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1. Introduction

In a highly influential but unpublished manuscript from the mid nineteen nineties, 
Hrushovski showed that in the theory of differentially closed fields of characteris-
tic zero an order one strongly minimal set that is orthogonal to the constants must 
be ℵ0-categorical. His argument went via a certain finiteness theorem in differential-
algebraic geometry:

Theorem 1.1 (Hrushovski [6]). Suppose X is a δ-variety over C such that the field con-
stants of the δ-function field 

(
C〈X〉, δ

)
is C. Then X has only finitely many codimension3

one δ-subvarieties over C.4

This theorem came up in the seemingly unrelated work of the second author and his 
collaborators on the Dixmier–Moeglin problem for Poisson algebras. The following is the 
key step in the proof of one of the main results of that paper:

Theorem 1.2 (Bell et al. [1]). If R is a finitely generated C-algebra equipped with (possibly 
noncommuting) C-linear derivations Δ = {δ1, . . . , δm}, and having infinitely many height 
one prime Δ-ideals, then there exists f ∈ Frac(R) \C with δi(f) = 0 for all i = 1, . . . , m.

When m = 1 this is by standard methods seen to be a special case of Hrushovski’s 
theorem, the so-called finite dimensional case when the transcendence degree of C〈X〉
over C is finite. As the authors of [1] could not see how to extend Hrushovski’s geometric 

3 Hrushovski uses the term co-order.
4 When X ⊆ A

2 is defined by δ(x) = P (x, y) and δ(y) = Q(x, y) where P and Q are polynomials over C, 
one recovers an old theorem of Darboux; see Singer’s discussion and elementary proof of Darboux’s Theorem 
in the appendix of [15].
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proof to m > 1, an alternative algebraic argument was given in [1, §6]. One of the 
motivations for the present article is to extend Hrushovski’s proof of Theorem 1.1 to a 
setting that includes Theorem 1.2. This is accomplished in §4.

As it turns out, the right general setting is that of D-varieties of type (m, r): algebraic 
varieties V equipped with a subvariety S of the m-fold fibred cartesian power of the 
tangent bundle, such that Sa is an r-dimensional affine subspace of (TaV )m for each 
a ∈ V . To see what this has to do with Theorem 1.2, note that when r = 0 the subvariety 
S is given by m regular sections to the tangent bundle, which in turn determines m

derivations on the co-ordinate ring of V . On the other hand, if we specialise m to 1
we are in the setting of Theorem 1.1 because, as Hrushovski shows in [6, Lemma 2.2], 
every δ-variety together with its codimension one δ-subvarieties is captured by a certain 
D-variety of type (1, r) for some r ≥ 0. What we prove, for general m and r, is the 
following.

Theorem A. Suppose (V, S) is a D-variety of type (m, r) such that for every f ∈ C(V ) \C
and general a ∈ V , it is not the case that (daf)m vanishes on Sa. Then (V, S) has only 
finitely many codimension one D-subvarieties over C.

This appears as Theorem 4.2 below, following closely the proof of Theorem 1.1. The-
orem 1.1 was itself obtained by Hrushovski as an application of a suitably generalized 
form of Jouanolou’s [9] work on solutions to analytic Pfaffian equations. We take this 
opportunity, in §2, to give a detailed exposition of Hrushovski’s generalization, which we 
call the Jouanolou–Hrushovski–Ghys theorem because we utilise some simplifications ap-
pearing in Ghys’ [5] improvement on Jouanolou’s theorem. In §3 we show how to extend 
the Jouanolou–Hrushovski–Ghys theorem to the case of arbitrary m ≥ 1. Theorem A
now follows exactly as it did for Hrushovski in [6].

A second related motivation for this article was simply to extend Theorem 1.1 to 
differential varieties in the partial case. That is, to prove the theorem for differential 
subvarieties of a differential variety when δ is replaced by m commuting derivations 
Δ := {δ1, . . . , δm}. It turns out that to deduce this from Theorem A does require new 
work, and involves a seemingly new finiteness principle for partial differential equa-
tions. In §5 we use (partial) differential algebra and some combinatorics of initial sets 
to show that there is a bound on how many prolongations one has to take of a given 
Δ-variety to capture all of its codimension one Δ-subvarieties; this finiteness principle 
appears as Proposition 5.5. With this in place, we can use Theorem A to prove the 
partial differential version of Theorem 1.1; it appears as Theorem 5.7 below. In fact, 
with a little more work we are able to both remove the assumption that the Δ-variety 
X is defined over the constants, and also formulate a version that does not assume 
that X has no new Δ-rational constants but rather is relative to whatever the con-
stants of the Δ-rational function field of X are. Here is the statement which appears as 
Corollary 5.10 below.
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Theorem B. Suppose (K, Δ) is a differentially closed field of characteristic zero in sev-
eral commuting derivations, F ⊆ C is a subfield of the total constant field, L is a 
finitely generated Δ-field extension of F , and X ⊆ Kn is an L-irreducible Δ-variety. 
There exists an algebraic variety V over the constants L0 of L, and a dominant 
Δ-rational map f : X → V (C) over L, such that all but finitely many codimension 
one L-irreducible Δ-subvarieties of X are L-irreducible components of Δ-subvarieties of 
the form f−1(

W (C)
)

where W ⊆ V is an algebraic subvariety over L0.5

This theorem is particularly useful when applied to low dimensional differential vari-
eties. For example, if X is one-dimensional then the codimension one subvarieties over L
arise from the Lalg-points of X, and the theorem connects these points to the constant 
points of an algebraic curve. As an application we are able to prove the existence of 
height bounds for solutions in C(t)alg to first order algebraic differential equation. The 
following appears as Theorem 6.3 below.

Theorem C. Suppose P ∈ C(t)[x, y] is a nonzero polynomial in two variables over the 
field of rational functions C(t). There exists N = N(P ) ∈ N such that all solutions to 
P (x, x′) = 0 in 

(
C(t)alg, d

dt

)
are of height ≤ N .

The height here is the function field absolute logarithmic height of Lang [12], which 
extends degree on rational solutions. For rational solutions the existence of such a degree 
bound is a theorem of Eremenko [2], where the extension to algebraic solutions was 
asked for. A version of Theorem C over a multivariate function field, and involving 
partial differentiation, can also be deduced from Theorem B, see the discussion following 
Theorem 6.3.

We also present some model-theoretic applications of Theorem B that arise from 
known consequences of Theorem 1.1 which can now be extended to the partial and non-
constant coefficient field setting. For example, as per Hrushovski’s original motivation, 
we get that every one-dimensional strongly minimal set in DCF0,m that is orthogonal to 
the constants is ℵ0-categorical. Another model-theoretic consequence of Theorem B has 
to do with the comparing Lascar rank and Morley rank. Hrushovski and Scanlon gave an 
example in [8] of a differential algebraic variety of dimension five in which Lascar rank 
and Morley differ in DCF0. They note that Marker and Pillay had an argument (also 
unpublished but communicated to us by the former) that used Theorem 1.1 to show 
that for two-dimensional definable sets over the constants, Lascar rank and Morley rank 
agree. Using Theorem B in place of Theorem 1.1, we extend the Marker–Pillay result to 
definable sets in DCF0,m over arbitrary fields of definition. Both of these applications 
are given in §6, appearing as Theorems 6.1 and 6.2.

5 Given an algebraic variety V ⊆ A
�, by V (C) we mean the C-points of the algebraic variety V . Note 

that V (C) ⊆ K� is a Δ-variety; it is given by the algebraic equations for V together with the differential 
equations δi(xj) = 0 for i = 1, . . . , m and j = 1, . . . , �.
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We do not address in this paper the question of explicit bounds in the above finiteness 
theorems. However, we do nothing here that is inherently ineffective, and as explicit 
bounds can be given for the original theorem of Jouanalou, one should in principle be 
able to give effective versions of our theorems too.

2. An exposition of the Jouanolou–Hrushovski–Ghys theorem

In this section we aim to give a detailed exposition of Hrushovski’s [6] unpublished 
generalization of Jouanolou’s [9] theorem from 1-forms to p-forms. Our exposition is 
highly influenced by Ghys’ [5] improvement on Jouanolou’s theorem.

Let X be a compact complex manifold. By a codimension p holomorphic foliation 
on X we will mean,

• an open cover (Ui)i∈I of X,
• on each Ui a p-fold wedge product of holomorphic 1-forms,

0 
= ωi = α1 ∧ · · · ∧ αp

and,
• on each intersection Ui ∩ Uj a nonvanishing holomorphic function gij such that 

ωi = gijωj .

If we let L be the line bundle on X defined by (gij), then the ωi’s determine a global 
holomorphic p-form on X with values in L, that is, ω ∈ H0(X, Ωp ⊗ L). Note that at 
each point a ∈ X, ω defines a codimension p subspace of the tangent space TaX, namely 

Wa :=
p⋂

�=1

ker(α�)a where a ∈ Ui and ωi = α1 ∧ · · · ∧ αp on Ui.

By a solution to ω = 0 we will mean a hypersurface Y on X whose tangent space at 
each point a ∈ Y contains the subspace Wa. In other words, possibly after refining the 
open cover, Y is defined in Ui by the vanishing of a holomorphic function fi on Ui such 
that (dfi)a vanishes on Wa. An equivalent formulation is that ωi ∧dfi �Y ∩Ui

= 0. Another 
equivalent formulation is that the meromorphic (p +1)-form ωi∧ dfi

fi
is in fact holomorphic 

on Ui. To see this last equivalence note that, because fi generates the ideal of Y ∩ Ui

in O(Ui), ωi ∧ dfi �Y ∩Ui
= 0 if and only if ωi ∧ dfi �Y ∩Ui

= fiη for some holomorphic 
(p + 1)-form η on Ui.

A meromorphic first integral to ω is by definition a nonconstant meromorphic function 
on X which is constant on the leaves of the foliation. That is, an f ∈ C(X) \ C such 
that ω ∧ df = 0. Notice that if a meromorphic first integral to ω exists then ω = 0 has 
infinitely many solutions; namely the level sets of f . The main theorem of this section 
is a converse to this observation.
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Theorem 2.1 (Jouanolou–Hrushovski–Ghys). Suppose X is a compact complex manifold. 
If ω is a codimension p holomorphic foliation on X that does not admit a meromorphic 
first integral then ω = 0 has only finitely many solutions.

When p = 1 and under some additional assumptions on X (satisfied, for example, 
by smooth projective algebraic varieties), this is a theorem of Jouanolou appearing 
in the 1978 paper [9]. With the same assumptions on X as Jouanolou, and following 
his argumentation, Hrushovski proved the theorem for general p in the unpublished 
manuscript [6] dating from the mid nineteen nineties. A little later, Ghys [5] generalized 
Jouanolou’s theorem in a different direction, removing the additional assumptions on X
and simplifying Jouanolou’s argument, though only for p = 1. So while the theorem as 
stated here is formally new, it is obtained by simply combining Hrushovski’s and Ghys’ 
generalizations, and our purpose in presenting it here is entirely expository.

Let us denote by Div(X) the group of Weil divisors on X, and consider the logarithmic 
derivative map

d log : Div(X) ⊗ C → H1(X, Ω1
cl)

where Ω1
cl is the sheaf of closed holomorphic 1-forms on X. To describe this map it suffices 

to define d log(Y ) for irreducible hypersurfaces Y on X, and then extend by C-linearity. 
If Y is defined locally by fi = 0 then d log(Y ) is the cocycle 

(
1

gij
dgij

)
where fi = gijfj

on Ui ∩ Uj .
There is a canonical injective C-linear map

ξ : ker(d log) → H0(X, Ω1
cl,mer)/H0(X, Ω1

cl)

where Ω1
cl,mer denotes the sheaf of closed meromorphic 1-forms on X, that we now de-

scribe. Suppose x =
∑

α λαYα ∈ ker(d log). So if (after refining the cover) Yα is given by 

fα
i = 0 in Ui, and fα

i = gα
ijfα

j on Ui ∩ Uj , then the cocycle 

(∑
α

λα

dgα
ij

gα
ij

)
is a cobound-

ary. That is, 
∑

α λα
dgα

ij

gα
ij

= vj − vi on Ui ∩ Uj , where vi and vj are closed holomorphic 
1-forms on Ui and Uj respectively. It follows that

vi +
∑

α

λα
dfα

i

fα
i

= vi +
∑

α

λα

d(gα
ijfα

j )
gα

ijfα
j

= vi +
∑

α

λα

dgα
ij

gα
ij

+
∑

α

λα

dfα
j

fα
j

= vj +
∑

λα

dfα
j

fα

α j
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on Ui ∩ Uj . That is, 
(

vi +
∑

α λα
dfα

i

fα
i

)
defines a global closed meromorphic 1-form on X; 

this is what ξ(x) is. To see that ξ is well-defined modulo H0(X, Ω1
cl), a similar compu-

tation shows that if in the above construction we chose representatives (fα

i ) and (vi)
instead, then writing f

α

i = hα
i fα

i for some hα
i a nowhere vanishing holomorphic function 

on Ui, (
vi +

∑
α

λα
df

α

i

f
α

i

)
−

(
vi +

∑
α

λα
dfα

i

fα
i

)
= vi − vi +

∑
α

λα
dhα

i

hα
i

which is a closed holomorphic 1-form on Ui. That they patch to produce an element of 
H0(X, Ω1

cl) is a straightforward verification.
The map ξ is injective because, as pointed out by Ghys [5, p. 178], from the mero-

morphic 1-form 
(

vi +
∑

α λα
dfα

i

fα
i

)
we can recover the Y α as the polar divisors and the 

λα as the residues.

Proof of Theorem 2.1. Consider the C-linear subspace of Div(X) ⊗ C spanned by solu-
tions to ω = 0. Namely,

Div(ω) :=
{∑

α

λαYα : λα ∈ C, Yα a solution to ω = 0
}

In order to prove the Theorem we will assume that ω has no meromorphic first integral 
and show that Div(ω) is a finite dimensional vector space.

Restricting d log : Div(X) ⊗ C → H1(X, Ω1
cl) to Div(ω), and using the fact that 

H1(X, Ω1
cl) is finite dimensional (as X is compact), it suffices to show that

Div◦(ω) := Div(ω) ∩ ker(d log)

is finite dimensional.
Next we can restrict the map ξ constructed earlier and consider

ξ : Div◦(ω) → H0(X, Ω1
cl,mer)/H0(X, Ω1

cl)

Looking at that construction we see that if x ∈ Div◦(ω) and ξx ∈ H0(X, Ω1
cl,mer) is a 

representative of ξ(x), then ω ∧ ξx, which is a priori in H0(X, Ωp+1
mer ⊗ L), actually lands 

in H0(X, Ωp+1 ⊗ L). This follows from the fact that if fi defines a solution to ω = 0
in Ui then by definition ωi ∧ dfi

fi
is a holomorphic (p + 1)-form on Ui. So we obtain a 

C-linear map Div◦(ω) → H0(X, Ωp+1 ⊗L)/ω ∧H0(X, Ω1
cl) given by taking x to the class 

of ω ∧ξx. The right-hand-side being finite dimensional, it suffices to show that the kernel 
of this map, let us denote it by K, is finite dimensional.

For each x ∈ K we can choose a representative ξx ∈ H0(X, Ω1
cl,mer) of ξ(x) such that 

ω ∧ ξx = 0. Indeed, by choice of K, ω ∧ ξx = ω ∧ η for some closed holomorphic 1-form η, 
and we can replace ξx with ξx − η.
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By the injectivity of ξ, it will suffice to show that ξ(K) is a finite dimensional 
C-subspace of H0(X, Ω1

cl,mer)/H0(X, Ω1
cl). This in turn reduces to showing that

Ξ := spanC{ξx : x ∈ K}

is finite dimensional. Note that Ξ is a C-subspace of the finite dimensional C(X)-vector 
space H0(X, Ω1

cl,mer) = H0(X, Ω1
cl) ⊗C C(X), where C(X) is the meromorphic function 

field of X. By general exterior algebra (see Lemma A.1), it suffices to prove that for 
some � ≥ 1,

B� := spanC {ξx1 ∧ · · · ∧ ξx�
: x1, . . . , x� ∈ K}

is a nontrivial finite dimensional C-vector space; where the wedge product here is being 
taken in the sense of the C(X)-vector space H0(X, Ω1

cl,mer). We will work with � equal to 
the dimension of the C(X)-subspace generated by Ξ, and show that then dimC B� = 1. 
As we may assume that K is not trivial (or else we are done), neither is Ξ, and so � ≥ 1.

Let ξa1 , . . . , ξa�
be a basis for spanC(X) Ξ. It follows by C(X)-linear independence that 

ξa1 ∧· · ·∧ξa�

= 0. Moreover, for any x1, . . . , x� ∈ K, as each ξxi

∈ spanC(X){ξa1 , . . . , ξa�
}, 

and ξa1 ∧ · · · ∧ ξa�
is a basis for the �th wedge product of spanC(X){ξa1 , . . . , ξa�

}, we get

ξx1 ∧ · · · ∧ ξx�
= fξa1 ∧ · · · ∧ ξa�

for some f ∈ C(X). Since we are working with closed 1-forms here,

0 = d(ξx1 ∧ · · · ∧ ξx�
)

= d(fξa1 ∧ · · · ∧ ξa�
)

= df ∧ ξa1 ∧ · · · ∧ ξa�
+ fd(ξa1 ∧ · · · ∧ ξa�

)

= df ∧ ξa1 ∧ · · · ∧ ξa�

But each ω ∧ ξai
= 0, and so it follows from general exterior algebra (see Lemma A.2) 

that ω∧df = 0. That is, as ω has no meromorphic first integral by assumption, f must be 
a constant. We have shown that dimC B� = 1, and hence dimC Ξ is finite, as desired. �
3. The partial case

We would like to apply the Jouanolou–Hrushovski–Ghys theorem in the “partial” 
setting where we replace the holomorphic tangent bundle by its m-fold direct sum. No 
new ideas are required to make the proof go through, however there are some subtleties 
involved in setting things up correctly.

Let T mX → X be the direct sum of the holomorphic tangent bundle of X with itself 
m times. As a complex manifold it is the m-fold fibred cartesian power of TX over X, 
so that for each a ∈ X, (T mX)a = (TaX)m. We denote by Ω(1,m) the sheaf of germs 
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of holomorphic sections to the dual bundle of T mX → X. One can of course identify 
this with 

⊕m
k=1 Ω1, but for our purposes, namely for encoding families of subspaces 

of (TaX)m as a varies in X, we find it more convenient to work directly with Ω(1,m). 
We call it the sheaf of holomorphic m-fold 1-forms on X. The m-fold p-forms are then 
obtained by taking pth exterior powers, Ω(p,m) :=

∧p Ω(1,m). We will also consider the 

sheaf of meromorphic m-fold p-forms on X, Ω(p,m)
mer , which is given by Ω(p,m)

mer (U) :=
Ω(p,m)(U) ⊗C C(X).

For each k = 1, . . . , m, the differential dk : O(U) → Ω(1,m)(U) is given by

(dkf)a(v1, . . . , vm) := (df)a(vk) (3.1)

for all a ∈ U and v1, . . . , vm ∈ TaX. This can be extended to meromorphic functions in 
the same way.

An m-fold holomorphic foliation on X of codimension p is a global holomorphic m-fold 
p-form on X with values in a line bundle L, say ω ∈ H0(X, Ω(p,m) ⊗ L), such that for 
an open cover (Ui)i∈I of X we have

0 
= ωi := ω �Ui
= α1 ∧ · · · ∧ αp

where the α� are holomorphic m-fold 1-forms on Ui.
For each a ∈ X we denote by Wa ⊆ (TaX)m the codimension p subspaces determined 

by ωa, namely, if a ∈ Ui then Wa :=
p⋂

�=1

ker(α�)a.

A solution to ω = 0 is an irreducible hypersurface Y on X given locally by fi = 0 in Ui

such that (dkfi)a vanishes on Wa for all a ∈ Y ∩ Ui and all k = 1, . . . , m. Equivalently, 
(ωi ∧ dkfi) �Y ∩Ui

= 0 in Ω(p+1,m)(Ui) for all k.
A meromorphic first integral to ω is a nonconstant meromorphic function f on X

with ω ∧ dkf = 0 for all k = 1, . . . , m.

Theorem 3.1. Suppose X is a compact complex manifold and ω is an m-fold holomorphic 
foliation on X of codimension p. If ω has no meromorphic first integral then ω = 0 has 
only finitely many solutions.

Proof. When m = 1 this is Theorem 2.1. As before, let Div(ω) be the C-linear subspace 
of Div(X) ⊗C spanned by hypersurfaces that are solutions to ω = 0. Again it suffices to 
prove that Div◦(ω) := Div(ω) ∩ ker(d log) is finite dimensional.

Fixing k = 1, . . . , m, let Ω(1,m)
k denote the copy of Ω1 in Ω(1,m) obtained by restricting 

to the kth factor. That is, f ∈ Ω1(U) is viewed as an element of Ω(1,m)(U) by setting 
fa(v1, . . . , vm) = vk, for all a ∈ U and v1, . . . , vm ∈ TaX. Under this embedding, the map 
dk : O(U) → Ω(1,m)

k (U) defined in (3.1) above corresponds to the usual differential d :
O(U) → Ω1(U). In the same way, we obtain copies Ω(1,m)

k,cl of Ω1
cl, and Ω(1,m)

k,cl,mer of Ω1
cl,mer. 
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The injective C-linear map ξ : ker(d log) → H0(X, Ω1
cl,mer)/H0(X, Ω1

cl) constructed in 

the previous section now appears as ξk : ker(d log) → H0(
X, Ω(1,m)

k,cl,mer
)
/H0(

X, Ω(1,m)
k,cl

)
. 

So ξk is defined just as ξ was but using dk rather than d.
Note that if (Ui, fi = 0) defines a solution to ω = 0, then for each k = 1, . . . , m, the 

a priori meromorphic m-fold (p + 1)-form ωi ∧ dkfi

fi
is in fact holomorphic on Ui. From 

this it follows that we obtain a C-linear map

θ : Div◦(ω) −→
m⊕

k=1

H0(
X, Ω(p+1,m) ⊗ L

)
/ω ∧ H0(

X, Ω(1,m)
k,cl

)
induced by x �→ (ω ∧ξ1x, . . . , ω ∧ξmx) where ξkx is any representative of ξk(x). The right 
hand side being finite dimensional, we reduce to showing that ker θ is finite dimensional. 
We will do so by showing that its image under the injective map

ξ̄ := (ξ1, . . . , ξm) : ker(d log) −→
m⊕

k=1

H0(
X, Ω(1,m)

k,cl,mer
)
/H0(

X, Ω(1,m)
k,cl

)
is finite dimensional.

By definition of θ, for any x ∈ ker θ, we can, and do, choose a representative ξkx

of ξk(x) such that ω ∧ ξkx = 0. Set ξ̄x = (ξ1x, . . . , ξmx). It suffices to prove that Ξ :=
{ξ̄x : x ∈ ker θ} spans a finite dimensional C-vector subspace of 

⊕m
k=1 H0(

X, Ω(1,m)
k,cl,mer

)
. 

Note that as Ω(1,m) is an internal direct sum of the Ω(1,m)
k s, we can view each ξ̄x as an 

element of the finite dimensional C(X)-vector space H0(
X, Ω(1,m)

mer
)
. So, using the same 

general facts about exterior algebra as in the proof of Theorem 2.1, and letting � =
dimC(X) spanC(X) Ξ, we reduce to proving that spanC{ξ̄x1 ∧ · · · ∧ ξ̄x�

: x1, . . . , x� ∈ ker θ}
is of dimension one, where the wedge product is taken in the sense of the C(X)-vector 
space H0(

X, Ω(1,m)
mer

)
.

Fix a1, . . . , a� ∈ ker θ such that (ξ̄a1 , . . . , ξ̄a�
) is a C(X)-basis for spanC(X) Ξ. Fix 

another x1, . . . , x� ∈ ker θ, and write ξ̄xi
=

∑�
j=1 gij ξ̄aj

where the gij ∈ C(X). Then 

for each fixed k = 1, . . . , m we have ξkxi
=

∑�
j=1 gijξkaj

too. But this implies that 
ξkx1 ∧ · · · ∧ ξkx�

= fξka1 ∧ · · · ∧ ξka�
where f ∈ C(X) depends only on the gij , and not 

on k. So ξ̄x1 ∧ · · · ∧ ξ̄x�
= f ξ̄a1 ∧ · · · ∧ ξ̄a�

. We are therefore done if we can show that 
f ∈ C.

Fixing k, consider again the fact that ξkx1 ∧ · · · ∧ ξkx�
= fξka1 ∧ · · · ∧ ξka�

. We are 
working now with wedge products of forms in Ω(1,m)

k,cl,mer which is an isomorphic copy 
of Ω1

cl,mer. So the computation with closed meromorphic 1-forms at the end of the proof 
of Theorem 2.1 shows that dkf ∧ ξka1 ∧ · · · ∧ ξka�

= 0. Since ω ∧ ξkai
= 0 for all i by 

choice of representative, we get as before that ω ∧ dkf = 0. That this is true for all k
means that if f were nonconstant then it would be a meromorphic first integral of ω. By 
assumption therefore, f is a constant, as desired. �
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4. Hypersurfaces on D-varieties of type (m, r)

In [6] Hrushovski uses his generalization of Jouanolou’s theorem to prove a finiteness 
theorem about codimension one differential-algebraic subvarieties. We want to extend 
this theorem to the partial context, and in this section we first consider the a priori
special case of D-varieties to which Hrushovski’s arguments extend.

Fix m ≥ 1 throughout.
By a D-variety we will mean something rather more general than usual:

Definition 4.1. Suppose F is a field of characteristic zero. An algebraic D-variety of 
type (m, r) over F is an irreducible affine algebraic variety V over F equipped with an 
irreducible closed subvariety S ⊆ T mV over F , such that Sa is an r-dimensional affine 
subspace of (TaV )m for all a ∈ V .

A D-subvariety is a closed irreducible subvariety Y ⊆ V such that S �Y ⊆ T mY .6
A rational function f ∈ F (V ) is a D-constant of (V, S) if for general a ∈ V , (dfa)m :

(TaV )m → F m vanishes on Sa.

If m = 1 and r = 0 then S is a section to the tangent bundle, and we recover what 
is usually called a “D-variety” in the literature. Moreover, in that case, S determines 
an F -linear derivation δ on the co-ordinate ring F [V ] which extends to F (V ), and a 
D-constant is simply a δ-constant of that differential field.

Theorem 4.2. Suppose F is an algebraically closed field of characteristic zero and (V, S)
is a D-variety of type (m, r) over F with no D-constants in F (V ) \ F . Then (V, S) has 
only finitely many codimension one D-subvarieties over F .

Proof. We basically need to verify that the arguments in [6, Proposition 2.3] extend to 
this partial setting, though we give a self-contained exposition.

First note that it suffices to prove the theorem for F = C. Indeed, suppose (V, S)
is a counterexample to the theorem over F . Let F0 be a countable algebraically closed 
subfield of F over which (V, S) is defined, and over which (V, S) has infinitely many 
codimension one D-subvarieties. We may embed F0 in C. As V has no D-constants in 
F0(V ) \ F0, and as F0 is an algebraically closed subfield of C, (V, S) has no D-constants 
in C(V ) \ C either. So (V, S) is a counterexample over C.

Let us consider the case when r < m dim V − 1.
Let e ∈ V be generic (that is, V is the smallest Zariski closed set over F that 

contains e). Since Se is an affine subspace of (TeV )m, it generates an (r + 1)-
dimensional linear subspace of (TeV )m over C(e), say We. By assumption, p :=

6 What we have defined here is properly speaking a D-subvariety of type (m, r). While these are the only
kind we will be concerned with, one may want to consider, more generally, D-subvarieties of (V, S) of type 
(m, s) for s ≤ r, namely a D-variety (Y, S′) of type (m, s) with Y a closed irreducible subvariety of V and 
S′ ⊆ S.
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dimC(e)
(
(TeV )m/We

)
> 0. We can consider the 1-dimensional space of p-forms on 

(TeV )m/We as an algebraic variety P over C(e). It is an algebraic principal homogeneous 
space for Ga over C(e), and hence corresponds to a point in the Galois cohomological 
group H1(G, Ga) where G is the absolute Galois group of C(e). The additive version of 
Hilbert’s 90th tells us that H1(G, Ga) is trivial, so that P is isomorphic to Ga over C(e). 
So P has a nonzero C(e)-rational point, which we will denote by β. This will neces-
sarily be of the form α1 ∧ · · · ∧ αp, with 

⋂p
�=1 ker(α�) = 0. Pulling back, we get a 

p-form β = α1 ∧ · · · ∧ αp on (TeV )m with 
⋂p

�=1 ker(α�) = We. We thus obtain, over a 
nonempty Zariski open subset U0 of the nonsingular locus of V , a nonzero regular section 
ω0 = α0

1 ∧ · · · ∧ α0
p ∈ Ω(p,m)(U0) such that (ω0)e = β.

Let X be a smooth projective closure of U0. So ω0 is rational on X, and by 
considering the line bundle corresponding to the polar divisor, ω0 extends to some 
ω ∈ H0(X, Ω(p,m) ⊗ L), an m-fold regular foliation of codimension p on X. It is to 
this ω that we intend to apply Theorem 3.1.

We claim that ω admits no meromorphic (so rational) first integral. Indeed, if f ∈
C(X) \ C were such then ωe ∧ (dkf)e = 0 which implies that (dkf)e vanishes on We ⊆
(TeV )m, for all k = 1, . . . , m. But recall that (dkf)e(v1, . . . , vm) = dfe(vk) by definition. 
So we have that (dfe)m vanishes on We and hence on Se. Hence, for some nonempty 
Zariski open subset U ⊆ V , (dfa)m vanishes on Sa for all a ∈ U . That is, f is a D-constant 
of (V, S) that is not in C, contradicting the assumption of the theorem.

By Theorem 3.1, it follows that ω = 0 has only finitely many solutions on X. We now 
show that this will force there to be only finitely many codimension one D-subvarieties 
of (V, S).

We work inside a sufficiently saturated model (K, 0, 1, +, ×, δ1, . . . , δm) of the model 
companion of the theory of fields equipped with m (not necessarily commuting) C-linear 
derivations. The existence and basic properties of this model companion are, we think, 
general knowledge. In any case, it is a special case of the theory of fields with free 
operators developed in [13]. We let

C := {x ∈ K : δkx = 0, k = 1, . . . , m}

denote the total constants of K. The main reason for working in K is that if (V ′, S′) is 
any D-variety over C then there is a ∈ V ′(K) such that (a, δ1a, . . . , δma) is generic in 
S′

a over C; see for example [13, Theorem 4.6(III)], this is the so-called geometric axiom. 
In particular, given a rational function f ∈ C(V ′), f is a D-constant if and only if 
f(a) ∈ C. Indeed, this follows from the fact that δk

(
f(a)

)
= dfa(δka), and the genericity 

of (δ1a, . . . , δma) in S′
a.

Suppose Y is a codimension one D-subvariety of (V, S) that intersects U0. Let Y be 
the Zariski closure of Y ∩ U0 in X. We claim that Y is a solution to ω = 0. That is, 
for a Zariski open cover (Ui)i∈I of X with Y given in Ui by the vanishing of a regular 
function fi, we will show that (ω ∧ dfi) �Y ∩U = 0.
i
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Since Y is a D-subvariety there is a ∈ Y (K) with (a, δ1a, . . . , δma) a generic point of 
S �Y over C. In particular a is generic in Y , and so is contained in U0 as well as each 
chart Ui. It follows that fi(a) = 0 and so

(dkfi)a(δ1a, . . . , δma) = (dfi)a(δka) = δk

(
fi(a)

)
= 0

for all k = 1, . . . , m. But (δ1a, . . . , δma) is generic in Sa over C(a), so we get that (dkfi)a

vanishes on all of Sa, and as it is linear it must vanish on the subspace generated by Sa. 
Note that as the α0

� are regular 1-forms on U0 whose common kernel at the generic 
point e is spanned by Se, after shrinking U0 further, we may assume that for all x ∈ U0, 
Wx :=

⋂p
�=1 ker(α0

� )x is the C-subspace of (TxV )m spanned by Sx. So (dkfi)a vanishes on 
all of Wa. That is, ωa ∧ (dkfi)a = 0. As a is generic in Y ∩ Ui, we get (ω ∧ dfi) �Y ∩Ui

= 0, 
as desired.

So we only get finitely many codimension one D-subvarieties of (V, S) that inter-
sect U0. As V \ U0 is Zariski closed of codimension at least 1, it can only contain at most 
finitely many codimension one subvarieties of Y .

It remains to consider the possibility that r = m dim V − 1. (Note that when r =
m dim V the theorem is vacuously true.) For each γ ∈ C, let (A1, Sγ) denote the D-variety 
of type (m, 0) where Sγ is the graph of the section to the m-fold tangent bundle given 
by a �→ (γa, . . . , γa). Then (V × A1, S × Sγ) is a D-variety of type (m, r), and now 
r < m dim(V × A1) − 1 so that the theorem is true of (V × A1, S × Sγ). Moreover, 
distinct codimension one D-subvarieties of (V, S) give rise to distinct codimension one 
D-subvarieties of (V ×A1, S × Sγ) simply by taking the cartesian product with (A1, Sγ). 
So it suffices to show that γ can be chosen in such a way that (V × A1, S × Sγ) still has 
no nonconstant D-constants.

Suppose (V × A1, S × Sγ) has a D-constant g ∈ C(V × A1) \ C, and let us see 
what this implies about γ. Using the geometric axiom, choose (e, t) ∈ (V × A1)(K)
such that (e, δ1e, . . . , δme, t, δ1t, . . . , δmt) is a generic point of (S × Sγ)(K) over C. We 
claim that g(e, t) /∈ C(e)alg. Otherwise, as t is generic in A1 over C(e), it must be that 
g(e, t) ∈ C(e). So g(e, t) = h(e), and as e is generic in V over C, we have that h is a 
nonconstant D-constant of (V, S), contradicting our assumption that such do not exist. 
So g(e, t) /∈ C(e)alg. It follows by Steinitz exchange that t ∈ C

(
e, g(e, t)

)alg. Since g is a 
D-constant, what we have shown is that t ∈ C(e)alg.

So, to show that (V ×A1, S ×Sγ) has no nonconstant D-constants, it remains to verify 
that for some choice of γ ∈ C, the set

Eγ := {x ∈ K : δkx = γx, k = 1, . . . , m}

has no point that is algebraic over C(e). In fact, it follows from Fact 4.3 below, which as 
Hrushovski points out in [6] is a result of Kolchin’s, that we can choose γ ∈ C such that 
δ1x = γx has no solution that is algebraic over e together with the δ1-constants of K, 
and this is enough. �
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Fact 4.3 (Kolchin [10]). Suppose (K, δ) is a differential field with field of constants C. 
Let F ⊆ K be a field extension of C of finite transcendence degree. Then the additive 
subgroup

Γ := {γ ∈ C : δx = γx has a nonzero solution in F}

is of finite rank.

Proof. Let n > trdeg(F/C), and suppose γ1, . . . , γn ∈ Γ. Then there are nonzero 
a1, . . . , an ∈ F such that δ(ai)

ai
= γi ∈ C, for all i = 1, . . . , n. By the choice of n we have 

a1, . . . , an are algebraically dependent over C. By what Kolchin calls the multiplicative 
analogue of Ostrowski’s theorem in [10, page 1156], there are integers e1, . . . , en, not all 
zero, such that ae1

1 ae2
2 · · · aen

n ∈ C. Applying the logarithmic derivative δx
x to this we get 

that e1γ1 + · · · + enγn = 0. �
The following corollary appears as Theorem 6.1 of [1] but with an entirely different, 

longer and more algebraic, proof. It was the key step in the proof of a weak (but optimal) 
Dixmier–Moeglin equivalence for Poisson algebras.

Corollary 4.4. Let R be a finitely generated integral C-algebra equipped with C-linear 
derivations δ1, . . . , δm. If there are infinitely many height one prime differential ideals 
then there exists f ∈ Frac(R) \ C with δi(f) = 0 for all i = 1, ..., m.

Proof. This is precisely the algebraic formulation of Theorem 4.2 when r = 0, with V
the affine algebraic variety whose co-ordinate ring is R and S the image of the regular 
section to T mV → V induced by the derivations δ1, . . . , δm on R. �

5. Hypersurfaces on differential-algebraic varieties

We now turn our attention to partial differential-algebraic varieties in the context of m
commuting derivations, Δ = {δ1, . . . , δm}. These can be viewed indirectly as D-varieties. 
However the passage from Δ-varieties to D-varieties involves taking a sufficiently long 
prolongation, and so to apply Theorem 4.2 to this context will require proving there is a 
bound on how far one has to go to capture all the codimension one Δ-subvarieties. This 
is done in §5.3. We then prove our main result: Δ-varieties over the constants with no 
nonconstant Δ-constant Δ-rational functions have only finitely many codimension one 
Δ-subvarieties (Theorem 5.7). Finally, we deduce a version that makes no assumption on 
the Δ-constant Δ-rational functions and extends to arbitrary finitely generated Δ-fields 
of definition (Corollary 5.10).
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5.1. A review of differential-algebraic geometry

This is meant primarily to fix notation. Ours will be more or less standard, so the 
reader familiar with the subject can safely skip to the next section. For further details 
on these preliminaries we suggest Chapters I and IV of [11].

Let Δ = {δ1, . . . , δm} be the commuting derivations, and

Θ := {δem
m · · · δe1

1 : e1, . . . , em ∈ N}

the corresponding derivatives. The order of δem
m · · · δe1

1 is e1+· · ·+em. For u = (u1, . . . , un)
a tuple of indeterminates, the set of algebraic indeterminates is Θu := {θui : 1 ≤
i ≤ n, θ ∈ Θ}. By the order of an algebraic indeterminate θui we mean the order 
of θ. There is a canonical ranking on Θu where δem

m · · · δe1
1 ui < δrm

m · · · δr1
1 uj means that 

(
∑

ek, i, em, . . . , e1) < (
∑

rk, j, rm, . . . , r1) in the lexicographic order.
Suppose (F, Δ) is a partial differential field of characteristic zero. We denote by 

F{u} the Δ-ring of Δ-polynomials over F , and by F 〈u〉 its fraction field, the Δ-field 
of Δ-rational functions. So the underlying F -algebra structure on F{u} is that of the 
polynomial ring F [Θu]. Let f ∈ F{u} \ F . The leader of f , uf , is the highest ranking 
algebraic indeterminate that appears in f . The order of f is the order of its leader. The 
leading degree of f , df , is the degree of uf in f . The rank of f is the pair (uf , df ), and the 
set of ranks is ordered lexicographically. By convention, an element of F has lower rank 
than all the elements of F{x} \ F . The separant of f , Sf , is the formal partial derivative 
of f with respect to uf . Note that Sf has lower rank than f .

The ranking on Δ-polynomials is extended to finite sets of Δ-polynomials as fol-
lows: Writing finite sets of differential polynomial in nondecreasing order by rank, 
define {g1, . . . , gr} < {f1, . . . , fs} to mean that either there is i ≤ r, s such that 
rank(gj) = rank(fj) for j < i and rank(gi) < rank(fi), or r > s and rank(gj) = rank(fj)
for j ≤ s.

Suppose Λ is a subset of F{x} \ F . The set Λ is said to be autoreduced if for each 
f 
= g in A, no proper derivative of uf appears in g, and if uf appears at all in g then it 
does so with strictly smaller degree. Autoreduced sets are finite.

A Δ-ideal of F{u} is an ideal that is preserved by δ1, . . . , δm. If I ⊂ F{u} is a prime 
Δ-ideal then a characteristic set Λ for I is a minimal autoreduced subset of I. Prime 
Δ-ideals are determined by their characteristic sets.

We will be concerned Δ-varieties, namely sets of solutions to systems of Δ-polynomi-
als. While this can be done at various levels of generality and abstraction, we will work 
essentially set-theoretically, fixing a sufficiently saturated ambient differentially closed 
field (K, Δ) and identify Δ-algebraic varieties with their K-points. That is we are con-
sidering the Kolchin topology on various cartesian powers of K. This is a noetherian 
topology.
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In particular, if V ⊆ An is an algebraic variety, and C is the field of total constants of 
(K, Δ), then V (C), the C-points of V , is a Δ-variety; it is given by the algebraic equations 
for V together with the differential equations δi(xj) = 0 for i = 1, . . . , m and j = 1, . . . , �.

If X ⊆ Kn is a Δ-variety defined over F then

IΔ(X) :=
{

f ∈ F{u} : f(x) = 0 for all x ∈ X
}

is the Δ-ideal of X. When X is F -irreducible it is a prime Δ-ideal, and we denote by 
F 〈X〉 the Δ-rational function field of X, i.e., the fraction field of F{u}/IΔ(X) with the 
(unique) extension of the Δ-field structure.

Given c = (c1, . . . , cn) ∈ Kn, by the Kolchin locus of c over F we mean the smallest 
Kolchin closed subset of Kn over F that contains c. We will denote this by K-loc(c/F ), 
and the usual Zariski locus by loc(c/F ). If X ⊆ Kn is a Δ-variety defined over F then 
by a generic point in X over F we mean c ∈ X such that X = K-loc(c/F ). Note that 
F 〈X〉 = F 〈c〉, that is, the Δ-rational function field over F is generated over F as a 
Δ-field by a generic point.

For the remainder of this section we work in a fixed sufficiently saturated differentially 
closed field (K, Δ) of characteristic zero, with field of Δ-constants C. We also fix a small 
Δ-subfield F ⊆ K which will serve as our field of definition.

5.2. Dimension and transcendence index sets

An important technique in the study of Δ-varieties is to view them as proalgebraic 
varieties in the following sense. For each t < ω, and c = (c1, . . . , cn) ∈ Kn, let

∇tc := (θci : i = 1, . . . , n, θ ∈ Θ of order ≤ t)

indexed with respect to the canonical ordering on Θu. Then K-loc(c/F ) is determined by (
loc(∇tc/F ) : t < ω

)
, which is a directed system of algebraic varieties under the natural 

co-ordinate projections loc(∇t+1c/F ) → loc(∇tc/F ).
Suppose X ⊆ Kn is an F -irreducible Δ-variety, and c ∈ X is generic over F . By the 

dimension function of X we mean the sequence of natural numbers(
trdegF F (∇tc) : t < ω

)
.

In working with these dimensions Kolchin’s description of an explicit transcendence bases 
for F (∇tc) over F will be very useful. We first introduce some multi-index notation.

Notation 5.1. Regard Nm × {1, . . . , n} as a partial order where

(r1, . . . , rm, i) ≤ (s1, . . . , sm, j)

means that i = j and rk ≤ sk for each k = 1, . . . , m. For r = (r1, . . . , rm, i) ∈ Nm ×
{1, . . . , n}, B ⊂ Nm × {1, . . . , n}, x = (x1, . . . , xn) ∈ Kn, and t < ω, we set
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• |r| := r1 + · · · + rm,
• rx := δr1

1 · · · δrm
m xi,

• Bx := (rx : r ∈ B), viewed as a sequence of elements in K indexed by B,
• Bt := {(r1, . . . , rm, j) ∈ B : |r| ≤ t}.

So in this notation if r ≥ s then rx is a derivative of sx.

The following fact is established in the proof of Theorem 6, Chapter II.12 of [11].

Fact 5.2. Suppose X ⊆ Kn is an F -irreducible Δ-variety, c ∈ X is generic over F , and 
Λ is a characteristic set for IΔ(X). Let E denote the set of all points (e1, . . . , em, j) ∈
Nm × {1, . . . , n} such that δe1

1 . . . δm
muj is a leader of an element of Λ, and B the set of 

all points in Nm ×{1, . . . , n} that do not lie above any element of E. Then, for all t < ω, 
Btc is a transcendence basis for F (∇tc) over F .

We will therefore call the set B ⊆ Nm × {1, . . . , n} appearing in Fact 5.2 a transcen-
dence index set for c over F . Note that B is an initial set; it is a subset of Nm ×{1, . . . , n}
that is closed downward in the partial ordering.

The following lemma points out that the transcendence basis found in Fact 5.2 is 
actually a linear basis over Δ-rational functions of lower order.

Lemma 5.3. Let t be strictly greater than the order of every element of Λ. Then F (∇tc) ⊆
spanF (∇t−1c)(Btc).

Proof. We will use the following well known fact about Δ-polynomials that can be 
verified easily by induction on the order. Recall that u = (u1, . . . , un) are our Δ-indeter-
minates.

(∗) Suppose f ∈ F{u} is a Δ-polynomial of order t and θ ∈ Θ is a derivative of order 
s > 0. Let w1, . . . , wp be the algebraic indeterminates of order t appearing in f . Then 
θf is a degree one polynomial in θw1, . . . , θwp with coefficients of order < t + s. 
Moreover, if w1 is the leader of f then θw1 is the leader of θf and appears with 
coefficient Sf , the separant of f .

We prove by induction on the rank of ru, for |r| = t, that rc ∈ spanF (∇t−1c)(Btc).
If r ∈ Bt there is nothing to prove. So assume r /∈ Bt, and suppose ru = θuj . Then 

there are derivatives θ1, θ2 such that ru = θ2θ1uj and θ1uj is the leader of some f ∈ Λ. 
Note that ord(θ2) > 0 since t is greater than the order of all elements of Λ. Let w1 =
θ1uj , w2, . . . , wp be the algebraic indeterminates of order ord(f) that appear in f . By (∗), 
θ2f is of degree one in θ2w1, . . . , θ2wp with coefficients of order < ord(f) + ord(θ2) = t. 
Moreover, ru = θ2w1 is the leader of θ2f , and appears with coefficient Sf . Therefore ru is 
an F [∇t−1u, 1 ]-linear combination of {1, θ2w2, . . . , θ2wp}. Since c is generic in X and Λ
Sf
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is a characteristic set, Sf (c) 
= 0, and hence rc ∈ spanF (∇t−1c){1, θ2w2(c), . . . , θ2wp(c)}. 
Now 1 ∈ spanF (∇t−1c)(Btc) trivially. On the other hand, each θ2wk for k = 2, . . . , p, 
is of order t and of rank strictly less than ru. Hence by the induction hypothesis, each 
θ2wk(c) ∈ spanF (∇t−1c)(Btc), completing the proof.

Note that this deals also with the base case of the induction, since if ru is of minimal 
rank among order t algebraic indeterminates, then p must be 1 in the above argument. �

Here is another property of transcendence index sets that will be useful.

Lemma 5.4. Given finite tuples a and b, let B ⊆ Nm × {1, . . . , n} be a transcendence
index set for b over F 〈a〉. There exists a natural number N , such that for all t ≥ 0, 
∇tb ⊆ F (∇t+N a, Btb)alg.

Proof. Let Λ ⊂ F 〈a〉{u} be the characteristic set for IΔ(b/F 〈a〉) corresponding to B. 
Let � be an upper bound on the order of the elements of Λ. If f ∈ Λ then the coefficients 
of f are Δ-rational functions in a over F . Let N be such that each of these coefficients, 
as f ranges in Λ, can be written as a fraction of Δ-polynomials in a over F of order ≤ N . 
We will show that this � and N work.

Let t ≥ �. We prove by induction on the rank of ru, for r ∈ Nm × {1, . . . , n} with 
|r| ≤ t, that rb ∈ F (∇t+N a, Btb)alg. If r ∈ Bt there is nothing to prove. So assume 
r /∈ Bt. Then there is a derivative θ′ such that ru is the leader of θ′f for some f ∈ Λ. 
Moreover, when θ′f is viewed as a polynomial in ru the leading coefficient is Sf , this 
is by (∗) of the proof of 5.3. Now θ′f(b) = 0 and Sf (b) 
= 0. All the other algebraic 
indeterminates of θ′f are of strictly smaller rank, and so by induction when evaluated 
at b they land in F (∇t+N a, Btb)alg. On the other hand, the coefficients of θ′f can be 
written as fractions of Δ-polynomials in a over F of order ≤ N + ord(θ′) ≤ N + t by 
choice of N . So θ′f(b) = 0 witnesses that rb ∈ F (∇t+N a, Btb)alg. �
5.3. Codimension one Δ-subvarieties

Suppose X ⊆ Kn is an F -irreducible Δ-variety. We say that an F -irreducible 
Δ-subvariety Y ⊆ X is of codimension one if for generic x ∈ X and y ∈ Y , 
trdegF F (∇ty) = trdegF F (∇tx) − 1 for all sufficiently large t. In this section we uni-
formly bound what is meant by “sufficiently large”.

Proposition 5.5. Suppose X ⊆ Kn is an irreducible Δ-variety over F . There exists 
� ≥ 0 such that if Y ⊆ X is a co-dimension one irreducible Δ-subvariety over F then 
trdegF F (∇ty) = trdegF F (∇tx) − 1 for all t ≥ �, where x ∈ X, y ∈ Y are generic.

Proof. Fix c ∈ X generic and B ⊆ Nm×{1, . . . , n} a transcendence index set for c over F . 
So Λ is a characteristic set for IΔ(X), E is the set of all (e1, . . . , em, j) ∈ Nm ×{1, . . . , n}
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such that δe1
1 . . . δm

muj is a leader of an element of Λ, and B is the set of all points that 
do not lie above any element of E. Fact 5.2 tells us that Btc is a transcendence basis for 
F (∇tc) over F for all t < ω.

Fix a Δ-subvariety Y ⊆ X of codimension one, and generic d ∈ Y over F . We 
first argue that trdegF F (∇td) ≥ trdegF F (∇tc) − 1 for all t ≥ 0. We know that 
F (∇tc) is algebraic over F (Btc). On the other hand, ∇td is a Zariski specialisation 
of ∇tc since Y ⊆ X, and hence F (∇td) is algebraic over F (Btd). So if for some t0 we 
had trdegF F (∇t0d) < trdegF F (∇t0c) − 1 = |Bt0 | − 1, then there would be at least 
two elements of Bt0d that are algebraic over F and the rest of the set. As the Btd

form an increasing chain, this would persist and we would have that for all t ≥ t0, 
trdegF F (∇td) ≤ |Bt| − 2 = trdegF F (∇tc) − 2, which contradicts the codimension one 
assumption.

Next, write Λ = {f1, . . . , fk}, listed as usual in strictly increasing order of rank and 
suppose Y is such that there exists g ∈ IΔ(Y ) \ IΔ(X) with ord(g) ≤ ord(fk). Then 
setting �1 := ord(fk), which notice does not depend on Y , we have that g witnesses 
I(∇td/F ) � I(∇tc/F ) for all t ≥ �1. Hence trdegF F (∇td) ≤ trdegF F (∇tc) − 1.

So it remains to consider those Y such that IΔ(Y ) and IΔ(X) agree up to order 
ord(fk). Let Y be such and let Γ = {g1, . . . , gk′} be a characteristic set for IΔ(Y ). Then 
Γ must have strictly lower rank than Λ since Y � X. We claim that k′ > k. Indeed, if 
not, then there must be some i < k such that g1, . . . , gi have the same rank as f1, . . . , fi

while rank(gi+1) < rank(fi+1). From the way the ranking of Δ-polynomials is defined this 
implies that g1, . . . , gi+1 all have order bounded by ord(fk). By our assumption on Y

it follows that g1, . . . , gi+1 ∈ IΔ(X), and so {g1, . . . , gi+1} would be an autoreduced 
set in IΔ(X) that is of strictly smaller rank than Λ, contradicting the minimality of 
characteristic sets.

Hence, it must be that case that k′ > k and that g1, . . . , gk have the same rank as 
f1, . . . , fk. But then the leaders of Γ include all the leaders of Λ. That is, if we set EY to 
be all (e1, . . . , em, j) ∈ Nm × {1, . . . , n} such that δe1

1 . . . δm
muj is a leader of an element 

of Γ, and set BY to be the set of all points in Nm × {1, . . . , n} that do not lie above 
any element of EY , then BY is an initial subset of B. Moreover, applying Fact 5.2 to Y , 
we know that (BY )td is a transcendence basis for F (∇td) over F for all t ≥ 0, just as 
Btc is a transcendence basis for F (∇tc). But now the codimension one hypothesis forces 
BY = B \ {rY } for some rY ∈ B. In particular, rY has the special property that when 
you remove it from the initial set B you still have an initial set. A general study of the 
combinatorics of initial sets shows that an initial set can only have finitely many such 
points. For example, in the terminology of [16], rY is a properly 0-dimensional subset 
of B and Proposition 1 of [16] says that an initial set can have only finitely many such. 
So there exists r1, . . . , rp ∈ B, not depending on Y , such that BY = B \ {ri} for some 
i = 1, . . . , p. Now setting �2 := max{|r1|, . . . , |rp|} we have that for t ≥ �2,

trdegF F (∇td) = |(BY )t|
= |

(
B \ {ri}

)
| for some i = 1, . . . , p
t
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= |Bt| − 1 since |ri| ≤ t

= trdegF F (∇tc) − 1

So setting � := max{�1, �2} proves Proposition 5.5. �
Remark 5.6. Suppose X ⊆ An is an irreducible Δ-variety over F . Let � witness the truth 
of Proposition 5.5. Then all codimension one Δ-subvarieties of X are determined by their 
�th prolongations. That is, given Y, Z ⊆ X codimension one irreducible Δ-subvarieties 
over F with y ∈ Y and z ∈ Z generic, if loc(∇�y/F ) = loc(∇�z/F ) then Y = Z.

Proof. Note that Y is determined by the directed sequence of algebraic varieties Yt :=
loc(∇ty/F ), t ≥ 0. Suppose Y� = Z� as codimension one algebraic subvarieties of X�. 
Given t ≥ �, let π : Xt → X� be the co-ordinate projection. Since Yt is still a codimension 
one algebraic subvariety of Xt by choice of �, it follows that the generic fibre of Yt over 
Y� is the full generic fibre of π. Similarly for Zt. That is, Yt and Zt are subvarieties of Xt

that project dominantly onto the same subvariety of X� with the same generic fibre – 
by irreducibility they must agree. Hence Y = Z, as desired. �
5.4. The finiteness theorem

Theorem 5.7. Suppose F ⊆ C is a subfield of the constants and X ⊆ Kn is an 
F -irreducible Δ-variety. Let F 〈X〉 denote the Δ-rational function field of X. If F 〈X〉 ∩
C = F then X has only finitely many codimension one F -irreducible Δ-subvarieties.

Proof. We first reduce to the case when F = F alg and so X is absolutely irreducible. 
Suppose c ∈ X is generic over F . Then c is a generic point of an irreducible compo-
nent of X over F alg. If there is b ∈

(
F alg〈c〉 ∩ C

)
\ F alg, then b ∈ acl(F, c) so that a 

canonical parameter for the finite orbit of b over Fc, say b̄, is a tuple from F 〈c〉 ∩ C. 
As b ∈ acl(b̄), we must have that b̄ is not defined over F . That is, 

(
F 〈c〉 ∩ C

)
\ F 
= ∅. 

Since c is generic in X over F , this contradicts the assumption on the Δ-constants 
of F 〈X〉. Hence F alg〈c〉 ∩C = F alg. Assuming we have proved the theorem for irreducible 
Δ-varieties, we would get that each irreducible component of X has only finitely many 
irreducible codimension one Δ-subvarieties over F alg. But every irreducible component of 
an F -irreducible codimension one Δ-subvariety of X is a codimension one Δ-subvariety 
of an irreducible component of X over F alg. So we obtain the desired finiteness statement 
for X as well. We may therefore assume that X is irreducible and F = F alg.

Let � be an upper bound for the order of all the elements of a fixed characteristic set 
of IΔ(X), and also big enough to witness Proposition 5.5. Let c ∈ X be generic over F . 
Set v = ∇�c, V = loc(v/F ), and S = loc(∇v/F ) ⊆ T mV , and r = trdeg

(
F (∇v)/F (v)

)
.

We first claim that Sv = loc
(
∇v/F (v)

)
is an (r-dimensional) affine subspace of 

(TvV )m. This follows from the fact that the F -transcendence basis of ∇�+1c given by 
Fact 5.2 is also an F (∇�c)-linear spanning set by Lemma 5.3 applied to t = � + 1. In 
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other words, there is a subtuple (η1, . . . , ηr) of ∇�+1c ⊆ ∇v that is a transcendence basis 
for F (∇�+1c) = F (∇v) over F (∇�c) = F (v), and such that (1, η1, . . . , ηr) is a linear basis 
for F (∇v) over F (v). It follows that Sv is an affine subspace of (TvV )m.

Let V ◦ ⊆ V be a nonempty Zariski open subset of V over F , such that Sa is an affine 
subspace of (TaV )m of dimension r, for all a ∈ V ◦. Let S◦ = S �V ◦ . So (V ◦, S◦) is an 
algebraic D-variety of type (m, r).

Now suppose, toward a contradiction, that (V ◦, S◦) admits a D-constant rational 
function f ∈ F (V ) \ F . So dmf vanishes on S◦

v = Sv which contains ∇v. Hence ∇f(v) =
dmf∇(v) = (v, 0), and so δkf(v) = 0 for all k = 1, . . . , m. Since v = ∇�c, we can 
view f(v) ∈ F 〈X〉, and we have just shown that it is a new Δ-constant element of the 
Δ-rational function field, contradicting the assumption on X. Hence, (V ◦, S◦) admits no 
nonconstant D-constant rational functions.

By Theorem 4.2, (V ◦, S◦) has only finitely many codimension one D-subvarieties.
Let Y ⊂ X be an irreducible codimension one Δ-algebraic subvariety of X over F , 

and let y ∈ Y be generic. By choice of � witnessing Proposition 5.5, Y� = loc(∇�y/F ) is 
a codimension one irreducible algebraic subvariety of V . If Y� ∩ V ◦ = ∅, then Y� must 
be one of finitely many irreducible component of V \ V ◦. So assume W := Y� ∩ V ◦ 
= ∅. 
We claim that W is a codimension one D-subvariety of (V ◦, S◦). That is, S �W ⊆ T mW . 
Indeed, from the fact that y is a Δ-specialisation of c, we get that ∇w is a Zariski 
specialisation of ∇v, where w := ∇�y. So ∇w ∈ Sw. On the other hand,

trdeg
(
∇w/F (w)

)
= trdeg

(
∇�+1y/F (∇�y)

)
= trdeg

(
∇�+1c/F (∇�c)

)
by choice of � witnessing 5.5

= r

= dim Sw

It follows that Sw = loc
(
∇w/F (w)

)
, and hence Sw ⊆ (TwW )m. As w is generic in W , 

we get S �W ⊆ T mW , as desired.
Now, if Y, Z ⊆ X are codimension one irreducible Δ-subvarieties over F , and Y�∩V ◦ =

Z� ∩V ◦ 
= ∅, then Y� = Z�, and so Y = Z by Remark 5.6. So, from the fact that (V ◦, S◦)
has only finitely many codimension one D-subvarieties over F we get that X has only 
finitely many codimension one irreducible Δ-subvarieties defined over F . �
5.5. A relative version and nonconstant coefficients

The statement of Theorem 5.7 can be improved so as to be independent of whether 
F 〈X〉 has new constants or not.

Theorem 5.8. Suppose F ⊆ C is a constant subfield and X ⊆ Kn is an F -irreducible 
Δ-variety. There exists an algebraic variety V over F and a dominant Δ-rational map 
f : X → V (C) over F such that all but finitely many codimension one F -irreducible 
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Δ-subvarieties of X arise as F -irreducible components of Δ-subvarieties of the form 
f−1(

W (C)
)

where W ⊆ V is an algebraic subvariety over F .

Proof. The total constant field of F 〈X〉 is a function field over F – see for example [11, 
Proposition 14, §II.11]. It is of the form F (V ) for some F -irreducible algebraic variety V . 
Note that L := F 〈V (C)〉 = F (V ), so that the inclusion F (V ) ⊆ F 〈X〉 induces a dominant 
Δ-rational map f : X → V (C).

Over L the Δ-field F 〈X〉 has no new Δ-constant elements. This means that if η ∈
V (C) is generic over F , then L = F (η) and the fibre Xη := f−1(η) is an L-irreducible 
Δ-subvariety of X with the property that its Δ-rational function field over L has L as 
its constant field. Applying Theorem 5.7 to Xη, we get that Xη has only finitely many 
codimension one L-irreducible Δ-subvarieties.

Suppose that Y is an F -irreducible codimension one Δ-subvariety of X that maps 
dominantly onto V (C). We claim that Yη is codimension one in Xη. Indeed, let c ∈ Xη

and d ∈ Yη be generic over L, and let � ≥ 0 be big enough so that the Δ-rational map 
f(u) is of the form g(∇�u) for some rational map g(u). Since f(c) = f(d) = η, we get 
that for all t ≥ �, η ∈ F (∇tc) and η ∈ F (∇td). Hence

trdegF F (∇tc) = trdegL L(∇tc) + trdegF L

and

trdegF F (∇td) = trdegL L(∇td) + trdegF L

Taking � larger, we may also assume that trdegF F (∇td) = trdegF F (∇tc) − 1, for all 
t ≥ �. So trdegL L(∇td) = trdegL L(∇tc) − 1, for all t ≥ �, as desired.

We have proved that X has only finitely many codimension one F -irreducible 
Δ-subvarieties that map dominantly onto V (C). So it remains to consider those that 
either fall in the indeterminacy locus of f , or get mapped dominantly onto proper 
Δ-subvarieties of V (C). Since codimension one F -irreducible Δ-subvarieties are maxi-
mal among proper F -irreducible Δ-subvarieties, those that land in the indeterminacy 
locus of f must be F -irreducible components of this indeterminacy locus; and hence 
there are only finitely many of them. Finally, suppose Y ⊆ X is a codimension one 
F -irreducible Δ-subvarieties such that the Kolchin closure of f(Y ) is of the form W (C)
for some proper irreducible algebraic subvariety W ⊆ V over F . Then, by maximality 
of Y in X, Y is an irreducible component of f−1(

W (C)
)
. �

Note that Theorem 5.7 is a special case of Theorem 5.8: under the assumptions on X
imposed by 5.7, the map f given by 5.8 would have to be constant, and so the conclusion 
would be that there are only finitely many codimension one F -irreducible Δ-subvarieties.

Remark 5.9. The Δ-rational map f : X → V (C) that we constructed in the above 
proof could be called an algebraic reduction of X, in analogy to complex bimeromorphic 
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geometry, and will satisfy a certain natural universal property that we leave to the reader 
to formulate.

One advantage of this latter formulation is that it generalises readily to Δ-varieties 
not necessarily defined over the constants.

Corollary 5.10. Suppose F ⊆ C is a constant subfield, and L is a finitely generated Δ-field 
extension of F . Let X ⊆ Kn be an L-irreducible Δ-variety. There exists an algebraic 
variety V over the constants of L, L0, and a dominant Δ-rational map f : X → V (C)
over L, such that all but finitely many codimension one L-irreducible Δ-subvarieties 
of X arise as L-irreducible components of Δ-subvarieties of the form f−1(

W (C)
)

where 
W ⊆ V is an algebraic subvariety over L0.

In particular, if the Δ-constant field of L〈X〉 is contained in L then X has only finitely 
many codimension one L-irreducible Δ-subvarieties.

Proof. The “in particular” clause follows from the main statement in exactly the same 
way that Theorem 5.7 is a special case of Theorem 5.8.

Let L = F 〈a〉, Z = K-loc(a/F ), b ∈ X generic over L, X̂ the K-loc(a, b/F ), and 
π : X̂ → Z the co-ordinate projection taking (a, b) to a. Then X can be identified with 
the generic fibre X̂a of π. Let V̂ be the algebraic variety over F , and f̂ : X̂ → V̂ (C) the 
dominant Δ-rational map over F , given by Theorem 5.8 applied to X̂. Note that the 
Kolchin closure of f̂(X) is, by stable embedability of the constants, of the form V (C) for 
some algebraic subvariety V ⊆ V̂ defined over L0. Restricting to the generic fibre of π
we get a dominant Δ-rational map f : X → V (C).

Now suppose Y ⊆ X is a codimension one L-irreducible Δ-subvariety over L. Let c ∈ Y

be generic over L and set Ŷ := K-loc(a, c/F ), so that Y = Ŷa. We claim that Ŷ is of 
codimension one in X̂. Indeed, let N be big enough to witness Lemma 5.4 applied to (a, b)
and (a, c). That is, if B is a transcendence index set for b over L and C is a transcendence 
index set for c over L, then ∇tb ⊆ F (∇t+N a, Btb)alg and ∇tc ⊆ F (∇t+N a, Ctc)alg for all 
t ≥ 0. So trdeg

(
∇tb/F (∇t+N a)

)
= |Bt| and trdeg

(
∇tc/F (∇t+N a)

)
= |Ct|. Hence

trdegF F
(
∇t(∇N a, b)

)
= |Bt| + trdegF F

(
∇t(∇N a)

)
= trdegL F

(
∇t(b)

)
+ trdegF F

(
∇t(∇N a)

)
= trdegL F

(
∇t(c)

)
+ 1 + trdegF F

(
∇t(∇N a)

)
= |Ct| + trdegF F

(
∇t(∇N a)

)
+ 1

= trdegF F
(
∇t(∇N a, c)

)
+ 1

where the third equality is for sufficiently large t, as Y is codimension one in X. So 
K-loc(∇N a, c/F ) has codimension one in K-loc(∇N a, b/L). Applying a Δ-isomorphism 
we get that Ŷ has codimension one in X̂.
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Distinct Y will give rise to distinct Ŷ , so for all but finitely many Y we will get that 
Ŷ is an F -irreducible component of f̂−1(

Ŵ (C)
)

for some algebraic subvariety Ŵ ⊆ V̂

defined over F . Restricting to the generic fibre of π, Y is an L-irreducible component of 
f̂−1(

Ŵ (C)
)

∩ X = f−1(
Ŵ ∩ V (C)

)
. So W := Ŵ ∩ V works. �

The assumption that L be finitely generated over its constants is necessary. There 
exist Δ-varieties of order 1 that admit no nonconstant Δ-rational functions to C over 
any parameter set (i.e., whose Kolchin generic type is orthogonal to the constants) – for 
example, a general way of producing these (with m = 1) was developed in [7, §2]. Let X
be such, fix an infinite collection P of points on X, and then pass to a Δ-field extension 
L over which X and all the points in P are defined. So the Δ-constants of L〈X〉 are 
contained in L, but each member of P is a codimension one Δ-subvariety over L.

6. Applications

We give three applications of Corollary 5.10. The first two are obtained simply by re-
placing, in known arguments, the use of Hrushovski’s [6, Proposition 2.3] by our extension 
to the partial and nonconstant coefficient setting. The third application, on bounding 
the height of algebraic solutions to first-order differential equations over C(t), seems to 
not have been noticed before and makes essential use of our relative formulation.

6.1. Lascar and Morley rank agree in dimension two

We continue to work in a sufficiently saturated model (K, Δ) |= DCF0,m with field of 
total constants C, and over a small Δ-field of definition F ⊆ K.

Let us first explain what “dimension” we have in mind. If X ⊆ Kn is an F -irreducible 
Δ-variety with Δ-rational function field F 〈X〉 of finite transcendence degree over F , 
then we say that X is of finite dimension and we call trdegF F 〈X〉 the dimension of X. 
Note that X being of finite dimension r is equivalent to the dimension function of X, as 
defined in §5.2 above, being eventually of constant value r. We extend this terminology 
to F -definable sets S ⊆ Kn, by saying that S is of dimension r if all the F -irreducible 
components of the Kolchin closure of S are of finite dimension and the maximum of 
those dimensions is r.

In general Lascar and Morley rank do not agree in differentially closed fields; a coun-
terexample of dimension five was constructed by Hrushovski and Scanlon [8]. However, 
it was noted by Marker and Pillay that these ranks do agree for 0-definable sets of di-
mension two. (If the dimension is one, then so are the Lascar and Morley ranks.) Their 
argument, which was communicated to us by David Marker, used Hrushovski’s theorem 
on hypersurfaces of differential algebraic varieties over the constants. Given our exten-
sion of this theorem to nonconstant coefficient fields, the Marker–Pillay argument now 
shows that Lascar and Morley rank agree on arbitrary definable sets of dimension two. 
We give the proof here, for the sake of completeness.
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Theorem 6.1. Suppose S is a definable set of dimension two. Then the Morley and Lascar 
ranks of S agree.

Proof. Taking irreducible components of Kolchin closures it suffices to prove the theorem 
for S = X ⊆ Kn an irreducible Δ-variety. Since Lascar rank is bounded by Morley rank 
which is bounded by the dimension, the only case we have to consider is when the Morley 
rank of X is two.

Let F be a finitely generated Δ-field over which X is defined. It suffices to prove 
the existence of an infinite Δ-subvariety of X that is not defined over F alg. Indeed, 
let Y ⊆ X be such. We can further assume that Y is irreducible and defined over 
some Δ-field extension F ′ ⊇ F . Let d ∈ Y be Kolchin generic over F ′. If tp(d/F ′)
were a nonforking extension of tp(d/F ) then Y would be an irreducible component 
of K-loc(d/F ), contradicting the assumption that Y is not defined over F alg. Hence, 
tp(d/F ′) is a nonalgebraic forking extension of tp(d/F ), proving that the latter is of 
Lascar rank at least two. Hence X would be of Lascar rank two.

Since X is of Morley rank two it has infinitely many disjoint Kolchin constructible 
subsets that are each infinite. It follows that there are infinitely many distinct infinite 
Δ-subvarieties of X, say (Yi : i < ω). If any of these are not defined over F alg then we 
are done by the previous paragraph, so we may assume they are all defined over F alg. 
Replacing Yi by the union of its F -conjugates, we may assume that each Yi is defined 
over F . Moreover, taking irreducible components, we may assume that they are all 
F -irreducible. Since X is of dimension two, and each Yi is a proper infinite Δ-variety, each 
Yi must be of codimension one in X. By Corollary 5.10, there is a dominant Δ-rational 
map f : X → A1(C). The generic fibre of f will be an infinite Δ-subvariety of X that is 
not defined over F alg. So we are done by the previous paragraph. �

In recent work [4] the first author has produced an example in dimension 3 where 
Lascar and Morley rank differ.7

6.2. Dimension one strongly minimal sets

Hrushovski’s motivation in [6] for considering the differential-algebraic geometric con-
sequences of Jouanlolou’s theorem was to understand the structure of strongly minimal 
sets of dimension one in DCF0. He shows that they are either nonorthogonal to the 
constants or ℵ0-categorical. Having extended the differential-algebraic geometric results 
to the partial case, we follow [6, Corollaries 2.5 and 2.6] to obtain an analogous result 
for DCF0,m.

Theorem 6.2. Suppose S is a strongly minimal dimension one definable set that is or-
thogonal to C. Then S is ℵ0-categorical.

7 A putative three-dimensional example where Lascar and Morley rank differ was given in [14], but the 
computations there seem to be incorrect — see the discussion in [3].



J. Freitag, R. Moosa / Advances in Mathematics 314 (2017) 726–755 751
Proof. Since S is strongly minimal, to deduce ℵ0-categoricity it suffices to prove that for 
every finite set B over which S is defined, acl(B) ∩ S is finite.

The Kolchin closure of S has a unique infinite irreducible component, say X. Let F
be a finitely generated Δ-field over which X is defined and such that B ⊆ F . All but 
finitely many points of S are in X, so it suffices to show that acl(B) ∩ X is finite. Let 
a ∈ acl(B) ∩ X. Then a ∈ X(F alg) and so Y := K-loc(a/F ) is a finite F -irreducible 
Δ-subvariety X. Now trdegF F 〈X〉 = 1 by the dimension one assumption on S. Since Y
is finite it is of codimension one. So acl(B) ∩X is contained in the union of all codimension 
one F -irreducible Δ-subvarieties of X. Since S is orthogonal to C, X admits no noncon-
stant Δ-rational maps over F to C. Corollary 5.10 therefore implies that X has only 
finitely many codimension one F -irreducible Δ-subvarieties. Since all such subvarieties 
must be finite, their union is a finite subset of X. �

It is well known that the theorem fails for strongly minimal sets of higher finite 
dimension. Manin kernels appear as strongly minimal groups that are orthogonal to 
the constants. For some time it was open whether all strongly minimal sets with trivial
pregeometry in DCF0 were ℵ0-categorical, but the first author and Thomas Scanlon [4]
have shown recently that the j-function gives rise to counterexamples in dimension three.

6.3. Algebraic solutions to first-order differential equations

In [2], Eremenko proves that if P ∈ C(t)[x, y] is a nonzero polynomial in two variables 
over the field of rational functions, then there is a constant N = N(P ) such that all solu-
tions in 

(
C(t), d

dt

)
to the differential equation P (x, x′) = 0 are of degree bounded by N . 

Here the degree of a rational function is the maximum of the degrees of the numerator 
and denominator of g when expressed as a ratio of coprime polynomials. He suggests 
that “it is a challenging unsolved question whether [the above result] can be extended to 
algebraic solutions,” that is to solutions in 

(
C(t)alg, d

dt

)
. We give here such an extension.

In order to state the extension we need to make sense of the “degree” of an element of 
C(t)alg. The natural thing to consider is the function field absolute logarithmic height, 
which we now recall and details of which can be found in [12, Chapters 3 and 4]. Given 
g ∈ C(t)alg let k be a finite extension of C(t) in which g lies. Writing k = C(E) for some 
smooth projective curve E, we view g as a rational function on E, and the height h(g) is 
defined to be the degree of the polar divisor of g – so the number of poles of g counting 
multiplicity – divided by [k : C(t)]. This quantity does not depend on the choices of k
and E made. Note that h on C(t)alg extends degree on C(t).

Theorem 6.3. Suppose P ∈ C(t)[x, y] is nonzero. There exists N = N(P ) ∈ N, such that 
all solutions to P (x, x′) = 0 in 

(
C(t)alg, d

dt

)
are of height ≤ N .

Proof. We work in a saturated model (K, δ) |= DCF0 extending 
(
C(t), d

dt

)
and with field 

of constants C. We may assume that P is irreducible and of positive degree in both x
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and y. Let E ⊆ A2 be the algebraic curve over C(t) defined by P (x, y) = 0, and let 
X := {(a1, a2) ∈ E(K) : δ(a1) = a2}.

By Corollary 5.10, there is an algebraic variety V ⊆ An defined over C and a 
dominant δ-rational map f : X → V (C) over C(t) such that all but finitely many 
C(t)-irreducible δ-subvarieties of X of codimension one are irreducible components of 
sets of the form f−1(

W (C)
)

where W is a C-definable algebraic subvariety of V . Since 
X is a one-dimensional δ-variety, V (C) is of dimension ≤ 1 as a δ-variety, and hence as 
an algebraic variety we have dim V ≤ 1. If a ∈ X

(
C(t)alg)

then K-loc
(
a/C(t)

)
is a finite 

C(t)-irreducible δ-subvariety of X, and hence of codimension one. So if dim V = 0 then 
X(C(t)alg) is finite, and the theorem follows vacuously. We may therefore assume that 
dim V = 1. As the only proper C-definable algebraic subvarieties of V are its C-points, 
we conclude that all but finitely many C(t)alg-points of X get mapped by f to V (C). 
Since the height function is zero on V (C), our strategy now is to use f to bound the 
height function on X

(
C(t)alg)

.
First, we claim that the δ-rational map f extends to a rational map on E. Let X0

be obtained from X by removing the (finite) set of points where the partial derivative 
Py := ∂

∂y P vanishes. If a = (a1, a2) ∈ X0 then

δ(a1) = a2

δ(a2) = −Px(a1, a2)a2

Py(a1, a2) − P δ(a1, a2)

That is, δ agrees with the rational map (y, −Pxy
Py

− P δ) on X0. Replacing occurrences of 
δ in f by this rational map, we obtain a C(t)-definable rational map α that agrees with 
f on X0. As X0 is Zariski dense in E, we have that α : E → V .

The height function defined above extends to C(t)alg-points of E and V . First, on 
any projective space the function field absolute logarithmic height for C(t)alg-points is 
defined as follows: If g = (g0 : · · · : g�) ∈ P�(k) where k is a finite extension of C(t), 
and writing k = C(E) for some smooth projective curve E, then h(g) is the degree of 
the supremum of the polar divisors of g0, . . . , g� on E, divided by [k : C(t)]. This height 
agrees with the height defined earlier on C(t)alg under the identification of g ∈ C(t)alg

with (1 : g) ∈ P1(
C(t)alg)

. See [12, §3.3] for more details. Now, embed E in P2 by 
identifying (a1, a2) with (1 : a1 : a2), and denote by E the Zariski closure of E in P2. 
We thus have a height function on E

(
C(t)alg)

coming from P2. Similarly, let V be the 
projective closure of V in Pn, and denote again by h the corresponding height function 
on V

(
C(t)alg)

. Note that the height of a C-point is zero.
Consider the rational map α : E → V . Resolving the singularities of the graph of α, we 

have a smooth projective C(t)-definable curve Γ with surjective morphisms πE : Γ → E

and πV : Γ → V such that α ◦ πE = πV on a cofinite subset of Γ. Let hE := h ◦ πE

and hV := h ◦ πV be the height functions on Γ
(
C(t)alg)

induced by these maps. By the 
functoriality of Weil’s height machine, see [12, §4.1 and §4.2], up to equivalence, these 
heights depend only on the divisors of the linear systems on Γ associated to πE : Γ → P2
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and πV : Γ → Pn respectively, and not on the morphisms themselves. Here two positive 
real-valued functions are said to be equivalent if their difference is a bounded function. 
Moreover, by [12, Corollary 4.3.5], which is the algebraic equivalence property of Weil’s 
height machine in the case of curves, hE is “quasi-equivalent” to rhV , where r is the ratio 
of the degrees of the corresponding divisors. Quasi-equivalence means that for every ε > 0
there are positive constants c2, c2 such that (1 −ε)rhV −c1 ≤ hE ≤ (1 +ε)rhV +c2. Now, 
for all but finitely many a ∈ X

(
C(t)alg)

, we know that α(a) = f(a) ∈ V (C), and hence 
h(α(a)) = 0. With possibly finitely many more exceptions, we also have b ∈ Γ

(
C(t)alg)

such that πE(b) = a and πV (b) = α(a). Hence, for such a we get

h(a) = hE(b) ≤ (1 + ε)rhV (b) + c2 = (1 + ε)rh(α(a)) + c2 = c2

It follows that there is a uniform bound on the height of all points in X
(
C(t)alg)

.
If g ∈ C(t)alg is a solution to P (x, x′) = 0, then (g, δg) ∈ X

(
C(t)alg)

, and from the 
way the heights were defined, h(g) ≤ h(g, δg). So we have shown that a uniform bound 
exists on the height of all algebraic solutions to P (x, x′) = 0. �

We have restricted our attention above to the ordinary case for the sake of concrete-
ness, and because it was in this form that the problem is mentioned in [2]. However, 
since the setting of Corollary 5.10 is after all that of partial differentiation, the above 
arguments extend to the partial case. One obtains the following statement, which we 
leave to the reader to verify: Suppose L = C(t1, . . . , tm) is the field of rational functions 
in m variables, and E ⊆ Am+1 is an algebraic curve over L. Then{

g ∈ Lalg : (g,
∂g

∂t1
,

∂g

∂t2
, . . . ,

∂g

∂tm
) ∈ E

}
is of bounded height. Here we take the absolute logarithmic height corresponding to the 
function field L/C. Note also that the complex numbers play no special role, the result 
remains true over any field of characteristic zero.
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Appendix A. Two lemmas in exterior algebra

The following two straightforward linear algebra lemmas that are used in the 
proof of the Jouanolou–Hrushovski–Ghys theorem appear in Hrushovski’s unpublished 
manuscript [6]. As we could not find a good published reference we reproduce them here 
almost verbatim.
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Lemma A.1 ([6], Lemma 1.5). Suppose k ⊆ K are fields, V is a K-vector space, and 
U ⊆ V is a k-subspace of V . Working in the exterior powers of V over K, suppose there 
exists � ≥ 1 such that dimk spank{u1 ∧ · · · ∧ u� : u1, . . . , u� ∈ U} is finite and greater 
than zero. Then dimk U is finite.

Proof. Let B = spank{u1 ∧ · · · ∧ u� : u1, . . . , u� ∈ U} and choose some nonzero β :=
u1 ∧ · · · ∧ u� with u1, . . . , u� ∈ U . Consider the k-linear map K →

∧�
V given by a �→ aβ

and let A be the preimage of B. So A is a finite dimensional k-vector subspace of K.

We claim that dimk

(
U ∩ spanK{u1, . . . , u�−1}

)
is finite. Indeed, if v =

�−1∑
i=1

aiui is in 

U then for all i ≤ � − 1 we have

B � u1 ∧ · · · ∧ ui−1 ∧ v ∧ ui+1 ∧ · · · ∧ u� = aiβ

so that ai ∈ A. It follows that U ∩ spanK{u1, . . . , u�−1} ⊆
�−1∑
i=1

Aui, and hence is finite 

dimensional over k as A is.
Now consider the k-linear map U → B given by v �→ u1 ∧ · · · ∧ u�−1 ∧ v. Since 

u1 ∧· · ·∧u�−1 
= 0 the kernel of this map is U ∩ spanK{u1, . . . , u�−1}. As both the kernel 
and the image are finite dimensional k-vector spaces, so is U . �
Lemma A.2 ([6], Lemma 1.4). Let K be a field, V a K-vector space, and V ∗ its dual. 
Suppose α1, . . . , α� ∈ V ∗ are such that γ := α1 ∧ · · · ∧ α� 
= 0, and ω is another wedge 
product of elements of V ∗ such that ω ∧αi = 0 for all i = 1, . . . , �. Then for any β ∈ V ∗, 
if β ∧ γ = 0 then β ∧ ω = 0.

Proof. We may assume ω 
= 0. Consider the K-subspace

W := {α ∈ V ∗ : α ∧ ω = 0}.

If we write ω = β1 ∧ · · · ∧ βp, then certainly each βi ∈ W . As ω is nonzero the βi are 
linearly independent. On the other hand, if α ∧ ω = 0 then α ∈ spanK{β1, . . . , βp}, so 
that {β1, . . . , βp} is a basis for W .

We have each αi ∈ W by assumption, and as γ is nonzero, these too are linearly 
independent. Extend to another basis {α1, . . . , α�, α�+1, . . . αp}. Then β1 ∧ · · · ∧ βp =
aα1 ∧ · · · ∧ αp for some a ∈ K, and so ω = aγ ∧ α�+1 ∧ · · · ∧ αp. From this it is clear that 
if β ∧ γ = 0 then β ∧ ω = 0. �
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