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Ax-Lindemann-Weierstrass with derivatives
and the genus 0 Fuchsian groups
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Abstract

We prove the Ax-Lindemann-Weierstrass theorem with derivatives for
the uniformizing functions of genus zero Fuchsian groups of the first kind.
Our proof relies on differential Galois theory, monodromy of linear differen-
tial equations, the study of algebraic and Liouvillian solutions, differential
algebraic work of Nishioka towards the Painlevé irreducibility of certain
Schwarzian equations, and considerable machinery from the model theory
of differentially closed fields.

Our techniques allow for certain generalizations of the Ax-Lindemann-
Weierstrass theorem that have interesting consequences. In particular, we
apply our results to give a complete proof of an assertion of Painlevé (1895).
We also answer certain cases of the André-Pink conjecture, namely, in the
case of orbits of commensurators of Fuchsian groups.

1. Introduction

In this paper our central work is to prove a series of functional tran-
scendence results for the automorphic functions jr associated with a Fuchsian
group T' of genus 0. We will also refer to the automorphic function jr as a
Hauptmodul or uniformizing function of I'. Our general results are most easily
expressed in the language of model theory and algebraic differential equations,
but a special case of our functional transcendence results is what has come to
be called the Ax-Lindemann-Weierstrass theorem with derivatives for jr:

THEOREM 1.1. Let C(V') be an algebraic function field, where V-C A™ is
an irreducible algebraic variety defined over C. Let

tl,...,tnE(C(V)
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be geodesically independent' and take values in the upper half complex plane H
at some P € V. Then the 3n-functions

jF(tl)vjf(tl)7j#(t1)7 s 7]F(tn)7]f(tn)7]{£(tn)
(considered as functions on V(C) locally near P) are algebraically independent
over C(V).

One can also describe Theorem 1.1 in more geometric terms. Let W C
A™(C) be an algebraic variety that has a non-empty intersection with H".
Theorem 1.1 precisely characterizes those varieties W whose image under the
automorphic function (and derivatives) applied to each coordinate

gr s (tr, - ) = (Ge(ty), go(t), Jr(t), - - de(te), 0 (tn), 51 (ta))
is contained in a proper algebraic subvariety of C*". Intuitively, the function
Jr is highly transcendental, so the varieties obtained in this way should be
restricted to a very special class. Indeed, Theorem 1.1 says that if jp (W) is an
algebraic variety, then W must have been defined by instances of relation of the
form t; = ~t;, where v is an element of the commensurator of I', giving a very
restrictive (countable) class of complex varieties coming from the image of jr.

As we will explain in additional detail below, our methods also allow for
more general results, which are most naturally stated in the language of model
theory. For instance, statements incorporating other transcendental functions
on additional coordinates (such as Weierstrass p-functions and exponential
functions on semi-abelian varieties) similar to Theorem 1.6 of [48] will follow
from our general result.

Theorem 1.1 is a generalization of Theorem 1.6 of [48] and Theorem 1.1
[49], in which Pila established the special case with one group I' = PSLy(Z)
(in [48] without derivatives and later in [49] with derivatives).

Theorem 1.1 also overlaps non-trivially with a number of recent results,
which we detail next. Note that most of the following results do not involve
the derivatives of the automorphic functions in question and are mainly con-
cerned with arithmetic groups. Pila and Tsimerman [50] generalized Theorem
1.6 of [48] to the uniformizing functions associated with the moduli spaces
of higher dimensional abelian varieties. (Their result specializes to Theo-
rem 1.6 of [48] for purposes of comparing with Theorem 1.1.) In a different
direction, Pila and Tsimerman [51] generalized Theorem 1.6 of [48] to an Ax-
Schanuel type statement for the j-function. In [64], Ullmo and Yafaev prove an
Ax-Lindemann-Weierstrass result for the uniformizing functions of cocompact
Shimura varieties (without derivatives), and so a statement of Theorem 1.1

"We say that ti,...,t, are geodesically independent if ¢; is non-constant for i = 1,...,n
and there are no relations of the form ¢; = vt¢; for i # j, ¢,57 € {1,...,n} and v is an element
of the commensurator of I'.



AX-LINDEMANN-WEIERSTRASS THEOREM WITH DERIVATIVES 723

without derivatives in the case that I' is arithmetic and cocompact is a con-
sequence of their work. Later, Klinger, Ullmo, and Yafaev [22] removed the
assumption of cocompactness, and Gao [14] generalized the result to mixed
Shimura varieties. Finally, Mok, Pila, and Tsimerman [32] have established
the (more general) Ax-Schanuel theorem with derivatives for the uniformizing
function of a Shimura variety.

The previous Ax-Lindemann-Weiestrass (ALW for short) results discussed
above employ various techniques from group theory, complex variables, and
number theory, but each one also shares a common element in their approach:
a tool called o-minimality originating in model theory. The theory of o-mini-
mality is a natural generalization of real algebraic geometry to include certain
non-oscillatory transcendental functions. It was developed starting in the 1980s
by model theorists [69], but in the early 2000s, o-minimality was connected with
various aspects of number theory in part through the work of Pila and Wilkie
[46] and Peterzil and Starchenko [42], [45], [44]. The counting theorem of Pila-
Wilkie has precursors coming from number theory before the connection to
o-minimality was made. See, for instance, the work of Bombieri and Pila [6]
and the related manuscript of Sarnak [59]. Diophantine properties of definable
sets in o-minimal structures had also been previously investigated by Wilkie
[72]. However, following the Pila-Wilkie theorem, there has been an explosion
of work. In [52], the Pila-Wilkie theorem was employed by Pila and Zannier
to give a new proof of the Manin-Mumford conjecture. The strategy was
immediately taken up by Masser and Zannier [28] to prove a a special case of
Pink’s relative Manin-Mumford conjecture, while Pila [47] gave new proofs of
results of a Manin-Mumford-André-Oort flavor.

The common line of reasoning in the results mentioned in the previous
several paragraphs is to embed the problem in an o-minimal context by prov-
ing that a certain analytic function (restricted to an appropriate fundamental
domain) is interpretable in Ry czp, an o-minimal structure in which the de-
finable sets are given by inequalities built from the algebraic functions, the
exponential function, and real analytic functions restricted to bounded sets.
Following this, variants of the Pila-Zannier strategy or definable versions of re-
sults from complex geometry [43] are used to detect and characterize algebraic
relations.

Our approach is completely different, and does not employ the theory of
o-minimality at all. Rather, our proof relies on differential Galois theory, mon-
odromy, the study of algebraic and Liouvillian solutions to linear differential
equations, differential algebraic work of Nishioka towards the Painlevé irre-
ducibility of certain Schwarzian equations, and considerable machinery from
the model theory of differentially closed fields.
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Recently there has been a surge in interest around functional transcen-
dence statements of the type in Theorem 1.1, in part due to their connection
with a class of problems from number theory called special points conjectures
or problems of unlikely intersections; in [48] the Ax-Lindemann-Weierstrass
theorem is central to the proof of the André-Oort conjecture for C". Each of
the other functional transcendence results mentioned above can be applied in
certain special points settings. For instance, in [10] Daw and Ren give appli-
cations of the Ax-Schanuel conjecture proved in [32]. Our functional transcen-
dence results are no exception — we apply them to certain cases of a special
points conjecture called the André-Pink conjecture, following Orr [39], [40].
Numerous variations on the conjecture are possible (depending for instance,
on the definition of Hecke-orbits one takes), but we will describe the specific
setup next.

Let V' be a connected Shimura variety with (connected) Shimura datum
(G, X) such that V =T\ X for some congruence subgroup I' C G(Q) that
stabilizes X . The André-Pink conjecture predicts that when W is an algebraic
subvariety of V' and S is the orbit of the commensurator of I', Comm(T"), on
a point a = (ay,...,a,), if W NS is Zariski dense in W, then W is of a very
restrictive form, which we will refer to as I'-special, which we describe next.

Let jr : XT — V be a uniformization map. When v € Comm(T), it turns
out that (jr(t),jr(vt)) are algebraically dependent and lie on an irreducible
curve given by the vanishing of a polynomial in two variables, which we will
refer to as a I'-special polynomial. The I'-special varieties are intersections of
zero sets of I'-special polynomials and relations of the form x; = b;, where b;
is in the Comm(T")-orbit of a;. Orr [39], [40] proved various special cases of
the conjecture (for instance, when W is an algebraic curve). In [12] Freitag
and Scanlon used Pila’s ALW with derivatives theorem from [49] to prove the
André-Pink conjecture when a is assumed to be a transcendental point and I"
is commensurable with PSL9(Z). In this paper, we generalize that result to
allow for an arbitrary Fuchsian group I'.

The central idea employed is a beautiful technique that has its origins in
the work of Hrushovski [17] and Buium [8]. In order to understand intersections
of algebraic varieties with an arithmetically defined set of points (e.g., torsion
points on an algebraic group, Hecke orbits, etc.), replace the arithmetic set with
a more uniformly defined algebraic object, the solution set of some algebraic
differential differential or difference equation.

We replace our arithmetic objects (the orbits of the commensurators of
some discrete groups, I') by the solution sets of certain differential equations
satisfied by the uniformizing functions jr. An inherent restriction of the tech-
nique is that it generally only works for diophantine problems in function fields,
hence the assumption that a is a tuple of transcendentals. In pursuing our



AX-LINDEMANN-WEIERSTRASS THEOREM WITH DERIVATIVES 725

approach to the André-Pink conjecture, it becomes necessary to prove more
far reaching functional transcendence results than the ALW theorem as stated
above; our results are most naturally phrased in terms of the model theory of
differential fields, one of the main tools we use to establish our results. One of
the chief advantages of this approach is that it leads to an effective solution of
our case of André-Pink; that is, we are able to give bounds on the degree of the
Zariski closure of the intersection of Comm(I';)-orbits with a variety V', which
depend on algebro-geometric invariants of the variety V. So, for instance, if
the variety V' is a non-special curve (or a variety that does not contain a special
curve), we can give a bound on the number of special points contained in the
curve.

At the relevant sections of our paper (e.g., 5) we will give equivalent for-
mulations in algebro-geometric language of the model-theoretic properties we
describe next. We prove that for any Fuchsian group I', the set defined by
the differential equation satisfied by the uniformizing function jr is strongly
minimal and has geometrically trivial forking geometry. This result generalizes
work of [12], which covers the cases when I' is commensurable with PSLy(Z). In
particular, our work gives many new examples of geometrically trivial strongly
minimal sets in differentially closed fields. This also establishes an interesting
new connection between two important dividing lines on the logic and group
theory: the differential equation satisfied by jr is Ng-categorical if and only
if the group I' is not arithmetic. Further, we characterize all instances of
non-orthogonality between these sets. (Each such instance comes from com-
mensurability of two groups I'y and T'5.) These results also have various in-
teresting consequences related to determining the isomorphism invariants of
differentially closed fields, which we will not explore further in this article.

We should also mention that this work gives a complete proof of an as-
sertion of Painlevé [41, p. 519], concerning the irreducibility of the differential
equations satisfied by jr for I' a Fuchsian group. Irreducibility is closely related
to the strong minimality of a differential equation, a connection pointed out in
detail by Nagloo and Pillay [34]. The original definition of irreducibility applies
to non-linear differential equations and was given by Painlevé [41, pp. 490
496]. A definition (for functions) using more modern language was given by
Umemura; for instance, see [38, pp. 754-755]. There have been claims (usually
non-specific) that Painlevé’s definition is not completely rigorous. For instance,
see the third paragraph of page 755 of [38] and page 772 of [66]. These claims
seem to originate with Umemura [67], however the only specific complaint with
Painlevé’s definitions that we find there is related to some subtleties around
algebraic and analytic groups (for instance, see pages 3 and 8). Similar points
are made also in [65]. These complaints seem mainly to affect some proofs of
results from [41], but not directly the definition of irreducibility.
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In [36] and [37], Nishioka proved a weak form of Painlevé’s assertion;
various techniques from Nihsioka’s paper have inspired our work.

Acknowledgements. G.C and J.N take this opportunity to thank the or-
ganizers of the CIRM meeting “Algebra, Arithmetic and Combinatorics of
Differential and Difference Equations” in May 2018, where this research col-
laboration started. We also thank the anonymous referees for their comments
and suggestions.

2. The basic theory

2.1. Fuchsian groups and the associated Schwarzian equations. We direct
the reader to [21] and [24] for the basics on Fuchsian groups and the cor-
responding automorphic functions. The appendices of [70] also give a very
detailed introduction to the associated Schwarzian equations.

Let H be the upper half complex plane, and let H := H U Pl(]R). Recall
that SLo(R) and PSLy(RR) act on H (and H) by linear fractional transformation:
for (¢%) € SLy(R) and 7 € H,

a b _ar+b
(c d) T ct+d’
This action yields all the orientation preserving isometries of H.

Let I' € PSLy(R) be a Fuchsian group; that is, assume that I' is a discrete
subgroup of PSLy(R). A point 7 € H is said to be a cusp if its stabilizer group
I' ={g €Tl : g-7 =7} has infinite order. We also assume throughout that
I is of first kind (i.e., its limit set is P!(R)) and of genus zero? (i.e., I'\ H can
be compactified to a compact Riemann surface of genus 0; cf. the paragraph

after Example 2.1). For any point 7 € H, the group I'; is finite and cyclic. A
point 7 € H is said to be elliptic of order £ > 2 if |I';| = . Our assumptions
on I' ensure that modulo I' there are only finitely many orbits under I' of
elliptic points. If mq,...,m, denotes the orders of the elliptic points as well
as of those of the cusps (which would be 00’s), then I' is said to have signature
(0;mq,...,m,). The zero here reflects that I' has genus 0. The group then has
the following presentation:

F:<gl,.__7gr . g’{nl ::g?%:glgr:[>
When one or more of the m;’s are infinity, one simply removes the relations
containing the infinite m;’s in the above presentation.

2The methods of proof and results of the current article can be generalized with additional
effort to the case of arbitrary genus. This will be tackled in a forthcoming work of the authors
along with D. Bldsquez-Sanz around Ax-Schanuel Theorems for Fuchsian functions.
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Ezample 2.1. PSLy(Z) is a Fuchsian (triangle) group of type (0;2, 3, 00).
Recall that traditionally we might consider the following generators of SLy(Z):

11 0 -1
Nonetheless, by setting g1 = —5, go = —T~15 and g3 = T one has that

SLy(Z) = {g1,92.93 : 91 = g5 = g1g2g3 = —1) .

Note that PSLy(Z) is obtained from the above using the natural projection
T SLQ(R) — PSLQ(R)

As is well known, I' acts on the set Cr of its cusps, and the action of I’
on Hr := HU Cr yields a compact Riemann surface I" \ Hp or equivalently a
projective non-singular curve X (I'), which is of genus zero. The group I is said
to be cocompact if Cr = () — in other words, if the quotient I' \ H is already
a compact space. By an automorphic function for I', we mean a meromorphic
function f on H that is meromorphic at every cusp of I' and that is invariant
under the action of I':

flg-7)=f(r) forall geT and 7 € H.

One has that the field of automorphic functions Ag(I") for ' (or equivalently
the field of meromorphic functions of I'\ Hr) is isomorphic to the field C(X(I'))
of rational functions on X (I'). By an Hauptmodul or uniformizer jr(t) for T’
we mean an automorphic function for I' that generates Ay(I") (and so C(jr) ~
C(X(T))). We will also write jp for the biholomorphism I'\ Hy — P*(C). Let
us point out that the function jr is not unique. This follows from the existence
of non-trivial automorphisms of the curve X (I'). Moreover, it is well known
that the function jpr is unique once its values at three points have been specified.

The uniformizer jr also satisfies a third order ordinary differential equation
of Schwarzian type:

(*) Sa(y)+ (W) Rinly) =0,

Z 1 2
where S% () = (1;7)/—% (%,) denotes the Schwarzian derivative (' = &) and

R;. € C(y) depends on the choice of jr. Moreover, the “shape” of the function
Rj. depends on knowing the fundamental half domain for the I'-action on H.

Let us assume that it is given by a polygon P with r vertices by,...,b, and
whose sides are identified by pairs and having internal angles ajm, ..., a,7.
Then . .
1 1—a? A;
Ri.(y) == S S 717
() 2;(?/—%)2 ;y_ai

where jr(b;) = a; and the A;’s are real numbers that do not depend on jr and
satisfy some very specific algebraic relations (cf. [70, p. 142]).
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Ezample 2.2. A well-known example is I' = PSLy(Z), and jr is the clas-
sical j-function. In this case the equation is given with

Rify) = y? — 1968y + 2654208
J y2(y — 1728)2 ’

I' = PSLy(Z) is an example of a triangle group. In the appendix the case of
the Fuchsian triangle groups is explained in more details. We also direct the
reader to [4], where more examples of uniformizers — beyond those attached
to triangle groups — are studied.

There is a long tradition of functional transcendence results around auto-
morphic functions. For instance, a very weak form of our results was conjec-
tured by Mahler, and answered by Nishioka:

Fact 2.3 ([35]). The Hauptmodul jr satisfies no algebraic differential
equation of order two or less over C(t,e"t) for any u € C. The same is true
for all T'-automorphic functions.

Using the Seidenberg’s embedding theorem and the composition rule of
the Schwarzian derivative, we also have

LEMMA 2.4 (cf. [12]). Let K be an abstract differential field extension
of C(t) generated by yi1,...,yn solutions of equation (). Here C is a finitely
generated subfield of C. Then there are elements g1, ..., gn € GLa(C) such that

K= C<t7jf‘(glt>7 s 7jF(gnt)>'

Proof. By Seidenberg’s embedding theorem, we may assume yi,...,Yn
are meromorphic functions on some domain U contained in H. Since the jp
is a non-constant holomorphic function from H to C, there are holomorphic
functions v; : U — H, such that y;(¢) = jr(¢i(t)). Repeating the arguments
in [12] — using the composition rule for S% (y) and the fact that jr(1;(t)) is a
solution of the equation (x) — we get that S% (1i(t)) = 0. Hence ¢;(t) = g;t
for some g; € GL2(C). O

Remark 2.5. Note that the g1, . .., g, are not arbitrary elements of GLy(C).
Indeed, since the y;(t)’s are meromorphic on U C H, it must be that g; : U —H.
Also, for each ¢, from the inverse g, L of ¢;, we have well-defined solutions

jp(gi_lt) and jp(gjgi_lt) of ().

In this paper, depending on the context, we will freely alternate between
thinking of solutions of the Schwarzian equation (x) as points in an abstract
differential field or as meromorphic functions of the form jr(gt). The latter
form will always mean that g is an element of GL2(C) that maps (a subset of)
H to H.
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2.2. Arithmetic Fuchsian groups. We have already seen one important
dividing line among those I', which we consider — namely, whether or not I
is cocompact. Another, perhaps even more important (for our work) property
that I' might possess is that of arithmeticity. We will begin by reviewing some
key definitions. A standard reference for this subsection is [71]. Throughout,
I' € PSLy(R) is a Fuchsian group of first kind of genus zero.

Let F be a field of characteristic zero, and let A be a quaternion algebra
over F: a central simple algebra of dimension 4 over F. Since the characteristic
of F'is zero, there are elements i and j in A and a,b € F* such that

iQICL, j2:b7 232_327

and A = F+ Fi+ Fj+ Fij. As customary, we use the Hilbert symbol notation
A= (“ﬁb). For o = ag + a1i + azj + asgij € A, we define its conjugation as

a = agp — a1i — agj — azij € A. Then, the reduced trace tr(a) is defined
to be a +a@ = 2ap € F, and the reduced norm n(«a) is defined to be aa =
ag —a2a — a3b+adab € F.

Ezample 2.6. For example, the 2 x 2 matrices over F' is given by My(F') =

(1131 ), and in this case the norm is simply the determinant.

If F equals R or a non-Archimedean local field, then up to isomorphism,
there are only two quaternion algebras: Ms(F') or a division algebra. When F'
is a number field and v a place of F', we say that A splits at v if the localization
A ®p F, is isomorphic to My(F,). Here F, denotes the completion of F' with
respect to v. If, on the other hand, A®p F), is isomorphic to a division algebra,
we say A ramifies at v. It is known that the number of ramified places is finite
and the discriminant of A is defined as the product of the finite ramified places.

Assume now that F' is a totally real number field of degree k + 1, and
denote by Op its ring of integers. Assume further that A splits at exactly one
infinite place, that is,

A®gR ~ My(R) x HF,

where H is Hamilton’s quaternion algebra (_1]1’{1). Then, up to conjugation,

there is a unique embedding p of A into M3(R). In particular, for any o € A,
one has that n(a) = det(p(a)).

Let O be an order in A, namely, a finitely generated Op-module that is
also a ring with unity containing a basis for A; that is, O ®p, F ~ A. Denote
by O! the norm-one group of O, that is O! = {a € O : n(a) = 1}. Then the
image p(O') of O under p is a discrete subgroup of SLy(R). We denote by
I'(A, O) the projection in PSL2(R) of the group p(O!).

Definition 2.7. The group I is said to be arithmetic if it is commensurable
with a group of the form I'(A4, O).
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Perhaps the best known example of an arithmetic group is PSLo(Z). Re-
call that two groups I'y and I'y are commensurable, denoted by I'y ~ I'y, if
their intersection I'y N I'y has finite index in both I'y and I's.

If T is arithmetic, then the quotient I' \ H is called a Shimura curve. In
this article, by abuse of terminology we will refer to I'\ H as a Shimura curve of
genus g if and only if I'\ H is of genus g, and we are interested solely in the case
where g = 0. As is well known, Shimura curves are generalizations of classical
modular curves. We direct the reader to [3] and [63], where the Schwarzian
equations for many examples of these curves are derived and studied.

We now look at the connection between arithmeticity of I' and existence of
correspondences on P!(C) x P!(C) whose preimage under jr is also algebraic
(cf. [31] and [60]). Let Comm(I') be the commensurator of I', namely,

Comm(T) = {g € PSLy(R) : gl'g~* ~T}.
By a Comm(T")-correspondence on P!(C) xP!(C) we mean a subset of the form
X(Tgl) = {jr(r) x jr(g-7) : 7 € Hr}
where g € Comm(I"). It turns out that X (I'gI') is an absolutely irreducible
curve and that it depends only on the coset I'gI" and not on the choice of g (cf.
[60, Ch. 7]). We suppose that X (I'gI') is given by the equation ¥;(X,Y) =
0, so that ¥;(jr,jr(gt)) = 0. We write § to highlight that the equation
depends on I'gl' and not g. With this notation, for ¢g1,¢92 € GL2(C), we

more generally say that jr(gi1t) and jr(get) are in Comm(I")-correspondence if
U5 (jr(91t), jr(gat)) = 0 for some I'gI". One has the following result of Margulis:

Fact 2.8 ([25]). The group T is arithmetic if and only if T has infi-
nite index in Comm(I") and as a result there are infinitely many Comm(I")-
correspondences.

The modular polynomials (also known as Hecke correspondences) are the
classical examples (when I' = PSL2(Z)). Returning to the Schwarzian equa-
tions we see that arithmetic Fuchsian groups of genus 0 give examples of ODE’s
with rich binary relations.

2.3. A touch of Model theory. We end this section by saying a few words
about the concepts in model theory and differential algebra that will be re-
quired in the next sections. We will then be ready to state the main results in
the paper. Throughout, we work in a differentially closed field of characteristic
ZETO.

Definition 2.9. A definable set ) is said to be strongly minimal if it is
infinite and every definable subset is finite or co-finite.

Remark 2.10. Let ) be defined by an ODE of the form

y™ = f(t,y, 0, ..,y
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where f is rational over C(t). (This is of course the case for the sets defined
by the Schwarzian equations.) Then ) is strongly minimal if and only if for
any differential field extension K of C and solution y € Y , tr.deg.,x K (y) =0
or n.

Strong minimality is fundamental to the model theoretic approach to dif-
ferential algebra (cf. [34]). It is also closely related to the Painlevé notion of
irreducibility of the ODE with respect to classical functions [68]. It turns out
that there is a very general classification of strongly minimal sets in differen-
tially closed fields about which we will say a few more words in Section 5.1.
For now, we only mention the kind of strongly minimal set that is relevant for
equation (x).

Definition 2.11. Let ) be an F-definable strongly minimal set. Then ) is
geometrically trivial if for any differential field extension K of F', and for any
distinct solutions yi, ..., ym, if the collection consisting of yi, ..., ym together
with all their derivatives yi(j ) is algebraically dependent over K, then for some
1 < J, ¥i,y; together with their derivatives are algebraically dependent over K.

So geometric triviality limits the complexity of the structure of the alge-
braic relations on the definable set. However, given such a set, for the results
that we pursue, much greater precision is required. Throughout for simplicity,
we will say that an ODE is strongly minimal and geometrically trivial just in
the case that its solution set is strongly minimal as a definable set. Our first
theorem is the following;:

Theorem 2.12. The Schwarzian equation (%) for the Hauptmodul jr of a
genus 0 Fuchsian group I' of first kind is strongly minimal and geometrically
trivial.

We will give the proof in Section 5.1. This result was previously only
known for PSLy(Z) (the j-function; see Example 2.2) as well as for arithmetic
subgroups of PSLy(Z) (cf. [12]). Our proof, which handles all Schwarzian
equations of genus zero Fuchsian functions at once, also is the first that does
not use o-minimality. The first proof for PSLy(Z) (of [12]) relied on the main
result of [49], where Pila employs the same strategy from [48], relying on o-mini-
mality and counting of points of bounded height. Later, [2] also gave a proof
of the special case of PSLa(Z) that relied on the Ax-Schanuel type results of
[51], where again, an o-minimal strategy was employed.

It is worth mentioning that Painlevé [41, p. 519] claimed that strong min-
imality (or irreducibility as he called it) would hold for the equations we con-
sider. In [37], Nishioka proved a very weak form of that conjecture. Neverthe-
less, Nishioka’s paper contains techniques that inspired our own proof.
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We have also obtained a full description of the structure of the definable
sets. One can think of these results as a weak form of the Ax-Lindemann-
Weierstrass theorem with derivatives for T'.3

Theorem 2.13. Suppose I is arithmetic, and suppose jr(git),...,jr(gnt)
are distinct solutions of the Schwarzian equation (%) that are pairwise not in
Comm(I')-correspondence. Then the 3n functions

Jr(g1t), jr(g1t), jr(g1t), - -, gr(gnt), jr(gnt), Jr (gnt)
are algebraically independent over C(t).

Theorem 2.14. Suppose that I' is non-arithmetic. Then there is a k € N
such that if jr(git),. .., jr(gnt) are distinct solutions of the Schwarzian equa-
tion (%) satisfying

tr.deg.c()C (t,jr(g1t), ..., jr(gnt)) = 3n,

then for all other solutions jr(gt), except for at most n - k,

tr'deg'(C(t)(C <t7.jf‘<glt)7 e 7]F<gnt)7.7f‘(gt)> = 3(” + 1)

So, by the previous two theorems, we have that the set defined by the
Schwarzian equation (%) is Np-categorical if and only if the group I' is non-
arithmetic. It was a long-standing open problem in the model theory of dif-
ferential fields (recently resolved by [12]) to find a non-Ry-categorical geomet-
rically trivial strongly minimal set; the non-existence of such sets was part
of a strategy for certain diophantine problems suggested by Hrushovski [18,
p. 292]. Theorem 2.13 gives many new examples of geometrically trivial non-
Ng-categorical equations, and together with Theorem 2.14 also provides an
interesting connection between categoricity and arithmetic groups. We view
the following question as the next major challenge in the classification of geo-
metrically trivial strongly minimal sets in differentially closed fields:

QUESTION 2.15. In DC'Fy, are there non-Rg-categorical strongly minimal
sets that do not arise from arithmetic Fuchsian groups?*

3The ALW statement we are pursuing allows for characterizing algebraic relations between
functions that do not formally satisfy the same differential equation, but we will use to
Theorems 2.13 and 2.14 to prove our most general results, which imply the pertinent version
of ALW.

4Later in the paper, it will be clear to model theorists that by “arise from” arithmetic
Fuchsian groups, we mean “are non-orthogonal to the differential equation (%) or one of its
other fibers.” An answer to the question is of interest in part because if there were a strong
classification of the geometrically trivial strongly minimal sets in differential fields, some of
the strategy laid out in [18] for certain diophantine problems might be possible.
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Finally let us talk about the full Ax-Lindemann-Weierstrass Theorem with
derivatives for I". We closely follow the description of the problem as in [49].
Let V' C A™ be an irreducible algebraic variety defined over C such that V(C)N
H" = () and V projects dominantly to each of its coordinates. (Each coordinate
function is non-constant.) Let t1,...,t, be the functions on V induced by the
canonical coordinate functions on A™. We say that t1,...,t, are I'-geodesically
independent if there are no relations of the form

where i # j and g € Comm(I") acts by fractional linear transformations.
Theorem 2.16. With the notation (and assumption V(C) N H"™ # () as

above, suppose that t;,...,t, are I'-geodesically independent. Then the 3n
functions

Jr(ta), 30(t), 30t -« o dr(tn), 0 (En), ()

(defined locally) on V(C) are algebraically independent over C(V).

We will prove Theorem 2.16 in Section 6. Pila [49] had already proved the
result for PSLy(Z). (See also [12] where the same is established for arithmetic
subgroups of PSLy(Z).)

3. A criterion for strong minimality of a general Fuchsian equation

We now aim to give a criterion that can be used to show that the Schwarzian
equation (x) is strongly minimal. This criterion is applicable to Schwarzian
equations in the general sense, namely, to any equation of the form

) Sa(y)+ () Rly) =0.

So here we do not assume the rational function R to necessarily correspond to
some Hauptmodul. We only require that R is rational over C. By the Riccati
equation attached to (x') we mean the equation

d 1
(%%) i +u? + iR(y) =0.

Condition 3.1. The Riccati equation (%) has no solution in C(y)s.

Theorem 3.2. Let (K,0) be any differential field extension of C, and let
us assume that Condition 3.1 holds. If jr is a solution of the Schwarzian
equation ('), we have that

tr.deg. x K (jr) = 0 or 3.

In other words, if Condition 3.1 holds, then equation (x') is strongly minimal.
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Proof. For contradiction, assume that there is a finitely generated dif-
ferential field extension F' of C that witnesses non-strong minimality of the
equation (') (i.e., an order 1 or 2 F-differential subvariety exists). Through-
out, we write K = F(t) and let jr be a solution of the Schwarzian equation
(%) such that tr.deg. K (jgr) = 1 or 2, respectively.’

Furthermore, using Seidenberg’s embedding theorem we can assume that
K is a subfield of .# (U), the field of meromorphic functions on an open domain
U C C, and that jr € A4 (U).

Let P e (C[ ] be a denominator of the rational function R(y). Let L =
Kly, 5 (y) Y y, ,y"] be the polynomial ring equipped with the derivation

e D=0+y L +y 2+ (3L~ (YPRY)) 12
making L a universal (K, 8)—algebra generated by a non-constant solution of
the Schwarzian equation. One also defines an action of psly(C) by
o X =0,
OH:ta—y’a —2y" By”;
oY = %8 — ty/aT/ — 2ty" +v) 82”'
It is easily verified that [X,H] = X, [H,Y] =Y, [X,Y] = H. (The basis
X = X,Y =2Y and H = 2H is a Chevalley basis, i.e., satisfying [X, H] = 2X,
[H,Y] =2Y, [X,Y] = H.) Furthermore, the equalities [D, X] = 0, [D, H] =
D, [D,Y] = tD can be easily verified.
When K = C(t), the algebraic group PSLs(C) acts on L by

oo ' " / n(t
(3.1) ht,y.y'y") = (WW’ @;y(t)’ (@’y(t))Q Y (h’(i)))3> ’

where h denotes the homography of the projective line associated to an element
h of PSLy(C). For F € L, one defines (h)*D - F = ho Do h™}(F) . Direct

computations give that (h)*D = h%(t)D. This equality means that the set

of meromorphic solutions of a Schwarzian equation is stable by the action of
PSLy(C) by precomposition. The previously given action of psly(C) is the
infinitesimal action of PSLy(C).

When K C #(U), then a fixed element h € PSLy(C) maps L onto an
isomorphic subfield in .# (h~1(U)) but the whole group does not act on L.
Now let I C L be the annihilator of the solution jr and Z be the zero locus of
INOU)y,y,y"] in U x C3, where &(U) is the ring of holomorphic functions
on U. We have that Z is an analytic variety, affine over U, and that its K-fibers
are algebraic varieties over K. We have the following lemma:

°If f is a solution of equation (x’) generating a differential field extension of F' of tran-
scendence degree one or two, taking jr to be a realization of a non-forking extension of the
type of f over F to the field K = F(t) gives such a solution jr of (*').
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LEMMA 3.3. The dimension of the subalgebra b of psly(C) stabilizing I
equals the dimension of Z over K.

Proof. Let p € Z be a smooth point in the graph of (jr, jg,j%). Then
the evaluation of X, H, Y and D at p give a basis of T,(U x C3). If v is in
T,(Z) C T,(U x C3), then there exists V € psl, + CD whose value at p is v.

We first show that V - I C I. To see this, notice that for P € I, we have
that D-(V-P) =V -(D-P)+ fD - P for some f € C(t). Here we use the
equalities [D, X] =0, [D,H] = D, [D,Y] = tD. Since by definition D - P € I,
we have that the ideal J generated by I and V - I is stable by D. Moreover
all elements of J vanish at p and thus on the whole graph of (jgr, ji,j%)- By
maximality, V - I C I.

The stabilizer of I in CX +CH 4 CY +CD has the dimension of 7},Z and
thus that of Z. Because D is tangent to Z, the dimension of Z over K is the
dimension of the stabilizer of I in psl,. g

Our assumption tr.deg, K (jr) = 1 or 2 gives that the stabilizer, denoted
by b, is a non-trivial proper subalgebra of psl,(C). Every such a proper subalge-
bra is contained in a 2-dimensional Lie subalgebra of psl, = sl,. Furthermore,
the group PSLy(C) acts on psl, by the adjoint representation, and under this
action all Lie subagebras of psl, of dimension 2 are conjugate to one another
(cf. [20, §16]).

Let g € PSLy(C) be an element conjugating a dimension two subalge-
bra containing b to the algebra generated by X and H. Then g acts as an
homography on P!(C) and transforms K C .#(U) to K9 C . (g~ (U)).

The induced isomorphism of L to LI = K9[y, %, Y, i, y"] sending y to

" !

v,y toy'g'(t) and y" to y"q' (t)? —1'g" (t) preserves D up to multiplication by
an element of K (see equation (3.1)) and induced the adjoint action on psl,.
The transcendence degree of jr over K is the transcendence degree of jrog
over K9, but now we have ensured that the stabilizer is included in the Lie
algebra generated by X and H. Let us forget that we change the field and
assume b is included in the triangular Borel subalgebra, i.e., it is in the Lie
algebra generated by X and H.

In L, we have that —;’% vanishes when we apply the induced X and H.

So the image of —5%; in L/I belongs to the kernel of the action of b — namely,

the algebraic closure of Cly, %] in L/I. Let z be this algebraic function.

Direct computation shows that in L/I, —;’—:; satisfies the following re-writing
of equation (),
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meaning that 3 is an algebraic solution of

du 5 1
@+u +§R(y)—0

in C(y)®. This contradicts Condition 3.1. O

The next section is devoted to proving that Condition 3.1 holds for equa-
tion (%).

4. The general proof of strong minimality
4.1. Liouwvillian solutions, algebraic solutions, and Picard-Vessiot theory.

Definition 4.1. Fix a differential field K extending C(y) such that the
derivation on K extends %. We say that K is Liouwvillian if there is a tower
of field extensions C(y) € Ko € K; C --- C K, = K such that for each
i =1,...,n, K;/K;_1 is generated by an element a; such that one of the
following holds:

(1) @) € Ki—1 ;

(2) &e ki

(3) a; € KM .

If K is a field of meromorphic functions, then in case 1, a; = [ f for some
f € K; and in case 2, a; = el I for some f € K;. So, occasionally we will refer
to these cases as integrals or exponentials of integrals.

Consider the differential equation
(4.1) 2+ pd 4+ q2=0,
where p, ¢ are rational functions in C(y). The classification of its Liouvillian
solutions has been extensively studied, and in [23], an algorithmic solution to
determining the Liouvillian solutions was given.

1

Let z be a solution to equation (4.1), and let v = e2J?z. It follows by

direct computation that

1
(4.2) v+ <b - Za2 - 2a’> v =0.

Because the previous transformation only involves scaling by a Liouvillian ele-
ment, the Liouvillian solutions of equation (4.2) are in bijective correspondence
with the Liouvillian solutions to equation (4.1), and so without loss of general-
ity, we may now assume that the order two equation in which we are interested
is given in the following normal form:

(4.3) 2" =r(y)z,
where r(y) € C(y).
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THEOREM 4.2 (23, p. 5]). With regard to the Liouvillian solutions of a
second order linear differential equation with coefficients in C(y), there are four
mutually exclusive options:

(1) The differential equation (4.3) has a solution of the form el ™ where w €
Cly)-

(2) The differential equation (4.3) has a solution of the form e/ ™ where w e
C(y)™® is an algebraic function of degree two over C(y).

(3) All of the solutions of (4.3) are algebraic over C(y).

(4) No solution of (4.3) are Liouwvillian.

The connection with Riccati equations is as follows. If we define u = ZZI
where z is a solution to equation (4.3), then via direct computation we have

that
(4.4) u' +u? —r(y) = 0.

Notice that z = ce/ ™ for some constant ¢ € C and, in particular, z; = el v is
also a solution to 4.3. So using Theorem 4.2 we have the following lemma:

LEMMA 4.3. The Riccati equation (4.4) has an algebraic solution over
C(y) if and only if the second order linear differential equation (4.3) has a
Liouvillian solution.

Now, the verification of Condition 3.1 follows from showing that (4.3) has
no Liouvillian solutions. For this, we will need the following well-known result:

THEOREM 4.4 ([23, p. 8, Case 4]). Let G be the Picard-Vessiot group of
(4.3). There are no Liouvillian solutions to (4.3) if and only if G = SLo(C).

In the next subsection we will prove that, in the special case of a Fuchsian
group I', the Picard-Vesiot group of the order two linear equation associated
to the Riccati equation (%) is SLo(C).

4.2. Monodromy and the PV-group. At this point, let us recall that the
the Schwarzian equation (%) we focus on is given with

lew 1—0a? LA
R, =-) — i &
i (¥) 2;(y—ai)2+;y—ai’

where the «;’s, A;’s and a;’s are obtained from the fundamental domain for
I'-action on H. As discussed in the previous subsection, if the Riccati equation
corresponding to (*),

du

1
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were to have an algebraic solution f € C(y)*#, then as in the previous subsec-
tion z = e/ / is a Liouvillian solution of the linear equation

d?z I~ 1-0a? "L A2
4.6 — (Y —+ )Y | z=0.
(46) dy? (4; (y — a;)? ;y—ai
This equation is an example of the most general (normal) form of a Fuchsian
equation of second order:

Definition 4.5. Consider the linear equation 3273 + alg—; + agz = 0, where
a1, az are rational functions in C(y).

(1) A point p € C is called regular if the functions a; have no pole at p;
otherwise p is called singular. To determine whether the point y = oo
is regular, one simply substitutes y = z~! in the equation and verifies
whether z = 0 is regular for the new equation.

(2) A point p € C (resp. p = o0) is called regular singular if it is singular and
for each i = 1,2, the limit lim,_,,(y —p)’a;(y) (resp. lim,_,ooy’a;(y)) exists
and is finite.

(3) The equation is called Fuchsian if all points of P*(C) are regular or regular
singular.

It is well known (cf. [9, Ch. 7]) that if the equation is Fuchsian, then the
coefficients a1 and ag are of the form

Bi(y)
Hj’:l (z = B;)"

where B;(y) is a polynomial of degree <i(s —1).

ai(y) =

Remark 4.6. We have already seen in the previous section how to obtain
the normal form of the a second order linear equation (see equation (4.2)).

As it turns out, the problem of existence of Liouvillian solutions for Fuch-
sian equations of second order is a classical one. We direct the reader to [16]
and [58] for some historical perspectives. We will only review parts of the the-
ory that is relevant to this paper. Our focus will be the work of Poincaré on
the relationship between the monodromy group of the Fuchsian equation (4.6)
and “its” Fuchsian group I'. It is this work — partly rediscovering Schwarz’s
uniformization of P1(C) by the jr’s — that lead Poincaré to introduce the
theory of Fuchsian groups and functions, and to attack the problem of the
uniformization of other Riemann surfaces.

From now on, we assume that the equation

2
(4.7) flyz =r(y)z
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is Fuchsian and denote by S its set of singular points. For z € P1(C)\ S, let fi
and fy be analytic solutions in a neighborhood of z. We also assume that f;
and fo are a basis of solutions, i.e., that they are linearly independent over C.
Given any v € m (P!(C) \ S; 2), we can analytically continue f; and f» along
~ and obtain new solutions f1 and fo of Fact 4.7. So there exists a matrix

M, € GL2(C) such that
A _ ., (h
(ﬁ) = (f2> '

The mapping p : 7 (PY(C) \ S;2) — GL2(C), taking v — M,, is a group
homomorphism called the monodromy representation. Its image M is called
the monodromy group of equation (4.7). From the monodromy group, one can
determine the Picard-Vessiot group of the equation:

Fact 4.7 ([9, Ch. 7]). Let G be the Picard-Vessiot group of the Fuchsian
equation (4.7). Then,
(1) G € SLy(C);
(2) if M is its monodromy group, then G is the Zariski closure of M.

Note that, in particular, from (1), for the Fuchsian equation (4.6), the
monodromy group M is a subgroup of SLy(C). We will now explain how in the
case of equation (4.6), the monodromy group M is related to the Schwarzian
equation. The following well-known fact — which can be easily verified — will
be needed.

FacT 4.8. Lett(y) = jlfl(y) be a branch of the inverse of y = jr(t). Then
t(y) satisfies the following equation:

(4.8) S (t) = Rin(y).

Furthermore, the functions

t 1
= dt\ L 2= de\ L
()2 (3)?

form a basis of solutions of the Fuchsian equation (4.6):

>z 1
ar ' 5 Bir ()2 =0.

Notice that, in particular, 283 = t(y). This allows us to define from M

the projective monodromy of equation (4.8). Namely, if M, = (‘é 2) € SLy(C)
is monodromy matrix (as above), then

at+b

t* =
ct+d
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is again a solution of equation (4.8). The collection of matrices Mﬁ, tte
is called the projective monodromy group M of equation (4.8). Of course M
is the image of M under the natural projection 7 : SLy(R) — PSLy(R). The
following proposition is attributed to Poincaré in various sources but we know
of no reference for a proof of it and thus reproduce it here.

PROPOSITION 4.9. The projective monodromy group of equation (4.8)
is I'. As a consequence, the monodromy group of the Fuchsian equation (4.6)
o —1
is mH(T).

Proof. Throughout, t(y) = jp 1(y) is a branch of the inverse of jr locally

defined on some small domain U and M is the projective monodromy group.
We have

g€ M\ {I} < gt(y) is another branch of the inverse of jr (defined on some

larger domain U")
= y=Jr(t(y) = jr(gt(y))
= geI'\{I}.
We have used here that jr is a globally defined single-valued function. O

ProproSITION 4.10. There are no Liouvillian solutions of the Fuchsian
equation (4.6). Consequently, Condition 3.1 holds for the Riccati equation (4.5).

Proof. We have that 7~ !(I"), the monodromy group of the Fuchsian equa-
tion (4.6), is Zariski dense in SLa(C). Hence by Fact 4.7, the Picard-Vessiot
group is G = SLy(C). By Theorem 4.4 there are no Liouvillian solutions for
the equation. O

We thus obtain the first part of Theorem 2.12; namely, the Schwarzian
equation (x) is strongly minimal.

5. Geometric triviality and algebraic relations

5.1. The classification of strongly minimal sets. In this section we will
discuss some general model-theoretic results regarding strongly minimal sets
in differentially closed fields. In particular, we will explain some consequences
of the (unpublished®) work of Hrushovski and Sokolovi¢ on the classification
of strongly minimal sets. We will, from these considerations, obtain geometric
triviality of the Schwarzian equations satisfied by the uniformizing functions
in the earlier sections. Let us denote by U the differentially closed field of

5A complete proof can be found in [56, Cor. 3.10] and in the arguments in the paragraphs
leading up to Proposition 4.10 of [53]. A good guide/summary of the proof can also be found
in [34, §2.1].
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characteristic zero that we work in. We assume that U is saturated and that
C (defined by 3/ = 0) is its field of constants. Notice incidentally that C is
itself a strongly minimal definable set. Indeed, it is the only definable strongly
minimal subfield of ¢/. In what follows, strongly minimal sets are understood
to be defined over some finitely generated differential subfield K of i/.

The zero set of any irreducible order one differential polynomial in a single
variable (by irreducible, we will always mean as a polynomial) is also strongly
minimal. Higher order linear differential equations are never strongly mini-
mal. (One can define linear subspaces using elements of a fundamental set of
solutions.) For higher order non-linear equations, it seems that it is in general
difficult to establish strong minimality. However, if the strong minimality of
an equation is established, one can often employ a variety of model theoretic
tools to establish even stronger results.

Other important examples of strongly minimal sets are given by the fol-
lowing:

Fact 5.1 ([7], [19]). Let A be an abelian variety defined over U. We
identify A with its set A(U) of U-points. Then

(1) A has a (unique) smallest Zariski-dense definable subgroup, which we de-
note by A*:

(2) if A is a simple abelian variety that does not descend to C, then A! is
strongly minimal.

The subgroup Af is called the Manin kernel of A (cf. [26]). The trichotomy
theorem gives a classification of strongly minimal sets up to non-orthogonality,
a notion we will explain following the statement of the theorem.

Theorem 5.2 ([19], [56]). Let Y be a strongly minimal set. Then exactly
one of the following holds:

(1) Y is non-orthogonal to the strongly minimal set C;

(2) Y is non-orthogonal to A* for some simple abelian variety A over U that
does not descend to C;

(3) Y is geometrically trivial.

Definition 5.3. Let Y and Z be strongly minimal sets. Denote by m :
Y xZ =Y and me: Y X Z — Z the projections to Y and Z respectively. We
say that Y and Z are non-orthogonal if there is some infinite definable relation
R CY X Z such that m g and 72| are finite-to-one functions.

The sets Y and Z are defined over some finitely generated differential
subfield K of U, and so for any differential field F' containing K, it makes
sense to ask whether a relation R as above can be defined over F'.
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Definition 5.4. We say that Y is weakly orthogonal to Z over F' if no such
relation R can be defined over F'.

The following facts from the model theory of differential fields are well
known (see, for instance, [27]).

Fact 5.5. LetY and Z be strongly minimal sets.

(1) Non-orthogonality is an equivalence relation on strongly minimal sets.

(2) Non-orthogonality classes of strongly minimal differential equations refine
various basic invariants of the equations. For instance, if Y, Z are non-
orthogonal, then order(Y) = order(Z). Recall that the order of a definable
set Y is given by order(Y) = sup{tr.deg. K (y) : y € Y}, where K is any
countable differential field over which Y is defined.

(3) If Y and Z are non-orthogonal, then they fall into the same category of
Theorem 5.2.

(4) Strongly minimal sets that fall in cases (2) and (3) of Theorem 5.2 are said
to be locally modular (and in case (1) the sets are non-locally modular).
(5) Orthogonality has a natural interpretation in terms of transcendence. Sup-
pose that Y and Z are orthogonal strongly minimal sets defined over K.

Let a,b be solutions of Y, Z, respectively. Let F be any differential field
extending K. Then

tr.deg.p(F(a,b)) = tr.deg.p(F(a)) + tr.deg. p(F(b)).

Conversely, if the inequality does not hold for some a€Y andbe Z over F,
then Y 1is not weakly orthogonal to Z over F'.

Non-orthogonality of Manin Kernels has been further classified in terms
of isogeny classes of abelian varieties.

FAcT 5.6. If A and B are two simple abelian varieties that do not descend
to C, then A* and B* are non-orthogonal if and only if A and B are isogenous.

For relations R that witness non-orthogonality between trivial strongly
minimal sets, there is an important and very general descent result:

Fact 5.7 ([54, Cor. 2.5.5]). Two geometrically trivial strongly minimal
sets are non-orthogonal if and only if they are non-weakly orthogonal. That is,
the relation R witnessing non-orthogonality of X and Y can be defined over
the differential field generated by the parameters used in the equations defining
X andY.

PROPOSITION 5.8. Let Y be a strongly minimal set of order > 1, and
suppose that Y is defined over C. Then Y is geometrically trivial.
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Proof.” First note that since order(Y) # 1, Y is necessarily orthogonal to
the constants C. So by Theorem 5.2, to show that Y is geometrically trivial,
we only need to show that it is orthogonal to all Manin kernels. We argue by
contradiction.

Suppose that Y is non-orthogonal to A? for some simple abelian variety
A over U which does not descend to C. Let (A, \) be a principal polarization
of A. We can use the fact that moduli spaces of principally polarized abelian
varieties exist over any base field (cf. [33, Ch. 7]). So let (V,¢) be a moduli
space for (A, \) over C. For some b in (V, ), we have that (4, \) = (Vp, vp).

Using uniform definability of Manin kernels [34, Lemma 2.25], we have a
formula ¢(x) over C asserting that Y is non-orthogonal to Vi and such that o(b)
is true in U. If ¢(c) holds, then, by Fact 5.6, it must be the case that V}, and V,
are isogenous. But there are only countably many abelian varieties isogenous
to V4. Hence the definable set {a € U : ¢(a) is true in U} is countable and
so must be finite. In other words, c is algebraic over (and so in) C. But this
contradicts the assumption that A does not descend to C. U

COROLLARY 5.9. For T a Fuchsian group, equation (x) defines a geomet-
rically trivial strongly minimal set.

We have hence established the entirety of Theorem 2.12.

5.2. Transcendence and orbits of the commensurator of T'.

Theorem 5.10. Let (K, 0) be a differential extension of (C(%), %) with no
new constants. Let I' be a Fuchsian group and j1, jo be two solutions of the
equation

Sa(y)+ () Rr(y) =0.
If
tr.deg. x K (j1, J1, J1 > J2: 4, 52) < 6,
then j; or jo is algebraic over K or there is a non-zero polynomial P(y1,ys2)
over C such that P(j1,j2) = 0.

The group PSLs(C) acts on pairs of solutions by precomposition. We will
prove that the ideal of differential relations between (j1, j2) is stable under this
action.

Proof. From Theorem 3.2, it follows that if tr.deg. ;K (j1, 71, J7, 52, 5, 35)
< 6, then it is either 0 or 3. But it follows from Fact 2.3 and Lemma 2.4 that
if both j; and jo are not algebraic over K, then tr.deg. K (j1, j1, 71 j2, 5 75)
= 3. By Fact 5.7, we can assume that K = C(¢) and so throughout K = C(t)

90
and 0 = ;.

"We thank Dave Marker for a sketch of this proof.
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We proceed as in the proof of Theorem 3.2. For ¢ = 1,2, consider
K (yi,y},y!), equipped with the derivation

/_/2
o Di=0+yl eyl + (34 — WP Re(w)) 52

2y
One defines an action of psl,(C) by
e X, =0,
o Hy =10 —yigr — 2! 50m:
o Yi= 50— tyls — (2ty! + v

We have that [XZ,HZ] == Xi, [HZ,YZ] == 1/1', [XZ,Y;] = HZ', and [DZ,XZ] == 0,
[D;, H;| = D;, [D;,Y;] = tD;.

As explained in the proof of Theorem 3.2, the above action of psly(C)
is the infinitesimal action of PSLy(C) on C(t,y;,y}, yl'). We “verticalize” this
action by considering X = X; —D;, H’ = H; —tD; and Y}’ =Y, — %Di. Now
CX}+CH!+CY} is a realization of psl,(C) acting K-linearly and commuting

The ideal of the polynomial differential relations between j; and jo over K
is an ideal in K[y1,y, ..., Y2, Y5, ...]. Let J be the differential ideal generated
by the third order differential equations satisfied by j; and by ja, and let
Ky, y1, - y2, 95, -] = K(y1, 41, 91) @k K(y2,5,95) be the quotient by J
followed by localizations.

As j1 and jo do not satisfy any lower order differential equations, this ideal
is the preimage of an ideal I of L = K (y1,y},v]) ®x K (y2,95,y5) stable by

2 / 9 / 0 /! 1" 0
D& _a+y167yl+y207yg+y187y’1+y287y§

(5.1) "

3yy /\3 ) 9 (3 ng \3 > 9
o = R = — == — R —-
(55— 0 Reln)) g7+ (5% - W) Relwn)) 517
The ideal I is the kernel of the evaluation in (j1, j2) with values in a field of
meromorphic function, thus it is prime. From geometric triviality, the subfield

of constants of F' = Frac(L/I) with respect to the derivation D®) is C.
We claim that I is stable under the diagonal action of psly.

The algebra L/I is an algebraic extension of both fields K (y1;y;;v]) and
K (y2;95;v5), and as usual, Dy, Xi, Hy, Y1, D2, X9, Ha, Yo and their “verti-
calization” will also denote their unique extensions to L/I.

LEMMA 5.11. On L/I we have Dy = D®) = D,.

Proof. Restrict the derivation D) of L /I to its subalgebra L. The def-
inition of D®) gives that this restriction is D;. Now, the extension to the
algebraic extension L/I of L; is unique, and then D® = D;. The same
argument gives D® = D,. U
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So we will just write this derivation as D.

LEMMA 5.12. There exists a € C such that, on L/I, X1 = Xo, H} =
Hy +a(X2 — D) and Yy = Ys + a(Hz — tD) + % (X — D).

Proof. Using Fact 5.7, we have that any algebraic relations between j;
and ja (together with derivatives) can be defined over C. Hence [ is generated
by I N C(y1,v,y7) @ Clya, vh,y5). Then, on L/I, both X; and Xa coincide
with % This proves X1 = Xo.

The two triples X{, HY, Y}" and X3, Hy, Yy are two bases of the deriva-
tions of F' = Frac(L/I) over K. Let A be the matrix with coefficient in F'
such that (X7, H{, YY) = (X3, H3,Yy)A. From the bracket with D one gets
0=[D, (X}, H?,Y")] = (X3, H3, Yy )D(A). So the coefficients of A are con-
stant.

Now the two triples are basis of two realizations of psly(C) with the same
structure constants. Then A is an automorphism of the Lie algebra psly(C).
All automorphisms of psly(C) are inner (see [57, Prop. 14.21]), thus there exists
a g € PSLy(C) such that Ad(g) = A. This automorphism fixes X7, hence there
exists a € C such that g = (§¢). Then

(Xf’ Hf’ Ylv) = (ng Hé}’ )/21))

O O =
S = Q2
— wﬁ\,

This proves the lemma. O

In F, yy is an algebraic function over C(¢,y1,y},vy}) satisfying Xa(y2) =
Hy(y2) = Ya(y2) = 0. Hence, using Lemma 5.12, one easily computes that

(5.2) X1(y2) =0,
(5.3) Hi(y2) = —aD(y2),
a2 a
(5.4 Vi) = (~at = 5 ) D) = (14 %) Halwn).

We will prove that this system of partial differential equations over

C(t,y1,9},vy]) has an algebraic solution if and only if @ = 0. For contra-

11
diction, assume not. We expand ys as a Puiseux series in 1/z with z = Zy%;
1

that is, we think of yo as being an element of C(t,y, y})*® <<%>>
y2 =Y At un,05)2
A<n
In the coordinates t¢,y1, ], 2z, one has
o« X1 =4
o Hi=tg — g,

0 g 0 19,
* Vi=755 gy —yos
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o) o) o)
o D=5 — gy +204) 5 — (321 + Br(y)ut) 55
The induced continuous action of X7 on C(t,y1, %)™ << >> gives

(5.5) Xi(y2) = o -

A<n

Equations (5.2) and (5.5) give A, aA* = 0 for all. Then by direct computation
one gets

0A
(5.6) Hi(ya) =Y —1} 3 2,
A<n Y
(5.7) Z tyl 8A>\ — A, —z -
A<n yl
0A
(5.8) D(y ZRP Y1) yiAAN T —i—yla—y)‘z)‘
1
A<n

LEMMA 5.13. If y2 is an algebraic solution of equations (5.2), (5.3) and
(5.4), then Hy(y2) = 0.

Proof. If a = 0, then there is nothing to prove. Assume it is not. We have
already seen that 8A* = 0. Let ¢ € Q be such that A; # 0. One can assume
that ¢ is maximal among the elements ¢’ € ¢+ Z such that Ay # 0. From

DA DA, A .
(5.4), one gets —ty] o = (t+9%) ( vl oy ) and then oyt = 0- Now (5.3) gives

(yi)zg’;}l - %y’lqu = O. This implies ¢ = 0 so that n = 0 and the range of A
1
is —N.

Equation (5.4) can be written as follows: for all k£ € N,

adA ., A
5.4) (k — =k .
GH W SRR

Let kp be the maximal integer such that for all strictly positive k smaller
than ko, A_j = 0. The equality (5.4) (0) gives that A_; does not depend on yj.
Then (5.4) (1) is an equality between a derivative of an algebraic function in
v} and and rational function with a simple pole at 0. This implies that the
latter is identically zero: kg is greater than 2.

Now if ko is finite, then (5.4) (ko — 1) is 32;3’“0 — 0 and (5.4) (ko) is

0A_ -1 A_yg . . . . .
8y,0 = — 0. As a derivative of an algebraic function cannot have sim-
1 1

ple pole, A_j, = 0, which contradicts the existence of k.
Then (5.6) proves the lemma. O
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If a # 0, then Lemma 5.13 and equation (5.3) show that D(y2) = 0. But
the subfield of constants of D in F'is C and ys is not constant. This contradicts
the assumption on a, and one gets a = 0.

Now, on F, X1 = X9, Hi = Ho and Y7 = Y5. These three derivations
are linearly independent and their kernel is denoted by N. Formulas for these
derivations give y; € N and y2 € N.

The sequence of extensions C C N C F' is such that tr.deg.cN > 1,
tr.deg. xyF' > 3 and tr.deg.cF' = 4. Then the transcendence degree of N over C
is 1. This proves that I contains some non-zero P € Clyy, y2|. It is not difficult
to see that P generates I as a D-ideal. ([l

Remark 5.14. Tt is not hard to see that Theorem 5.10 also holds for all gen-
eral Schwarzian equations (') provided that they are strongly minimal (and so
geometrically trivial). Indeed, the above proof did not use the fact that Fuch-
sian groups are involved. In particular, Theorem 5.10 holds if Condition 3.1 is
true of the corresponding Riccati equations.

It now remains to understand the kind of polynomials P € C[yy, yo] that
can occur. Notice that if P(jr(git),jr(g2t)) = 0 gives an algebraic relation
between two solutions jr(git) and jr(gat), then trivially there is an algebraic
relation between jr(t) and jr(gag; 't), namely, P(jr(t), jr(geg; 't)) = 0. So it
suffices to characterize interalgebraicity with jp(t).

LEMMA 5.15. For g1 ¢ Comm(I"), jr(t) is algebraically independent from
Jr(gt) over C.

Proof. Let g ¢ Comm(I"). For a contradiction, assume first that P is an
algebraic relation over C holding between jr(t) and jr(gt). Then for all a € H,
we have that P(jr(a),jr(ga)) = 0. For v € T', consider the point by, = 7 - a.
Letting a = b, we have that P(jr(b,), jr(gby)) = 0.

But, since jr(by) = jr(a), we have that P(jr(a),jr(gby)) = 0. Now, by
the I'-invariance of jr, we have that for any v1 € I'; P(jr(ma), jr(y197a)) = 0.
But jr(via) = jr(a), so we have that

P(jr(a), jr(mgya)) =0

for all 71, € T'. However, jr is precisely I'-invariant, and for g ¢ Comm(T),
there are infinitely many left coset representatives of I' among the double coset
['gI". Then there are infinitely many distinct points y for which P(jr(a),y) =0
holds, contradicting the fact that P = 0 gives an algebraic relation. ([

LEMMA 5.16 ([60, §7.2]). For g € Comm(T"), jr(t) is algebraically depen-
dent with jr(gt) over C.

Definition 5.17. By Lemma 5.16, when g € Comm(I"), there is an irre-
ducible polynomial ¥;(z,y) € Clz,y] such that W5(jr(t), jr(gt)) = 0. We call
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Vs a I'-special polynomial and the zero set of such a polynomial a I'-special
curve.

Now from Theorems 2.12 and 5.10 and Lemmas 5.15 and 5.16, one gets
the weak form of the Ax-Lindemann-Weierstrass Theorems 2.13 and 2.14.

Theorem 5.18. Let K be a differential extension of ((C(t),%), and let
Jr(git),...,jr(gnt) be distinct solutions of the Schwarzian equation (x) that
are not algebraic over K nor pairwise related by I'-special polynomials. Then
the 3n functions

are algebraically independent over K.

Proof. For contradiction, assume that the 3n functions

gr(git), ir(git), ji(git), - - ., r(gnt), jr(gnt), i1 (gnt)

are algebraically dependent over K. Define the field K as

K =K (jr(g2t), jr(g2t), ji(gat), - - -, r(gnt), jr(gnt), i (gnt))
=K (jr(gat), ..., jr(gnt)) -

By strong minimality of equation (%), it must be that jr(git) € K%, and by
geometric triviality of (%), we have that

jr(git) € K (jr(git))™®

for some ¢ = 2,...,n. Using Theorem 5.10 we get that

jr(git) € C(jr(git))™®
and so
jr(t) € C(ir(gigy 't))™e.

Now using Lemma 5.15, it must be the case that g = gigfl € Comm(I"). So
for the I'-special polynomial ¥y, we get

5(ir (1), jr(gi97 't)) = 0
and hence
W5(ir(g1t), jr(git)) = 0.

This contradicts our assumption that jr(git) and jr(g;t) are not related by
any I'-special polynomials. O
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6. Orthogonality and the Ax-Lindemann-Weierstrass theorem

In the previous sections, we have understood the structure of the solution
set of

Sa(y)+ ) Rir(y) =0

dt

Define
(6.1) Xr 4 (y) =S4 (y) + () R (y).

In this section, we consider equations of the form x. a4 (y) = a for a an element
1 dt
in some differential field extension of Q, and we produce a similar analysis.

6.1. Strong minimality and algebraic relations on other fibers. First, we
prove the solution set of the equation Xr 4 (y) = a is strongly minimal and
characterize the algebraic relations between solutions. Essentially, the analysis
from [12, §5.1] adapts to this case, but for the sake of completeness, we will
provide a brief explanation here.

Let a € K be an element in some differential field extension of Q. By
Seidenberg’s embedding theorem, we can, without loss of generality, assume
a = a(t) is given by a meromorphic function over some domain U, and the
derivation is given by %. After sufficiently shrinking the domain, there is
some meromorphic function a(t) satisfying S 4 (@) = a such that

Xr 2 (G (a() = a(t).

The following lemma follows by the Schwarzian chain rule and is nearly
identical to [12, Lemma 5.1]:

LEMMA 6.1. Let K be a differentially closed %—ﬁeld containing a. There
ezists 0 € K% such that xrs(y) = 0.

Proof. The equation S 4 (a) = a, with unknown a, can be considered as
dt

a differential equation over C(a). By Seidenberg’s theorem this field can be
assumed to be a field of meromorphic functions on some domain U C C, and
by the usual Cauchy theorem, one can build a solution, holomorphic on some
domain U’ C U.

By the differential Nullstellensatz there exists a € K a solution of S 4 (a)=a.

Then 0 = 54 0
THEOREM 6.2. The sets defined by XF,%(y) = a are strongly minimal and

geometrically trivial. Ifaq, ..., ay satisfy XF’%(ai) = a and are dependent, then

there exist 1,7 < n and a I'-special polynomial P such that P(a;, a;) = 0.

The proof of Theorem 6.2 is quite similar to that of [12, Prop. 5.2], but
we include it here for completeness.
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Proof. We first explain why Xr, 4 (y) = a is strongly minimal; it suffices
to show that over some differentially closed field that contains the coefficients
of the equation, every differentially constructible set is finite or cofinite. Using
properties of differentially closed fields, one can find a in K as above.

By Lemma 6.1, K is a 0-differential field, and the sets Xr’%(y) = a and

xr,0(y) = 0 coincide. Now strong minimality follows by Theorem 3.2 and the
fact that %—differentially constructible sets are J-differentially constructible
(over K).

Algebraic dependencies among elements of the set Xr, 4 (y) = a give al-
gebraic dependencies among elements of the set xra(y) = 0, and thus by
Theorem 5.18 must be given by I'-special polynomials. U

The final piece of our analysis of the fibers of y shows that there are no
algebraic relations between different fibers.

THEOREM 6.3. For a # b, the strongly minimal sets defined by xp 4 (y) =
Tdt
a and by xp a (y) = b are orthogonal.
rdt

Theorem 6.3 is more general than [12, Th. 5.4], but the proof there cannot
be adapted to the case of non-arithmetic fuchsian groups.

Proof. Throughout, we respectively use .# (U) and D(p,r) for the field of
meromorphic functions on a domain U C C, and the open complex disk cen-
tered at p € C with radius r. As both Xgld (a) and X;1d (b) are strongly min-

s vt
imal and geometrically trivial, if Xp li(a) e Xp li(b), then there is a finite-to-
1 dt 1 dt
finite correspondence between the sets, defined over Q(a, b). Using Seidenberg’s

embedding theorem, we regard a,b as meromorphic functions on a domain
U C C. Recall that @ denotes a meromorphic function such that S (@) = a.
dt

The function b is defined similarly.

Using the holomorphic inverse function theorem, we claim that without
loss of generality, it is enough to prove the result for the case a = 0. Indeed,
since jr(a(t)) is interalgebraic with jr(gb(t)) for some g € GLy(C), we have
that jr(t) is interalgebraic with jr(gb(a~'(t)). (Since b is defined up to com-
position with linear fractional transformations, we can assume that there is a
common regular point for a and b and work locally around this point.) Letting
t=boa'andc= S%(é), we see that Xgli(O) ya leli(c), and by geometric
triviality this occurs over Q(c). K i

So we assume that a = 0. Let p be a regular point for E(t), and let
D; = D(p, €) be a disc of regular points of b(t). Also let v be a linear fractional
transformation sending Dy = D(p, 2€) to H.
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Since XE}(O) L X;,ldl(b)’ we have that for some g € GL2(C), the solution

Jr(gb(t)) is algebraic over Q(b, jr(vt)) C A (D1)(jrov, jrov, jroy) C A (D).
But notice that for any domain U such that Dy C U C Dy, if jp(gb(t)) is
algebraic over .Z(U), then jr(vt) will also be algebraic over .#Z(U). This
follows from the fact that .#(D;) C .#(U), and jr(gh(t)) is interalgebraic
with jr(yt) over Q (b) C .#(D;). But jr(t) cannot be extended algebraically
on a neighborhood of H, hence U = Ds.

The disc Dy is thus the maximal among domains U such that jr(gb(t))
is algebraic over .#(U). But such a domain satisfies gb(IDy) = H; that is, the
image of Dy by the regular holomorphic map b is the disc g~'H. A corollary
of Schwarz’s lemma gives that biholomorphisms from a disc to a disc are re-
strictions of homographies. Hence b is an homography h € PSLs(C) and so
b=0. O

We can finally turn to the proof of the Ax-Lindemann-Weierstrass theo-
rem 2.16.

Proof of Theorem 2.16. Recall that V' C A™, and for each i = 1,...,n,
the variety V is assumed to project dominantly onto A! under projection to
the i*" coordinate. Thus, the i*" coordinate function is non-constant, and it
is possible to equip the field generated by the ™" coordinate functions with
various differential structures, which will be essential to the technique in our
proof.

LEMMA 6.4. There is a derivation 6 on C(V') such that for each of the
coordinate functions t; for i =1,...,n, we have §(t;) # 0.

Proof. Let z1,...,z; be a transcendence basis of C(V) over C, and let
ai,...,a be Q-linearly independent complex numbers. As C(V) is an al-
gebraic extension of C(z1,...,2), the derivation 6 = >, aizia%i extends a
derivation of C(V') and the field of constants in C(V') is an algebraic extension
of the field of constant in C(z1,...,2;). The latter is C. As the projection of
V on the i coordinate is dominant, §(t;) # 0. O

The transcendence degree over C(V') of the 3n functions

jr(tl)vjll"(tl)7jf((tl)v cee 7.7.F(tn)a.j1,"(tn)7.jf{(tn)

is identical to that of the 3n functions

Jr(t1), 8(jr(t1)), 0% (jr(t1)), - .- Jr (ta), 6 (i (ta)), 0% (Gr (tn))-

Now, for any t;, since jr(t;) is not an algebraic function, it follows by
strong minimality that jp(¢;) is a generic solution to a J-differential equation
of the form xr 5(y) = a; with a; = S5(t;) € C(V).
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If the 3n functions are not algebraically independent, then there exist i, j
such that the functions

3(t:), 003 (t:)), 6% (3 (t:)), 4 (t5), 6(j(t5)), 6% (3 (t;))

are algebraically dependent over K, the d-field extension of C(V') generated by
j(t) for those k in some subset of {1,...,n}\{4,j}. Moreover one can choose®
K such that j(t;) and j(t;) are not algebraic over K.

But then by strong minimality of the equations xr 5(y) =a; and xr5(y) =a;
(Theorem 6.2), there is a finite-to-finite correspondence between xrs(y) = a;
and xrs(y) = a; defined over K. By Theorem 6.3, it must be that a; = q;
and t; and t; are I'-geodesically dependent — a contradiction. ([

6.2. Orthogonality and commutators. In this section, we analyze the al-
gebraic relations between solutions of

(6.2) Sa(y) + (¥)? - Rjp. (y) =0,
(6.3) Sa(y)+ () Ry, (y) =0

when I';y is not necessarily commensurable with I'y. If 'y is commensurable
with I'a, then it is well known that jr, is interalgebraic with jr, over C. More-
over, this is not the whole story: we say that I'; is commensurable with I's in
the wide sense if I'y is commensurable to some conjugate of I's. When such is
the case and T'y is commensurable with g~'T'ag, then again one has that jr, is
interalgebraic with jr, o g over C.

Note that if I' is commensurable with I's in the wide sense, then Comm(I';)
is conjugate to Comm(I'2).

THEOREM 6.5. Suppose that I'1 is not commensurable with I'y in the wide
sense. Then the sets defined by equations (6.2) and (6.3) are orthogonal. In
particular, for any differential field K,

tr.deg. i K (jry (1), jr, (1), Jt, (1), ra (f2), Jr, (F2), Jr, (F2))
= tr.deg. K (jr, (t1). jr, (t1), Jr, (t1))
+ tr.deg. K (jry (t2), Jr, (t2), jr, (t2)) -
Proof. Let Xr, and Xr, be the set defined by equations (6.2) and (6.3)
respectively. Assume for contradiction that Xpr, /£ Xr,. Since Xpr, and Xr,

are trivial strongly minimal sets, we have that non-orthogonality is witnessed
over C (i.e., the sets are non-weakly orthogonal). So for any solution y; € Xr,

8Fix a subset of the coordinates such that there is an algebraic dependence as described
above. Then there is some minimal such set. Picking ¢,j to be any two coordinates of this
minimal set, the subset is the collection of coordinates in the remainder of the minimal set.
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there is a solution ys € Xr, such that y; € C (yg)alg. By invoking Fact 2.3, we
have that jr, (t) € C (jp, (gt))™® for some g € GLy(C). Let us write

P(jfl (t)7jF2 (gt)?j{—‘g (gt)>jg2 (gt)vt) =0

for this algebraic relation over C. For any v € I'y, using the fact that
Jry (mt) = jr, (t), we have that

P(jr, (t), jry (9711), i1, (971t), 31, (971t), 11t) = 0.

So this implies that for any v, € I'y, we get that jr, (£) € C (jr,(g71t))™8. In
particular, C (jr,(gt))*® = C (jr,(gy1t))™® for all 4, € I';. By Theorem 5.18,
it must be the case that gy1g~! € Comm(I's) for all y; € I'y; that is, it must
be that gI'1g~! € Comm(T'y).

Now, to get our contradiction, we consider three cases (without loss of
generality):

(1) Assume I'y is arithmetic and 'y is nonarithmetic. In this case, xr, is
not Wo-categorical, while xp, is Ng-categorical. (This follows from Theo-
rem 5.18.) This case could also be handled in a more elementary manner
similar to our technique in the third case.

(2) Assume that both I';,I'y are arithmetic groups. We have, by the above

1

arguments, that gI';g~" is contained in Comm(I's). We will be done if we

show that ¢gI';g~! and I's are commensurable in the strict sense. This
follows by arguments of [30, p. 4], where the following fact is shown: for
any two arithmetic Fuchsian groups G and G, if G is contained in the
commensurator of Go, then G1 and G5 are commensurable in the strict
sense.

(3) Assume that both I'y and I'y are non-arithmetic. By the above argument,
we have that gI';g~! < Comm(I'z) for some g € GL2(C). By a symmetric
argument, we have some h € GLy(C) such that hI';h~! < Comm(T).
Replacing one of I'; with a suitable conjugate, we may assume that I'; <
Comm(T'y) and 'y < Comm(T'y). From this, we will show that I'; and T’y
are commensurable. By Margulis’ Theorem, I'; is finite index in Comm(T;).
We need only show that I'y is finite index in Comm(I'y).

We have that I'y is contained in Comm(I'2), I'; contains only finitely
many left coset representatives of I'y. Since I'; is finite index in its own
commensurator, the conclusion follows. O

Remark 6.6. The following stronger result should hold: The sets defined
by Xp, 4 (y) = a1 and by Xr, 4 (y) = ag are orthogonal if I'; is not commen-
Tdt T dt
surable with I's in the wide sense. However, we have not been able to prove it
yet.
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7. Effective finiteness results around the André-Pink conjecture

The André-Pink conjecture predicts that when W is an algebraic subva-
riety of a Shimura variety and S is a Hecke orbit, if W N S is Zariski dense
in W, then W is weakly special. For details, definitions, and proofs of certain
special cases of the conjecture, see [39], [40], [13].

In the setting of the present paper the conjecture concerns the intersection
of an algebraic variety W C A" with the image, under jr applied to each
coordinate, of the orbit under Comm(I")" of some point in a € H.

Given a Fuchsian group I' and a point a € C, we denote, by Isor(a), the
collection of points b € C such that P(a,b) = 0 for some I'-special polyno-
mial P. Equivalently, for some (all) &, b € H such that jr(a) = a and jr(b) = b,
there is 4 € Comm(I") such that va = b.

Given a Fuchsian group I' and a point a = (aq,...,a,) € A™(C), let
Isor(a) denote the product of the orbits of the points a, ..., a, under I'-special
polynomials; that is,

Isor(a) = H Isor(a;).
i=1

We call a polynomial p(z1,...,2,) (I')-(a1, ..., an)-special if

(1) p(z) = x; — b; where b; € Isor(a); or
(2) for some 4,7, Isor(a;) = Isor(a;), and p(z) is a Comm(I")-special polyno-

mial in x;, z;.

An irreducible subvariety of C™ will be called (I')-(aq, ..., ay)-special if it
is given by a finite conjunction of (I')-(aq,...,a,)-special polynomials. If an
irreducible variety V' is (I')-(ai,...,a,)-special, then it follows that V has a
Zariski dense set of points from Isop(a). Our first result of this section shows
that the converse holds, at least when a is a tuple of transcendental numbers
(perhaps with algebraic relations between them).

THEOREM 7.1. Fiz a complex algebraic variety V- C A™(C), a genus zero
Fuchsian group T of the first kind, and a point a = (ay,...,a,) € A™(C) such
that for all but at most one i € {1,...,n}, a; ¢ Q8. Then V N Isor(d)zar is a
finite union of (I')-(a1, ..., an)-special varieties.

Proof. The (perhaps reducible) variety V N ISOF(EL)Zar consists of finitely
many components Wi, ..., Wy, and so we need only show that the varieties
W; are (I')-(ay,...,an)-special. Working component by component, it suffices
to show that for an arbitrary irreducible variety V, if Isor(a) is Zariski dense
in V, then V is (I')-(ay, . . ., an)-special.

Without loss of generality, assume that all of the coordinates of @, except
perhaps ay, are transcendental over Q. We also assume a; € Q*2 without loss
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of generality — otherwise just ignore arguments about this coordinate in the
proof.

Embed Q(ag,...,a,) into the field of meromorphic functions on some
connected subset of H such that ao,...,a, are non-constant.

Let ag,...,a, be as in the proof of Theorem 6.2 — that is, jr,(@;) = a;
for ¢ = 2,...,n. In the differential closure K of the field generated by the a;
over Q we have, by Theorem 6.2, that

{z € K|xr(x) = xr(a;)} = Isor(a;),

so xr(a;) = xr(a;) if and only if Isor(a;) = Isor(a;).

Consider the collection of ¢ € {1,...,n} such that V projects dominantly
onto the coordinate corresponding to x;. Then if Isor(a) is dense in V, and if
we let bo, ..., b, be a collection of generic solutions of xr(b;) = xr(a;) and let
b1 be a generic constant, then we have that the tuple b is dependent over C,
but as bs,..., b, satisfy equations which are strongly minimal and trivial, it
must be that two of the coordinates are non-orthogonal. But now we are done,
since all instances of non-orthogonality are given by Theorem 6.2, since none
of the coordinates 2, ...,n can be non-orthogonal to by, a constant. ([

Remark 7.2. The assumption in Theorem 7.1 that all but at most one
of the elements in the tuple a are transcendental is an inherent restriction of
the method we employ, which is similar to the technique employed in various
applications of differential algebra to diophantine problems. We replace an
arithmetic (discrete) object by the solution to a system of differential equations,
then reduce the general case to an analytic statement using a strong version
of Seidenberg’s embedding theorem. Generally speaking, the technique works
when the discrete set satisfies some interesting differential equation, which one
is able to understand. But the only derivation on Q®# is the trivial one, and so
the above strategy cannot work when more than one coordinates are in Q8.
For other instances of applications of this general idea, see [15], [17], [55], [8].

It would be interesting to see if the methods here might be combined with
methods solving other special cases of the conjecture (e.g., [39]) to remove the
transcendence restrictions of Theorem 7.1.

Remark 7.3. The technique by which we prove Theorem 7.1 has natural
limitations described in Remark 7.2, but it also has an interesting natural ad-
vantage over other techniques. Because we replace an arithmetic object, whose
definition is very non-uniform, with a differential algebraic variety, results from
differential algebraic geometry can be used to give effective bounds the degree
of the Zariski-closure of the solutions set.

A general purpose Bezout-type theorem for algebraic differential equations
(generalizing a theorem of Hrushovski and Pillay) was established in [11]. In
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Eth

what follows, 70A™ denotes the ¢""-prolongation space of A", and for a differ-

ential field K, we define
(X,S\T)*K)={aec X(K): (a,d,...,a") e S\ T(K)}.

THEOREM 7.4. Let X be a closed subvariety of A", with dim(X) = m,
and let S, T be closed subvarieties (not necessarily irreducible) of T,A™ for
some £ € N. Then the degree of the Zariski closure of (X, S\ T)*(C) is at most
deg(X)2™ deg(S)2™ =1, In particular, if (X,S\ T)¥(C) is a finite set, this
expression bounds the number of points in that set.

Next, we aim to put our differential relations in a form such that we may
apply Theorem 7.4. Recall our Schwarzian differential equation:

(%) Sa(y)+ W) Ri(y) =0,
where S (y) = % — 3 (33’/—,,1)2 denotes the Schwarzian derivative (' = 4) and

R;. € C(y) depends on the choice of jr. For the purposes of this section, all
that matters is the degree of the rational function R;.. (The coefficients, which
are complex numbers, will not be important in stating or proving our results.)
If the I'-action on H has a fundamental half domain given by a r-sided polygon
P (note that this is the case for any Fuchsian group of the first kind as r is
equal to the number of generators of I' [21]), then

r 2

— o2 LA
Ri) =33 o+ Y
1=1

=1 (y_az y_az"

where the coefficients are complex numbers depending on specific character-
istics of the domain. The crucial point for our results is that the degree of
Rj. (by which we mean the maximum of the degree of the numerator and the
denominator) is given by 2r, where r is the number of generators of T

Clearing the denominator of the rational function and the Schwarzian in
equation (%), we obtain

=1
(Q()) +(y)* %}: (t-a) [[ (v—a)?
i=1 jelrl.i#i
+> (Aily—a) [ w—a)
=1 jeirl it

As a polynomial, the previous equation has degree 2r + 2.
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THEOREM 7.5. Fiz a complex algebraic variety V-C A™(C), a genus zero
Fuchsian group T of the first kind, and a point a = (ay,...,a,) € A™(C) such
that for alli € {1,...,n}, a; ¢ Q¥8. Then V N ISOF(EL)Zar is a finite union of
(D)-(ay, ..., an)-special varieties, and the sum of the degrees of the varieties in
this union s at most

((2r +2)" - deg(V))2™" 1.

Proof. We need only put the equations appearing in Theorem 7.1 in a
form suitable to apply Theorem 7.4. We can write the Schwarzian differential
equations as V3'(S) on each coordinate, where S is the locus of (Q(%)) in
73(A1). On each coordinate, this equation has degree 2r, so the intersection of
these relations with V' is a variety in 73(A™) of degree at most (2r+2)"™ deg(V).
Now the degree bound follows from Theorem 7.4 with X = A", [ =3, and V
as given above. O

Remark 7.6. One can also establish (by the same means as in the pre-
vious proof) a version of Theorem 7.5 with one coordinate algebraic rather
than transcendental. (The bound is slightly better in this case.) The bounds
of Theorem 7.5 can also be improved (using more elaborate arguments) by
applying the results of [5], a process carried out in [5] in the case that I" is the
modular group.

Appendix A. Strong minimality
for the special case of triangle groups

In this appendix, we discuss an alternate method of proving strong min-
imality of the Schwarzian equation in the special case of triangle groups. As
before, we assume that I' is a Fuchsian group of first kind and of genus zero.
The group I is said to be a Fuchsian triangle group of type (k, I, m) if its sig-
nature is (0; k,1,m) (see Section 2). Without loss of generality we will always
assume that 2 < k <1 <m < co. We write I'3 ,,) for the Fuchsian triangle
group of type (k,l,m).

The fundamental domain in H of I'(y;,,) is the union of a hyperbolic
triangle with angles 7, 7 and - at the vertices v, v and vy, respectively,
together with its image via hyperbolic reflection of one side connecting the
vertices. Notice that since k, [, m relates to the angle of an hyperbolic triangle,
if I'(3.1,m) 1s a triangle group, then

1 1 1 1

% + 7 + E < 1.
Also, the vertices v, v; and v, are the fixed points of the generators g1, go
and g3 respectively.



758 G. CASALE, J. FREITAG, and J. NAGLOO

Definition A.1. The function j ; ) Will denote the (unique) Hauptmodul
Lk gm) \Hrg, = P!(C) sending vy, v;, v to 1, 0, oo respectively.

With this definition (cf. [I, Ch. 5]) we have that j ;) satisfies the
Schwarzian equation (%) with
1—072 1-k2 k2402-m2-1
Al R; y) = + +
A Riwam W) = =5+ y(y—1)
Notice that with Definition A.1, the Hauptmodul js 3 ) for PSLa(Z) is not the
classical j-funtion. Rather, one has that j = 1728553 o) (see Example 2.2).

Finally let us mention that there is a full classification, up to PSLa(R)-
conjugation, of the arithmetic triangle groups.

Fact A.2. Up to PSLa(R)-conjugation, there are finitely many arithmetic
triangle groups; 76 cocompact and nine non-cocompact [61]. Among these,
there are 19 distinct commensurability classes represented [62].

In the special case of triangle groups, proving that the Riccati equation
(4.4) has no algebraic solutions (and thus establishing the strong minimality of
the associated order three non-linear Schwarzian differential equations) can be
accomplished without any appeal to Picard-Vesiot theory but instead by using
classical work around the hypergeometric equation. Already, in [37, p. 601],
Nishioka shows that equation (4.5) has no algebraic solutions in the case the
I is a cocompact triangle group (which corresponds to the case that none of
k,l,m are oco). Hence Condition 3.1, and thus Theorem 3.2, holds in the case
of cocompact triangle groups. We will, via a very similar argument, show the
same result holds in the case that I' is not cocompact. To emphasize, these
results are a special case of our general result on Fuchsian groups, but we feel
their inclusion is worthwhile in part because the method, which deals more
directly with the order two linear equation (4.1) and Riccati equation (4.5),
might generalize to Schwarzian equations of the form of equation (') that do
not necessarily come from a group action of I' on H. This restriction appears
to be more inherent in our main approach of the previous section.

Let
(A.2) A= %
1
1
(A4) UV = E,

where the integers 2 < k <1 < m < oo are as above. We have already seen
A p+v < 1. Now let «, 8 and v be any complex numbers such that, A = 1—-,
u=y—a—pF,and v=a—f.
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Now, we know that the second order equation (4.1) corresponding to equa-
tion (%) with rational function (A.1) (equation (5) of [37]) is reducible if and
only if one of «, 8,7 — a,y — 8 is an integer. Since [37] covers the cocompact
case, we can assume without loss of generality that m = oo, equivalently v = 0.
Thus, in the above notation, a = 8. Now,

In this case, by the triangle requirement, % + % < 1, so « is never an integer.
Further, we have

This quantity is never an integer, since %—i—% < 1. Thus, in the non-cocompact
case, we have that the corresponding equation (4.1) is always irreducible,
which, by the correspondence explained in Section 4 implies that there are
no rational solutions to equation (4.4) in this case.

Now, under the assumption of irreducibility of equation (4.1), we have
that there is an algebraic (but irrational) solution of (4.4) if and only if two
of A\ — %, w— %, v— % are integers [29, pp. 96-100]. This is impossible for any
triangle group as at most one of these is an integer as long as A+ u+v < 1.

Thus, we have shown, in a more direct way, that Condition 3.1 and thus

Theorem 3.2 also holds in the case of non-cocompact triangle groups.

Remark A.3. At first glance the above arguments only seem to show that
the differential equations for the unformizers j ;) are strongly minimal.
However, all other uniformizers are rational functions (over C) of the j ; m)’s.
From this, strong minimality follows for the other equations as well.
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