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1. Introduction

In a highly influential but unpublished manuscript from the mid nineteen nineties,
Hrushovski showed that in the theory of differentially closed fields of characteris-
tic zero an order one strongly minimal set that is orthogonal to the constants must
be Ng-categorical. His argument went via a certain finiteness theorem in differential-
algebraic geometry:

Theorem 1.1 (Hrushovski [6]). Suppose X is a d-variety over C such that the field con-
stants of the &-function field (C(X),d) is C. Then X has only finitely many codimension’
one §-subvarieties over C.*

This theorem came up in the seemingly unrelated work of the second author and his
collaborators on the Dixmier—-Moeglin problem for Poisson algebras. The following is the
key step in the proof of one of the main results of that paper:

Theorem 1.2 (Bell et al. [1]). If R is a finitely generated C-algebra equipped with (possibly
noncommuting) C-linear derivations A = {61, ...,0m}, and having infinitely many height
one prime A-ideals, then there exists f € Frac(R)\ C with 6;(f) =0 foralli=1,...,m.

When m = 1 this is by standard methods seen to be a special case of Hrushovski’s
theorem, the so-called finite dimensional case when the transcendence degree of C(X)
over C is finite. As the authors of [1] could not see how to extend Hrushovski’s geometric

3 Hrushovski uses the term co-order.

4 When X C A? is defined by §(z) = P(xz,y) and §(y) = Q(xz,y) where P and Q are polynomials over C,
one recovers an old theorem of Darboux; see Singer’s discussion and elementary proof of Darboux’s Theorem
in the appendix of [15].
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proof to m > 1, an alternative algebraic argument was given in [1, §6]. One of the
motivations for the present article is to extend Hrushovski’s proof of Theorem 1.1 to a
setting that includes Theorem 1.2. This is accomplished in §4.

As it turns out, the right general setting is that of D-varieties of type (m,r): algebraic
varieties V equipped with a subvariety S of the m-fold fibred cartesian power of the
tangent bundle, such that S, is an r-dimensional affine subspace of (7,V)™ for each
a € V. To see what this has to do with Theorem 1.2, note that when r = 0 the subvariety
S is given by m regular sections to the tangent bundle, which in turn determines m
derivations on the co-ordinate ring of V. On the other hand, if we specialise m to 1
we are in the setting of Theorem 1.1 because, as Hrushovski shows in [6, Lemma 2.2],
every d-variety together with its codimension one J-subvarieties is captured by a certain
D-variety of type (1,r) for some r > 0. What we prove, for general m and r, is the
following,.

Theorem A. Suppose (V,S) is a D-variety of type (m,r) such that for every f € C(V)\C
and general a € V', it is not the case that (da f)™ vanishes on S,. Then (V,S) has only
finitely many codimension one D-subvarieties over C.

This appears as Theorem 4.2 below, following closely the proof of Theorem 1.1. The-
orem 1.1 was itself obtained by Hrushovski as an application of a suitably generalized
form of Jouanolou’s [9] work on solutions to analytic Pfaffian equations. We take this
opportunity, in §2, to give a detailed exposition of Hrushovski’s generalization, which we
call the Jouanolou—Hrushovski—Ghys theorem because we utilise some simplifications ap-
pearing in Ghys’ [5] improvement on Jouanolou’s theorem. In §3 we show how to extend
the Jouanolou—Hrushovski—-Ghys theorem to the case of arbitrary m > 1. Theorem A
now follows exactly as it did for Hrushovski in [6].

A second related motivation for this article was simply to extend Theorem 1.1 to
differential varieties in the partial case. That is, to prove the theorem for differential
subvarieties of a differential variety when ¢ is replaced by m commuting derivations
A = {61,...,6n}. It turns out that to deduce this from Theorem A does require new
work, and involves a seemingly new finiteness principle for partial differential equa-
tions. In §5 we use (partial) differential algebra and some combinatorics of initial sets
to show that there is a bound on how many prolongations one has to take of a given
A-variety to capture all of its codimension one A-subvarieties; this finiteness principle
appears as Proposition 5.5. With this in place, we can use Theorem A to prove the
partial differential version of Theorem 1.1; it appears as Theorem 5.7 below. In fact,
with a little more work we are able to both remove the assumption that the A-variety
X is defined over the constants, and also formulate a version that does not assume
that X has no new A-rational constants but rather is relative to whatever the con-
stants of the A-rational function field of X are. Here is the statement which appears as
Corollary 5.10 below.
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Theorem B. Suppose (K, A) is a differentially closed field of characteristic zero in sev-
eral commuting derivations, F C C is a subfield of the total constant field, L is a
finitely generated A-field extension of F', and X C K™ is an L-irreducible A-variety.
There exists an algebraic variety V over the constants Lo of L, and a dominant
A-rational map f : X — V(C) over L, such that all but finitely many codimension
one L-irreducible A-subvarieties of X are L-irreducible components of A-subvarieties of
the form ffl(W(C)) where W C V is an algebraic subvariety over Ly.”

This theorem is particularly useful when applied to low dimensional differential vari-
eties. For example, if X is one-dimensional then the codimension one subvarieties over L
arise from the L*®-points of X, and the theorem connects these points to the constant
points of an algebraic curve. As an application we are able to prove the existence of
height bounds for solutions in C(¢)* to first order algebraic differential equation. The
following appears as Theorem 6.3 below.

Theorem C. Suppose P € C(t)[z,y] is a nonzero polynomial in two variables over the
field of rational functions C(t). There exists N = N(P) € N such that all solutions to
P(z,2') =0 in (C(t), %) are of height < N.

The height here is the function field absolute logarithmic height of Lang [12], which
extends degree on rational solutions. For rational solutions the existence of such a degree
bound is a theorem of Eremenko [2], where the extension to algebraic solutions was
asked for. A version of Theorem C over a multivariate function field, and involving
partial differentiation, can also be deduced from Theorem B, see the discussion following
Theorem 6.3.

We also present some model-theoretic applications of Theorem B that arise from
known consequences of Theorem 1.1 which can now be extended to the partial and non-
constant coefficient field setting. For example, as per Hrushovski’s original motivation,
we get that every one-dimensional strongly minimal set in DCFy ,,, that is orthogonal to
the constants is Ng-categorical. Another model-theoretic consequence of Theorem B has
to do with the comparing Lascar rank and Morley rank. Hrushovski and Scanlon gave an
example in [8] of a differential algebraic variety of dimension five in which Lascar rank
and Morley differ in DCFy. They note that Marker and Pillay had an argument (also
unpublished but communicated to us by the former) that used Theorem 1.1 to show
that for two-dimensional definable sets over the constants, Lascar rank and Morley rank
agree. Using Theorem B in place of Theorem 1.1, we extend the Marker—Pillay result to
definable sets in DCFy ,,, over arbitrary fields of definition. Both of these applications
are given in §6, appearing as Theorems 6.1 and 6.2.

5 Given an algebraic variety V C Ae, by V(C) we mean the C-points of the algebraic variety V. Note

that V(C) C K* is a A-variety; it is given by the algebraic equations for V together with the differential
equations §;(z;) =0fori=1,...,mand j=1,...,¢
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We do not address in this paper the question of explicit bounds in the above finiteness
theorems. However, we do nothing here that is inherently ineffective, and as explicit
bounds can be given for the original theorem of Jouanalou, one should in principle be
able to give effective versions of our theorems too.

2. An exposition of the Jouanolou—Hrushovski—-Ghys theorem

In this section we aim to give a detailed exposition of Hrushovski’s [6] unpublished
generalization of Jouanolou’s [9] theorem from 1-forms to p-forms. Our exposition is
highly influenced by Ghys’ [5] improvement on Jouanolou’s theorem.

Let X be a compact complex manifold. By a codimension p holomorphic foliation
on X we will mean,

e an open cover (U;);er of X,
e on each U; a p-fold wedge product of holomorphic 1-forms,

OFwi=oa1 A Aoy

and,
« on each intersection U; N U; a nonvanishing holomorphic function g;; such that

w; = gijwj~

If we let £ be the line bundle on X defined by (g;;), then the w;’s determine a global
holomorphic p-form on X with values in £, that is, w € HY(X,QP ® L). Note that at

each point a € X, w defines a codimension p subspace of the tangent space T, X, namely
P

W, = ﬂ ker(ay)q where a € U; and w; = a3 A--- Ay on Uj.

=1
By a solution to w = 0 we will mean a hypersurface Y on X whose tangent space at

each point @ € Y contains the subspace W,. In other words, possibly after refining the
open cover, Y is defined in U; by the vanishing of a holomorphic function f; on U; such
that (df;)q vanishes on W,. An equivalent formulation is that w; Adf; [ynu,;= 0. Another
equivalent formulation is that the meromorphic (p+1)-form w; A % is in fact holomorphic
on U;. To see this last equivalence note that, because f; generates the ideal of Y N U;
in O(U;), w; Adf; Tyau,= 0 if and only if w; A df; [yru,= fin for some holomorphic
(p + 1)-form n on U;.

A meromorphic first integral to w is by definition a nonconstant meromorphic function
on X which is constant on the leaves of the foliation. That is, an f € C(X) \ C such
that w A df = 0. Notice that if a meromorphic first integral to w exists then w = 0 has
infinitely many solutions; namely the level sets of f. The main theorem of this section
is a converse to this observation.
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Theorem 2.1 (Jouanolou—Hrushovski-Ghys). Suppose X is a compact complex manifold.
If w is a codimension p holomorphic foliation on X that does not admit a meromorphic
first integral then w = 0 has only finitely many solutions.

When p = 1 and under some additional assumptions on X (satisfied, for example,
by smooth projective algebraic varieties), this is a theorem of Jouanolou appearing
in the 1978 paper [9]. With the same assumptions on X as Jouanolou, and following
his argumentation, Hrushovski proved the theorem for general p in the unpublished
manuscript [6] dating from the mid nineteen nineties. A little later, Ghys [5] generalized
Jouanolou’s theorem in a different direction, removing the additional assumptions on X
and simplifying Jouanolou’s argument, though only for p = 1. So while the theorem as
stated here is formally new, it is obtained by simply combining Hrushovski’s and Ghys’
generalizations, and our purpose in presenting it here is entirely expository.

Let us denote by Div(X) the group of Weil divisors on X, and consider the logarithmic

derivative map
dlog : Div(X) ® C — H (X, QL)

where Q| is the sheaf of closed holomorphic 1-forms on X . To describe this map it suffices
to define dlog(Y) for irreducible hypersurfaces Y on X, and then extend by C-linearity.
If Y is defined locally by f; = 0 then dlog(Y) is the cocycle (g%_jdgij) where f; = gi; f;
on U; NU;.

There is a canonical injective C-linear map

¢ ker(dlog) — HO(X, QY o) /HO(X, QL)

cl, mer)

where Q} denotes the sheaf of closed meromorphic 1-forms on X, that we now de-

cl,mer
scribe. Suppose © = ) Ao Yo € ker(dlog). So if (after refining the cover) Y, is given by

(e}

dac
o g;] ) is a cobound-

ij

& =0inU;, and f* = g} f on U; NUj, then the cocycle (

ary. That is, Y Aa dg” = v; —v; on U; N U;, where v; and v; are closed holomorphic

1-forms on U; and U respectlvely It follows that

Z)\ g”fa
_Ul—i_Z)‘ g”—I—Z)\_
:UJ—FZ)\adf—j:

el

Ch
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on U; NU;. That is, (vl +>, )\a fa ) defines a global closed meromorphic 1-form on X;

this is what &(z) is. To see that ¢ is well-defined modulo H(X, ), a similar compu-
tation shows that if in the above construction we chose representatives (f; ) and (7;)
instead, then writing ﬁa = h{ f{* for some h{' a nowhere vanishing holomorphic function

(vl—i-Z)\a_a)—(v- %éf)—v—vz

which is a closed holomorphic 1-form on U;. That they patch to produce an element of
HY(X,Ql) is a straightforward verification.
The map £ is injective because, as pointed out by Ghys [5, p. 178], from the mero-

on U;,

dha

morphic 1-form (vz +> . )\a f@ ) we can recover the Y* as the polar divisors and the
A% as the residues.

Proof of Theorem 2.1. Consider the C-linear subspace of Div(X) ® C spanned by solu-
tions to w = 0. Namely,

Div(w) := {Z MYy i Ao € C,Y, a solution to w = O}
«

In order to prove the Theorem we will assume that w has no meromorphic first integral
and show that Div(w) is a finite dimensional vector space.

Restricting dlog : Div(X) ® C — HY(X,Q}) to Div(w), and using the fact that
H'(X,QL) is finite dimensional (as X is compact), it suffices to show that

Dive(w) := Div(w) N ker(dlog)

is finite dimensional.
Next we can restrict the map £ constructed earlier and consider

€ : Divo(w) — HY(X, Q! JH (X, QL)

cl, mer)
Looking at that construction we see that if 2 € Dive(w) and &, € H(X, Q) .,) is a
representative of £(z), then w A &,, which is a priori in H°(X, QPFl @ £), actually lands
in HY(X,QP*! @ £). This follows from the fact that if f; defines a solution to w = 0
in U; then by definition w; A %; is a holomorphic (p + 1)-form on U;. So we obtain a
C-linear map Dive(w) — HY(X, QP @ L) /w A HO(X, QL) given by taking z to the class
of wA&,. The right-hand-side being finite dimensional, it suffices to show that the kernel
of this map, let us denote it by K, is finite dimensional.

) of £(x) such that

wA & = 0. Indeed, by choice of K, wA&, = wAn for some closed holomorphic 1-form 7,

For each z € K we can choose a representative &, € H°(X, Qil mer

and we can replace &, with £, —n
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By the injectivity of &, it will suffice to show that £(K) is a finite dimensional
C-subspace of HY(X, Q! | .)/H°(X,QL). This in turn reduces to showing that

cl,mer

= spang{&; :x € K}

(1]

is finite dimensional. Note that = is a C-subspace of the finite dimensional C(X)-vector
space HY(X, Qélymer) = H°(X, QL) ®c C(X), where C(X) is the meromorphic function

field of X. By general exterior algebra (see Lemma A.1), it suffices to prove that for
some £ > 1,

By :=spang {&x, A A&y i 21, 20 € K}

is a nontrivial finite dimensional C-vector space; where the wedge product here is being
taken in the sense of the C(X)-vector space H(X, Q) ,..). We will work with £ equal to
the dimension of the C(X)-subspace generated by =, and show that then dim¢ B, = 1.
As we may assume that K is not trivial (or else we are done), neither is =, and so £ > 1.

Let &qy, - - -, €a, be a basis for spang ) Z. It follows by C(X)-linear independence that
Eay N NEq, # 0. Moreover, for any z1,...,2, € K, aseach §,, € Spanc(x){fal,. cov&ar ks

and &,, A+ A&, is a basis for the /! wedge product of spang(x){&a, - - - &a, }> We get

§x1/\"'/\§xe:f€a1/\"'/\§az

for some f € C(X). Since we are working with closed 1-forms here,

0=d(&, A NEs,)
=d(f€a, N+ Nay)
=df Nay N+ Néay + fd(Eay N+ Nay)
=df Nay N+ N&a,

But each w A &,, = 0, and so it follows from general exterior algebra (see Lemma A.2)
that wAdf = 0. That is, as w has no meromorphic first integral by assumption, f must be
a constant. We have shown that dimc By = 1, and hence dim¢ = is finite, as desired. O

3. The partial case

We would like to apply the Jouanolou—Hrushovski-Ghys theorem in the “partial”
setting where we replace the holomorphic tangent bundle by its m-fold direct sum. No
new ideas are required to make the proof go through, however there are some subtleties
involved in setting things up correctly.

Let T X — X be the direct sum of the holomorphic tangent bundle of X with itself
m times. As a complex manifold it is the m-fold fibred cartesian power of T X over X,
so that for each a € X, (T™X), = (T,X)™. We denote by Q™) the sheaf of germs
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of holomorphic sections to the dual bundle of 7" X — X. One can of course identify
this with €}~ , @', but for our purposes, namely for encoding families of subspaces
of (T,X)™ as a varies in X, we find it more convenient to work directly with Q1)
We call it the sheaf of holomorphic m-fold 1-forms on X. The m-fold p-forms are then
obtained by taking pth exterior powers, Q®") ;= NP Qm)  We will also consider the
) (p,m)

sheaf of meromorphic m-fold p-forms on X, Qgé;n , which is given by e (U) =

QP (U) @c C(X).
For each k = 1,...,m, the differential dy, : O(U) — QL") (U) is given by

(dkf)a(vh cee avm) = (df)a(vk) (3'1)

for all @ € U and vq,...,v,, € T,X. This can be extended to meromorphic functions in
the same way.

An m-fold holomorphic foliation on X of codimension p is a global holomorphic m-fold
p-form on X with values in a line bundle £, say w € H°(X,Q®™) @ L), such that for
an open cover (U;);cr of X we have

0Fwi:=wly,=00 N - Nay

where the ay are holomorphic m-fold 1-forms on Us;.
For each a € X we denote by W, C (T, X)™ the codimension p subspaces determined

p
by wg,, namely, if a € U; then W, := ﬂ ker(ay)q.

A solution to w = 0 is an irreduciblee_}llypersurface Y on X given locally by f; = 0in U;
such that (dgf;), vanishes on W, for all a € Y NU; and all k = 1,..., m. Equivalently,
(wi Adifi) Tyau,= 0 in QPTL™)(U)) for all k.

A meromorphic first integral to w is a nonconstant meromorphic function f on X
with wAdyf=0forallk=1,...,m.

Theorem 3.1. Suppose X is a compact complex manifold and w is an m-fold holomorphic
foliation on X of codimension p. If w has no meromorphic first integral then w = 0 has
only finitely many solutions.

Proof. When m = 1 this is Theorem 2.1. As before, let Div(w) be the C-linear subspace
of Div(X) ® C spanned by hypersurfaces that are solutions to w = 0. Again it suffices to
prove that Div(w) := Div(w) Nker(dlog) is finite dimensional.

Fixing k=1,...,m, let Qg’m) denote the copy of Q' in Q™) obtained by restricting
to the kth factor. That is, f € Q' (U) is viewed as an element of Q™) (U) by setting
fa(v1, ..., 0m) = vg, foralla € U and vy, . .., vy, € ToX. Under this embedding, the map
di, : O(U) — Q,(Cl’m)(U) defined in (3.1) above corresponds to the usual differential d :
O(U) — Q'(U). In the same way, we obtain copies QSCT) of Q1 and Q"™ of Q1

cl» k,cl,mer cl,mer-
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The injective C-linear map ¢ : ker(dlog) — HY(X, Q! ..)/H°(X, QL) constructed in

cl,mer

the previous section now appears as & : ker(dlog) — H° (X7Q(1’m) )/H0 (X, Q,(clcqn))

k,cl,mer

So & is defined just as & was but using dj, rather than d.

Note that if (U;, f; = 0) defines a solution to w = 0, then for each k = 1,...,m, the

a priori meromorphic m-fold (p 4+ 1)-form w; A d’}f £ is in fact holomorphic on U;. From

this it follows that we obtain a C-linear map

0 Diva(iw) — @ (X, 90757 @ £) fuo n 1(X, 915"
k=1

induced by  — (WA &1z, - -« , WA Ema) Where &, is any representative of i (x). The right
hand side being finite dimensional, we reduce to showing that ker 6 is finite dimensional.
We will do so by showing that its image under the injective map

m

€:=(&1,...,6m) : ker(dlog) — @HO()QQ(M”) )/HO(X’QISZIH))

k,cl,mer
k=1

is finite dimensional.

By definition of 0, for any = € kerf, we can, and do, choose a representative £j,
of &, (x) such that w A &k, = 0. Set & = (&1, -+, Ema)- It suffices to prove that Z :=
{&: : o € ker 0} spans a finite dimensional C-vector subspace of @, , H*(X, Qb ).

k,cl,mer
Note that as Q™) is an internal direct sum of the Q;ﬂl’m)s, we can view each &, as an
element of the finite dimensional C(X)-vector space H°(X, Qﬁ&g@). So, using the same
general facts about exterior algebra as in the proof of Theorem 2.1, and letting ¢ =
dimg(x) spancx) =, we reduce to proving that spanc{€s, A~ A&, 1 21,...,1p € ker 0}
is of dimension one, where the wedge product is taken in the sense of the C(X)-vector
space H° (X, QEI}(;T)).

Fix ay,...,a; € kerf such that (&,,...,&,) is a C(X)-basis for spangx) =. Fix
another z1,...,2, € kerf, and write &,, = 25:1 gijf_aj where the g;; € C(X). Then
for each fixed k = 1,...,m we have &,, = Zf‘:l 9ij€ka; too. But this implies that
Ehar N Nhay = fhay N+ A Eka, where f € C(X) depends only on the g;;, and not
on k. So &z, A+ A f_w = fE€a N A Eaz. We are therefore done if we can show that
feC.

Fixing k, consider again the fact that {xpy A - - A &ka, = fhay A A Eka,- We are

working now with wedge products of forms in oibm

k,cl,mer
of Qél,mer' So the computation with closed meromorphic 1-forms at the end of the proof
of Theorem 2.1 shows that dif A &kay N -+ A €ka, = 0. Since w A &q, = 0 for all ¢ by

choice of representative, we get as before that w A dif = 0. That this is true for all k

which is an isomorphic copy

means that if f were nonconstant then it would be a meromorphic first integral of w. By
assumption therefore, f is a constant, as desired. O
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4. Hypersurfaces on D-varieties of type (m, r)

In [6] Hrushovski uses his generalization of Jouanolou’s theorem to prove a finiteness
theorem about codimension one differential-algebraic subvarieties. We want to extend
this theorem to the partial context, and in this section we first consider the a priori
special case of D-varieties to which Hrushovski’s arguments extend.

Fix m > 1 throughout.

By a D-variety we will mean something rather more general than usual:

Definition 4.1. Suppose F' is a field of characteristic zero. An algebraic D-variety of
type (m,r) over F is an irreducible affine algebraic variety V' over F equipped with an
irreducible closed subvariety S C T™V over F, such that S, is an r-dimensional affine
subspace of (T, V)™ for all a € V.

A D-subvariety is a closed irreducible subvariety Y C V such that S [y C T™Y.6

A rational function f € F(V) is a D-constant of (V,S) if for general a € V, (dfs)™ :
(T,V)™ — F™ vanishes on S,.

If m =1 and r = 0 then S is a section to the tangent bundle, and we recover what
is usually called a “D-variety” in the literature. Moreover, in that case, S determines
an F-linear derivation 0 on the co-ordinate ring F[V] which extends to F(V), and a
D-constant is simply a d-constant of that differential field.

Theorem 4.2. Suppose F' is an algebraically closed field of characteristic zero and (V,.S)
is a D-variety of type (m,r) over F' with no D-constants in F(V)\ F. Then (V,S) has
only finitely many codimension one D-subvarieties over F'.

Proof. We basically need to verify that the arguments in [6, Proposition 2.3] extend to
this partial setting, though we give a self-contained exposition.

First note that it suffices to prove the theorem for F' = C. Indeed, suppose (V,5)
is a counterexample to the theorem over F'. Let F{y be a countable algebraically closed
subfield of F' over which (V,S) is defined, and over which (V,S) has infinitely many
codimension one D-subvarieties. We may embed Fj in C. As V has no D-constants in
Fo(V)\ Fo, and as Fj is an algebraically closed subfield of C, (V,.S) has no D-constants
in C(V) \ C either. So (V,S) is a counterexample over C.

Let us consider the case when r < mdimV — 1.

Let e € V be generic (that is, V is the smallest Zariski closed set over F' that
contains e). Since S, is an affine subspace of (T.V)™, it generates an (r + 1)-
dimensional linear subspace of (7.V)™ over C(e), say W.. By assumption, p :=

% What we have defined here is properly speaking a D-subvariety of type (m, 7). While these are the only
kind we will be concerned with, one may want to consider, more generally, D-subvarieties of (V,S) of type
(m, s) for s < r, namely a D-variety (Y, S’) of type (m, s) with Y a closed irreducible subvariety of V' and
S’ CS.
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dimge) ((TeV)m/We) > 0. We can consider the 1-dimensional space of p-forms on
(T.V)™ /W, as an algebraic variety P over C(e). It is an algebraic principal homogeneous
space for G, over C(e), and hence corresponds to a point in the Galois cohomological
group H(G,G,) where G is the absolute Galois group of C(e). The additive version of
Hilbert’s 90th tells us that H(G,G,,) is trivial, so that P is isomorphic to G, over C(e).
So P has a nonzero C(e)-rational point, which we will denote by 3. This will neces-
sarily be of the form aq A --- A @, with (),_, ker(az) = 0. Pulling back, we get a
p-form 8 = a3 A--- Ay on (T.V)™ with (),_, ker(ay) = W.. We thus obtain, over a
nonempty Zariski open subset Uy of the nonsingular locus of V', a nonzero regular section
wo=ayA---Aa) e Q™) (Uy) such that (wp)e = .

Let X be a smooth projective closure of Uy. So wqg is rational on X, and by
considering the line bundle corresponding to the polar divisor, wy extends to some
w € HUX,QP™ @ L), an m-fold regular foliation of codimension p on X. It is to
this w that we intend to apply Theorem 3.1.

We claim that w admits no meromorphic (so rational) first integral. Indeed, if f €
C(X) \ C were such then we A (dif). = 0 which implies that (dyf). vanishes on W, C
(T.V)™, for all k=1,...,m. But recall that (df)ec(v1,...,vm) = dfe(vg) by definition.
So we have that (df.)™ vanishes on W, and hence on S.. Hence, for some nonempty
Zariski open subset U C V, (df,)™ vanishes on S, for all a € U. That is, f is a D-constant
of (V,.S) that is not in C, contradicting the assumption of the theorem.

By Theorem 3.1, it follows that w = 0 has only finitely many solutions on X. We now
show that this will force there to be only finitely many codimension one D-subvarieties
of (V,5).

We work inside a sufficiently saturated model (K,0, 1,4+, X,d1,...,0,,) of the model
companion of the theory of fields equipped with m (not necessarily commuting) C-linear
derivations. The existence and basic properties of this model companion are, we think,
general knowledge. In any case, it is a special case of the theory of fields with free
operators developed in [13]. We let

C={zeK:5x=0k=1,...,m}

denote the total constants of K. The main reason for working in K is that if (V',5’) is
any D-variety over C then there is a € V/(K) such that (a,d1a,...,d,a) is generic in
S/ over C; see for example [13, Theorem 4.6(I11)], this is the so-called geometric axiom.
In particular, given a rational function f € C(V’), f is a D-constant if and only if
f(a) € C. Indeed, this follows from the fact that 05 (f(a)) = dfa(dra), and the genericity
of (1a,...,0ma) in S.

Suppose Y is a codimension one D-subvariety of (V,.S) that intersects Up. Let Y be
the Zariski closure of Y N U, in X. We claim that Y is a solution to w = 0. That is,
for a Zariski open cover (U;);c; of X with Y given in U; by the vanishing of a regular
function f;, we will show that (w A dfi) [y, = 0.
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Since Y is a D-subvariety there is a € Y (K) with (a, d1a, ..., d,a) a generic point of
S Iy over C. In particular a is generic in Y, and so is contained in Uy as well as each
chart U;. It follows that f;(a) = 0 and so

(difi)a(d1a, ..., 0ma) = (dfi)a(0ka) = oy (fi(a)) =0

forall k =1,...,m. But (&a,...,da) is generic in S, over C(a), so we get that (difi)a
vanishes on all of S,, and as it is linear it must vanish on the subspace generated by S,,.
Note that as the af are regular 1-forms on Uy whose common kernel at the generic
point e is spanned by Se, after shrinking Uy further, we may assume that for all z € Uy,
W, = ()_, ker(a?), is the C-subspace of (T,,V))™ spanned by S. So (d, f;), vanishes on
all of W,. That is, wa A (dr fi)a = 0. As a is generic in Y NU;, we get (w A df;) lvo,= 0,
as desired.

So we only get finitely many codimension one D-subvarieties of (V,.S) that inter-
sect Up. As V' \ Uy is Zariski closed of codimension at least 1, it can only contain at most
finitely many codimension one subvarieties of Y.

It remains to consider the possibility that r = mdimV — 1. (Note that when r =
mdim V the theorem is vacuously true.) For each v € C, let (A!, S,) denote the D-variety
of type (m,0) where S, is the graph of the section to the m-fold tangent bundle given
by a — (va,...,va). Then (V x A',S x S,) is a D-variety of type (m,r), and now
r < mdim(V x A') — 1 so that the theorem is true of (V x A',S x S,). Moreover,
distinet codimension one D-subvarieties of (V,S) give rise to distinct codimension one
D-subvarieties of (V x A!, S x S.,) simply by taking the cartesian product with (A, S.).
So it suffices to show that + can be chosen in such a way that (V x A, S x S,) still has
no nonconstant D-constants.

Suppose (V' x Al,S x S.) has a D-constant g € C(V x A)\ C, and let us see
what this implies about 7. Using the geometric axiom, choose (e,t) € (V x Al)(K)
such that (e,d1e,...,0me, t,01,...,0nt) is a generic point of (S x S,)(K) over C. We
claim that g(e,t) ¢ C(e)*®. Otherwise, as t is generic in A! over C(e), it must be that
gle,t) € C(e). So g(e,t) = h(e), and as e is generic in V over C, we have that h is a
nonconstant D-constant of (V,.5), contradicting our assumption that such do not exist.
So g(e,t) ¢ C(e)™8. It follows by Steinitz exchange that t € (C(e,g(e,t))alg. Since g is a
D-constant, what we have shown is that ¢ € C(e)®.

So, to show that (V x A!, $x S, ) has no nonconstant D-constants, it remains to verify
that for some choice of v € C, the set

E,={zeK:0px=~z,k=1,...,m}

has no point that is algebraic over C(e). In fact, it follows from Fact 4.3 below, which as
Hrushovski points out in [6] is a result of Kolchin’s, that we can choose v € C such that
01z = vz has no solution that is algebraic over e together with the d;-constants of K,
and this is enough. O
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Fact 4.3 (Kolchin [10]). Suppose (K,d) is a differential field with field of constants C.
Let F C K be a field extension of C of finite transcendence degree. Then the additive
subgroup

T':={y € C:dx =~z has a nonzero solution in F}
is of finite rank.

Proof. Let n > trdeg(F/C), and suppose 71,...,v, € I'. Then there are nonzero
ai,...,a, € F such that @ =, € C, for all i =1,...,n. By the choice of n we have
ai,...,a, are algebraically dependent over C. By what Kolchin calls the multiplicative
analogue of Ostrowski’s theorem in [10, page 1156], there are integers ey, ..., e,, not all
zero, such that aj*as? - --a% € C. Applying the logarithmic derivative ‘L—“,” to this we get

that ey +---+eyyn =0. O

The following corollary appears as Theorem 6.1 of [1] but with an entirely different,
longer and more algebraic, proof. It was the key step in the proof of a weak (but optimal)
Dixmier-Moeglin equivalence for Poisson algebras.

Corollary 4.4. Let R be a finitely generated integral C-algebra equipped with C-linear
derivations 01,...,0m. If there are infinitely many height one prime differential ideals
then there exists f € Frac(R) \ C with §;(f) =0 for alli=1,...,m.

Proof. This is precisely the algebraic formulation of Theorem 4.2 when r = 0, with V
the affine algebraic variety whose co-ordinate ring is R and S the image of the regular
section to 7™V — V induced by the derivations d1,...,d,, on R. 0O

5. Hypersurfaces on differential-algebraic varieties

We now turn our attention to partial differential-algebraic varieties in the context of m
commuting derivations, A = {41, ..., }. These can be viewed indirectly as D-varieties.
However the passage from A-varieties to D-varieties involves taking a sufficiently long
prolongation, and so to apply Theorem 4.2 to this context will require proving there is a
bound on how far one has to go to capture all the codimension one A-subvarieties. This
is done in §5.3. We then prove our main result: A-varieties over the constants with no
nonconstant A-constant A-rational functions have only finitely many codimension one
A-subvarieties (Theorem 5.7). Finally, we deduce a version that makes no assumption on
the A-constant A-rational functions and extends to arbitrary finitely generated A-fields
of definition (Corollary 5.10).
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5.1. A review of differential-algebraic geometry

This is meant primarily to fix notation. Ours will be more or less standard, so the
reader familiar with the subject can safely skip to the next section. For further details
on these preliminaries we suggest Chapters I and IV of [11].

Let A ={41,...,0mn} be the commuting derivations, and

©:= {807 ter,...,em €N}

the corresponding derivatives. The order of §&m - - - 07 is e+ - ~+ep,. Foru = (uq, ..., uy)
a tuple of indeterminates, the set of algebraic indeterminates is Ou := {fu; : 1 <

i < n,0 € O}. By the order of an algebraic indeterminate fu; we mean the order
of #. There is a canonical ranking on Ou where 65 - - 67 u; < 0 --- 67'u; means that
S eryiyemy..over) < (O Tk, JyTm, - .-, 7r1) in the lexicographic order.

Suppose (F,A) is a partial differential field of characteristic zero. We denote by
F{u} the A-ring of A-polynomials over F, and by F'(u) its fraction field, the A-field
of A-rational functions. So the underlying F-algebra structure on F{u} is that of the
polynomial ring F[Ou]. Let f € F{u} \ F. The leader of f, uy, is the highest ranking
algebraic indeterminate that appears in f. The order of f is the order of its leader. The
leading degree of f, dy, is the degree of uy in f. The rank of f is the pair (ug,dy), and the
set of ranks is ordered lexicographically. By convention, an element of F' has lower rank
than all the elements of F'{z}\ F. The separant of f, Sy, is the formal partial derivative
of f with respect to uy. Note that Sy has lower rank than f.

The ranking on A-polynomials is extended to finite sets of A-polynomials as fol-
lows: Writing finite sets of differential polynomial in nondecreasing order by rank,
define {g1,...,9-} < {f1,...,fs} to mean that either there is ¢ < r,s such that
rank(g;) = rank(f;) for j < ¢ and rank(g;) < rank(f;), or r > s and rank(g;) = rank(f;)
for j <s.

Suppose A is a subset of F{x} \ F. The set A is said to be autoreduced if for each
f # g in A, no proper derivative of uy appears in g, and if uy appears at all in g then it
does so with strictly smaller degree. Autoreduced sets are finite.

A A-ideal of F{u} is an ideal that is preserved by d1,...,d,,. If I C F{u} is a prime
A-ideal then a characteristic set A for I is a minimal autoreduced subset of I. Prime
A-ideals are determined by their characteristic sets.

We will be concerned A-varieties, namely sets of solutions to systems of A-polynomi-
als. While this can be done at various levels of generality and abstraction, we will work
essentially set-theoretically, fixing a sufficiently saturated ambient differentially closed
field (K, A) and identify A-algebraic varieties with their K-points. That is we are con-
sidering the Kolchin topology on various cartesian powers of K. This is a noetherian
topology.
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In particular, if V' C A" is an algebraic variety, and C is the field of total constants of
(K, A), then V(C), the C-points of V, is a A-variety; it is given by the algebraic equations
for V together with the differential equations §;(x;) =0fori=1,...,mandj=1,... ¢

If X C K" is a A-variety defined over F' then

INX):={feF{u}: f(x)=0foralz € X}

is the A-ideal of X. When X is F-irreducible it is a prime A-ideal, and we denote by
F(X) the A-rational function field of X, i.e., the fraction field of F{u}/Ia(X) with the
(unique) extension of the A-field structure.

Given ¢ = (cq,...,¢,) € K™, by the Kolchin locus of ¢ over F we mean the smallest
Kolchin closed subset of K™ over F' that contains c¢. We will denote this by K-loc(¢/F),
and the usual Zariski locus by loc(¢/F). If X C K™ is a A-variety defined over F' then
by a generic point in X over F' we mean ¢ € X such that X = K-loc(c/F). Note that
F(X) = F{c), that is, the A-rational function field over F' is generated over F as a
A-field by a generic point.

For the remainder of this section we work in a fized sufficiently saturated differentially
closed field (K, A) of characteristic zero, with field of A-constants C. We also fiz a small
A-subfield F C K which will serve as our field of definition.

5.2. Dimension and transcendence index sets

An important technique in the study of A-varieties is to view them as proalgebraic
varieties in the following sense. For each ¢t < w, and ¢ = (¢q,...,¢,) € K™, let

Vic:=(0c;:i=1,...,n, 8 € O of order < t)

indexed with respect to the canonical ordering on Ou. Then K-loc(c¢/F) is determined by
(loc(Vic/F) : t < w), which is a directed system of algebraic varieties under the natural
co-ordinate projections loc(Viy1¢/F) — loc(Vic/F).

Suppose X C K™ is an F-irreducible A-variety, and ¢ € X is generic over F. By the
dimension function of X we mean the sequence of natural numbers

(trdegp F(Vic) 1 t <w).

In working with these dimensions Kolchin’s description of an explicit transcendence bases
for F(Vic) over F' will be very useful. We first introduce some multi-index notation.

Notation 5.1. Regard N™ x {1,...,n} as a partial order where
(ris -y Tmy @) < (8150, 8m, J)

means that ¢ = j and rp < s for each &k = 1,...,m. For r = (r1,...,7m,i) € N™ x
{1,...,n}, BCN" x{1,...,n}, z = (z1,...,2,) € K", and t < w, we set
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[r] =11+ + 7w,
o rx =081 0lmay,

e Bz := (rz:r € B), viewed as a sequence of elements in K indexed by B,
By :={(r1,...,"m,j) € B:|r| <t}

So in this notation if » > s then rz is a derivative of sx.
The following fact is established in the proof of Theorem 6, Chapter 11.12 of [11].

Fact 5.2. Suppose X C K™ is an F-irreducible A-variety, ¢ € X is generic over F', and
A is a characteristic set for In(X). Let E denote the set of all points (e1,...,em,j) €
N x {1,...,n} such that 67*...07u; is a leader of an element of A, and B the set of
all points in N™ x {1, ...,n} that do not lie above any element of E. Then, for allt < w,
Biyc is a transcendence basis for F(Vyc) over F.

We will therefore call the set B C N™ x {1,...,n} appearing in Fact 5.2 a transcen-
dence index set for ¢ over F'. Note that B is an initial set; it is a subset of N x {1,...,n}
that is closed downward in the partial ordering.

The following lemma points out that the transcendence basis found in Fact 5.2 is
actually a linear basis over A-rational functions of lower order.

Lemma 5.3. Let t be strictly greater than the order of every element of A. Then F(Vc) C

spanp(y, ¢ (Btc).

Proof. We will use the following well known fact about A-polynomials that can be
verified easily by induction on the order. Recall that u = (uq,...,u,) are our A-indeter-
minates.

(*) Suppose f € F{u} is a A-polynomial of order ¢ and 6 € O is a derivative of order
s > 0. Let wy, ..., wp be the algebraic indeterminates of order ¢ appearing in f. Then
0f is a degree one polynomial in 6wy, ...,0w, with coefficients of order < ¢ + s.
Moreover, if wq is the leader of f then Hw; is the leader of 6f and appears with
coefficient Sy, the separant of f.

We prove by induction on the rank of ru, for |r| = ¢, that rc € spanp (g, ) (B:c).

If r € B, there is nothing to prove. So assume r ¢ B, and suppose ru = 6u;. Then
there are derivatives 61,0 such that ru = 620,u; and 6,u; is the leader of some f € A.
Note that ord(f2) > 0 since t is greater than the order of all elements of A. Let w; =
01u;,ws, . .., w, be the algebraic indeterminates of order ord(f) that appear in f. By (x),
B2 f is of degree one in fowy,. .., 02w, with coefficients of order < ord(f) + ord(62) = t.
Moreover, ru = 0w is the leader of 0 f, and appears with coefficient Sy. Therefore ru is
an F[Vi_1u, Sif}—linear combination of {1, ws, ..., 02w,}. Since c is generic in X and A
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is a characteristic set, S¢(c) # 0, and hence 7c € spanp(y, |11, 02wa(c),. .., 02wy(c)}.
Now 1 € spanp(g, (Byc) trivially. On the other hand, each Oswy for k = 2,...,p,
is of order ¢t and of rank strictly less than ru. Hence by the induction hypothesis, each
2wy (c) € spanp (g, . (Bic), completing the proof.

Note that this deals also with the base case of the induction, since if ru is of minimal
rank among order ¢ algebraic indeterminates, then p must be 1 in the above argument. O

Here is another property of transcendence index sets that will be useful.

Lemma 5.4. Given finite tuples a and b, let B C N™ x {1,...,n} be a transcendence
index set for b over F{a). There exists a natural number N, such that for all t > 0,
th - F(VH.N(I, Btb)alg'

Proof. Let A C F(a){u} be the characteristic set for Ia(b/F(a)) corresponding to B.
Let £ be an upper bound on the order of the elements of A. If f € A then the coefficients
of f are A-rational functions in a over F. Let N be such that each of these coefficients,
as f ranges in A, can be written as a fraction of A-polynomials in a over F' of order < N.
We will show that this £ and N work.

Let ¢ > £. We prove by induction on the rank of ru, for r € N™ x {1,...,n} with
|r| < t, that rb € F(Viina, Bb)8. If r € B, there is nothing to prove. So assume
r ¢ B;. Then there is a derivative 8’ such that ru is the leader of 8’ f for some f € A.
Moreover, when ¢’ f is viewed as a polynomial in ru the leading coefficient is Sy, this
is by (*) of the proof of 5.3. Now ¢ f(b) = 0 and S¢(b) # 0. All the other algebraic
indeterminates of 6’ f are of strictly smaller rank, and so by induction when evaluated
at b they land in F(Vt+Na7Btb)alg. On the other hand, the coefficients of ¢’ f can be
written as fractions of A-polynomials in a over F' of order < N + ord(#’) < N +t by
choice of N. So 6 f(b) = 0 witnesses that rb € F(V;, ya, B;b)*8. O

5.3. Codimension one A-subvarieties

Suppose X C K" is an F-irreducible A-variety. We say that an F-irreducible
A-subvariety Y C X is of codimension one if for generic x € X and y € Y,
trdegp F(Viy) = trdegp F(Vix) — 1 for all sufficiently large t. In this section we uni-
formly bound what is meant by “sufficiently large”.

Proposition 5.5. Suppose X C K" is an irreducible A-variety over F. There exists
£ > 0 such that if Y C X is a co-dimension one irreducible A-subvariety over F then
trdegp F(Viy) = trdegp F(Vix) — 1 for allt > £, where x € X,y € Y are generic.

Proof. Fix ¢ € X genericand B C N™x{1,...,n} a transcendence index set for c over F.
So A is a characteristic set for I (X), E is the set of all (e1,...,em,j) € N? x{1,...,n}
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such that 07" ...d7u; is a leader of an element of A, and B is the set of all points that
do not lie above any element of E. Fact 5.2 tells us that B;c is a transcendence basis for
F(V.c) over F for all t < w.

Fix a A-subvariety ¥ C X of codimension one, and generic d € Y over F. We
first argue that trdegp F(Vid) > trdegp FI(Vic) — 1 for all ¢ > 0. We know that
F(V.c) is algebraic over F(Byc). On the other hand, V,d is a Zariski specialisation
of Vic since Y C X, and hence F(V.d) is algebraic over F(B:d). So if for some tg we
had trdegp F(Vi,d) < trdegp F(Vi,c) — 1 = |By,| — 1, then there would be at least
two elements of B, d that are algebraic over F' and the rest of the set. As the B.,d
form an increasing chain, this would persist and we would have that for all ¢ > tg,
trdegp F(Vid) < |Bi| — 2 = trdegp F(Vic) — 2, which contradicts the codimension one
assumption.

Next, write A = {f1,..., fr}, listed as usual in strictly increasing order of rank and
suppose Y is such that there exists g € Ia(Y) \ Ia(X) with ord(g) < ord(fx). Then
setting ¢; := ord(fx), which notice does not depend on Y, we have that g witnesses
I(Vid/F) 2 I(Vic/F) for all t > ¢1. Hence trdegy F(Vid) < trdeg, F(Vic) — 1.

So it remains to consider those Y such that In(Y) and Ia(X) agree up to order
ord(fx). Let Y be such and let I" = {g1, ..., gi'} be a characteristic set for Ia(Y). Then
I’ must have strictly lower rank than A since Y C X. We claim that &’ > k. Indeed, if
not, then there must be some i < k such that g1, ..., g; have the same rank as fy,..., f;
while rank(g; 1) < rank(f;11). From the way the ranking of A-polynomials is defined this
implies that ¢1,...,g;+1 all have order bounded by ord(f). By our assumption on YV
it follows that ¢1,...,0:41 € Ia(X), and so {g1,...,¢i+1} would be an autoreduced
set in In(X) that is of strictly smaller rank than A, contradicting the minimality of
characteristic sets.

Hence, it must be that case that &' > k and that ¢1,...,gr have the same rank as
fi,---, fx. But then the leaders of I" include all the leaders of A. That is, if we set Ey to
be all (e1,...,em,7) € N x {1,...,n} such that 7' ...du; is a leader of an element
of T, and set By to be the set of all points in N™ x {1,...,n} that do not lie above
any element of Ey, then By is an initial subset of B. Moreover, applying Fact 5.2 to Y,
we know that (By):d is a transcendence basis for F(V:d) over F for all t > 0, just as
Byc is a transcendence basis for F/(V;c¢). But now the codimension one hypothesis forces
By = B\ {ry} for some ry € B. In particular, ry has the special property that when
you remove it from the initial set B you still have an initial set. A general study of the
combinatorics of initial sets shows that an initial set can only have finitely many such
points. For example, in the terminology of [16], ry is a properly 0-dimensional subset
of B and Proposition 1 of [16] says that an initial set can have only finitely many such.
So there exists 71,...,r, € B, not depending on Y, such that By = B\ {r;} for some
i=1,...,p. Now setting lo := max{|ri],...,|rp|} we have that for ¢t > {5,

trdegp F(Vid) = |(By )|
:|(B\{7“i})t| for somei=1,...,p
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=|By| -1 since |r;| <t

= trdegp F(Vic) — 1
So setting ¢ := max{{, {2} proves Proposition 5.5. O

Remark 5.6. Suppose X C A" is an irreducible A-variety over F'. Let £ witness the truth
of Proposition 5.5. Then all codimension one A-subvarieties of X are determined by their
lth prolongations. That is, given Y, Z C X codimension one irreducible A-subvarieties
over F' with y € Y and z € Z generic, if loc(V,y/F) =loc(Vyz/F) then Y = Z.

Proof. Note that Y is determined by the directed sequence of algebraic varieties Y; :=
loc(Vwy/F), t > 0. Suppose Yy = Z; as codimension one algebraic subvarieties of X,.
Givent > £, let m : Xy — Xy be the co-ordinate projection. Since Y; is still a codimension
one algebraic subvariety of X; by choice of /¢, it follows that the generic fibre of Y; over
Y} is the full generic fibre of 7. Similarly for Z;. That is, Y; and Z; are subvarieties of X}
that project dominantly onto the same subvariety of X, with the same generic fibre —
by irreducibility they must agree. Hence Y = Z, as desired. O

5.4. The finiteness theorem

Theorem 5.7. Suppose F' C C is a subfield of the constants and X C K™ is an
F-irreducible A-variety. Let F(X) denote the A-rational function field of X. If F(X) N
C = F then X has only finitely many codimension one F-irreducible A-subvarieties.

Proof. We first reduce to the case when F = F2!% and so X is absolutely irreducible.
Suppose ¢ € X is generic over F. Then c¢ is a generic point of an irreducible compo-
nent of X over F2 If there is b € (F*8(c) N C) \ F*8, then b € acl(F,c) so that a
canonical parameter for the finite orbit of b over Fe, say b, is a tuple from F(c) NC.
As b € acl(b), we must have that b is not defined over F. That is, (F(c) N C) \ F # 0.
Since ¢ is generic in X over F, this contradicts the assumption on the A-constants
of F(X). Hence F?8(c)NC = F#. Assuming we have proved the theorem for irreducible
A-varieties, we would get that each irreducible component of X has only finitely many
irreducible codimension one A-subvarieties over F212. But every irreducible component of
an F-irreducible codimension one A-subvariety of X is a codimension one A-subvariety
of an irreducible component of X over F28. So we obtain the desired finiteness statement
for X as well. We may therefore assume that X is irreducible and F = F?le,

Let £ be an upper bound for the order of all the elements of a fixed characteristic set
of IA(X), and also big enough to witness Proposition 5.5. Let ¢ € X be generic over F.
Set v = Ve, V =loc(v/F), and S =loc(Vuv/F) C T™V, and r = trdeg (F(Vv)/F(v)).

We first claim that S, = loc (Vv/F(v)) is an (r-dimensional) affine subspace of
(T, V))™. This follows from the fact that the F-transcendence basis of V,iic given by
Fact 5.2 is also an F(Vyc)-linear spanning set by Lemma 5.3 applied to ¢t = £ + 1. In
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other words, there is a subtuple (11, ...,n,) of Vyi1c C Vo that is a transcendence basis
for F(Vygp1c) = F(Vv) over F'(Vyc) = F(v), and such that (1,71, ...,n,) is a linear basis
for F(Vv) over F(v). It follows that S, is an affine subspace of (T,,V)™.

Let V° C V be a nonempty Zariski open subset of V' over F, such that S, is an affine
subspace of (T,V)™ of dimension r, for all a € V°. Let S° = S [y.. So (V°,5°) is an
algebraic D-variety of type (m,r).

Now suppose, toward a contradiction, that (V°,S°) admits a D-constant rational
function f € F(V)\ F. So d™ f vanishes on S. = S, which contains Vv. Hence V f(v) =
d™fV(v) = (v,0), and so dxf(v) = 0 for all k = 1,...,m. Since v = Ve, we can
view f(v) € F(X), and we have just shown that it is a new A-constant element of the
A-rational function field, contradicting the assumption on X. Hence, (V°,5°) admits no
nonconstant D-constant rational functions.

By Theorem 4.2, (V°,5°) has only finitely many codimension one D-subvarieties.

Let Y C X be an irreducible codimension one A-algebraic subvariety of X over F,
and let y € Y be generic. By choice of ¢ witnessing Proposition 5.5, ¥y = loc(Vy/F) is
a codimension one irreducible algebraic subvariety of V. If Y, N V° = (), then Y, must
be one of finitely many irreducible component of V' \ V°. So assume W :=Y, N V° £ (.
We claim that W is a codimension one D-subvariety of (V°,S°). That is, S [wC T™W.
Indeed, from the fact that y is a A-specialisation of ¢, we get that Vw is a Zariski
specialisation of Vv, where w := Vyy. So Vw € S,,. On the other hand,

trdeg (Vw/F(w)) = trdeg (Ve41y/F(Vey))
= trdeg (Vi41¢/F(Vic)) by choice of ¢ witnessing 5.5
=r

=dim S,

It follows that S,, = loc (Vw/F(w)), and hence S,, C (T,,W)™. As w is generic in W,
we get S [y C T™W, as desired.

Now, if Y, Z C X are codimension one irreducible A-subvarieties over F', and Y,NV° =
ZyNV° #, then Yy, = Z;, and so Y = Z by Remark 5.6. So, from the fact that (V/°,5°)
has only finitely many codimension one D-subvarieties over F' we get that X has only
finitely many codimension one irreducible A-subvarieties defined over F. 0O

5.5. A relative version and nonconstant coefficients

The statement of Theorem 5.7 can be improved so as to be independent of whether
F(X) has new constants or not.

Theorem 5.8. Suppose F' C C is a constant subfield and X C K™ is an F-irreducible
A-variety. There exists an algebraic variety V over F' and a dominant A-rational map
f X = V(C) over F such that all but finitely many codimension one F-irreducible
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A-subvarieties of X arise as F-irreducible components of A-subvarieties of the form
f7H(W(C)) where W C V is an algebraic subvariety over F.

Proof. The total constant field of F(X) is a function field over F' — see for example [11,
Proposition 14, §11.11]. Tt is of the form F (V') for some F-irreducible algebraic variety V.
Note that L := F(V(C)) = F(V), so that the inclusion F (V') C F(X) induces a dominant
A-rational map f: X — V(C).

Over L the A-field F(X) has no new A-constant elements. This means that if n €
V(C) is generic over F, then L = F(n) and the fibre X,, := f~!(n) is an L-irreducible
A-subvariety of X with the property that its A-rational function field over L has L as
its constant field. Applying Theorem 5.7 to X, we get that X, has only finitely many
codimension one L-irreducible A-subvarieties.

Suppose that Y is an F-irreducible codimension one A-subvariety of X that maps
dominantly onto V(C). We claim that Y}, is codimension one in X,. Indeed, let ¢ € X,
and d € Y, be generic over L, and let £ > 0 be big enough so that the A-rational map
f(u) is of the form g(Vyu) for some rational map g(u). Since f(c) = f(d) = n, we get
that for all ¢t > ¢, n € F(Vyc) and n € F(V.d). Hence

trdegp F(Vic) = trdeg; L(Vic) + trdegp L
and
trdegp F(Vd) = trdeg; L(Vd) + trdegp L

Taking ¢ larger, we may also assume that trdegp F(V.d) = trdegp F(Vic) — 1, for all
t > £. So trdeg; L(Vd) = trdeg; L(Vic) — 1, for all t > £, as desired.

We have proved that X has only finitely many codimension one F-irreducible
A-subvarieties that map dominantly onto V(C). So it remains to consider those that
either fall in the indeterminacy locus of f, or get mapped dominantly onto proper
A-subvarieties of V(C). Since codimension one F-irreducible A-subvarieties are maxi-
mal among proper F-irreducible A-subvarieties, those that land in the indeterminacy
locus of f must be F-irreducible components of this indeterminacy locus; and hence
there are only finitely many of them. Finally, suppose ¥ C X is a codimension one
F-irreducible A-subvarieties such that the Kolchin closure of f(Y) is of the form W(C)
for some proper irreducible algebraic subvariety W C V over F. Then, by maximality
of Y in X, Y is an irreducible component of f~'(W(C)). O

Note that Theorem 5.7 is a special case of Theorem 5.8: under the assumptions on X
imposed by 5.7, the map f given by 5.8 would have to be constant, and so the conclusion
would be that there are only finitely many codimension one F-irreducible A-subvarieties.

Remark 5.9. The A-rational map f : X — V(C) that we constructed in the above
proof could be called an algebraic reduction of X, in analogy to complex bimeromorphic
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geometry, and will satisfy a certain natural universal property that we leave to the reader
to formulate.

One advantage of this latter formulation is that it generalises readily to A-varieties
not necessarily defined over the constants.

Corollary 5.10. Suppose F' C C is a constant subfield, and L is a finitely generated A-field
extension of F. Let X C K™ be an L-irreducible A-variety. There exists an algebraic
variety V' over the constants of L, Lo, and a dominant A-rational map f : X — V(C)
over L, such that all but finitely many codimension one L-irreducible A-subvarieties
of X arise as L-irreducible components of A-subvarieties of the form f*I(W(C)) where
W CV is an algebraic subvariety over Lyg.

In particular, if the A-constant field of L(X) is contained in L then X has only finitely
many codimension one L-irreducible A-subvarieties.

Proof. The “in particular” clause follows from the main statement in exactly the same
way that Theorem 5.7 is a special case of Theorem 5.8.

Let L = F(a), Z = K-loc(a/F), b € X generic over L, X the K-loc(a,b/F), and
7: X — Z the co-ordinate projection taking (a,b) to a. Then X can be identified with
the generic fibre X, of 7. Let V be the algebraic variety over F, and f: X — V(C) the
dominant A-rational map over F', given by Theorem 5.8 applied to X. Note that the
Kolchin closure of f(X ) is, by stable embedability of the constants, of the form V(C) for
some algebraic subvariety V' C V defined over L. Restricting to the generic fibre of 7
we get a dominant A-rational map f: X — V(C).

Now suppose Y C X is a codimension one L-irreducible A-subvariety over L. Let c € Y
be generic over L and set Y := K-loc(a, ¢/F), so that Y = Y,. We claim that Y is of
codimension one in X. Indeed, let N be big enough to witness Lemma 5.4 applied to (a, b)
and (a, ¢). That is, if B is a transcendence index set for b over L and C'is a transcendence
index set for ¢ over L, then Vb C F(V;na, B;b)*® and Vic C F(Vyyna, Cic)® for all
t > 0. So trdeg (V;b/F(Vi1na)) = |By| and trdeg (Vic/F(Viyna)) = |C|. Hence

trdegp F(Vi(Vna,b)) = |By| + trdegp F(Vi(Vna))
= trdeg, F(V¢(b)) + trdegp F(V(Vna))
= trdegy, F(V¢(c)) + 1 + trdegp F(V¢(Va))
= |Cy| + trdegp F(V¢(Vna)) + 1
= trdegp F(Vi(Vna,c)) + 1
where the third equality is for sufficiently large ¢, as Y is codimension one in X. So

K-loc(Vna,¢/F) has codimension one in K-loc(Vya,b/L). Applying a A-isomorphism
we get that Y has codimension one in X.
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Distinct Y will give rise to distinct Y so for all but finitely many Y we will get that
Y is an F-irreducible component of f (W(C)) for some algebraic subvariety W cv
defined over F'. Restricting to the generic fibre of 7, Y is an L-irreducible component of

FEWE)nX = f1{(WnV(C). SoW :=WnV works. 0

The assumption that L be finitely generated over its constants is necessary. There
exist A-varieties of order 1 that admit no nonconstant A-rational functions to C over
any parameter set (i.e., whose Kolchin generic type is orthogonal to the constants) — for
example, a general way of producing these (with m = 1) was developed in [7, §2]. Let X
be such, fix an infinite collection P of points on X, and then pass to a A-field extension
L over which X and all the points in P are defined. So the A-constants of L(X) are
contained in L, but each member of P is a codimension one A-subvariety over L.

6. Applications

We give three applications of Corollary 5.10. The first two are obtained simply by re-
placing, in known arguments, the use of Hrushovski’s [6, Proposition 2.3] by our extension
to the partial and nonconstant coefficient setting. The third application, on bounding
the height of algebraic solutions to first-order differential equations over C(t), seems to
not have been noticed before and makes essential use of our relative formulation.

6.1. Lascar and Morley rank agree in dimension two

We continue to work in a sufficiently saturated model (K, A) = DCF , with field of
total constants C, and over a small A-field of definition F' C K.

Let us first explain what “dimension” we have in mind. If X C K™ is an F-irreducible
A-variety with A-rational function field F(X) of finite transcendence degree over F,
then we say that X is of finite dimension and we call trdegp F(X) the dimension of X.
Note that X being of finite dimension r is equivalent to the dimension function of X, as
defined in §5.2 above, being eventually of constant value . We extend this terminology
to F-definable sets S C K™, by saying that S is of dimension r if all the F-irreducible
components of the Kolchin closure of S are of finite dimension and the maximum of
those dimensions is r.

In general Lascar and Morley rank do not agree in differentially closed fields; a coun-
terexample of dimension five was constructed by Hrushovski and Scanlon [8]. However,
it was noted by Marker and Pillay that these ranks do agree for 0-definable sets of di-
mension two. (If the dimension is one, then so are the Lascar and Morley ranks.) Their
argument, which was communicated to us by David Marker, used Hrushovski’s theorem
on hypersurfaces of differential algebraic varieties over the constants. Given our exten-
sion of this theorem to nonconstant coefficient fields, the Marker—Pillay argument now
shows that Lascar and Morley rank agree on arbitrary definable sets of dimension two.
We give the proof here, for the sake of completeness.
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Theorem 6.1. Suppose S is a definable set of dimension two. Then the Morley and Lascar
ranks of S agree.

Proof. Taking irreducible components of Kolchin closures it suffices to prove the theorem
for S = X C K™ an irreducible A-variety. Since Lascar rank is bounded by Morley rank
which is bounded by the dimension, the only case we have to consider is when the Morley
rank of X is two.

Let F be a finitely generated A-field over which X is defined. It suffices to prove
the existence of an infinite A-subvariety of X that is not defined over F#. Indeed,
let Y € X be such. We can further assume that Y is irreducible and defined over
some A-field extension F’ D F. Let d € Y be Kolchin generic over F’. If tp(d/F’)
were a nonforking extension of tp(d/F) then Y would be an irreducible component
of K-loc(d/F), contradicting the assumption that Y is not defined over F*&. Hence,
tp(d/F’) is a nonalgebraic forking extension of tp(d/F), proving that the latter is of
Lascar rank at least two. Hence X would be of Lascar rank two.

Since X is of Morley rank two it has infinitely many disjoint Kolchin constructible
subsets that are each infinite. It follows that there are infinitely many distinct infinite
A-subvarieties of X, say (Y; : i < w). If any of these are not defined over F#8 then we
are done by the previous paragraph, so we may assume they are all defined over F2I8.
Replacing Y; by the union of its F-conjugates, we may assume that each Y; is defined
over F'. Moreover, taking irreducible components, we may assume that they are all
F-irreducible. Since X is of dimension two, and each Y; is a proper infinite A-variety, each
Y; must be of codimension one in X. By Corollary 5.10, there is a dominant A-rational
map f: X — A!(C). The generic fibre of f will be an infinite A-subvariety of X that is
not defined over F18. So we are done by the previous paragraph. O

In recent work [4] the first author has produced an example in dimension 3 where
Lascar and Morley rank differ.”

6.2. Dimension one strongly minimal sets

Hrushovski’s motivation in [6] for considering the differential-algebraic geometric con-
sequences of Jouanlolou’s theorem was to understand the structure of strongly minimal
sets of dimension one in DCFy. He shows that they are either nonorthogonal to the
constants or Ng-categorical. Having extended the differential-algebraic geometric results
to the partial case, we follow [6, Corollaries 2.5 and 2.6] to obtain an analogous result
for DCFg .

Theorem 6.2. Suppose S is a strongly minimal dimension one definable set that is or-
thogonal to C. Then S is Rg-categorical.

TA putative three-dimensional example where Lascar and Morley rank differ was given in [14], but the
computations there seem to be incorrect — see the discussion in [3].
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Proof. Since S is strongly minimal, to deduce Ry-categoricity it suffices to prove that for
every finite set B over which S is defined, acl(B) NS is finite.

The Kolchin closure of S has a unique infinite irreducible component, say X. Let F
be a finitely generated A-field over which X is defined and such that B C F. All but
finitely many points of S are in X, so it suffices to show that acl(B) N X is finite. Let
a € acl(B) N X. Then a € X(F*8) and so Y := K-loc(a/F) is a finite F-irreducible
A-subvariety X. Now trdegy F(X) = 1 by the dimension one assumption on S. Since Y’
is finite it is of codimension one. So acl(B)NX is contained in the union of all codimension
one F-irreducible A-subvarieties of X. Since S is orthogonal to C, X admits no noncon-
stant A-rational maps over F' to C. Corollary 5.10 therefore implies that X has only
finitely many codimension one F-irreducible A-subvarieties. Since all such subvarieties
must be finite, their union is a finite subset of X. O

It is well known that the theorem fails for strongly minimal sets of higher finite
dimension. Manin kernels appear as strongly minimal groups that are orthogonal to
the constants. For some time it was open whether all strongly minimal sets with trivial
pregeometry in DCFy were Ryp-categorical, but the first author and Thomas Scanlon [4]
have shown recently that the j-function gives rise to counterexamples in dimension three.

6.5. Algebraic solutions to first-order differential equations

In [2], Eremenko proves that if P € C(t)[z,y] is a nonzero polynomial in two variables
over the field of rational functions, then there is a constant N = N (P) such that all solu-
tions in (C(t), %) to the differential equation P(z,2’) = 0 are of degree bounded by N.
Here the degree of a rational function is the maximum of the degrees of the numerator
and denominator of g when expressed as a ratio of coprime polynomials. He suggests
that “it is a challenging unsolved question whether [the above result] can be extended to
algebraic solutions,” that is to solutions in (C(t)™, %) We give here such an extension.

In order to state the extension we need to make sense of the “degree” of an element of
C(t)*&. The natural thing to consider is the function field absolute logarithmic height,
which we now recall and details of which can be found in [12, Chapters 3 and 4]. Given
g € C(t)*8 let k be a finite extension of C(t) in which g lies. Writing k = C(E) for some
smooth projective curve F, we view g as a rational function on E, and the height h(g) is
defined to be the degree of the polar divisor of g — so the number of poles of g counting
multiplicity — divided by [k : C(¢)]. This quantity does not depend on the choices of k

and E made. Note that h on C(¢)*# extends degree on C(t).

Theorem 6.3. Suppose P € C(t)[x,y] is nonzero. There exists N = N(P) € N, such that
all solutions to P(z,2') =0 in (C(t)*&, L) are of height < N.

Proof. We work in a saturated model (K, §) = DCFy extending (C(¢), 4) and with field
of constants C. We may assume that P is irreducible and of positive degree in both x
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and y. Let E C A? be the algebraic curve over C(t) defined by P(x,y) = 0, and let
X :={(a1,a2) € E(K) : 6(a1) = az}.

By Corollary 5.10, there is an algebraic variety V' C A" defined over C and a
dominant d-rational map f : X — V(C) over C(t) such that all but finitely many
C(t)-irreducible é-subvarieties of X of codimension one are irreducible components of
sets of the form f~! (W((C)) where W is a C-definable algebraic subvariety of V. Since
X is a one-dimensional d-variety, V(C) is of dimension < 1 as a J-variety, and hence as
an algebraic variety we have dimV < 1. If a € X (C(t)*#) then K-loc (a/C(t)) is a finite
C(t)-irreducible d-subvariety of X, and hence of codimension one. So if dimV = 0 then
X (C(t)*18) is finite, and the theorem follows vacuously. We may therefore assume that
dim V' = 1. As the only proper C-definable algebraic subvarieties of V' are its C-points,
we conclude that all but finitely many C(t)*%#-points of X get mapped by f to V(C).
Since the height function is zero on V(C), our strategy now is to use f to bound the
height function on X (C(t)).

First, we claim that the d-rational map f extends to a rational map on E. Let X
be obtained from X by removing the (finite) set of points where the partial derivative
P, := (%P vanishes. If a = (a1, a2) € X( then

5(@1) = a2
P.(a1,a2)as s
0(ag) = ——————= — P°(a1,a
(a2) P, (a1, a2) (a1, az2)
Py

That is, 6 agrees with the rational map (y, — 5% — P?) on Xy. Replacing occurrences of
0 in f by this rational map, we obtain a C(t)-definable rational map « that agrees with
f on Xy. As X is Zariski dense in F, we have that a: £ — V.

The height function defined above extends to C(t)*#-points of E and V. First, on
any projective space the function field absolute logarithmic height for C(¢)*&-points is
defined as follows: If g = (go : --- : g¢) € P(k) where k is a finite extension of C(t),
and writing k = C(E) for some smooth projective curve E, then h(g) is the degree of
the supremum of the polar divisors of go, ..., g¢ on E, divided by [k : C(¢)]. This height
agrees with the height defined earlier on C(¢)*# under the identification of g € C(¢)8
with (1 : g) € P*(C(t)*#). See [12, §3.3] for more details. Now, embed E in P? by
identifying (a1,as) with (1 : a1 : az), and denote by E the Zariski closure of E in P2.
We thus have a height function on E(C(t)*#) coming from P?. Similarly, let V be the
projective closure of V' in P", and denote again by h the corresponding height function
on V(C(t)*#). Note that the height of a C-point is zero.

Consider the rational map o : E — V. Resolving the singularities of the graph of «, we
have a smooth projective C(t)-definable curve I' with surjective morphisms 7z : I' — E
and my : I' — V such that o 7 = my on a cofinite subset of T'. Let hg := ho g
and hy := homy be the height functions on I'(C(¢)*¢) induced by these maps. By the
functoriality of Weil’s height machine, see [12, §4.1 and §4.2], up to equivalence, these
heights depend only on the divisors of the linear systems on I associated to 7g : I' — P2



J. Freitag, R. Moosa / Advances in Mathematics 314 (2017) 726-755 753

and 7y : I' = P™ respectively, and not on the morphisms themselves. Here two positive
real-valued functions are said to be equivalent if their difference is a bounded function.
Moreover, by [12, Corollary 4.3.5], which is the algebraic equivalence property of Weil’s
height machine in the case of curves, hg is “quasi-equivalent” to rhy, where r is the ratio
of the degrees of the corresponding divisors. Quasi-equivalence means that for every ¢ > 0
there are positive constants cg, co such that (1—e)rhy —c1 < hg < (1+€)rhy +c2. Now,
for all but finitely many a € X (C(¢)*#), we know that a(a) = f(a) € V(C), and hence
h(a(a)) = 0. With possibly finitely many more exceptions, we also have b € I'(C(t)*)
such that 7g(b) = a and my(b) = a(a). Hence, for such a we get

h(a) = ha(b) < (1+ rhy () + e = (1+ rh(a(a) + ez = c3

It follows that there is a uniform bound on the height of all points in X (C(t)*#).

If g € C(t)™# is a solution to P(xz,2’) = 0, then (g,dg) € X (C(t)*¢), and from the
way the heights were defined, h(g) < h(g,dg). So we have shown that a uniform bound
exists on the height of all algebraic solutions to P(x,z') =0. O

We have restricted our attention above to the ordinary case for the sake of concrete-
ness, and because it was in this form that the problem is mentioned in [2]. However,
since the setting of Corollary 5.10 is after all that of partial differentiation, the above
arguments extend to the partial case. One obtains the following statement, which we
leave to the reader to verify: Suppose L = C(t1,...,tm) is the field of rational functions
in m variables, and E C A™1 4s an algebraic curve over L. Then

dg Jg dg
atl’atg""’atm)eE

{g € L™ (g, 5 7

s of bounded height. Here we take the absolute logarithmic height corresponding to the
function field L/C. Note also that the complex numbers play no special role, the result
remains true over any field of characteristic zero.
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Appendix A. Two lemmas in exterior algebra

The following two straightforward linear algebra lemmas that are used in the
proof of the Jouanolou—Hrushovski—-Ghys theorem appear in Hrushovski’s unpublished
manuscript [6]. As we could not find a good published reference we reproduce them here
almost verbatim.
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Lemma A.1 (/6/, Lemma 1.5). Suppose k C K are fields, V is a K-vector space, and
U CV isak-subspace of V.. Working in the exterior powers of V over K, suppose there
exists £ > 1 such that dimy span,{u; A - - Aug : uy,...,up € U} is finite and greater
than zero. Then dimg U is finite.

Proof. Let B = spang{u; A--- Aug : uy,...,up € U} and choose some nonzero  :=
uy A -+ Aug with ug, ..., up € U. Consider the k-linear map K — /\Z V given by a — a8
and let A be the preimage of B. So A is a finite dimensional k-vector subspace of K.

-1
We claim that dimy (U N span g {uq, ... ,W—1}) is finite. Indeed, if v = Z a;u; is in
i=1
U then for all i < £ — 1 we have
B > ul/\~~~/\ui_1 AvAui+1/\-~'Auz:aiﬂ
-1
so that a; € A. It follows that U Nspang{u1,...,u—1} C ZAW, and hence is finite
i=1

dimensional over k as A is.

Now consider the k-linear map U — B given by v +— w3 A -+ A upg_1 A v. Since
up A~ - Aug—q # 0 the kernel of this map is U Nspang{uq,...,us—1}. As both the kernel
and the image are finite dimensional k-vector spaces, so is U. O

Lemma A.2 (/6/, Lemma 1.4). Let K be a field, V a K-vector space, and V* its dual.
Suppose aq,...,ap € V* are such that v := a1 A -+ AN ay # 0, and w is another wedge
product of elements of V* such that wAo; =0 for alli=1,...,¢. Then for any p € V*,
if 6N~y =0 then 8 Aw=0.

Proof. We may assume w # 0. Consider the K-subspace
W:i={acV":aAw=0}

If we write w = 51 A -+ A By, then certainly each 3; € W. As w is nonzero the j; are
linearly independent. On the other hand, if & Aw = 0 then « € spang{fi,...,53,}, so
that {51,...,5p} is a basis for W.

We have each «; € W by assumption, and as v is nonzero, these too are linearly
independent. Extend to another basis {aq,..., g, apy1,...ap}. Then Sy A--- A B, =
ao; A--- Aoy, for some a € K, and so w = ay Aayq1 A+ - Aoy. From this it is clear that
fBAy=0then fAw=0. O
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