thereby accelerating the computation. In other words, the
large number of N records are to be grouped in a small
number of C nodes and some higher level diversity aggre-
gates are to be maintained between the nodes. Toward that,
we develop a generic computation framework that builds an
index I-tree offline and maintains two other auxiliary data-
structures (MinsimMatrixNode andMaxsimMatrixNode) that
are highly generic in nature and suitable to handle updates.
Indeed, the design of I-tree is rather simple andmay appear to
share resemblance with existing indexing techniques (Sect. 7
contains detailed discussion and empirical evaluation toward
that). Our primary contribution lies in proposing a simple
enough indexing technique that could be easily designed
using off-the-shelf popular record partitioning algorithms,
such as, K-Means [25], but study how to make it generic
enough to work on a variety of diversification algorithms
over arbitrary diversification functions. In fact, existing pop-
ular indexing techniques, such as K-B-D-tree [38], kd-tree
[10], M-Tree [15], Ball-Tree [29], R-tree [24], assume that
coordinate information of the records is available and used to
create data structures to answer a large spectrum of distance
queries, where distance may be based on Euclidean, cosine
similarity, or general L p norms.However, I-tree assumes the
records to be atomic and the diversity function to be arbitrary
(refer to Sect. 8 for further comparison).

Our second contribution is to develop query processing
algorithms for MMR, GMM, and SWAP [14,23,49] using
DivGetBatch() (Sects. 3, 4, 5). Fundamentally, we have
rewired the original algorithms to run over pairs of groups
of records as opposed to pairs of records to save up pro-
cessing time. We make nontrivial theoretical claims and
proofs on the exactness and the running time of the aug-
mented algorithms in expectation (assuming uniform data
and query distributions) and in the worst case. As an exam-
ple, we prove that augmented SW AP (Aug-SWAP) takes
O(N/C ∗ k ∗ log k + N ) time in expectation compared to
O(N ∗ k ∗ log k) time of the original algorithm. It is easy
to notice that augmented SW AP is guaranteed to run faster
than the original algorithm, as Max(N/C ∗ k ∗ log k, N ) (C
is the number of groups) is smaller than N ∗ k ∗ log k. The
summary of the complexity results is presented in Tables 1
and 2 .

Our third contribution is developing principled solutions
for creating andmaintaining I-tree (Sect. 6). I-tree is a com-
pletem-ary tree [16] with height l. There exists manyways to
build I-tree (e.g., hierarchical graph partitioning or cluster-
ing could be used). We identify that the main computational
bottleneck of I-tree under batch updates lies in updating

MinsimMatrixNode and MaxsimMatrixNode. Therefore, we
formalize the index maintenance problem as an optimization
problem, with the goal of minimizing the number of updates
in these data structures. We present an integer programming-
based exact solutionOPTMn for that, and a greedy heuristic
GrMn that is highly scalable in nature.

Our final contribution is experimental (Sect. 7). We use
large real-world datasets, one large publicly available syn-
thetic dataset to show that the augmented algorithms return
results identical to their originals, while ensuring between a
3× to 24× speedup on large datasets. We study the effects
of different parameters empirically and provide guidance for
appropriate design choice. We empirically present exhaus-
tive results to pre-process and maintain I-tree. Our empirical
results corroborate our theoretical analyses.

Moreover, we compare the proposed index I-tree with
a set of existing indexing structure, such as, M-Tree [15],
KD-Tree [10], and Ball-Tree [29]. These latter trees are pri-
marily designed for the Euclidean space. Our experimental
results unanimously select I-tree as the winner. The aug-
mented algorithms implemented using I-tree are at least 18×
faster in query processing and asmuch as 170× faster for cer-
tain configuration. I-tree achieves more than 1.5× speedup
during the index construction and at times it is more than
20× faster w.r.t. the baselines.

To summarize, we make the following contributions:

– We develop DivGetBatch(), an access primitive and
show how to integrate it inside popular diversity algo-
rithms to save up running time (Sects. 3, 4, 5). We
present in depth theoretical analyses of the augmented
algorithms.

– We propose a computational framework to support
DivGetBatch()(Sect. 6). The framework consists of a
pre-computed index I-tree and a query processing step.
We also present non-trivial solutions to maintain I-tree
under dynamic updates.

– We run an extensive experimentation that demonstrates
the effectiveness of building and maintaining I-tree and
DivGetBatch() and corroborates our theoretical claims
(Sect. 7).

2 Background and approach

This section is organized in two parts. In Sect. 2.1, we present
the background of the studied problem and define it. In
Sect. 2.2, we present the fundamental ideas of our approach.

2.1 Motivating example and problem definition

The basic principle of existing diversification algorithms,
such as MMR, GMM, and SWAP, is either to incrementally
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Table 1 Technical results for
running time analysis w.r.t.
|Cand R|

Algorithm Variant Expected time w.r.t |Cand R|
M M R Original O(N ∗ k2)

Augmented O(C ∗ k2 + N +
k∑

i=1
|Cand Ri | ∗ k

G M M Original O(N ∗ k)

Augmented O(C ∗ k +
k∑

i=1
|Cand Ri |)

SW AP Original O(N ∗ k ∗ log k)

Augmented O(N + ∑N
i=1

|Cand Ri |
N ∗ (C + k ∗ log k))

Table 2 Technical results for
running time analysis w.r.t. C ,
m, l

Algorithm Variant Expected time w.r.t C Expected time w.r.t m and l

M M R Original O(N ∗ k2) O(N ∗ k2)

Augmented O((N/C + C) ∗ k2 + N ) O((N/ml + ml ) ∗ k2 + N )

G M M Original O(N ∗ k) O(N ∗ k)

Augmented O(N/C + C) ∗ k) O(N/ml + ml ) ∗ k)

SW AP Original O(N ∗ k ∗ log k) O(N ∗ k ∗ log k)

Augmented O(N/C ∗ k ∗ log k + N ) O(N/ml ∗ k ∗ log k + N )

Index Activity Time Space Time Space

I-tree Construction O(N ∗ C2 ∗ t + N 2) O(C2) O(N ∗ m2l ∗ t + N 2) O(m2l)

Maintenance O(N ∗ |Y |) O(C2) O(N ∗ |Y |) O(m2l)

build a top-k set of diverse results or to greedily replace
records in a top-k list to find the most diverse ones. In
both cases, the leading cost directly depends on the num-
ber of pairwise record comparisons. Imagine a toy database
D containing N = 10 records. Since the records are
considered atomic, Table 4 shows a record-record similar-
ity matrix, sim Matri x Record, normalized between [0-1]
for our example. Diversity between ri , r j is simply 1 −
sim(ri , r j ). Given a query Q, in order to produce k = 2
results, an algorithm such as MMR [14] first assigns all 10
records in D to a potential candidate set R. Then, it iterates
over all 10 records once to find the best record in terms of
M R score (based on diversity and relevance) and adds that to
the result set S and discards that from R. It repeats the same
process once more to produce the resulting set S = {r10, r8}.
In particular, there is a repeated pairwise computation of the
following kind:

1 While k ≤ 2 :
2 rec ← R[1]
3 For i = 2; i <= |R|; i + +
4 if MR(Q, R[i], S) ≥ MR(Q, rec, S)

5 rec ← R[i]
6 EndFor
7 S ← S

⋃
rec, R ← R − rec

8 k ← k + 1
9 EndWhile

Problem Definition 1 Develop an access primitive DivGet-
Batch() and integrate it inside existing popular diversity
algorithms. DivGetBatch() satisfies the following three cri-
teria.

– It guarantees identical top-k results as that of the original
algorithms.

– It is generic, i.e., it works for any diversity functions -
diversity being metric or not.

– When integrated inside existing algorithms, it accelerates
the computation and returns the results faster.

The proposed primitive simplifies the aforementioned
implementation as follows - instead of iterating over the
entire R set (which is O(N )), it returns potentially a much
smaller set of records Cand R, from which the result set S
would be updated.

1 CandR ← DivGetBatch(R, Q, S)

2 While k ≤ 2 :
3 rec ← Max(M R(Cand R, Q, S))

4 S ← S
⋃

rec, Cand R ← Cand R − rec
5 k ← k + 1
6 EndWhile
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Fig. 1 Proposed computational
framework

Data

Indexing
Design 

Augmented 
Algorithms 

+
DivGetBatch 

API

Top-k 
Results

Diversity 
Algorithms

Offline Phase Online Phase

Node 2

{r3, r8, 
r9}

Node 1

{r1, r2, 
r4, r10}

Node 3

{r5, r6, 
r7}

Min 
sim: 

0.065
Max 
sim: 

0.075

Min 
sim: 

0.047
Max 
sim: 

0.063Min sim: 
0.092

Max sim: 
0.116

{r2, r10} {r1} {r3}{r4} {r5} {r6} {r7}{r8} {r9}

Node 
2 1

Node 
2 2

Node 
2 3

Node 
2 4

Node 
2 5

Node 
2 6

Node 
2 7

Node 
2 8

Node 
2 9

Node 1 1 Node 1 2 Node 1 3

Root node

{r1, r2, 
r3,…, r10}

{r1, r2,
r4, r10}

{r3, r8,
 r9}

{r5, r6,
 r7}

Level 0

Level 1

Level 2

Fig. 2 I-tree

2.2 Approach

DivGetBatch() is designed by developing a computational
framework, described in Fig. 1. The basic idea is to store
“higher level aggregates”’, such as minimum and maximum
diversity scores of a group of records instead of keeping
individual pairwise diversity scores between the records. We
formally define the minimum and maximum diversity scores
as bounds in later sections. As an example, if the same set of
records are grouped in three nodes, as shown inside the index-
ing box of Fig. 1 and the maximum and minimum diversity
scores are preserved between them, node2 and node3 can be
discarded in the first iteration of processing of MMR pruning
6 out of the 10 records and returning only {r1, r2, r4, r10} in
R. This indeed leads to a significant speedup.

2.2.1 Offline vs. Online.

In this work, we assume that both data and query follow
uniform distributions. A keen readermay notice that to accel-
erate diversity computation using I-tree, one has to “group”
records and maintain some higher level aggregates between
them. Grouping a large database of N records is time-
consuming, as that would require partitioning them based
on pairwise diversity. Indeed, this process of grouping must
happen once and offline.

Precisely because of this, we resort to pre-process the
records to group them and develop index I-tree, and use
that later for processing diversity queries. This is the offline
computation of the proposed framework.

Just likeDivGetBatch(), I-tree is a general purpose com-
plete tree like structure and could be designed in more than
one way. It needs to satisfy three properties.

– I-tree has m arity and l height or levels (user inputs).
– Two highly important auxiliary data structures maintain
similarity bounds between the nodes in I-tree: Min-
simMatrixNode and MaxsimMatrixNode for maintaining
minimum and maximum similarity bounds 1.

– For three nodes n, n′, and n j in I-tree, if n is a parent of n′,
and n j is part of a different subtree and at the same level
as n, the following relationship holds: Min sim(n, n′) ≥
Minsim(n, n j ), and Max sim(n, n′) ≥ Maxsim(n, n j ),
(basically nodes that are part of the same subtree have
higher min and max similarity bounds compared to the
nodes that are not).

The indexing algorithm BuildTree (Algorithm 5) parti-
tions (refer to the Subroutine Partition) the records. It also
maintains additional data structures that contain similarity
scores between nodes for efficient query processing. An
example of a two-level index tree is shown in Fig. 2. At
the first level, BuildTree creates a root node containing all N
records and m children of the root node. From the point of
abstraction, it is not important at this stage to describe how
the data are partitioned. Basically, the goal is to keep simi-
lar records together while separating non-similar ones. There
are multiple off-the-shelf techniques such as clustering and
graph partitioning to carry out this task.

In our implementation, we use the popular k-means
algorithm [25] for partitioning. The algorithm repeats the

1 Diversity between a pair of records is simply 1 − similarity between
them.
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Table 3 Notations & interpretations

Notations

D Database containing N records

S Result set

Z Set of nodes that contain S

R Remaining records in the dataset

Q Query

k Number of records in resulting set

m, l Arity & Total number of levels in the I-tree

C Number of nodes in the I-tree

Cand R Candidate record set returned by API

Y A batch of new records to be updated in I-tree

partitioning procedure until it reaches l levels. We refer to
Sect. 6 for further details (Table 3).

Next, we present the generic recipe of using DivGet-
Batch() online or during the query processing time.

2.2.2 Generic online algorithm usingDivGetBatch()

The inputs to DivGetBatch() is I-tree, query Q, current
candidate set of answers S, remaining records R, as well
as the algorithm specific objective function f . The out-
put is Cand R, a set of candidate records that cannot be
eliminated and require further processing by the original
algorithm. DivGetBatch() explores I-tree level by level
during query time and exploits two of its higher-level con-
structs: a. Calculate-Bounds: it computes similarity bounds
2 between Q and the nodes in I-tree based on a specific algo-
rithm and objective function f . In particular, it computes an
upper and a lower bound of diversity scores of the node. The
goal is to decide if it is beneficial to go inside the node and
explore the subtree under it. b. Skip-Nodes: based on the pre-
vious decision, the algorithm either skips the node and its
entire subtree or explores the node.

Algorithm1 shows the pseudo-code of theDivGetBatch()
API.

3 MMR query processing withDivGetBatch()

The first algorithm we study is M M R [14] algorithm. We
describe the original version of the algorithm and our aug-
mented version and provide theoretical analysis on how our
augmented version outperforms the original one.

2 Please note diversity could be easily calculated from similarity
bounds.

Algorithm 1 Generic DivGetBatch() API
1: Inputs: I-tree, S, R, Q, f
2: Outputs: CandR: remaining eligible set of records for next iteration
3: for y = 1 to l do
4: for n in I-tree [y].nodes do
5: u B, l B ← Calculate-Bounds(I-tree, n, y, f , S, Q, R)
6: u Bs ← ⋃

u B, l Bs ← ⋃
l B

7: end for
8: M ← Skip-Nodes(I-tree, y, u Bs, l Bs)
9: V ← { I-tree [y].nodes − M}
10: end for
11: Cand R = {r | r ∈ n, n ∈ V }
12: return Cand R

3.1 MMR algorithm

Maximal Marginal Relevance (M M R) algorithm is a sem-
inal work on result diversification [14]. M M R is based on
Marginal Relevance (MR) score (Eq. 1) that it maximizes in
each iteration. Given a query, MR introduces a λ coefficient
to strike a balance between the relevance score, computed
between the records and the query, and the diversity score,
computed between the records themselves.

M M R is greedy in nature that grows the size of the top-k
set by adding records one by one in the top-k set by con-
sidering the relevance of the record and diversity with the
previously selected records, using the formula below:

M M R(r) ← argmaxr∈R\S M R(r),

M R(r) ← λsim(r , Q) − (1 − λ)maxr j ∈Ssim(r , r j ), (1)

where Q is the query, S is the previously selected items,
R is the remaining records in the dataset, r is a candidate
record from R, and r j is another record from S. λ is a tunable
parameter. The time-consuming part of the algorithm lies in
computing the MR score for each r ∈ {R \ S} and returning
the one with the highest MR score.

The M M R algorithm takes O(|R| × |S|), when we add
one new record to set S, demonstrating that it has an order
of N × k. The algorithm repeats k times and produces top-k
results.

3.2 Aug-MMR algorithm

Aug-MMR algorithm is designed to circumvent this afore-
mentioned timeconsumingcomputationby leveragingDivGet-
Batch(). The general idea is to return a small subset of
records, as opposed to all |R| records (which is O(N )) in
each iteration, thereby saving computation. The rest of the
algorithm is identical to its original version and is presented
in Algorithm 2.

We now describe subroutine 2, how DivGetBatch()
exactly works in Aug-MMR. Inputs to DivGetBatch() are
I-tree, S, R, Q, and f (i.e., objective function of M M R).
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Table 4 Similarity matrix for
records

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 Q

r1 1.000 0.979 0.065 0.989 0.105 0.110 0.092 0.066 0.068 0.969 0.187

r2 0.979 1.000 0.070 0.992 0.107 0.112 0.092 0.071 0.074 0.999 0.190

r3 0.065 0.070 1.000 0.068 0.057 0.061 0.048 0.982 0.986 0.071 0.052

r4 0.989 0.992 0.068 1.000 0.111 0.116 0.096 0.069 0.072 0.986 0.180

r5 0.105 0.107 0.057 0.111 1.000 0.976 0.880 0.055 0.058 0.106 0.039

r6 0.110 0.112 0.061 0.116 0.976 1.000 0.783 0.059 0.063 0.112 0.041

r7 0.092 0.092 0.048 0.096 0.880 0.783 1.000 0.047 0.049 0.092 0.036

r8 0.066 0.071 0.982 0.069 0.055 0.059 0.047 1.000 0.986 0.072 0.054

r9 0.068 0.074 0.986 0.072 0.058 0.063 0.049 0.986 1.000 0.075 0.054

r10 0.969 0.999 0.071 0.986 0.106 0.112 0.092 0.072 0.075 1.000 0.191

The output is Cand R, the candidate set of records for which
MR scores are to be computed to retain the best record. Based
on Algorithm 1, we now describe the specifics of two higher-
level constructs for Aug-MMR.

Calculate-Bounds This function leverages
Minsim Matri x-Node and Maxsim Matri x Node to

calculate lower (l B M R) and upper bounds (u B M R), respec-
tively. The bounds essentially represent the score of a node
based on f (Eq. 1) and mathematically can be expressed as
follows:

l B M Rnode ← λMinsim(node, Q) −
maxnode′∈Z (1 − λ)Maxsim(node, node′), (2)

u B M Rnode ← λMaxsim(node, Q) −
minnode′∈Z (1 − λ)Minsim(node, node′), (3)

where Z is the set of nodes that contain S,
Minsim(node, Q) and Maxsim(node, Q) are the mini-

mum and the maximum similarity between any records in
node and Q, respectively, and Minsim(node, node′) and
Maxsim(node, node′) are the minimum and the maximum
similarity between any two records in node and node′,
respectively. Since l B M R is the smallest score of node, it is
calculated by taking the minimum of sim score in the first
part of the equation and subtracting that from the maximum
of sim score in the second part. Contrarily, u B M R refers to
themaximumMRscore of node (Eq. 3) and can be calculated
by reversing the min and max of the (Eq. 2).

Algorithm 2 Aug-MMR
Inputs: I-tree, D, M M R, Q, k
Outputs: S: final top-k result set.

1: R ← D, S = φ

2: for t = 1 to k do
3: Cand R ← DivGetBatch(I-tree, R, S, Q, M M R)
4: S = {S

⋃
M M R(r)r∈Cand R}

5: end for
6: return S

Skip-Nodes The argument of node skipping is simple—
if the u B M R score of a node is not larger than the l B M R
of another node, then the former node and its entire subtree
could be pruned. The records from the remaining nodes form
the Cand R set.

Cand R ← {N − {r ∈ I − tree.n | u B M Rn < (4)

max
∀n′ (l B M Rn′)}}

This is done by finding the maximum value of l B M Rn′ of
all nodes and then, discard oneswithu B M R less than it.Run-
ning Example: A step by step calculation of DivGetBatch()
is shown in Table 5. The maximum and minimum similar-
ity between node1 and query Q is 0.180 and 0.191. In first
iteration of Calculate-Bounds, lower bound of MR of node1
which is l B M Rnode1 = 0.8∗0.180−(1−0.8)∗0 = 0.144, and
upper bound of MR of node1, u B M Rnode1 = 0.8 ∗ 0.191−
(1 − 0.8) ∗ 0 = 0.153. Similarly, l B M Rnode2 , u B M Rnode2 ,
l B M Rnode3 , and u B M Rnode3 are−0.047, 0.044, 0.029, and
0.033, respectively. In Skip-Nodes , the maximum of all
l B M Rs is found 0.144 which is l B M Rnode1 .

u B M Rnode2 andu B M Rnode3 are smaller than l B M Rnode1 .
Therefore, node2 and node3 are discarded from further cal-
culation in iteration 1. Records of node1 {r1, r2, r4, r10}
are returned by DivGetBatch() to Aug-MMR algorithm.
Aug-MMR performs calculation similar to original M M R
on {r1, r2, r4, r10} which results in S = {r10}. Likewise,
the maximum and minimum similarity between node1 and
node1 are 0.969 and 1.0. In the second iteration of Calculate-
Bounds, l B M Rnode1 = 0.8 ∗ 0.180 − (1 − 0.8) ∗ 0.969 =
−0.050 and u B M Rnode1 = 0.8 ∗ 0.191− (1− 0.8) ∗ 1.0 =
−0.047. Similarity, l B M Rnode2 , u B M Rnode2 , l B M Rnode3 ,
and u B M Rnode3 are 0.028, 0.029, 0.010, and 0.009, respec-
tively. In Skip-Nodes , the maximum of all l B M Rs is
l B M Rnode2 = 0.028. u B M Rnode1 and u B M Rnode3 are
smaller than l B M Rnode2 . Thus, node1 and node3 are dis-
carded from further calculation in iteration 2. Records of
node2 {r3, r8, r9} are returned by DivGetBatch() to Aug-
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Table 5 First Two Iterations of DivGetBatch() in Aug-MMR

Functions Nodes Bounds Iteration 1 Iteration 2

Calculate-Bounds node1 l B M R 0.8 ∗ 0.180 − (1 − 0.8) ∗ 0 = 0.144 −0.050

u B M R 0.8 ∗ 0.191 − (1 − 0.8) ∗ 0 = 0.153 −0.047

node2 l B M R 0.8 ∗ 0.0191 − (1 − 0.8) ∗ 0 = 0.0152 0.028

u B M R 0.8 ∗ 0.054 − (1 − 0.8) ∗ 0 = 0.044 0.029

node3 l B M R 0.8 ∗ 0.036 − (1 − 0.8) ∗ 0 = 0.029 0.010

u B M R 0.8 ∗ 0.041 − (1 − 0.8) ∗ 0 = 0.033 0.009

Skip-Nodes l B M R array: 0.144, 0.041, 0.029 l B M R array:

u B M R array: 0.153, 0.044, 0.033 −0.050, 0.028, 0.010

u B M R Array: node2, node3 are skipped.

Cand R= {r1, r2, r4, r10}. −0.047, 0.029 , 0.009

M M R(r1, r2, r4, r10) ← r10 node1, node3 are skipped.

Number of records discarded is 6 Cand R = {r3, r8, r9}
M M R(r3, r8, r9) ← r8

top-2 set = {r10, r8}

MMR algorithm.Aug-MMR performs calculation similar to
original M M R on {r3, r8, r9} which results in S = {r10, r8}

3.2.1 Aug-MMR algorithm proofs

Claim 1 Aug-MMR returns identical top-k results as that of
original M M R.

Proof The proof is constructed using one helper lemma and
one observation: Lemma 1 proves thatDivGetBatch() never
prunes a record that is part of the original top-k;Observation 1
shows that once the control comesback fromDivGetBatch(),
Aug-MMRworks exactly as the original M M R in each iter-
ation. Combining these lemma and observation, Aug-MMR
returns identical top-k results as that of the original M M R.
	


Lemma 1 DivGetBatch() never prunes a record that is part
of the original top-k.

Proof As part of this proof, we first prove that Skip-Nodes
never discards the record which has the highest MR score in
that iteration.

Recall Property 1 and note that for every two nodes n and
n′ in the same subtree, if n is a parent of n′, then n contains
all records in n′, thereby having larger u B M R and l B M R
values. Therefore, if a node n is skipped, any child of n is
also safe to be skipped.

We use helper Lemma 2 to prove that the actual M R score
of any record in a node node is bounded between u B M Rnode

and l B M Rnode. Let us assume, the next desired record rd ∈
noded producesmaximumMRvalue among all R\S records.
M Rrd is greater than minM Rnode for ∀node. Using Eq. 6:

M Rrd ≥ maxnode∈I−tree[l].nodesminM Rnode

≥ maxnode∈I−tree[l].nodes(l B M Rnode),

Using Eq. 6, M Rrd = Max M Rnoded ≤ u B M Rnoded . As
a result,

u B M Rnoded ≥ M Rrd

≥ maxnode∈I−tree[l].nodes(l B M Rnode). (5)

According to Eqs. 5 and 4, noded will not be discarded,
and all records inside noded including rd will be returned
by DivGetBatch() or send to the next level for further pro-
cessing. This logic extends for all the iterations. Therefore,
DivGetBatch() never prunes a record that is part of the orig-
inal top-k. 	


Lemma 2 MR score of any record r ∈ node (say M Rr )
is bounded by upper and lower bound u B M Rnode and
l B M Rnode, respectively. That is,

l B M Rnode ≤ M Rr∈node ≤ u B M Rnode. (6)

Proof Wewill first prove that maximum relevance value (say
M Rrmax ) of any record (say rmax ∈ node) is less than equal
to u B M Rnode.

Where, M Rrmax can be expressed as:

M Rrmax = λsim(rmax , Q) − (1 − λ)maxr j ∈S

×sim(rmax , r j )]. (7)
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First part of Eq. 7 is always less than equal to first part of
Eq. 3. That is:

λsim(rmax , Q) ≤ λmaxri ∈nodesim(ri , Q)

= λMaxsim(node, Q),
(8)

Next, we show that second part of Eq. 7 is always greater
than second part of Eq. 3.

Let us assume; rw ∈ S produces max value for the sec-
ond part of Eq. 7. That second part can be rewritten as
(1−λ)sim(rmaxnode , rw). Let us assume, rw ∈ nodew where
nodew ∈ Z . For any node′ ∈ Z , we can write:

(1 − λ)sim(rmax , rw) ≥ (1 − λ)minri ∈node,r j ∈node′

sim(ri , r j )

≥ minnode′∈Z (1 − λ)Minsim(node, node′),
(9)

From these two inequalities 8 and 9, we can conclude
M Rrmax ≤ u B M Rnode or, M Rr∈node ≤ u B M Rnode.

Similarly, the lower bound l B M Rnode can be shown as
follows: l B M Rnode ≤ minM Rnode.

Thus, any record in node is certain to have MR value in
between u B M Rnode and l B M Rnode. 	

Observation 1 Once the control comes back from DivGet-
Batch(), Aug-MMR works exactly as the original M M R in
each iteration.

Aug-MMR has identical M R score calculation and
M M R selection as that of the original M M R.

Claim 2 Aug-MMR requires O((N/C + C) ∗ k2 + N ) time
in expectation.

Proof In the original M M R algorithm, each iteration for
finding one record takes O(N ∗ k) times. For k iterations,
the overall running time is thereforeO(N ∗ k2). The running
time ofAug-MMR does not need to go over all N records in
each iteration. Instead, it relies on DivGetBatch() to obtain
a smaller set Cand R records.

Part 1. Running time of the API: A single iteration of
DivGetBatch() needs to go over all the nodes in I-tree and
takes O(C ∗ k) time. DivGetBatch() has to compute two
subroutines:

Calculate − Bound and Skip − Nodes. To compute
these two functions, it takesO(N ) time. Therefore, the over-
all running time isO(C∗k2+N ), whereC is the total number
of nodes.

Part 2. Running time of the rest of computation: The rest
of the computation depends on the size of Cand R. Let us
assume, DivGetBatch() returns |Cand Ri | records in the i-
th iteration. Accordingly, we have:

TAug−MMR = O
(

C ∗ k2 + N +
k∑

i=1

|Cand Ri | ∗ k

)

.

The expected case analysis basically delves deeper into
the analysis of Part 2 and studies the expected running time
considering different size of Cand Ri and its corresponding
probability.

Let us assume, in iteration i , the |Cand Ri | records touch
x number of nodes in I-tree. Indeed, xi is the number of
nodes with |Cand Ri | records in I-tree, that the augmented
algorithms have to access during the query processing. Let us
also assume node ni contains vi records. We start the proof
assuming there is only one level in I-tree (i.e., l = 1) and
then, generalize it later on. If l = 1, the expected running
time of Part 2 calculation of Aug-MMR in the i-th iteration
is:

E = O
(

C∑

i=1

prob(xi ) × computation costAug−MMR(xi )

)

.

Now, probability of returning x nodes =
(C

x

)
* probability

of x nodes getting selected * probability of (C − x) nodes
not getting selected.

We assume that both data and query follow uniform dis-
tributions; thereby, each node has an equal probability of
getting selected or skipped. The probability of choosing a
node is 1/C . Therefore, the probability of not getting selected
is (1 − 1/C).

The size of the returned record set, i.e., |Cand R|, if x = i
nodes are accessed:

|Cand R|i = (1/C)i ∗ (1 − 1/C)C−i ∗ [(v1 + v2 + . . . + vi )

+ (v1 + v3 + . . . + vi+1) + (v2 + v3 + . . . + vi+1)

+ (v3 + v4 + . . . + vi+2) + . . .]
= (1/C)i ∗ (1 − 1/C)C−i ∗

(
C − 1

i − 1

)

∗ (v1 + v2 + . . . + vC )

= (1/C)i ∗ (1 − 1/C)C−i ∗
(

C − 1

i − 1

)

∗ N .

Therefore, the overall expected cost of Part 2 is:

|Cand R| = N ∗
C∑

i=1

(1/C)i ∗ (1 − 1/C)C−i ∗
(

C − 1

i − 1

)

= N ∗ (1/C)/(1 − 1/C) ∗
C∑

i=1

(1/C)i−1∗

(1 − 1/C)C−(i−1) ∗
(

C − 1

i − 1

)

.

Let j = i − 1 :

= N ∗ (1/C)/(1 − 1/C) ∗
C−1∑

j=0

(1/C) j∗
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(1 − 1/C)C− j ∗
(

C − 1

j

)

= N ∗ (1/C)/(1 − 1/C) ∗ (1 − 1/C)∗
C−1∑

j=0

(1/C) j ∗ (1 − 1/C)(C−1)− j ∗
(

C − 1

j

)

= N ∗ (1/C)/(1 − 1/C)∗
(1 − 1/C) ∗ (1/C + 1 − 1/C)C−1 = N/C .

Expected running time ofAug-MMR algorithm considering
both Part 1 and Part 2 computation is:

EAug−MMR = O((N/C + C) ∗ k2 + N ).

Now, consider the case when l > 1. Probability of select-
ing a node in first level is 1/m, given m is the arity of I-tree.
Probability of selecting a node in second level = probability
of selecting that node out of m node in that branch * proba-
bility of selecting it’s parent = 1/m2. Similarly, probability
of selecting a node at leaf node is 1/ml = 1/C . Thus, in the
general case, when l > 1, expected running time of Aug-
MMR isO((N/C + C) ∗ k2 + N ), which is same as before.

	

Worst-case Aug-MMR . In the worst-case, all N records are
returned by DivGetBatch() in each iteration, which makes

k∑

i=1
|Cand Ri | = N ∗ k. Thus, the worst-case running time is

O((N + C) ∗ k2).

4 GMM query processing withDivGetBatch()

The second algorithm we study is G M M algorithm. We
describe the original version of the algorithm and our aug-
mented version and similar to the previous section. We also
provide proofs on how our augmented version outperforms
the original one.

4.1 GMM algorithm

The next algorithm we study is G M M [23] that tries to
find a subset of k most diverse records among N records
by maximizing the minimum pairwise distance. G M M does
not require any external query. Based on the original design,
the first two records in the result set S are provided in con-
stant time by an oracle. Then, the algorithm iteratively goes
through all records in R and finds a record whose minimum
diversity (maximum similarity) with the previously selected
records is the largest (smallest). It continues until |S|=k. The
objective function is:

G M M(r) ← argmaxr∈R\Sminr j ∈S Div(r , r j ), (10)

where Div(r , r j ) is the diversity score between record r
and r j . A keen reader may notice that G M M uses diver-
sity (Div) in the objective function, whereas, in our study,
we store similarity between records. Unless specified other-
wise, Div = 1 − sim. The two similarity matrices, one that
captures the similarity between every pair of records, and the
other that captures that of between nodes, could be used to
calculate Div.

4.2 Aug-GMM algorithm

Aug-GMM leverages the DivGetBatch() API to reduce the
number of records to iterate on. Algorithm 3 describes the
pseudo-code, where theDivGetBatch() returns a small sub-
set of records Cand R which later on is fed to the original
G M M algorithm to get the next Best record.

Calculate-Bounds This function keeps track of the upper
and lower bounds of scores between nodes (u BG M M and
l BG M M , respectively) using the same principles as that of
the original G M M objective function (Eq. 10).

l BG M Mnode ← minnode′∈Z min Div(node, node′),
(11)

u BG M Mnode ← minnode′∈Z max Div(node, node′),
(12)

where Z is the set of nodes containing S,min Div(node, node′)
and max Div(node, node′) are the minimum and the maxi-
mum diversity scores between any two records in node and
node′, respectively. In Eq. 11, minimum of the minimum
diversity over all nodes in Z ensures the lower bound of
G M M , such that all records innodewill have equal or greater
value than l BG M Mnode. Conversely, in Eq. 12, minimum of
the maximum diversity over all nodes in Z ensures the upper
bounds, such that all records in node will have equal or lower
G M M value than u BG M Mnode.

Skip-Nodes This function is identical to Skip-Nodes of
M M R in principle. The skip-rationale of Aug-GMM is:

Cand R ←
{

N −
{

r ∈ I − tree.n | u BG M Mn <

max
∀n′ (lG M Mn′)

}}

(13)

Running Example Let us assume k = 3 and the first
two records of S are arbitrarily chosen as r1 and r3. Ini-
tially, S = {r1, r3}. From Fig. 1, r1 and r3 are inside
node1 and node2, respectively. Hence, Z = {node1, node2}.
Node-Node diversity Div(node, node′) can be calculated
using Div = 1 - Sim. Div(node3, node1) = (0.884, 0.908)
and Div(node3, node2) = (0.937, 0.9530). By using Eqs.
(11) and (12), l BG M Mnode3 = 0.884 (as min of min div)
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and u BG M Mnode3 = 0.908 (as min of max div). Sim-
ilarly, l BG M Mnode1 , u BG M Mnode1 , l BG M Mnode2 , and
u BG M Mnode2 are 0, 0.031, 0, and 0.018. l BG M Mnode3
(0.884) is greater than u BG M Mnode1 (0.031) and
u BG M Mnode2 (0.018). Using Equ. 13, node1 and node2 can
be discarded. Obtaining records from node3 ,
cand R = {r5, r6, r7} is returned fromDivGetBatch(). Finally,
G M M(r5, r6, r7) = r5 is called and the result set S =
{r1, r3, r5} is achieved.

4.2.1 Aug-GMM algorithm proofs

Claim 3 Aug-GMM returns identical top-k results as that of
original G M M.

Proof Akin to MMR proof, this proof is also constructed
using one helper lemma and one observation: Lemma 3
proves that DivGetBatch() never prunes a record that is part
of the original top-k; Observation 2 shows that in each iter-
ation, once the control comes back from DivGetBatch(),
Aug-GMMworks exactly as the originalG M M . Combining
these lemma and observation, Aug-GMM returns identical
top-k results as that of the original G M M . 	

Lemma 3 DivGetBatch() never prunes a record that is part
of the original top-k.

Proof As part of this proof, we first prove that Skip-Nodes
never discards the record which has the highest GMM score
in that iteration.

We use helper Lemma 4 to prove that the actual G M M
score of any record in a node node is bounded between
u BG M Mnode and l BG M Mnode. The rest of the proof is
identical to Lemma 1 of Aug-MMR. 	

Lemma 4 GMM score of any record r ∈ node (say G M Mr )
is bounded by upper and lower bound u BG M Mnode and
l BG M Mnode, respectively. That is,

l BG M Mnode ≤ G M Mr∈node ≤ u BG M Mnode.

Proof Let us first consider u BG M Mnode, by assuming
F(node, r j ) = maxri ∈node Div(ri , r j ), it can be re-written
as:

u BG M Mnode ← minnode′∈Z [maxr j ∈node′ F(node, r j )],
(14)

Let us assume, maximum GMM value produced by any
record in node is maxG M Mnode. According to Equ. 10,
maxG M Mnode is expressed as follows:

maxG M Mnode = maxri ∈node[minr j ∈S Div(ri , r j )],
= minr j ∈S[maxri ∈node Div(ri , r j )],

= minr j ∈S F(node, r j ),

≤ minnode′∈Z [maxr j ∈node′ F(node, r j )],
= u BG M Mnode, [using Eq. 14].

Similarly, it can be proved that minG M Mnode ≥ l BG M
Mnode. 	

Observation 2 Once the control comes back from DivGet-
Batch(), Aug-GMM works exactly as the original G M M in
each iteration.

Aug-GMM does exactly same calculation as the original
G M M does on a set of records as a result it will produce the
same record as G M M does in a single iteration.

Claim 4 Aug-GMM requiresO(N/C+C)∗k) time in expec-
tation.

Proof In the G M M algorithm, each iteration for finding one
record takesO(N ) times. For k iteration, the overall running
time isO(N ∗k). Similar to Aug-MMR,Aug-GMM does not
need to go over all N records in each iteration, instead relies
on DivGetBatch() to obtain a smaller set Cand R records.

Part 1. Running time of the API: A single iteration of
DivGetBatch() needs to go over all the nodes in I-tree and
takes O(C) time. DivGetBatch() has to compute two sub-
routines:

Calculate − Bound and Skip − Nodes. To compute
these two functions, it takesO(C) time. Therefore, the over-
all running time isO(C ∗ k), where C is the total number of
nodes.

Part 2. Running time of the rest of computation: Similar
to Aug-MMR, the rest of the computation depends on the size
ofCand R. Let us assume,DivGetBatch() returns |Cand Ri |
records in the i-th iteration. Hence, we have:

TAug−GMM = O(C ∗ k +
k∑

i=1

|Cand Ri |).

The expected case analysis basically delves deeper into
the analysis of Part 2 and studies the expected running time
considering different size of Cand Ri and its corresponding
probability. By performing similar calculation as that ofAug-
MMR as shown before, the expected cost of Aug-GMM is:

EAug−GMM = O((N/C + C) ∗ k).

	

Worst-case Aug-GMM In the worst-case, all N records are
returned by DivGetBatch() in each iteration, which makes

k∑

i=1
|Cand Ri | = N ∗ k. Then, the worst-case running time is:

O((N + C) ∗ k).
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Algorithm 3 Aug-GMM
Inputs: I-tree, D, G M M , k
Output: S: final top-k result set

1: S ← two records selected by an oracle
2: R ← {D − S}
3: for t = 1 to k − 2 do
4: Cand R ← DIVGETBATCH(I-tree, R, S, G M M)
5: S = {S

⋃
G M M(r)r∈Cand R}

6: end for
7: return S

5 SWAP Query ProcessingwithDivGetBatch()

The last algorithm we study is SW AP [49]. We describe the
original version and our proposed augmented version. Simi-
lar to the previous sections, we provide theoretical analysis.

5.1 SWAP algorithm

SWAP [49] is a greedy algorithm that produces top-k results
based on a given query Q and a tunable parameter that con-
trols howmuch relevance could atmost dropbetween any two
records in the top-k results. The algorithm starts by sorting
the records w.r.t. relevance and initializing the top-k result set
S with the k-records with the highest relevance score with Q.
It finds a candidate record from the current top-k set that has
the smallest diversity contribution based on Eq. 15. Indeed,
in each iteration, it attempts to swap one record from R \
S with the candidate record. It starts scanning the remain-
ing sorted relevance list from the top. In every iteration, it
attempts to swap one record from the current top-k set with
another from sorted R if the latter record has a higher contri-
bution to diversity while ensuring the threshold of relevance
drop. The algorithm terminates when the relevance drop is
below the threshold, or R is fully scanned.

Divcont(ri , S) =
∑

r j ∈S

Div(ri , r j ). (15)

5.2 Aug-SWAP algorithm

Aug-SWAP is identical to the SWAP, i.e., it scans the sorted
relevance list R, after initializing the top-k set S. It calls the
DivGetBatch() API to retrieve a smaller set of candidate
records Cand R. These Cand R records are eligible to be
considered during the next swap. If a record in R is not in
Cand R, then it is skipped. The rest of the process is identical
to the original SWAP algorithm. Algorithm 4 contains the
pseudo-code.

Calculate-Bounds Once the records are sorted w.r.t. rel-
evance score, the diversity computation becomes query
independent, and only between the records. This function
calculates the upper and lower bounds of diversity contri-

bution of nodes by leveraging Minsim Matri x Node and
Maxsim Matri x Node considering the set of nodes Z that
contains S, as below:

u BSW APnode ←
∑

node′∈Z

max Div(node, node′), (16)

l BSW APnode ←
∑

node′∈Z

min Div(node, node′), (17)

where max Div(node, node′) and min Div(node, node′)
are the max and the min diversity between node and node′.
Naturally, the maximum (minimum) diversity is the maxi-
mum (minimum) of node diversities between node and the
nodes in Z .

Skip-NodesThis functionwill then check ifu BSW APnode

is less than the diversity contribution of the candidate record
(18); If the condition is true, it will prune the node and the
entire subtree under it. In such a case, none of the records
inside this node are eligible for swap because they will not
increase the overall diversity of S. DivGetBatch() returns
the records for all non-pruned nodes:

Cand R ←
{

N −
{

r ∈ I − tree.n | u BSW APn <

minri ∈S

∑

r j ∈S

Div(ri , r j )

}}

(18)

Running Example: Lets say, k = 2, U B = 0.9, sorted R
= {r8, r7, r2, r1, r4, r9, r3, r6, r10}, and initial top-2 records
selected as S={r8, r7}. Using Eq. 15, Divcont(r7, S) = 0.953
and the candidate is r7. From Fig. 1, Z = {node2, node3}.
Using Eqs. (16), (17), and Fig. 1, if Div = 1 - sim, we have:

u BSW APnode1 = max Div(node1, node2) = 0.935,
l BSW APnode1 = minDiv(node1, node2) = 0.925.
Then, Eq. 18 is applied and node1 is discarded, node2,

node3 are returned by DivGetBatch(), and Cand R = {r3, r9,
r5, r6}. Next record in the sorted list is r2, which is not in
Cand R. As a result, r2 will be skipped.

5.2.1 Aug-SWAP algorithm proofs

Claim 5 Aug-SWAP returns identical top-k results as that
of original SWAP.

Proof This proof is constructed using one helper lemma and
one observation. Lemma 5 proves that DivGetBatch() does
not skip a record that has a higher diversity contribution
than that of the candidate record. Observation 3 shows that
once all records returned in Cand R,Aug-SWAP is identical
to SW AP . Combining these lemma and observation, Aug-
SWAP returns identical top-k results as that of the original
SW AP . 	
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Algorithm 4 Aug-SWAP
Inputs: I-tree, D, U B, k, SWAP
Output: S: final top-k result set.

1: R ← Sort D on score;
2: S ←topkItems(R, k)
3: candidate ← argminri ∈S Equation 15
4: Cand R ← R
5: pos ← k + 1
6: while candidate.score - R[pos].score < U B do
7: if R[pos] in Cand R then
8: if Divcont(R[pos], S) > Divcont(candidate, S) then
9: S ← {S − candidate

⋃
R[pos]}

10: Cand R ← DIVGETBATCH(I-tree, R, S, Q, SWAP)
11: candidate ← argminri ∈S Equation 15
12: end if
13: end if
14: pos++
15: end while
16: return S

Lemma 5 DivGetBatch() never prunes a record that is part
of the original top-k.

Proof As part of this proof, we first prove that in each itera-
tionSkip-Nodes never discards a recordwhich has the higher
diversity contribution than that of the candidate record.

Let us assume, rcand ∈ S has lowest diversity contribution
in S.

Divcont(rcand , S) = minri ∈S

∑

r j ∈S

Div(ri , r j )}

= minri ∈S Divcont(ri , S).

We use helper Lemma 6 to prove that the actual DivCont
score of any record in a node node is bounded between
u BSW APnode and l BSW APnode. Let us assume, rd ∈
noded is a record inside node, therefore,

u BSW APnoded ≥ Divcont(rd , S)

≥ Divcont(rcand , S)

= minri ∈S

∑

r j ∈S

Div(ri , r j ),

as a result,

u BSW APnoded ≥ minri ∈S

∑

r j ∈S

Div(ri , r j ). (19)

From Eqs. 18 and 19, it is evident that noded containing rd

will not be skipped by Skip-Nodes . This logic extends to all
the iterations Skip-Nodes calls. Hence the proof. 	

Lemma 6 Divcont score of any record r ∈ node is bounded
by upper and lower bound u BSW APnode and l BSW APnode,
respectively. That is,

l BSW APnode ≤ Divcont(r , S)r∈node ≤ u BSW APnode.(20)

Proof By replacing the value of max Div(node, node′), the
upper bound can be written as:

u BSW APnode ←
∑

node′∈Z

maxri ∈node,r j ∈node′ Div(ri , r j ).

(21)

For any record r ∈ node and r j ∈ S, r j ∈ noded and
node j ∈ Z ,

Div(r , r j ) ≤ maxri ∈node Div(ri , r j ),

Or,

∑

r j ∈S

Div(r , r j ) ≤
∑

node′∈Z

maxri ∈node,r j ∈node′ Div(ri , r j ),

As a result, Divcont(r , S) ≤ u BSW APnode. Similarly, we
can prove: Divcont(r , S) ≥ l BSW APnode. 	

Observation 3 Once the control comes back from DivGet-
Batch(), Aug-SWAP works exactly as the original SW AP
does in each iteration.

Aug-SWAP performs identical calculation of SW AP on
the records that are not pruned by DivGetBatch().

Claim 6 Aug-SWAP requires O(N/C ∗ k ∗ log k + N ) time
in expectation.

Proof In the original SW AP algorithm, each iteration to
select a new record to be swapped with the candidate record
takesO(k ∗ log k) time. Therefore, for going over all records
in R, it takesO(N ∗ k ∗ log k). Aug-SWAP does not need to
perform O(N ∗ k ∗ log k), instead relies on DivGetBatch()
to obtain a smaller set Cand R records.

Part 1. Running time of the API: A single iteration
of DivGetBatch() needs to go over all the nodes in
I-tree. DivGetBatch() has to compute two subroutines:
Calculate − Bound and Skip − Nodes. By updating only
the most recent swapped records and using dynamic pro-
gramming, the two subroutines’ overall running time is
O(C), where C is the total number of nodes. However, how
many times the API gets called depends on the number of
times the swap condition gets satisfied (recall lines 8-10 in
Aug-SWAP algorithm).

Part 2. Running time of the rest of computation: The other
major computation of this algorithm is the running time of
a record be swapped, which is O(k ∗ log k) and Divcont
running time in the Algorithm 5 line 8, which is O(k). How
many times Divcont gets executed depends on Line 7 in
the Aug-SWAP algorithm is satisfied. The number of times
SW AP gets executed depends on swap condition, which is
Line 8 in the Aug-SWAP algorithm. Finally, the entire R
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needs to be exhausted (as long as the bound drop threshold
is satisfied), which takes O(N ) time. As a result, we have:

TAug−SWAP = O(Number of times swap is satis f ied

∗ DivGetBatch() runtime+
Number of times swap is

satis f ied ∗ SW AP runtime+
number of times line 7 is satis f ied∗
Divcont runtime + N ).

By considering running time of single Divcont , SW AP ,
andDivGetBatch() call, overall running time ofAug-SWAP
becomes:

TAug−SWAP = O(Number of times swap is satis f ied

∗ C + Number of times swap is satis f ied

∗ k ∗ log k + number of times line 7

is satis f ied ∗ k + N ).

= O
( N∑

i=1

[probabili t y o f swap satis f ied

∗ C + probabili t y o f swap satis f ied

∗ k ∗ log k + probabili t y o f number of

times line 7 is satis f ied ∗ k] + N

)

Expected size of Cand R is
∑N

i=1
|Cand Ri |

N . Probability
of line 7 satisfied = probability that R[pos] is in Cand R

=
∑N

i=1
|Cand Ri |

N
N . Without further information, the probabil-

ity of a record getting swapped is 1/2 (same as not getting
swapped). Probability of SW AP = 1/2∗ line 7 is satisfied =
1/2 ∗

∑N
i=1

|Cand Ri |
N

N . Expected running time (cost) of Aug-
SWAP is:

EAug−SWAP =
N∑

i=1

[1/2 ∗
∑N

i=1
|Cand Ri |

N

N
∗ (C + k ∗ log k)

+
∑N

i=1
|Cand Ri |

N

N
∗ k] + N

= 1/2 ∗
N∑

i=1

|Cand Ri |
N

∗ (C + k ∗ log k)

+
N∑

i=1

|Cand Ri |
N

∗ k + N

= O(

N∑

i=1

|Cand Ri |
N

∗ (C + k ∗ log k) + N )

First, we study the Part 2 computation having two costs asso-
ciated with it, cost of Divcont and cost that of SW AP .
Based on Line 7 of Algorithm 5, if Cand R is large, it is
likely to have R[pos] inside it. In fact, if Cand R contains
all R records, R[pos] will always be there. For the purpose
of illustration, let us assume, in the i-th iteration, |Cand Ri |
records touch x number of nodes in I-tree and node ni con-
tains vi records. Therefore, the probability that R[pos] is in
Cand Ri =

∑x
q=1 vq

N .
The expected running time of SW AP in terms of C is:(C

x

)
* probability of x nodes getting selected * probability of

(C − x) nodes not getting selected * probability of R[pos]
is in Cand Ri * probability of swap * cost of swap.

The probability of x = i and R[pos] is in Cand Ri is:

= (1/C)i ∗ (1 − 1/C)C−i ∗ [(v1/N + v2/N + · · · + vi /N )

+ (v1/N + v3/N + · · · + vi /N ) + . . .

+ (vC−i /N + · · · + vC/N )]
= (1/C)i ∗ (1 − 1/C)C−i ∗

(
C − 1

i − 1

)

∗ (
v1 + v2 + · · · + vc

N
).

= (1/C)i ∗ (1 − 1/C)C−i ∗
(

C − 1

i − 1

)

.

Therefore, the expected running time (cost) of SW AP is,

ESW AP = 1/2 ∗ N ∗ k ∗ log k ∗
C∑

i=1

(1/C)i ∗ (1 − 1/C)C−i ∗
(

C − 1

i − 1

)

= 1/2 ∗ N/C ∗ k ∗ log k.

Expected running cost of Divcont is
(C

x

)
* probability of x

nodes getting selected * probability of (C − x) nodes not
getting selected * probability of R[pos] is in Cand Ri * cost
of Divcont . Therefore, the expected running time (cost) of
Divcont is:

EDivcont = N ∗ k ∗
C∑

i=1

(1/C)i ∗ (1 − 1/C)C−i ∗
(

C − 1

i − 1

)

= N/C ∗ k.

The expected cost of Part 2 becomes:

EPart2 = 1/2 ∗ N/C ∗ k ∗ log k + N/C ∗ k.

The expected running time (cost) of Part 1 is =
(C

x

)
* probabil-

ity of x nodes getting selected * probability of (C − x) nodes
not getting selected * probability of R[pos] is in Cand Ri *
probability of swap * cost of DivGetBatch(). Using similar
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calculation as above, expected cost of part 1 is:

E part1 = 1/2 ∗ N ∗
C∑

i=1

(1/C)i ∗ (1 − 1/C)C−i∗
(

C − 1

i − 1

)

∗ C = N/2.

Expected running time ofAug-SWAP algorithm considering
both Part 1 and Part 2 computation is:

EAug−SWAP = 1/2 ∗ N/C ∗ k ∗ log k + N/C ∗ k + N/2

+N = O(N/C ∗ k ∗ log k + N )

Now, consider the case when l > 1 for Aug-SWAP. Prob-
ability of selecting a node in first level is 1/m, given m is
the arity of I-tree. Probability of selecting a node in second
level = probability of selecting that node out of m node in that
branch * probability of selecting its parent = 1/m2. Similarly,
probability of selecting a node at leaf node is 1/ml = 1/C .As
the records are only returned from leaf nodes, the expected
probability that R[pos] is in Cand Ri does not change for
l > 1. The running time of DivGetBatch() = O(ml) =
O(C) also stays same . The rest of the computation does
not directly depend on l. As a result, expected running time
of Aug-SWAP for l > 1 is same as before. 	


Worst-case Aug-SWAP In the worst-case, none of the records
are skipped, so the number of swap is O(N ). Therefore, the
worst-case running time is: O(N ∗ C ∗ k ∗ log k).

Our technical results are summarized in Tables 1 and 2 .

6 I-tree

The index is a hierarchical complete tree-like structure [28]
that partitions D intomultiple groups of records. Eachnode in
I-tree consists of a group of similar records. The index struc-
ture maintains a higher level aggregate similarity between
nodes 3. I-tree is applicable not only to the studied three
algorithms, but also to any content-based algorithm that is
either based on replacing items in the top-k or building the
top-k in an incremental fashion.

6.1 Index construction

The input to the indexing step is a N × N matrix, named
simMatrixRecord. It represents the similarity scores between

3 Diversity between a pair of records is simply 1 − similarity between
them.

Algorithm 5 Indexing Algorithm BuildTree(node)
Inputs: database D of N records, m: arity of the tree, l: number of
levels,
Outputs: I-tree, simMatrixNode: node-node similarity matrix,
recordMap: a mapping of all records and their belonging node id
for each level.

1: rootnode ← N records, y = 0
2: nodelist[y] ← rootnode
3: while y ≤ l do
4: for node in nodelist[y] do
5: cnodes ← Partition(node, m)
6: I-tree [y][node].addChild(cnodes)
7: w ← ⋃

cnodes
8: recordMap[y][r] ← node id containing record r in y
9: end for
10: MinsimMatrixNode[y][i][ j] ← Use Equation 23
11: MaxsimMatrixNode[y][i][ j] ← Use Equation 24
12: nodelist[y] ← w

13: y ← y + 1;
14: end while

every pair of records, ri and r j , in the database and two addi-
tional parameters, l and m, which are the number of levels
and arity of the tree, respectively. The output is a complete
m-ary tree with l levels, referred to as I-tree.

The indexing algorithm BuildTree (Algorithm 5) parti-
tions (refer to the Subroutine Partition) the records. It also
maintains additional data structures that contain similarity
scores between nodes for efficient query processing. An
example of a two-level index tree is shown in Fig. 2. At
the first level, BuildTree creates a root node containing all N
records and m children of the root node. From the point of
abstraction, it is not important at this stage to describe how
the data are partitioned. Basically, the goal is to keep simi-
lar records together while separating non-similar ones. There
are multiple off-the-shelf techniques such as clustering and
graph partitioning to carry out this task.

In our implementation, we use the popular k-means
algorithm [25] for partitioning. The algorithm repeats the
partitioning procedure until it reaches l levels. Therefore, I-
tree contains a total of C nodes such that:

C =
l∑

i=0

mi = ml+1 − 1

m − 1
= O(ml) (22)

Inside I-tree, additional data structures are maintained:
a. A recordMap of size N × l that maps the id of a record

with the id of its node in each level from 1 . . . l. b. Minsim-
MatrixNode and MaxsimMatrixNode that contain inter-node
minimum and maximum similarities between any two nodes
in the same level, respectively. Particularly, for two nodes n
and n′ in level y, MinsimMatrixNode and MaxsimMatrixN-
ode contain:

Minsim Matri x Node[i, j] = Minr∈i,r ′∈ j sim(r , r ′),
(23)
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Maxsim Matri x Node[i, j] = Maxr∈i,r ′∈ j sim(r , r ′),
(24)

where, r ∈ n, r ′ ∈ n′. Figure 1 contains these scores for 3
nodes of our running example.

6.2 Indexmaintenance

Even for a single insertion or deletion, I-tree requires
the following two activities: a. insertion/deletion of that
record from/into I-tree; b. updating MinsimMatrixNode
and MaxsimMatrixNode, if these insertion/deletion require
updating the minimum and maximum similarity scores
between nodes. One can easily see that (a) could be achieved
in a constant time when l =1 andO(l) when l greater than 1.
However, a single insertion/deletion may require as many as
2 × (C − 1) updates in these two matrices.

6.2.1 Batch update

We study how to maintain I-tree considering both insertions
and deletions.

Batch Deletion Let us assume a batch of R records are to
be deleted from I-tree. The process deletes these R records
one by one and then checks how many entries in MinsimMa-
trixNode and MaxsimMatrixNode need update (if the deleted
records contribute to these aggregate values, then that require
updates in those two matrices, else not). The overall process
takes O(|Y | × C × N ) time.

Batch Insertion This problem is more complicated. If the
records are inserted arbitrarily inside I-tree, then, each inser-
tionmay potentially cause a total of 2×(C −1) updates in the
MinsimMatrixNode and MaxsimMatrixNode data structures.
This is the leading computational cost of batch insertion.
Moreover, when a batch of records are inserted, it is possible
to have multiple records to get inserted inside the same node,
and that should not be double-counted in the process. Finally,
one needs to insert the records to those nodes, such that
the aggregates stored in MinsimMatrixNode and Maxsim-
MatrixNode remain “tight” to enable effective pruning.These
nuances are explored in formalizing the batch insertion prob-
lem.

Problem Definition 2 (Batch Insert)Let Minsim Matri x Node[i, j]
(similarly Maxsim Matri x Node[i, j]) denote the value
after |Y | insertions at the [i, j]-th entry at the Minsim-
MatrixNode (similarly Maxsim Matri x Node matrix). Let
Minsimi j and Maxsimi j be two binary variables, such
that which Minsimi j = 1 (similarly Maxsimi j ), if it
requires an update after insertions, 0 otherwise. Our goal
is to insert a batch of records Y such that, it minimizes
∑

i, j Minsimi j + ∑
i, j Maxsimi j , i.e., the total number of

updates in these two matrices.

Algorithms We present an integer programming-based
solutionOPTMn for solving the batch insert problem.While
OPTMn indeed produces the optimal solution, due to its
exponential nature, it does not scale to a very large dataset
considering a large number of insertions. As an alterna-
tive, we present GrMn a greedy heuristic algorithm which
makes greedy choices and indirectly attempts to minimize
the number of updates in MinsimMatrixNode and Maxsim-
MatrixNode matrices. The idea is to make a greedy decision
by inserting eachof the incoming records to that nodewhich it
is closest to (based on the underlying similarity measure) and
then, check if that insertion requires any updates in Minsim-
MatrixNode and MaxsimMatrixNode matrices. The running
time of this algorithm is O(|Y | × N ).

7 Experimental evaluation

Our experimental evaluations have three primary goals.
First, we analyze if the augmented algorithms return iden-
tical results to their original counterparts using multiple
large-scale datasets. Second, we examine the efficiency and
scalability of the augmented algorithms and compare them
withmultiple baselines. Finally,we empirically study the cost
of building and maintaining I-tree. For brevity, we present a
subset of results that are representative.

Experimental setup All algorithms are implemented in
Python 3.8. All experiments are conducted on a cluster server
OSL machine with 32GB RAM memory, OS: Scientific
Linux release 7.8 (Nitrogen), CPU: Intel(R) Xeon(R) CPU
E3-1245 v6 @ 3.70GHz. Obtained results are the average of
three separate runs. 4

Diversity and similarityWeuse normalizedEuclidean dis-
tance (dist) as diversity to validate our designed solutions in
the geometric space, Cosine similarity [25] in general metric
space. For non-metric distance, we use Movielens datasets
and quantify the diversity between a pair of movies as the
number of users who have rated either of these two movies
but not both. We additionally use an arbitrary diversity func-
tion generated synthetically on Makeblobs dataset, such that
it does not satisfy triangle inequality. Thus, diversity values
are atomic for the last two cases and are not derived from the
feature vectors. For all these cases, sim = 1 − dist .

Query selection In our experiments, queries are chosen
randomly.

Performance measures We measure precision@k [25]
for qualitative analysis. Efficiency of the proposed method
is demonstrated with |Cand R|/N × 100, pruning = 1 −
|Cand R|/N × 100, as well as by presenting the running
times of the algorithms in seconds and computing speedup

4 The code and data could be found at https://anonymous.4open.
science/r/divGetBatch-54BE/README.md
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Table 6 Dataset statistics Dataset Size #Total features #Features used Dataset type

Yelp 112,686 12 3 Real

MovieLens 1,000,209 3 2 Real

MovieLens non-metric 8,453 3 2 Real

UCI Gas dataset 13,911 128 128 Real

MakeBlobs 10,000,000 varied 20 Synthetic

Table 7 Aug-MMR vs M M R running time (s) on MakeBlobs with l
= 2, m = 6

Dataset Size

Algorithm 5 k 10 k 50 k 10 k

Aug-MMR 4.33 8.69 43.57 306.11

MMR 19.77 40.16 197.28 1206.90

as follows:

speedup = Toriginal−algorithm

Taugmented−algorithm
(25)

where T denotes running time in seconds. Finally, we present
time to build I-tree and the space required for that.

Datasets Experiments are conducted on five datasets,
four real and one publicly available synthetic data. For real
datasets, we use Yelp5, UCI Gas dataset 6 that is high dimen-
sional, MovieLens 1M records, and MovieLens non-metric
dataset7. For synthetic data, we use MakeBlobs from the
sklearn package.8 An overview of the datasets is given in
Table 6.

7.1 Baselines

In this section, we introduce diversity-based algorithms and
index structure baselines that we compare to our proposed
solutions.

7.1.1 Diversity baselines

For diversity-based methods, three representative algorithms
are implemented.

MMR [14]: computes an objective score based on two
parameters: relevance to the query and diversity with other
records. As shown in Eq. 1, they are combined in a linear

5 https://www.yelp.com/dataset/documentation/main
6 https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset
7 https://grouplens.org/datasets/movielens/
8 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_blobs.html

expression with a λ coefficient. The algorithm repeats this
computation k times to produce top-k.

GMM [23]: finds the k most diverse records by selecting
the maximum of minimum distances between undiscov-
ered records and previously selected ones at each iteration
(Eq. 10). Like M M R, it also iteratively builds the top-k set.

SWAP [49]: This greedy algorithm first finds the initial
top-k records, then greedily interchanges records that are part
of the current top-k with the ones that are remaining, if the
swap improves diversity contribution (Eq. 15).

SPP [21]: Space Partitioning and Probing (SPP in short) is
an algorithm that minimizes the number of accessed objects
while finding exactly the same result as M M R. S P P belongs
to a family of algorithms that rely only on score-based and
distance-based access methods and does not require retriev-
ing all the relevant objects. SPP is designed only for the
geometric space.

7.1.2 Index structure baselines

We implement three additional baselines to compare against
I-tree. These indexing techniques are limited to metric space
and cannot be applied on arbitrary diversity function not sat-
isfying triangular inequality.

KD-tree [10]:K D-tree is a multidimensional Binary
Search Tree. The tree is created by bisecting each dimension
and finding the median. K D-tree can perform searches in
multidimensional space for efficient nearest neighbor search.

Ball-tree [29]: Ball-tree is a binary tree in which every
node defines aD-dimensional hypersphere or ball, containing
a subset of the points to be searched. Each node in the tree
defines the smallest ball that contains all data points in its
subtree. This gives rise to the useful property that for a given
test point t outside the ball, the distance to any point in a ball
B in the tree is greater than or equal to the distance from t to
the surface of the ball. Ball-tree only supports binary splits.

The arity of the tree in both K D-tree and Ball-tree is
fixed to 2.

M-Tree [15]: M-tree is similar to Ball-tree, but supports
multiple splits. Every node n and leaf l f residing in a par-
ticular node N is at most distance r from N , and every node
n and leaf l f with node parent N keeps the distance from it.
It also has the similar property of Ball-tree, which is for a
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given test point t outside the node, the distance to any point
in a node in the tree is greater than or equal to the distance
from t to the surface of the node.

We are incorporating Node-Node distance matrix to these
baseline tree index structures so that they can be used for
I-tree API.

Cover-Tree [12]: Another popular indexing structure is
cover tree which is used to enable efficient nearest neighbor
search in metric space. To be able to work with DivGet-
Batch(), the indexing technique must work in a fashion that
the parent nodes of the index structure (in this case a tree)
cover the records that are present in their sub-tree. This allows
us to effectively maintain the inter-diversity bounds across
the nodes and when a node gets pruned, all its children also
does. Contrarily, in a cover tree, only the leaf nodes together
contain and cover all the records and no other intermedi-
ate/higher level nodes does. Therefore, it is not obvious how
to adapt this indexing technique and integrate it inside our
proposed access primitive.

7.1.3 Index maintenance baselines

OPTMn and GrMn are compared with two baselines.
NonIncrMn Algorithm: In NonIncrMn, I-tree is built

from scratch after every |Y | insertions. NonOlMn Algo-
rithm: This algorithm makes a local decision to insert each
record based on Problem 2, without accounting for overlap-
ping updates inside the same node in I-tree.

7.2 Summary of results

Our first set of experiments (Sect. 7.3) verify that our results
from all three augmented algorithms are identical to their
original counterparts. We measure precision@k [25] for dif-
ferent k, and our empirical results obtain 100% precision
score.

Our next set of experimental results demonstrate (Sect. 7.4)
that the running time of the augmented algorithms are con-
sistent with our theoretical analyses. We achieve a 19× and
24× speedup for Aug-MMR and Aug-GMM, on Makeblobs
10M and MovieLens 1M data, respectively. We achieve a 3×
speedup for Aug-SWAP on MakeBlobs 1M dataset. These
results corroborate that our proposed framework is suitable
to scale on large datasets. We also show that I-tree works
on any arbitrary distance functions while other baselines are
designed for only metric distance functions. We have con-
ducted experimental analysis on two different non-metric
distance functions (one obtained from the real data), these
experimental results demonstrate that Aug-MMR attains
82% pruning compared to the baseline solutions, resulting in
about 2.7 times speed up on an average. On the other hand,
the results obtained from high dimensional UCI Gas dataset
demonstrate that the proposed framework is still effective

even in higher dimension, as Aug-MMR attains about 1.7
speed up on an average.

Figure 11 demonstrates the index construction and the
query processing time trade-off of I-tree , and we com-
pare that with our implemented baseline indexes, KD-tree,
Ball-Tree, M-Tree. These results convincingly demonstrate
that I-tree enables the fastest query processing time, while
requiring comparable index construction time. The results
demonstrate that I-tree is always more than 18× faster in
query processing and as much as 170× faster for certain con-
figurations. For preprocessing, it is always more than 1.5×
faster and at times it is more than 20× faster. We also present
|Cand R| percentage and pruning percentage of I-tree com-
pared to other index baselines in Tables 9 and 10which shows
that I-tree outperforms all baselines with having 90% prun-
ing.

The results in (Sect. 7.4.3) convincingly demonstrate that
I-tree is lightweight to compute and space efficient (for
the largest dataset, it takes 109 minutes to build the index,
which is acceptable because it is done offline and only once).
Finally, in Sect. 7.4.3, we demonstrate that our proposed
solution OPTMn is an ideal choice for incremental index
maintenance,while the greedyheuristicGrMn is highly scal-
able while being not too inferior from the optimal solution
OPTMn qualitatively.GrMn takes 22 minutes to insert 100
k data into 1M dataset, while building I-tree from scratch is
unrealistic as NonIncrMn takes 2 hours.

7.3 Quality analysis

The goal of these experiments is to empirically validate if
the augmented algorithms produce the same results as their
original counterparts. Additionally, we present how effective
DivGetBatch() is in pruning records by presenting the size
of Cand R.

We have calculated precision@k while varying k from 10
to 50, considering the original and augmented algorithms.
We obtain the precision@k equal to 100% always.

7.4 Scalability analysis

We run two types of scalability experiments. (i) demon-
strate the efficacyof the augmenteddiversification algorithms
and compare them appropriately with the baselines; (ii)
demonstrate the efficacy of the indexing technique—present
index construction and maintenance time, and compare
them appropriately with the baselines. Additionally, we also
present thememory requirements of I-tree.We analyze these
effects by increasing dataset size and other pertinent param-
eters.
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Table 8 |Cand R| percentage
returned by DivGetBatch() on
MovieLens

Dataset size
Algorithm 5 k (%) 10 k 50 k (%) 100 k (%) 500 k (%) 1 M (%)

Aug-MMR 13 5.21 0.56 0.09 0.08 0.08

Aug-GMM 59.96 15.48 4.16 2.67 0.31 0.4

Aug-SWAP 14.96 28.11 10.07 48.74 9.27 0.66

Table 9 |Cand R| percentage returned byDivGetBatch() using differ-
ent index structures for Aug-MMR on MakeBlobs

Dataset size
Algorithm 5 k (%) 10 k (%) 50 k (%) 100 k (%)

I-tree 10 10 10 10

KD-tree 96.72 96.72 96.87 97.34

Ball-tree 96.7 95.62 96.56 96.56

M-tree 97.92 97.19 98.32 98.07

Table 10 Pruning percentage by DivGetBatch() using different index
structures for Aug-MMR on MakeBlobs

Dataset size
Algorithm 5 k (%) 10 k (%) 50 k (%) 100 k (%)

I-tree 90 90 90 90

KD-tree 3.3 3.3 3.1 2.6

Ball-tree 3.3 4.3 3.4 3.4

M-tree 2 2.8 1.6 1.9

Table 11 Number of access percentage for Aug-MMR and S P P on
MakeBlobs

Dataset size
Algorithm 5 k (%) 10 k (%) 50 k (%) 100 k (%)

I-tree 10 10 5.2 2.79

SPP 20.44 9.57 27.31 26.52

7.4.1 Augmented diversification algorithms

We first vary dataset size, then additional parameters that
impact the query processing time. To demonstrate efficacy,
we present two things. (1) The percentage of remain-
ing records returned by DivGetBatch(), which is which is
|Cand R|/N ×100 and pruning (1−|Cand R|/N ×100. (II)
Query processing time in seconds.

Effectiveness in Pruning In Table 8, we present the num-
ber of remaining records returned by DivGetBatch(), which
is |Cand R| using MovieLens dataset. We can observe that
there is a remarkable reduction compared to the original
dataset. For example, Aug-MMR returns only 814 records.
The biggest number is for Aug-SWAP with 66513 records,
but still returning only 6% of the records.

Tables 9 and 10 show |Cand R| and pruning percentage
returned by DivGetBatch() for Aug-MMR algorithm using
different index structures and MakeBlobs dataset. We can
see that by fixing C = 32, K D-tree, Ball-tree, and M-tree
pruning are below 5%, while I-tree pruning considerably
outperforms all baseline which is 90%.

Effectiveness in Number of Accesses In order to perform
a fair comparison between our augmented algorithms and
S P P , we compare the number of I/O accesses S P P does
and present that number for Aug-MMR (S P P is designed
to optimize that access).We calculate the number of accesses
in DivGetBatch() by counting the distinct records present in
Cand R in k rounds. The results are presented in Table 11.
We can see that Aug-MMR has less number of access. For
example on 100 k data, I-tree has 2799 number of access
while S P P has 26521 number of access.

Varying Dataset Figures 3, 4, 5, 6 and 7 compare the
running times of our three augmented algorithms and their
baselines using our three datasets. As N increases, the run-
ning times of each algorithm and its baseline increase, but
we observe that our algorithms are consistently faster and
they scale significantly better. Figure 3 shows Aug-MMR’s
scalability on all three datasets. We fix m to 1000, k = 20 and
l = 1 for all dataset sizes while N is increased from 5000 up
to 1M. We can see that on MovieLens, varying N from 5000
to 1M, Aug-MMR is 5× faster than MMR. Figure 5 shows
Aug-GMM ’s scalability. On MovieLens, varying N from
5000 to 10M, Aug-GMM is 24× faster than GMM. Consis-
tent with the theoretical analysis, Aug-GMM is faster than
Aug-MMR for the same settings because Aug-MMR has
an additional k term in the expected cost equation. Figure 7
showsAug-SWAP ’s scalability on all three datasets. For the
1M data of MakeBlobs, we obtain a 3× speedup over SWAP.
We obtain a 1.33× speedup for Movielens because the total
number of swaps in MovieLens are higher.

We also measure the scalability of Aug-MMR compared
to M M R using large scale data sizes of 2 M, 5 M, and 10 M
using makeBlobs dataset. The results are shown in Fig. 3c in
which with m = 1000 and l = 1, we have up to 19× speedup.

Moreover,we runAug-MMRonhigh-dimensional euclidean
distance considering more number of features using 1M and
2M makeBlobs dataset. for 1M data, 1M and 20 features,
M M R takes 12492.64 (s), and Aug-MMR takes 2817.14
(s). For 2M data and 20 features, M M R takes 25812.43 9

123



A generic framework for efficient computation of top-k…

5k 10k 20k 60k 100k
0

5

10

15

20

Dataset size

R
un

ni
ng

tim
e

(s
) Aug-MMR

MMR

(a) Yelp

5k 10k 50k100k 500k 1M

0

50

100

150

Dataset size

R
un

ni
ng

tim
e

(s
) Aug-MMR

MMR

(b) MakeBlobs

1M 2M 5M 10M

0

10000

20000

30000

40000

50000
Aug-MMR
MMR

Dataset size

Ru
nn

in
g

tim
e(

s)

(c) MakeBlobs, large scale

5k 10k 50k100k 500k 1M

0

50

100

150

Dataset size

R
un

ni
ng

tim
e

(s
) Aug-MMR

MMR

(d) MovieLens

Fig. 3 a Yelp b MakeBlobs c MakeBlobs, large scale d MovieLens. Aug-MMR vs MMR scalability

0 10 20 30 40 50
0

10

20

30

40

50

R
un

ni
ng

tim
e

(s
)

k

Aug-MMR
MMR

1 2 3 4 5

10

20

30

40

50

R
un

ni
ng

tim
e

(s
)

l

Aug-MMR

100 500 1000 1500 2000
1.5

2.0

2.5

3.0

R
un

ni
ng

tim
e

(s
)

m

Aug-MMR

0.0 0.2 0.4 0.6 0.8 1.0

2
4
6
8

10
12
14
16

R
un

ni
ng

tim
e

(s
) Aug-MMR

MMR

(a) Varying k (b) Varying l (c) Varying m (d) Varying λ

Fig. 4 a Varying k b Varying l c Varying m d Varying λ. Aug-MMR vs MMR varying parameters

Fig. 5 a Yelp b MakeBlobs c
MovieLens. Aug-GMM vs
GMM scalability

5k 10k 20k 50k 100k

0

1

2

3

Dataset size

R
un

ni
ng

tim
e

(s
)

Aug-GMM
GMM

(a) Yelp

5k 10k 50k100k 500k 1M
0

5

10

15

20

Dataset size

R
un

ni
ng

tim
e

(s
)

Aug-GMM
GMM

(b) MakeBlobs

5k 10k 50k100k 500k1M

0

5

10

15

20

Aug-GMM
GMM

Dataset size
R

un
ni

ng
tim

e
(s

)
(c) MovieLens

Fig. 6 a Varying k b Varying l c
Varying m Aug-GMM vs GMM
performance varying parameters

5 10 15 20 30 40 50

0

1

2

3

R
un

ni
ng

tim
e

(s
)

k

Aug-GMM
GMM

1 2 3 4 5

0

2

4

6

8

R
un

ni
ng

tim
e

(s
)

l

Aug-GMM

100 500 1000 1500 2000

0.02

0.04

0.06

0.08

0.10

0.12

R
un

ni
ng

tim
e

(s
)

m

Aug-GMM

(a) Varying k (b) Varying l (c) Varying m

Fig. 7 a Yelp b MakeBlobs c
MovieLens. Aug-SWAP vs
SWAP scalability

10k 20k 40k 60k 100k

0.5

1.0

1.5

2.0

2.5

Aug-SWAP
SWAP

Dataset size

R
un

ni
ng

tim
e

(s
)

(a) Yelp

5k 10k 50k100k 500k 1M
0

5

10

15

20

Dataset size

R
un

ni
ng

tim
e

(s
) Aug-SWAP

SWAP

(b) MakeBlobs

5k 10k 50k100k 500k 1M
0

5

10

15

20

25

30

35

Dataset size

R
un

ni
ng

tim
e

(s
) Aug-SWAP

SWAP

(c) MovieLens

123



M. M. Islam et al.

Fig. 8 a Varying k b Varying l c
Varying m Aug-SWAP vs
SWAP varying parameters
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(s), Aug-MMR takes 6317.20 (s) which in both case show
4× speedup.

Additionally, Fig. 12 presents the scalability of the pro-
posed Aug-MMR algorithm compared to M M R using UCI
Gas dataset with 10 k records and 128 features. We set λ =
0.8 and vary k from 10 to 25. By increasing k, Aug-MMR
shows more scalability than M M R. Aug-MMR is about 1.7
times faster than the baseline implementation.

Finally, we run Aug-MMR on l more than 1 to show the
efficiency of our proposed algorithmusingmulti-level I-tree.
Table 7 shows that for l=2,Aug-MMR speedup is almost 4×
for all dataset sizes.

Varying Parameters We study the effect of different
parameters on running time. Some parameters belong to the
offline indexing algorithm, such as the number of levels (l)
and arity of I-tree (m) and the total number of nodes (C).
Other parameters are part of the online augmented algo-
rithms. For example, k for the number of returned records and
λ coefficient forAug-MMR . In Figs. 4, 6, 8, we vary param-

eters using Yelp dataset with a fixed size of 50000 records.
In our experiment, optimum parameter settings for offline
indexing are obtainedbyperformingmultiple runs and select-
ing the best. The index created using those parameter settings
can be used in multiple runs of the online phase.

Varying k. Figures 4a, 6a, and 8a present how running
time changes as we vary k from 5 to 50 for different base-
lines while fixing l, m, and λ to 1, 500, and 0.8, respectively.
The running time increases quadratically for M M R andAug-
MMR, linearly for G M M and Aug-GMM, and inO(k ∗ log k)
fashion for SW AP and Aug-SWAP. These results are as con-
sistent with our theoretical analysis, because of the presence
of k2 term in the M M R and Aug-MMR’s expected cost, k in
G M M and Aug-GMM’s expected cost, and k ∗ log k of that
of SW AP and Aug-SWAP. Varying m. Figures 4c, 6c, and
8c show the impact of varying m on the running time of the
three algorithms. While varying m, we fix other parameters:
k = 20, l = 1. The choice of m depends on the distribution
of the dataset. As we increase m, the bounds for augmented
algorithms become tighter while time for DivGetBatch()
increases. We can see that there is a drop in running time
and which indicates the optimum value for m for these three
algorithms. For example, in Aug-MMR and Aug-GMM, the
ideal value is m = 500 and for Aug-SWAP, it is m = 100.

Varying l. Figures 4b, 6b, and 8b show the impact of vary-
ing l on the running time of the three algorithms.We fix other
parameters: k = 20, and setting m to 2. C , the total number
of nodes in I-tree becomes 2, 7, 15, 31, 63, respectively, for
l = 1, 2, 3, 4, 5. In general, by fixing m and increasing l, C
increases, and overall running time decreases. This is con-
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Fig. 11 a I-tree Index
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Fig. 12 Aug-MMR vs M M R running time on UCI Gas data

sistent with our theoretical analysis, as the expected running
time contains a 1/C term.

Varying λ. Figures 4d, 6d, and 8d show that varying λ

in MMR and Aug-MMR does not significantly change the
running time. We have fixed k = 20, l = 1, and m = 500.
The result is evident by observing the expected cost equations
of MMR and Aug-MMR algorithms which do not contain a
λ term. Though MR scores changes with λ, it has very little
effect on the overall running time of MMR and Aug-MMR
algorithms.

7.4.2 Varying diversity functions

Table 13 shows the results for Aug-MMR compared to
M M R using different distance measures: euclidean distance
measure, cosine similarity as general metric, and a non-
metric distance function. Using 100 k data from MakeBlobs
dataset and m= 1000, l = 1 and number of features = 2, we
can see thatAug-MMRperforms4×better than M M R using
both euclidean and cosine similarity metrics. For non-metric
arbitrary distance function, the distancebetween records does
not satisfy triangular inequality. Using this method, we see
15% improvement, since the relevance and diversity scores
are created arbitrarily and the result depends on the data dis-
tribution.

Table 12 shows overall comparison for I-tree and other
baselines. S P P uses K D-tree as its index so we did not add
it to the table. We can see that, unlike other baselines, I-tree
can be used in non-metric functions and outperforms with
90% pruning of the original dataset.

Table 14 shows the results for Aug-MMR compared to
M M R using non-metric distance function computed from
MovieLens non-metric dataset. The total number of movies
is 8,453, λ = 0.8, and k = 20. The diversity between
a pair of items (movies) is calculated as the number of
users that have rated either of those movies, but not both.
Table 14 demonstrates that Aug-MMR outperforms MMR
with 82.66% pruning of the original dataset, resulting in
about 2.7 times speed up on an average.

7.4.3 Index construction andmaintenance

Comparison with Baselines-Index Construction vs. Query
Processing In these set of experiments, we compare the index
construction and query processing time trade-off of I-tree
and compare that with of K D-tree, Ball-tree, and M-tree
considering Aug-MMR. We adapt k-means and k-medoids
[25] for building I-tree with number of iterations set to
300. The dataset that is used in this experiments is Make-
Blobs. Figure 11 presents the I-tree speedup compared to
other baselines for index preprocessing and query processing
time. The results demonstrate that I-tree is always more than
18× faster in query processing and asmuch as 170× faster for
certain configurations. For preprocessing, it is always more
than 1.5× faster and at times it is more than 20× faster.

Index Construction Now that it is obvious that I-tree out-
performs the other indexing baselines, we further profile its
efficacy.

In Fig. 9a and b, we vary dataset size and fix other param-
eters, m = 1000, l = 1. As we can observe in Fig. 9a, on
the 100 K Yelp dataset, indexing time is 172.69 seconds. In
Fig. 9b, indexing time is 105 minutes on the 1M MakeBlobs
dataset, and 109 minutes on the 1M MovieLens. Figure 9c
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Table 12 Index comparisons Index Metric functions Non metric Functions 90% Pruning

I-tree � � �
KD-tree [10] � × ×
Ball-tree [29] � × ×
M-tree [15] � × ×

Table 13 Aug-MMR vs M M R running time on MakeBlobs 100 k
records

Distance function
Algorithm Euclidean Cosine Non-metric

Aug-MMR 3.08 4.64 13.06

MMR 13.12 15.36 15.27

Table 14 Aug-MMR vs M M R on Movielens non-metric data

Algorithm Running time (s) Average pruning

Aug-MMR 0.19 82.66%

MMR 0.52 0

and d shows that the running time increases linearly when
parameters m and l are systematically increased. In Fig. 9c,
by varying l, we fix dataset size to 50000, and m to 2 (since
C = ml , by increasing l, the total number of nodes will
increase). Finally, in Fig. 9d, we vary m, while fixing dataset
size to 50000 and l = 1. These figures demonstrate that the
preprocessing time increases linearly with varying parame-
ters. I-tree takes 253MB of space for 1M data withm = 1000
and l = 1.

Index Maintenance For analyzing the index maintenance,
weuse twodatasets,MakeBlobs andMovieLens.We compare
OPTMn and its efficient counterpart GrMn with the base-
lines NonOlMn, and NonIncrMn. As expected,OPTMn has
the least number of updates, but due to its inherent expo-
nential nature, it does not scale beyond 10 k dataset size
with more than |Y | = 1000 records. Table 15 presents these
results. We also see GrMn, even though not the optimal
one, but stays consistently close to OPTMn. This table also
shows that GrMn is better than the baselines in both run-
ning time and number of updates. Figure 10a and b presents
running time comparisons on very large datasets. GrMn
is highly scalable, and the other two baselines take more
time than GrMn. These results corroborate that GrMn is a
suitable alternative to solve the index maintenance problem
(Figs. 11, 12).

Incremental Index Maintenance vs Maintenance from
Scratch Table 16 shows comparison between GrMn and
NonIncrMn index update algorithms. We present index
preprocessing time in the offline phase, and query process-
ing time in the online phase for the Aug-MMR algorithm.

Table 15 I-tree maintenance on MakeBlobs 10 k records

|Y | Algorithm # updates Running time (s)

10 OPTMn 14 3.59

GrMn 76 0.007

NonOlMn 14 0.29

NonIncrMn 2446 1.30

100 OPTMn 59 512.42

GrMn 76 0.05

NonOlMn 142 2.97

NonIncrMn 2447 1.44

1000 OPTMn 59 18768.68

GrMn 76 0.43

NonOlMn 1068 34.58

NonIncrMn 2449 1.45

Clearly, GrMn requires smaller preprocessing time and
higher query processing time compared to NonIncrMn. As
it could be seen from Table 16, with 10,000 updates, the
query processing time of GrMn becomes almost 5× slower
than that of NonIncrMn. Contrarily, the preprocessing time
of GrMn is about 4.5× faster than that of NonIncrMn at
that setting. Since query processing time is more important
and must be optimized, it seems, for 10,000 updates, it is
better to build the index from scratch instead of maintaining
it incrementally.

8 Related work

8.1 Results diversification

Result diversification remains to be an active research topic
with extensive applications in recommendation and search [1,
2,4,13,20,30,33,35,36,40–44], including very recent works
that study diversity for fairness and popularity [31,39,51].

8.2 Content-based algorithms

Content-based algorithms, which are our primary focus here,
are of twokinds: Interchange algorithmsfirst select k relevant
records and then, exchange selected records with remaining
records to increase the overall diversity (SWAP [49] is an
example). Incremental greedy algorithms iteratively build the
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Table 16 I-tree maintenance GrMn vs construction from scratch NonIncrMn running time on MakeBlobs 10 k records

|Y | Insertion Algorithm Preprocessing time-offline (s) Query processing time-online (s)

10 GrMn NonIncrMn 0.007 1.25

1.30 0.55

100 GrMn NonIncrMn 0.05 1.33

1.44 0.60

1000 GrMn NonIncrMn 0.43 1.96

1.45 0.80

10000 GrMn NonIncrMn 1.02 8.18

4.65 1.61

top-k set by selecting the best record at each round. Notable
examples of this latter kind areMaximalMarginal Relevance
(MMR) method [14], Greedy Max-Min (GMM) [23], Max-
Sum [22], IA-SELECT [5], and dLSH [2].

S P P [21] is a bounded diversification algorithm that pro-
duces same result as M M R while minimizing the number
of accessed records. In [17], Drosou et al. introduce both
greedy and interchange algorithms for the diversity over con-
tinuous data. In [19], the authors propose greedy algorithms
for considering diversity over dynamic data by presenting
I nsert and Delete operations over the cover tree indexing
structure. They also exploit the GMM algorithm for return-
ing diversified top-k results. In [18], the authors propose
greedy algorithms for diversity over a representative subset of
objects, DisC , which is a mapping of the original data. They
also present a degree of diversification, radius r , instead of
k size results. Their proposed algorithms exploit the M-tree
[15] indexing structure.

From a different perspective, one can categorize diversi-
fication algorithms into three groups: record-level, feature-
level, and category-level. In record-level algorithms (MMR,
GMM, and SWAP), the input is the distance value between
records regardless of which record feature is more important.
The score value is calculated based on an objective function
that calculates distances/diversity. The inputs of feature-level
algorithms are record features. Examples are DivGen and
GenFilt [6]. The feature with the highest score is obtained
from all records based on a ranking, and the goal is to skip
some features and prune records having low scoring features.
In the category-level algorithms, records are grouped into
multiple categories. Such algorithms apply some constraints
that will return no more than one or two records from the
same category [3,50].

8.3 Comparison with existing indexes

Compared to our proposed I-tree, existing indexing tech-
niques are vector space-based methods where coordinate
information of the records is used to create data structures

to answer a large spectrum of distance queries, where dis-
tance may be based on Euclidean, cosine similarity, general
L p norms, and so on. Popular solutions in low to mod-
erate dimensional space include K-B-D-tree [38], kd-tree
[10], R-tree [24], R∗-tree [9], SS-tree [45] or more recent
X-tree [11], UB-tree [8], SR-tree [27]. All these methods use
the domain object feature vectors to measure the distance
between objects and create a similarity index. As opposed to
that, we consider the records to be atomic (and not a collec-
tion of vectors), and the diversity function could be metric
or not. Therefore, these methods do not extend to solve our
problem.

There exists other popular tree data structures likeCover -
tree [12], Ball-tree [29] and M-tree [15] that are used for
nearest neighbor search. Unlike our I-tree, these trees can
only be used for metric distance functions.

In summary, we present an access primitive DivGet-
Batch() that leverages a precomputed data structure I-tree
to integrate MMR, GMM, and SWAP to expedite their pro-
cessing time. The design of our primitive is independent
of features and categories and is applicable with any dis-
tance measure, making it generic and useful. We study MMR,
GMM, and SWAP, since we believe these are notable choices
in the existing diversity literature space, and many more
recent works adapt these algorithms [2,7,17–19,26,34,37,
46–48].

9 Conclusion

We propose an access primitive DivGetBatch() to expedite
diversification algorithms while returning their exact top-k
results. We present a computational framework to develop
DivGetBatch() that contains a pre-computed index struc-
ture I-tree and describe how to rewire popular diversification
algorithms using DivGetBatch(). Unlike existing indexes
that primarily work on vector spaces (assuming the records
have co-ordinates), we consider the records to be atomic as
opposed to a collection of vectors. We make rigorous the-
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oretical analysis of the exactness and running times of the
augmented algorithms. We present principled solutions to
maintain I-tree under batch updates. Our experiments on
large real-world datasets corroborate our theoretical analysis
and show that our solution yields a 24× speedup on large
datasets.

In the future, we are interested to study how to enable
approximate top-k result diversification with guarantees
leading to even faster running times.Wealso intend to explore
how to adapt our proposed framework if diversity is assumed
to satisfy metric property, in particular, the triangle inequal-
ity.
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