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Ax-Lindemann-Weierstrass with derivatives
and the genus 0 Fuchsian groups

By Guy Casale, James Freitag, and Joel Nagloo

To Keiji Nishioka on his retirement.

Abstract

We prove the Ax-Lindemann-Weierstrass theorem with derivatives for

the uniformizing functions of genus zero Fuchsian groups of the first kind.

Our proof relies on differential Galois theory, monodromy of linear differen-

tial equations, the study of algebraic and Liouvillian solutions, differential

algebraic work of Nishioka towards the Painlevé irreducibility of certain

Schwarzian equations, and considerable machinery from the model theory

of differentially closed fields.

Our techniques allow for certain generalizations of the Ax-Lindemann-

Weierstrass theorem that have interesting consequences. In particular, we

apply our results to give a complete proof of an assertion of Painlevé (1895).

We also answer certain cases of the André-Pink conjecture, namely, in the

case of orbits of commensurators of Fuchsian groups.

1. Introduction

In this paper our central work is to prove a series of functional tran-

scendence results for the automorphic functions jΓ associated with a Fuchsian

group Γ of genus 0. We will also refer to the automorphic function jΓ as a

Hauptmodul or uniformizing function of Γ. Our general results are most easily

expressed in the language of model theory and algebraic differential equations,

but a special case of our functional transcendence results is what has come to

be called the Ax-Lindemann-Weierstrass theorem with derivatives for jΓ:

Theorem 1.1. Let C(V ) be an algebraic function field, where V ⊂ An is

an irreducible algebraic variety defined over C. Let

t1, . . . , tn ∈ C(V )
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be geodesically independent1 and take values in the upper half complex plane H
at some P ∈ V . Then the 3n-functions

jΓ(t1), j′Γ(t1), j′′Γ(t1), . . . , jΓ(tn), j′Γ(tn), j′′Γ(tn)

(considered as functions on V (C) locally near P ) are algebraically independent

over C(V ).

One can also describe Theorem 1.1 in more geometric terms. Let W ⊂
An(C) be an algebraic variety that has a non-empty intersection with Hn.

Theorem 1.1 precisely characterizes those varieties W whose image under the

automorphic function (and derivatives) applied to each coordinate

j̄Γ : (t1, . . . , tn) 7→ (jΓ(t1), j′Γ(t1), j′′Γ(t1), . . . , jΓ(tn), j′Γ(tn), j′′Γ(tn))

is contained in a proper algebraic subvariety of C3n. Intuitively, the function

jΓ is highly transcendental, so the varieties obtained in this way should be

restricted to a very special class. Indeed, Theorem 1.1 says that if j̄Γ(W ) is an

algebraic variety, then W must have been defined by instances of relation of the

form ti = γtj , where γ is an element of the commensurator of Γ, giving a very

restrictive (countable) class of complex varieties coming from the image of j̄Γ.

As we will explain in additional detail below, our methods also allow for

more general results, which are most naturally stated in the language of model

theory. For instance, statements incorporating other transcendental functions

on additional coordinates (such as Weierstrass ℘-functions and exponential

functions on semi-abelian varieties) similar to Theorem 1.6 of [48] will follow

from our general result.

Theorem 1.1 is a generalization of Theorem 1.6 of [48] and Theorem 1.1

[49], in which Pila established the special case with one group Γ = PSL2(Z)

(in [48] without derivatives and later in [49] with derivatives).

Theorem 1.1 also overlaps non-trivially with a number of recent results,

which we detail next. Note that most of the following results do not involve

the derivatives of the automorphic functions in question and are mainly con-

cerned with arithmetic groups. Pila and Tsimerman [50] generalized Theorem

1.6 of [48] to the uniformizing functions associated with the moduli spaces

of higher dimensional abelian varieties. (Their result specializes to Theo-

rem 1.6 of [48] for purposes of comparing with Theorem 1.1.) In a different

direction, Pila and Tsimerman [51] generalized Theorem 1.6 of [48] to an Ax-

Schanuel type statement for the j-function. In [64], Ullmo and Yafaev prove an

Ax-Lindemann-Weierstrass result for the uniformizing functions of cocompact

Shimura varieties (without derivatives), and so a statement of Theorem 1.1

1We say that t1, . . . , tn are geodesically independent if ti is non-constant for i = 1, . . . , n

and there are no relations of the form ti = γtj for i 6= j, i, j ∈ {1, . . . , n} and γ is an element

of the commensurator of Γ.
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without derivatives in the case that Γ is arithmetic and cocompact is a con-

sequence of their work. Later, Klinger, Ullmo, and Yafaev [22] removed the

assumption of cocompactness, and Gao [14] generalized the result to mixed

Shimura varieties. Finally, Mok, Pila, and Tsimerman [32] have established

the (more general) Ax-Schanuel theorem with derivatives for the uniformizing

function of a Shimura variety.

The previous Ax-Lindemann-Weiestrass (ALW for short) results discussed

above employ various techniques from group theory, complex variables, and

number theory, but each one also shares a common element in their approach:

a tool called o-minimality originating in model theory. The theory of o-mini-

mality is a natural generalization of real algebraic geometry to include certain

non-oscillatory transcendental functions. It was developed starting in the 1980s

by model theorists [69], but in the early 2000s, o-minimality was connected with

various aspects of number theory in part through the work of Pila and Wilkie

[46] and Peterzil and Starchenko [42], [45], [44]. The counting theorem of Pila-

Wilkie has precursors coming from number theory before the connection to

o-minimality was made. See, for instance, the work of Bombieri and Pila [6]

and the related manuscript of Sarnak [59]. Diophantine properties of definable

sets in o-minimal structures had also been previously investigated by Wilkie

[72]. However, following the Pila-Wilkie theorem, there has been an explosion

of work. In [52], the Pila-Wilkie theorem was employed by Pila and Zannier

to give a new proof of the Manin-Mumford conjecture. The strategy was

immediately taken up by Masser and Zannier [28] to prove a a special case of

Pink’s relative Manin-Mumford conjecture, while Pila [47] gave new proofs of

results of a Manin-Mumford-André-Oort flavor.

The common line of reasoning in the results mentioned in the previous

several paragraphs is to embed the problem in an o-minimal context by prov-

ing that a certain analytic function (restricted to an appropriate fundamental

domain) is interpretable in Ran,exp, an o-minimal structure in which the de-

finable sets are given by inequalities built from the algebraic functions, the

exponential function, and real analytic functions restricted to bounded sets.

Following this, variants of the Pila-Zannier strategy or definable versions of re-

sults from complex geometry [43] are used to detect and characterize algebraic

relations.

Our approach is completely different, and does not employ the theory of

o-minimality at all. Rather, our proof relies on differential Galois theory, mon-

odromy, the study of algebraic and Liouvillian solutions to linear differential

equations, differential algebraic work of Nishioka towards the Painlevé irre-

ducibility of certain Schwarzian equations, and considerable machinery from

the model theory of differentially closed fields.
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Recently there has been a surge in interest around functional transcen-

dence statements of the type in Theorem 1.1, in part due to their connection

with a class of problems from number theory called special points conjectures

or problems of unlikely intersections ; in [48] the Ax-Lindemann-Weierstrass

theorem is central to the proof of the André-Oort conjecture for Cn. Each of

the other functional transcendence results mentioned above can be applied in

certain special points settings. For instance, in [10] Daw and Ren give appli-

cations of the Ax-Schanuel conjecture proved in [32]. Our functional transcen-

dence results are no exception — we apply them to certain cases of a special

points conjecture called the André-Pink conjecture, following Orr [39], [40].

Numerous variations on the conjecture are possible (depending for instance,

on the definition of Hecke-orbits one takes), but we will describe the specific

setup next.

Let V be a connected Shimura variety with (connected) Shimura datum

(G,X+) such that V = Γ \X+ for some congruence subgroup Γ ⊂ G(Q) that

stabilizesX+. The André-Pink conjecture predicts that when W is an algebraic

subvariety of V and S is the orbit of the commensurator of Γ, Comm(Γ), on

a point ā = (a1, . . . , an), if W ∩ S is Zariski dense in W , then W is of a very

restrictive form, which we will refer to as Γ-special, which we describe next.

Let jΓ : X+ → V be a uniformization map. When γ ∈ Comm(Γ), it turns

out that (jΓ(t), jΓ(γt)) are algebraically dependent and lie on an irreducible

curve given by the vanishing of a polynomial in two variables, which we will

refer to as a Γ-special polynomial. The Γ-special varieties are intersections of

zero sets of Γ-special polynomials and relations of the form xi = bi, where bi
is in the Comm(Γ)-orbit of ai. Orr [39], [40] proved various special cases of

the conjecture (for instance, when W is an algebraic curve). In [12] Freitag

and Scanlon used Pila’s ALW with derivatives theorem from [49] to prove the

André-Pink conjecture when ā is assumed to be a transcendental point and Γ

is commensurable with PSL2(Z). In this paper, we generalize that result to

allow for an arbitrary Fuchsian group Γ.

The central idea employed is a beautiful technique that has its origins in

the work of Hrushovski [17] and Buium [8]. In order to understand intersections

of algebraic varieties with an arithmetically defined set of points (e.g., torsion

points on an algebraic group, Hecke orbits, etc.), replace the arithmetic set with

a more uniformly defined algebraic object, the solution set of some algebraic

differential differential or difference equation.

We replace our arithmetic objects (the orbits of the commensurators of

some discrete groups, Γ) by the solution sets of certain differential equations

satisfied by the uniformizing functions jΓ. An inherent restriction of the tech-

nique is that it generally only works for diophantine problems in function fields,

hence the assumption that ā is a tuple of transcendentals. In pursuing our
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approach to the André-Pink conjecture, it becomes necessary to prove more

far reaching functional transcendence results than the ALW theorem as stated

above; our results are most naturally phrased in terms of the model theory of

differential fields, one of the main tools we use to establish our results. One of

the chief advantages of this approach is that it leads to an effective solution of

our case of André-Pink; that is, we are able to give bounds on the degree of the

Zariski closure of the intersection of Comm(Γi)-orbits with a variety V , which

depend on algebro-geometric invariants of the variety V . So, for instance, if

the variety V is a non-special curve (or a variety that does not contain a special

curve), we can give a bound on the number of special points contained in the

curve.

At the relevant sections of our paper (e.g., 5) we will give equivalent for-

mulations in algebro-geometric language of the model-theoretic properties we

describe next. We prove that for any Fuchsian group Γ, the set defined by

the differential equation satisfied by the uniformizing function jΓ is strongly

minimal and has geometrically trivial forking geometry. This result generalizes

work of [12], which covers the cases when Γ is commensurable with PSL2(Z). In

particular, our work gives many new examples of geometrically trivial strongly

minimal sets in differentially closed fields. This also establishes an interesting

new connection between two important dividing lines on the logic and group

theory: the differential equation satisfied by jΓ is ℵ0-categorical if and only

if the group Γ is not arithmetic. Further, we characterize all instances of

non-orthogonality between these sets. (Each such instance comes from com-

mensurability of two groups Γ1 and Γ2.) These results also have various in-

teresting consequences related to determining the isomorphism invariants of

differentially closed fields, which we will not explore further in this article.

We should also mention that this work gives a complete proof of an as-

sertion of Painlevé [41, p. 519], concerning the irreducibility of the differential

equations satisfied by jΓ for Γ a Fuchsian group. Irreducibility is closely related

to the strong minimality of a differential equation, a connection pointed out in

detail by Nagloo and Pillay [34]. The original definition of irreducibility applies

to non-linear differential equations and was given by Painlevé [41, pp. 490–

496]. A definition (for functions) using more modern language was given by

Umemura; for instance, see [38, pp. 754–755]. There have been claims (usually

non-specific) that Painlevé’s definition is not completely rigorous. For instance,

see the third paragraph of page 755 of [38] and page 772 of [66]. These claims

seem to originate with Umemura [67], however the only specific complaint with

Painlevé’s definitions that we find there is related to some subtleties around

algebraic and analytic groups (for instance, see pages 3 and 8). Similar points

are made also in [65]. These complaints seem mainly to affect some proofs of

results from [41], but not directly the definition of irreducibility.



726 G. CASALE, J. FREITAG, and J. NAGLOO

In [36] and [37], Nishioka proved a weak form of Painlevé’s assertion;

various techniques from Nihsioka’s paper have inspired our work.

Acknowledgements. G.C and J.N take this opportunity to thank the or-

ganizers of the CIRM meeting ‘‘Algebra, Arithmetic and Combinatorics of

Differential and Difference Equations” in May 2018, where this research col-

laboration started. We also thank the anonymous referees for their comments

and suggestions.

2. The basic theory

2.1. Fuchsian groups and the associated Schwarzian equations. We direct

the reader to [21] and [24] for the basics on Fuchsian groups and the cor-

responding automorphic functions. The appendices of [70] also give a very

detailed introduction to the associated Schwarzian equations.

Let H be the upper half complex plane, and let H := H ∪ P1(R). Recall

that SL2(R) and PSL2(R) act on H (and H) by linear fractional transformation:

for
(
a b
c d

)
∈ SL2(R) and τ ∈ H,Ç

a b

c d

å
· τ =

aτ + b

cτ + d
.

This action yields all the orientation preserving isometries of H.

Let Γ ⊂ PSL2(R) be a Fuchsian group; that is, assume that Γ is a discrete

subgroup of PSL2(R). A point τ ∈ H is said to be a cusp if its stabilizer group

Γτ = {g ∈ Γ : g · τ = τ} has infinite order. We also assume throughout that

Γ is of first kind (i.e., its limit set is P1(R)) and of genus zero2 (i.e., Γ \H can

be compactified to a compact Riemann surface of genus 0; cf. the paragraph

after Example 2.1). For any point τ ∈ H, the group Γτ is finite and cyclic. A

point τ ∈ H is said to be elliptic of order ` ≥ 2 if |Γτ | = `. Our assumptions

on Γ ensure that modulo Γ there are only finitely many orbits under Γ of

elliptic points. If m1, . . . ,mr denotes the orders of the elliptic points as well

as of those of the cusps (which would be ∞’s), then Γ is said to have signature

(0;m1, . . . ,mr). The zero here reflects that Γ has genus 0. The group then has

the following presentation:

Γ = 〈g1, . . . , gr : gm1
1 = · · · = gmrr = g1 · · · gr = I〉 .

When one or more of the mi’s are infinity, one simply removes the relations

containing the infinite mi’s in the above presentation.

2The methods of proof and results of the current article can be generalized with additional

effort to the case of arbitrary genus. This will be tackled in a forthcoming work of the authors

along with D. Blásquez-Sanz around Ax-Schanuel Theorems for Fuchsian functions.
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Example 2.1. PSL2(Z) is a Fuchsian (triangle) group of type (0; 2, 3,∞).

Recall that traditionally we might consider the following generators of SL2(Z):

T =

Ç
1 1

0 1

å
, S =

Ç
0 −1

1 0

å
.

Nonetheless, by setting g1 = −S, g2 = −T−1S and g3 = T one has that

SL2(Z) =
〈
g1, g2, g3 : g2

1 = g3
2 = g1g2g3 = −I

〉
.

Note that PSL2(Z) is obtained from the above using the natural projection

π : SL2(R)→ PSL2(R).

As is well known, Γ acts on the set CΓ of its cusps, and the action of Γ

on HΓ := H ∪ CΓ yields a compact Riemann surface Γ \ HΓ or equivalently a

projective non-singular curve X(Γ), which is of genus zero. The group Γ is said

to be cocompact if CΓ = ∅ — in other words, if the quotient Γ \ H is already

a compact space. By an automorphic function for Γ, we mean a meromorphic

function f on H that is meromorphic at every cusp of Γ and that is invariant

under the action of Γ:

f(g · τ) = f(τ) for all g ∈ Γ and τ ∈ H.

One has that the field of automorphic functions A0(Γ) for Γ (or equivalently

the field of meromorphic functions of Γ\HΓ) is isomorphic to the field C(X(Γ))

of rational functions on X(Γ). By an Hauptmodul or uniformizer jΓ(t) for Γ

we mean an automorphic function for Γ that generates A0(Γ) (and so C(jΓ) '
C(X(Γ))). We will also write jΓ for the biholomorphism Γ \HΓ → P1(C). Let

us point out that the function jΓ is not unique. This follows from the existence

of non-trivial automorphisms of the curve X(Γ). Moreover, it is well known

that the function jΓ is unique once its values at three points have been specified.

The uniformizer jΓ also satisfies a third order ordinary differential equation

of Schwarzian type:

(?) S d
dt

(y) + (y′)2 ·RjΓ(y) = 0,

where S d
dt

(y) =
Ä
y′′

y′

ä′
− 1

2

Ä
y′′

y′

ä2
denotes the Schwarzian derivative (′ = d

dt) and

RjΓ ∈ C(y) depends on the choice of jΓ. Moreover, the “shape” of the function

RjΓ depends on knowing the fundamental half domain for the Γ-action on H.

Let us assume that it is given by a polygon P with r vertices b1, . . . , br and

whose sides are identified by pairs and having internal angles α1π, . . . , αrπ.

Then

RjΓ(y) =
1

2

r∑
i=1

1− α2
i

(y − ai)2
+

r∑
i=1

Ai
y − ai

,

where jΓ(bi) = ai and the Ai’s are real numbers that do not depend on jΓ and

satisfy some very specific algebraic relations (cf. [70, p. 142]).



728 G. CASALE, J. FREITAG, and J. NAGLOO

Example 2.2. A well-known example is Γ = PSL2(Z), and jΓ is the clas-

sical j-function. In this case the equation is given with

Rj(y) =
y2 − 1968y + 2654208

y2(y − 1728)2
;

Γ = PSL2(Z) is an example of a triangle group. In the appendix the case of

the Fuchsian triangle groups is explained in more details. We also direct the

reader to [4], where more examples of uniformizers — beyond those attached

to triangle groups — are studied.

There is a long tradition of functional transcendence results around auto-

morphic functions. For instance, a very weak form of our results was conjec-

tured by Mahler, and answered by Nishioka:

Fact 2.3 ([35]). The Hauptmodul jΓ satisfies no algebraic differential

equation of order two or less over C(t, eut) for any u ∈ C. The same is true

for all Γ-automorphic functions.

Using the Seidenberg’s embedding theorem and the composition rule of

the Schwarzian derivative, we also have

Lemma 2.4 (cf. [12]). Let K be an abstract differential field extension

of C(t) generated by y1, . . . , yn solutions of equation (?). Here C is a finitely

generated subfield of C. Then there are elements g1, . . . , gn ∈ GL2(C) such that

K ∼= C〈t, jΓ(g1t), . . . , jΓ(gnt)〉.

Proof. By Seidenberg’s embedding theorem, we may assume y1, . . . , yn
are meromorphic functions on some domain U contained in H. Since the jΓ
is a non-constant holomorphic function from H to C, there are holomorphic

functions ψi : U → H, such that yi(t) = jΓ(ψi(t)). Repeating the arguments

in [12] — using the composition rule for S d
dt

(y) and the fact that jΓ(ψi(t)) is a

solution of the equation (?) — we get that S d
dt

(ψi(t)) = 0. Hence ψi(t) = git

for some gi ∈ GL2(C). �

Remark 2.5. Note that the g1, . . . , gn are not arbitrary elements of GL2(C).

Indeed, since the yi(t)’s are meromorphic on U⊂H, it must be that gi : U→H.

Also, for each i, from the inverse g−1
i of gi, we have well-defined solutions

jΓ(g−1
i t) and jΓ(gjg

−1
i t) of (?).

In this paper, depending on the context, we will freely alternate between

thinking of solutions of the Schwarzian equation (?) as points in an abstract

differential field or as meromorphic functions of the form jΓ(gt). The latter

form will always mean that g is an element of GL2(C) that maps (a subset of)

H to H.
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2.2. Arithmetic Fuchsian groups. We have already seen one important

dividing line among those Γ, which we consider — namely, whether or not Γ

is cocompact. Another, perhaps even more important (for our work) property

that Γ might possess is that of arithmeticity. We will begin by reviewing some

key definitions. A standard reference for this subsection is [71]. Throughout,

Γ ⊂ PSL2(R) is a Fuchsian group of first kind of genus zero.

Let F be a field of characteristic zero, and let A be a quaternion algebra

over F : a central simple algebra of dimension 4 over F . Since the characteristic

of F is zero, there are elements i and j in A and a, b ∈ F ∗ such that

i2 = a, j2 = b, ij = −ji,

and A = F +Fi+Fj+Fij. As customary, we use the Hilbert symbol notation

A =
Ä
a,b
F

ä
. For α = a0 + a1i + a2j + a3ij ∈ A, we define its conjugation as

α = a0 − a1i − a2j − a3ij ∈ A. Then, the reduced trace tr(α) is defined

to be α + α = 2a0 ∈ F , and the reduced norm n(α) is defined to be αα =

a2
0 − a2

1a− a2
2b+ a2

3ab ∈ F .

Example 2.6. For example, the 2×2 matrices over F is given by M2(F ) =Ä
1,1
F

ä
, and in this case the norm is simply the determinant.

If F equals R or a non-Archimedean local field, then up to isomorphism,

there are only two quaternion algebras: M2(F ) or a division algebra. When F

is a number field and v a place of F , we say that A splits at v if the localization

A⊗F Fv is isomorphic to M2(Fv). Here Fv denotes the completion of F with

respect to v. If, on the other hand, A⊗F Fv is isomorphic to a division algebra,

we say A ramifies at v. It is known that the number of ramified places is finite

and the discriminant of A is defined as the product of the finite ramified places.

Assume now that F is a totally real number field of degree k + 1, and

denote by OF its ring of integers. Assume further that A splits at exactly one

infinite place, that is,

A⊗Q R 'M2(R)×Hk,

where H is Hamilton’s quaternion algebra
Ä
−1,−1

R

ä
. Then, up to conjugation,

there is a unique embedding ρ of A into M2(R). In particular, for any α ∈ A,

one has that n(α) = det(ρ(α)).

Let O be an order in A, namely, a finitely generated OF -module that is

also a ring with unity containing a basis for A; that is, O⊗OF F ' A. Denote

by O1 the norm-one group of O, that is O1 = {α ∈ O : n(α) = 1}. Then the

image ρ(O1) of O1 under ρ is a discrete subgroup of SL2(R). We denote by

Γ(A,O) the projection in PSL2(R) of the group ρ(O1).

Definition 2.7. The group Γ is said to be arithmetic if it is commensurable

with a group of the form Γ(A,O).
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Perhaps the best known example of an arithmetic group is PSL2(Z). Re-

call that two groups Γ1 and Γ2 are commensurable, denoted by Γ1 ∼ Γ2, if

their intersection Γ1 ∩ Γ2 has finite index in both Γ1 and Γ2.

If Γ is arithmetic, then the quotient Γ \ H is called a Shimura curve. In

this article, by abuse of terminology we will refer to Γ\H as a Shimura curve of

genus g if and only if Γ\HΓ is of genus g, and we are interested solely in the case

where g = 0. As is well known, Shimura curves are generalizations of classical

modular curves. We direct the reader to [3] and [63], where the Schwarzian

equations for many examples of these curves are derived and studied.

We now look at the connection between arithmeticity of Γ and existence of

correspondences on P1(C)×P1(C) whose preimage under jΓ is also algebraic

(cf. [31] and [60]). Let Comm(Γ) be the commensurator of Γ, namely,

Comm(Γ) = {g ∈ PSL2(R) : gΓg−1 ∼ Γ}.
By a Comm(Γ)-correspondence on P1(C)×P1(C) we mean a subset of the form

X(ΓgΓ) = {jΓ(τ)× jΓ(g · τ) : τ ∈ HΓ}
where g ∈ Comm(Γ). It turns out that X(ΓgΓ) is an absolutely irreducible

curve and that it depends only on the coset ΓgΓ and not on the choice of g (cf.

[60, Ch. 7]). We suppose that X(ΓgΓ) is given by the equation Ψg̃(X,Y ) =

0, so that Ψg̃(jΓ, jΓ(gt)) = 0. We write g̃ to highlight that the equation

depends on ΓgΓ and not g. With this notation, for g1, g2 ∈ GL2(C), we

more generally say that jΓ(g1t) and jΓ(g2t) are in Comm(Γ)-correspondence if

Ψg̃(jΓ(g1t), jΓ(g2t)) = 0 for some ΓgΓ. One has the following result of Margulis:

Fact 2.8 ([25]). The group Γ is arithmetic if and only if Γ has infi-

nite index in Comm(Γ) and as a result there are infinitely many Comm(Γ)-

correspondences.

The modular polynomials (also known as Hecke correspondences) are the

classical examples (when Γ = PSL2(Z)). Returning to the Schwarzian equa-

tions we see that arithmetic Fuchsian groups of genus 0 give examples of ODE’s

with rich binary relations.

2.3. A touch of Model theory. We end this section by saying a few words

about the concepts in model theory and differential algebra that will be re-

quired in the next sections. We will then be ready to state the main results in

the paper. Throughout, we work in a differentially closed field of characteristic

zero.

Definition 2.9. A definable set Y is said to be strongly minimal if it is

infinite and every definable subset is finite or co-finite.

Remark 2.10. Let Y be defined by an ODE of the form

y(n) = f(t, y, y′, . . . , y(n−1)),
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where f is rational over C(t). (This is of course the case for the sets defined

by the Schwarzian equations.) Then Y is strongly minimal if and only if for

any differential field extension K of C and solution y ∈ Y , tr.deg.KK 〈y〉 = 0

or n.

Strong minimality is fundamental to the model theoretic approach to dif-

ferential algebra (cf. [34]). It is also closely related to the Painlevé notion of

irreducibility of the ODE with respect to classical functions [68]. It turns out

that there is a very general classification of strongly minimal sets in differen-

tially closed fields about which we will say a few more words in Section 5.1.

For now, we only mention the kind of strongly minimal set that is relevant for

equation (?).

Definition 2.11. Let Y be an F -definable strongly minimal set. Then Y is

geometrically trivial if for any differential field extension K of F , and for any

distinct solutions y1, . . . , ym, if the collection consisting of y1, . . . , ym together

with all their derivatives y
(j)
i is algebraically dependent over K, then for some

i < j, yi, yj together with their derivatives are algebraically dependent over K.

So geometric triviality limits the complexity of the structure of the alge-

braic relations on the definable set. However, given such a set, for the results

that we pursue, much greater precision is required. Throughout for simplicity,

we will say that an ODE is strongly minimal and geometrically trivial just in

the case that its solution set is strongly minimal as a definable set. Our first

theorem is the following:

Theorem 2.12. The Schwarzian equation (?) for the Hauptmodul jΓ of a

genus 0 Fuchsian group Γ of first kind is strongly minimal and geometrically

trivial.

We will give the proof in Section 5.1. This result was previously only

known for PSL2(Z) (the j-function; see Example 2.2) as well as for arithmetic

subgroups of PSL2(Z) (cf. [12]). Our proof, which handles all Schwarzian

equations of genus zero Fuchsian functions at once, also is the first that does

not use o-minimality. The first proof for PSL2(Z) (of [12]) relied on the main

result of [49], where Pila employs the same strategy from [48], relying on o-mini-

mality and counting of points of bounded height. Later, [2] also gave a proof

of the special case of PSL2(Z) that relied on the Ax-Schanuel type results of

[51], where again, an o-minimal strategy was employed.

It is worth mentioning that Painlevé [41, p. 519] claimed that strong min-

imality (or irreducibility as he called it) would hold for the equations we con-

sider. In [37], Nishioka proved a very weak form of that conjecture. Neverthe-

less, Nishioka’s paper contains techniques that inspired our own proof.
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We have also obtained a full description of the structure of the definable

sets. One can think of these results as a weak form of the Ax-Lindemann-

Weierstrass theorem with derivatives for Γ.3

Theorem 2.13. Suppose Γ is arithmetic, and suppose jΓ(g1t), . . . , jΓ(gnt)

are distinct solutions of the Schwarzian equation (?) that are pairwise not in

Comm(Γ)-correspondence. Then the 3n functions

jΓ(g1t), j
′
Γ(g1t), j

′′
Γ(g1t), . . . , jΓ(gnt), j

′
Γ(gnt), j

′′
Γ(gnt)

are algebraically independent over C(t).

Theorem 2.14. Suppose that Γ is non-arithmetic. Then there is a k ∈ N
such that if jΓ(g1t), . . . , jΓ(gnt) are distinct solutions of the Schwarzian equa-

tion (?) satisfying

tr.deg.C(t)C 〈t, jΓ(g1t), . . . , jΓ(gnt)〉 = 3n,

then for all other solutions jΓ(gt), except for at most n · k,

tr.deg.C(t)C 〈t, jΓ(g1t), . . . , jΓ(gnt), jΓ(gt)〉 = 3(n+ 1).

So, by the previous two theorems, we have that the set defined by the

Schwarzian equation (?) is ℵ0-categorical if and only if the group Γ is non-

arithmetic. It was a long-standing open problem in the model theory of dif-

ferential fields (recently resolved by [12]) to find a non-ℵ0-categorical geomet-

rically trivial strongly minimal set; the non-existence of such sets was part

of a strategy for certain diophantine problems suggested by Hrushovski [18,

p. 292]. Theorem 2.13 gives many new examples of geometrically trivial non-

ℵ0-categorical equations, and together with Theorem 2.14 also provides an

interesting connection between categoricity and arithmetic groups. We view

the following question as the next major challenge in the classification of geo-

metrically trivial strongly minimal sets in differentially closed fields:

Question 2.15. In DCF0, are there non-ℵ0-categorical strongly minimal

sets that do not arise from arithmetic Fuchsian groups ?4

3The ALW statement we are pursuing allows for characterizing algebraic relations between

functions that do not formally satisfy the same differential equation, but we will use to

Theorems 2.13 and 2.14 to prove our most general results, which imply the pertinent version

of ALW.
4Later in the paper, it will be clear to model theorists that by “arise from” arithmetic

Fuchsian groups, we mean “are non-orthogonal to the differential equation (?) or one of its

other fibers.” An answer to the question is of interest in part because if there were a strong

classification of the geometrically trivial strongly minimal sets in differential fields, some of

the strategy laid out in [18] for certain diophantine problems might be possible.
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Finally let us talk about the full Ax-Lindemann-Weierstrass Theorem with

derivatives for Γ. We closely follow the description of the problem as in [49].

Let V ⊂ An be an irreducible algebraic variety defined over C such that V (C)∩
Hn 6= ∅ and V projects dominantly to each of its coordinates. (Each coordinate

function is non-constant.) Let t1, . . . , tn be the functions on V induced by the

canonical coordinate functions on An. We say that t1, . . . , tn are Γ-geodesically

independent if there are no relations of the form

ti = gtj ,

where i 6= j and g ∈ Comm(Γ) acts by fractional linear transformations.

Theorem 2.16. With the notation (and assumption V (C) ∩ Hn 6= ∅) as

above, suppose that t1, . . . , tn are Γ-geodesically independent. Then the 3n

functions

jΓ(t1), j′Γ(t1), j′′Γ(t1), . . . , jΓ(tn), j′Γ(tn), j′′Γ(tn)

(defined locally) on V (C) are algebraically independent over C(V ).

We will prove Theorem 2.16 in Section 6. Pila [49] had already proved the

result for PSL2(Z). (See also [12] where the same is established for arithmetic

subgroups of PSL2(Z).)

3. A criterion for strong minimality of a general Fuchsian equation

We now aim to give a criterion that can be used to show that the Schwarzian

equation (?) is strongly minimal. This criterion is applicable to Schwarzian

equations in the general sense, namely, to any equation of the form

(?′) S d
dt

(y) + (y′)2 ·R(y) = 0.

So here we do not assume the rational function R to necessarily correspond to

some Hauptmodul. We only require that R is rational over C. By the Riccati

equation attached to (?′) we mean the equation

(??)
du

dy
+ u2 +

1

2
R(y) = 0.

Condition 3.1. The Riccati equation (??) has no solution in C(y)alg.

Theorem 3.2. Let (K, ∂) be any differential field extension of C, and let

us assume that Condition 3.1 holds. If jR is a solution of the Schwarzian

equation (?′), we have that

tr.deg.KK 〈jR〉 = 0 or 3.

In other words, if Condition 3.1 holds, then equation (?′) is strongly minimal.
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Proof. For contradiction, assume that there is a finitely generated dif-

ferential field extension F of C that witnesses non-strong minimality of the

equation (?′) (i.e., an order 1 or 2 F -differential subvariety exists). Through-

out, we write K = F (t) and let jR be a solution of the Schwarzian equation

(?′) such that tr.deg.KK 〈jR〉 = 1 or 2, respectively.5

Furthermore, using Seidenberg’s embedding theorem we can assume that

K is a subfield of M (U), the field of meromorphic functions on an open domain

U ⊂ C, and that jR ∈M (U).

Let P ∈ C[y] be a denominator of the rational function R(y). Let L =

K[y, 1
P (y) , y

′, 1
y′ , y

′′] be the polynomial ring equipped with the derivation

• D = ∂ + y′ ∂∂y + y′′ ∂∂y′ +
Ä

3
2
y′′2

y′ − (y′)3R(y)
ä

∂
∂y′′

making L a universal (K, ∂)-algebra generated by a non-constant solution of

the Schwarzian equation. One also defines an action of psl2(C) by

• X = ∂;

• H = t∂ − y′ ∂∂y′ − 2y′′ ∂∂y′′ ;

• Y = t2

2 ∂ − ty
′ ∂
∂y′ − (2ty′′ + y′) ∂

∂y′′ .

It is easily verified that [X,H] = X, [H,Y ] = Y , [X,Y ] = H. (The basis

X̃ = X, Ỹ = 2Y and H̃ = 2H is a Chevalley basis, i.e., satisfying [X̃, H̃] = 2X̃,

[H̃, Ỹ ] = 2Ỹ , [X̃, Ỹ ] = H̃.) Furthermore, the equalities [D,X] = 0, [D,H ] =

D, [D,Y ] = tD can be easily verified.

When K = C(t), the algebraic group PSL2(C) acts on L by

(3.1) h(t, y, y′, y′′) =

Å
h(t), y,

y′

h′(t)
,

y′′

(h′(t))2
− y′ h

′′(t)

(h′(t))3

ã
,

where h denotes the homography of the projective line associated to an element

h of PSL2(C). For F ∈ L, one defines (h)∗D · F = h ◦ D ◦ h−1(F ) . Direct

computations give that (h)∗D = 1
h′(t)

D. This equality means that the set

of meromorphic solutions of a Schwarzian equation is stable by the action of

PSL2(C) by precomposition. The previously given action of psl2(C) is the

infinitesimal action of PSL2(C).

When K ⊂ M (U), then a fixed element h ∈ PSL2(C) maps L onto an

isomorphic subfield in M (h−1(U)) but the whole group does not act on L.

Now let I ⊂ L be the annihilator of the solution jR and Z be the zero locus of

I ∩O(U)[y, y′, y′′] in U ×C3, where O(U) is the ring of holomorphic functions

on U . We have that Z is an analytic variety, affine over U , and that its K-fibers

are algebraic varieties over K. We have the following lemma:

5If f is a solution of equation (?′) generating a differential field extension of F of tran-

scendence degree one or two, taking jR to be a realization of a non-forking extension of the

type of f over F to the field K = F (t) gives such a solution jR of (?′).
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Lemma 3.3. The dimension of the subalgebra b of psl2(C) stabilizing I

equals the dimension of Z over K .

Proof. Let p ∈ Z be a smooth point in the graph of (jR, j
′
R, j
′′
R). Then

the evaluation of X, H, Y and D at p give a basis of Tp(U × C3). If v is in

Tp(Z) ⊂ Tp(U × C3), then there exists V ∈ psl2 + CD whose value at p is v.

We first show that V · I ⊂ I. To see this, notice that for P ∈ I, we have

that D · (V · P ) = V · (D · P ) + fD · P for some f ∈ C(t). Here we use the

equalities [D,X] = 0, [D,H ] = D, [D,Y ] = tD. Since by definition D · P ∈ I,

we have that the ideal J generated by I and V · I is stable by D. Moreover

all elements of J vanish at p and thus on the whole graph of (jR, j
′
R, j
′′
R). By

maximality, V · I ⊂ I.

The stabilizer of I in CX+CH+CY +CD has the dimension of TpZ and

thus that of Z. Because D is tangent to Z, the dimension of Z over K is the

dimension of the stabilizer of I in psl2. �

Our assumption tr.degKK 〈jR〉 = 1 or 2 gives that the stabilizer, denoted

by b, is a non-trivial proper subalgebra of psl2(C). Every such a proper subalge-

bra is contained in a 2-dimensional Lie subalgebra of psl2 = sl2. Furthermore,

the group PSL2(C) acts on psl2 by the adjoint representation, and under this

action all Lie subagebras of psl2 of dimension 2 are conjugate to one another

(cf. [20, §16]).

Let g ∈ PSL2(C) be an element conjugating a dimension two subalge-

bra containing b to the algebra generated by X and H. Then g acts as an

homography on P1(C) and transforms K ⊂M (U) to Kg ⊂M (g−1(U)).

The induced isomorphism of L to Lg = Kg[y, 1
P (y) , y

′, 1
y′ , y

′′] sending y to

y, y′ to y′g′(t) and y′′ to y′′g′(t)2− y′g′′(t) preserves D up to multiplication by

an element of K (see equation (3.1)) and induced the adjoint action on psl2.

The transcendence degree of jR over K is the transcendence degree of jR ◦ g
over Kg, but now we have ensured that the stabilizer is included in the Lie

algebra generated by X and H. Let us forget that we change the field and

assume b is included in the triangular Borel subalgebra, i.e., it is in the Lie

algebra generated by X and H.

In L, we have that − y′′

y′2 vanishes when we apply the induced X and H.

So the image of − y′′

y′2 in L/I belongs to the kernel of the action of b — namely,

the algebraic closure of C[y, 1
P (y) ] in L/I. Let z be this algebraic function.

Direct computation shows that in L/I, − y′′

y′2 satisfies the following re-writing

of equation (?′), Å
− y
′′

y′2

ã′ 1

y′
+

1

2

Å
− y
′′

y′2

ã2

+R(y) = 0,
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meaning that z
2 is an algebraic solution of

du

dy
+ u2 +

1

2
R(y) = 0

in C(y)alg. This contradicts Condition 3.1. �

The next section is devoted to proving that Condition 3.1 holds for equa-

tion (?).

4. The general proof of strong minimality

4.1. Liouvillian solutions, algebraic solutions, and Picard-Vessiot theory.

Definition 4.1. Fix a differential field K extending C(y) such that the

derivation on K extends d
dy . We say that K is Liouvillian if there is a tower

of field extensions C(y) ⊂ K0 ⊂ K1 ⊂ · · · ⊂ Kn = K such that for each

i = 1, . . . , n, Ki/Ki−1 is generated by an element ai such that one of the

following holds:

(1) a′i ∈ Ki−1 ;

(2)
a′i
ai
∈ Ki−1 ;

(3) ai ∈ Kalg
i−1 .

If K is a field of meromorphic functions, then in case 1, ai =
∫
f for some

f ∈ Ki and in case 2, ai = e
∫
f for some f ∈ Ki. So, occasionally we will refer

to these cases as integrals or exponentials of integrals.

Consider the differential equation

(4.1) z′′ + pz′ + qz = 0,

where p, q are rational functions in C(y). The classification of its Liouvillian

solutions has been extensively studied, and in [23], an algorithmic solution to

determining the Liouvillian solutions was given.

Let z be a solution to equation (4.1), and let v = e
1
2

∫
pz. It follows by

direct computation that

(4.2) v′′ +

Å
b− 1

4
a2 − 1

2
a′
ã
v = 0.

Because the previous transformation only involves scaling by a Liouvillian ele-

ment, the Liouvillian solutions of equation (4.2) are in bijective correspondence

with the Liouvillian solutions to equation (4.1), and so without loss of general-

ity, we may now assume that the order two equation in which we are interested

is given in the following normal form:

(4.3) z′′ = r(y)z,

where r(y) ∈ C(y).
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Theorem 4.2 ([23, p. 5]). With regard to the Liouvillian solutions of a

second order linear differential equation with coefficients in C(y), there are four

mutually exclusive options :

(1) The differential equation (4.3) has a solution of the form e
∫
w where w ∈

C(y).

(2) The differential equation (4.3) has a solution of the form e
∫
w where w ∈

C(y)alg is an algebraic function of degree two over C(y).

(3) All of the solutions of (4.3) are algebraic over C(y).

(4) No solution of (4.3) are Liouvillian.

The connection with Riccati equations is as follows. If we define u = z′

z

where z is a solution to equation (4.3), then via direct computation we have

that

(4.4) u′ + u2 − r(y) = 0.

Notice that z = ce
∫
u for some constant c ∈ C and, in particular, z1 = e

∫
u is

also a solution to 4.3. So using Theorem 4.2 we have the following lemma:

Lemma 4.3. The Riccati equation (4.4) has an algebraic solution over

C(y) if and only if the second order linear differential equation (4.3) has a

Liouvillian solution.

Now, the verification of Condition 3.1 follows from showing that (4.3) has

no Liouvillian solutions. For this, we will need the following well-known result:

Theorem 4.4 ([23, p. 8, Case 4]). Let G be the Picard-Vessiot group of

(4.3). There are no Liouvillian solutions to (4.3) if and only if G = SL2(C).

In the next subsection we will prove that, in the special case of a Fuchsian

group Γ, the Picard-Vesiot group of the order two linear equation associated

to the Riccati equation (??) is SL2(C).

4.2. Monodromy and the PV-group. At this point, let us recall that the

the Schwarzian equation (?) we focus on is given with

RjΓ(y) =
1

2

r∑
i=1

1− α2
i

(y − ai)2
+

r∑
i=1

Ai
y − ai

,

where the αi’s, Ai’s and ai’s are obtained from the fundamental domain for

Γ-action on H. As discussed in the previous subsection, if the Riccati equation

corresponding to (?),

(4.5)
du

dy
+ u2 +

1

2
RjΓ(y) = 0,
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were to have an algebraic solution f ∈ C(y)alg, then as in the previous subsec-

tion z = e
∫
f is a Liouvillian solution of the linear equation

(4.6)
d2z

dy2
+

(
1

4

r∑
i=1

1− α2
i

(y − ai)2
+

r∑
i=1

Ai/2

y − ai

)
z = 0.

This equation is an example of the most general (normal) form of a Fuchsian

equation of second order:

Definition 4.5. Consider the linear equation d2z
dy2 + a1

dz
dy + a2z = 0, where

a1, a2 are rational functions in C(y).

(1) A point p ∈ C is called regular if the functions ai have no pole at p;

otherwise p is called singular. To determine whether the point y = ∞
is regular, one simply substitutes y = z−1 in the equation and verifies

whether z = 0 is regular for the new equation.

(2) A point p ∈ C (resp. p =∞) is called regular singular if it is singular and

for each i = 1, 2, the limit limy→p(y−p)iai(y) (resp. limy→∞y
iai(y)) exists

and is finite.

(3) The equation is called Fuchsian if all points of P1(C) are regular or regular

singular.

It is well known (cf. [9, Ch. 7]) that if the equation is Fuchsian, then the

coefficients a1 and a2 are of the form

ai(y) =
Bi(y)∏s

j=1(z − βj)i
,

where Bi(y) is a polynomial of degree ≤ i(s− 1).

Remark 4.6. We have already seen in the previous section how to obtain

the normal form of the a second order linear equation (see equation (4.2)).

As it turns out, the problem of existence of Liouvillian solutions for Fuch-

sian equations of second order is a classical one. We direct the reader to [16]

and [58] for some historical perspectives. We will only review parts of the the-

ory that is relevant to this paper. Our focus will be the work of Poincaré on

the relationship between the monodromy group of the Fuchsian equation (4.6)

and “its” Fuchsian group Γ. It is this work — partly rediscovering Schwarz’s

uniformization of P1(C) by the jΓ’s — that lead Poincaré to introduce the

theory of Fuchsian groups and functions, and to attack the problem of the

uniformization of other Riemann surfaces.

From now on, we assume that the equation

(4.7)
d2z

dy2
= r(y)z
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is Fuchsian and denote by S its set of singular points. For z ∈ P1(C)\S, let f1

and f2 be analytic solutions in a neighborhood of z. We also assume that f1

and f2 are a basis of solutions, i.e., that they are linearly independent over C.

Given any γ ∈ π1(P1(C) \ S; z), we can analytically continue f1 and f2 along

γ and obtain new solutions f̃1 and f̃2 of Fact 4.7. So there exists a matrix

Mγ ∈ GL2(C) such that Ç
f̃1

f̃2

å
= Mγ ·

Ç
f1

f2

å
.

The mapping ρ : π1(P1(C) \ S; z) → GL2(C), taking γ 7→ Mγ , is a group

homomorphism called the monodromy representation. Its image M is called

the monodromy group of equation (4.7). From the monodromy group, one can

determine the Picard-Vessiot group of the equation:

Fact 4.7 ([9, Ch. 7]). Let G be the Picard-Vessiot group of the Fuchsian

equation (4.7). Then,

(1) G ⊆ SL2(C);

(2) if M is its monodromy group, then G is the Zariski closure of M .

Note that, in particular, from (1), for the Fuchsian equation (4.6), the

monodromy group M is a subgroup of SL2(C). We will now explain how in the

case of equation (4.6), the monodromy group M is related to the Schwarzian

equation. The following well-known fact — which can be easily verified — will

be needed.

Fact 4.8. Let t(y) = j−1
Γ (y) be a branch of the inverse of y = jΓ(t). Then

t(y) satisfies the following equation :

(4.8) S d
dy

(t) = RjΓ(y).

Furthermore, the functions

z1 =
t

( dtdy )
1
2

z2 =
1

( dtdy )
1
2

form a basis of solutions of the Fuchsian equation (4.6):

d2z

dy2
+

1

2
RjΓ(y)z = 0.

Notice that, in particular, z1(y)
z2(y) = t(y). This allows us to define from M

the projective monodromy of equation (4.8). Namely, if Mγ =
(
a b
c d

)
∈ SL2(C)

is monodromy matrix (as above), then

t∗ =
at+ b

ct+ d



740 G. CASALE, J. FREITAG, and J. NAGLOO

is again a solution of equation (4.8). The collection of matrices M̂γ : t 7→ t∗

is called the projective monodromy group M̂ of equation (4.8). Of course M̂

is the image of M under the natural projection π : SL2(R) → PSL2(R). The

following proposition is attributed to Poincaré in various sources but we know

of no reference for a proof of it and thus reproduce it here.

Proposition 4.9. The projective monodromy group of equation (4.8)

is Γ. As a consequence, the monodromy group of the Fuchsian equation (4.6)

is π−1(Γ).

Proof. Throughout, t(y) = j−1
Γ (y) is a branch of the inverse of jΓ locally

defined on some small domain U and M̂ is the projective monodromy group.

We have

g ∈ M̂ \ {I} ⇐⇒ gt(y) is another branch of the inverse of jΓ (defined on some

larger domain U ′)

⇐⇒ y = jΓ(t(y)) = jΓ(gt(y))

⇐⇒ g ∈ Γ \ {I}.

We have used here that jΓ is a globally defined single-valued function. �

Proposition 4.10. There are no Liouvillian solutions of the Fuchsian

equation (4.6). Consequently, Condition 3.1 holds for the Riccati equation (4.5).

Proof. We have that π−1(Γ), the monodromy group of the Fuchsian equa-

tion (4.6), is Zariski dense in SL2(C). Hence by Fact 4.7, the Picard-Vessiot

group is G = SL2(C). By Theorem 4.4 there are no Liouvillian solutions for

the equation. �

We thus obtain the first part of Theorem 2.12; namely, the Schwarzian

equation (?) is strongly minimal.

5. Geometric triviality and algebraic relations

5.1. The classification of strongly minimal sets. In this section we will

discuss some general model-theoretic results regarding strongly minimal sets

in differentially closed fields. In particular, we will explain some consequences

of the (unpublished6) work of Hrushovski and Sokolović on the classification

of strongly minimal sets. We will, from these considerations, obtain geometric

triviality of the Schwarzian equations satisfied by the uniformizing functions

in the earlier sections. Let us denote by U the differentially closed field of

6A complete proof can be found in [56, Cor. 3.10] and in the arguments in the paragraphs

leading up to Proposition 4.10 of [53]. A good guide/summary of the proof can also be found

in [34, §2.1].
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characteristic zero that we work in. We assume that U is saturated and that

C (defined by y′ = 0) is its field of constants. Notice incidentally that C is

itself a strongly minimal definable set. Indeed, it is the only definable strongly

minimal subfield of U . In what follows, strongly minimal sets are understood

to be defined over some finitely generated differential subfield K of U .

The zero set of any irreducible order one differential polynomial in a single

variable (by irreducible, we will always mean as a polynomial) is also strongly

minimal. Higher order linear differential equations are never strongly mini-

mal. (One can define linear subspaces using elements of a fundamental set of

solutions.) For higher order non-linear equations, it seems that it is in general

difficult to establish strong minimality. However, if the strong minimality of

an equation is established, one can often employ a variety of model theoretic

tools to establish even stronger results.

Other important examples of strongly minimal sets are given by the fol-

lowing:

Fact 5.1 ([7], [19]). Let A be an abelian variety defined over U . We

identify A with its set A(U) of U-points. Then

(1) A has a (unique) smallest Zariski-dense definable subgroup, which we de-

note by A];

(2) if A is a simple abelian variety that does not descend to C, then A] is

strongly minimal.

The subgroup A] is called the Manin kernel of A (cf. [26]). The trichotomy

theorem gives a classification of strongly minimal sets up to non-orthogonality,

a notion we will explain following the statement of the theorem.

Theorem 5.2 ([19], [56]). Let Y be a strongly minimal set. Then exactly

one of the following holds:

(1) Y is non-orthogonal to the strongly minimal set C;

(2) Y is non-orthogonal to A] for some simple abelian variety A over U that

does not descend to C;

(3) Y is geometrically trivial.

Definition 5.3. Let Y and Z be strongly minimal sets. Denote by π1 :

Y × Z → Y and π2 : Y × Z → Z the projections to Y and Z respectively. We

say that Y and Z are non-orthogonal if there is some infinite definable relation

R ⊂ Y × Z such that π1|R and π2|R are finite-to-one functions.

The sets Y and Z are defined over some finitely generated differential

subfield K of U , and so for any differential field F containing K, it makes

sense to ask whether a relation R as above can be defined over F .
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Definition 5.4. We say that Y is weakly orthogonal to Z over F if no such

relation R can be defined over F .

The following facts from the model theory of differential fields are well

known (see, for instance, [27]).

Fact 5.5. Let Y and Z be strongly minimal sets.

(1) Non-orthogonality is an equivalence relation on strongly minimal sets.

(2) Non-orthogonality classes of strongly minimal differential equations refine

various basic invariants of the equations. For instance, if Y,Z are non-

orthogonal, then order(Y ) = order(Z). Recall that the order of a definable

set Y is given by order(Y ) = sup{tr.deg.KK 〈y〉 : y ∈ Y }, where K is any

countable differential field over which Y is defined.

(3) If Y and Z are non-orthogonal, then they fall into the same category of

Theorem 5.2.

(4) Strongly minimal sets that fall in cases (2) and (3) of Theorem 5.2 are said

to be locally modular (and in case (1) the sets are non-locally modular).

(5) Orthogonality has a natural interpretation in terms of transcendence. Sup-

pose that Y and Z are orthogonal strongly minimal sets defined over K .

Let a, b be solutions of Y,Z , respectively. Let F be any differential field

extending K . Then

tr.deg.F (F 〈a, b〉) = tr.deg.F (F 〈a〉) + tr.deg.F (F 〈b〉).

Conversely, if the inequality does not hold for some a∈Y and b∈Z over F ,

then Y is not weakly orthogonal to Z over F .

Non-orthogonality of Manin Kernels has been further classified in terms

of isogeny classes of abelian varieties.

Fact 5.6. If A and B are two simple abelian varieties that do not descend

to C, then A] and B] are non-orthogonal if and only if A and B are isogenous.

For relations R that witness non-orthogonality between trivial strongly

minimal sets, there is an important and very general descent result:

Fact 5.7 ([54, Cor. 2.5.5]). Two geometrically trivial strongly minimal

sets are non-orthogonal if and only if they are non-weakly orthogonal. That is,

the relation R witnessing non-orthogonality of X and Y can be defined over

the differential field generated by the parameters used in the equations defining

X and Y .

Proposition 5.8. Let Y be a strongly minimal set of order > 1, and

suppose that Y is defined over C. Then Y is geometrically trivial.
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Proof.7 First note that since order(Y ) 6= 1, Y is necessarily orthogonal to

the constants C. So by Theorem 5.2, to show that Y is geometrically trivial,

we only need to show that it is orthogonal to all Manin kernels. We argue by

contradiction.

Suppose that Y is non-orthogonal to A] for some simple abelian variety

A over U which does not descend to C. Let (A, λ) be a principal polarization

of A. We can use the fact that moduli spaces of principally polarized abelian

varieties exist over any base field (cf. [33, Ch. 7]). So let (V, ϕ) be a moduli

space for (A, λ) over C. For some b in (V, ϕ), we have that (A, λ) = (Vb, ϕb).

Using uniform definability of Manin kernels [34, Lemma 2.25], we have a

formula φ(x) over C asserting that Y is non-orthogonal to V ]
x and such that φ(b)

is true in U . If φ(c) holds, then, by Fact 5.6, it must be the case that Vb and Vc
are isogenous. But there are only countably many abelian varieties isogenous

to Vb. Hence the definable set {a ∈ U : φ(a) is true in U} is countable and

so must be finite. In other words, c is algebraic over (and so in) C. But this

contradicts the assumption that A does not descend to C. �

Corollary 5.9. For Γ a Fuchsian group, equation (?) defines a geomet-

rically trivial strongly minimal set.

We have hence established the entirety of Theorem 2.12.

5.2. Transcendence and orbits of the commensurator of Γ.

Theorem 5.10. Let (K, ∂) be a differential extension of (C(t), ∂∂t) with no

new constants. Let Γ be a Fuchsian group and j1, j2 be two solutions of the

equation

S d
dt

(y) + (y′)2 ·RΓ(y) = 0.

If

tr.deg.KK(j1, j
′
1, j
′′
1 , j2, j

′
2, j
′′
2 ) < 6,

then j1 or j2 is algebraic over K or there is a non-zero polynomial P (y1, y2)

over C such that P (j1, j2) = 0.

The group PSL2(C) acts on pairs of solutions by precomposition. We will

prove that the ideal of differential relations between (j1, j2) is stable under this

action.

Proof. From Theorem 3.2, it follows that if tr.deg.KK(j1, j
′
1, j
′′
1 , j2, j

′
2, j
′′
2 )

< 6, then it is either 0 or 3. But it follows from Fact 2.3 and Lemma 2.4 that

if both j1 and j2 are not algebraic over K, then tr.deg.KK(j1, j
′
1, j
′′
1 , j2, j

′
2, j
′′
2 )

= 3. By Fact 5.7, we can assume that K = C(t) and so throughout K = C(t)

and ∂ = ∂
∂t .

7We thank Dave Marker for a sketch of this proof.
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We proceed as in the proof of Theorem 3.2. For i = 1, 2, consider

K(yi, y
′
i, y
′′
i ), equipped with the derivation

• Di = ∂ + y′i
∂
∂yi

+ y′′i
∂
∂y′i

+
(

3
2
y′′2i
y′i
− (y′i)

3RΓ(yi)
)

∂
∂y′′i

.

One defines an action of psl2(C) by

• Xi = ∂;

• Hi = t∂ − y′i ∂∂y′i − 2y′′i
∂
∂y′′i

;

• Yi = t2

2 ∂ − ty
′
i
∂
∂y′i
− (2ty′′i + y′i)

∂
∂y′′i

.

We have that [Xi, Hi] = Xi, [Hi, Yi] = Yi, [Xi, Yi] = Hi, and [Di, Xi] = 0,

[Di, Hi] = Di, [Di, Yi] = tDi.

As explained in the proof of Theorem 3.2, the above action of psl2(C)

is the infinitesimal action of PSL2(C) on C(t, yi, y
′
i, y
′′
i ). We “verticalize” this

action by considering Xv
i = Xi−Di, H

v
i = Hi− tDi and Y v

i = Yi− t2

2 Di. Now

CXv
i +CHv

i +CY v
i is a realization of psl2(C) acting K-linearly and commuting

with Di.

The ideal of the polynomial differential relations between j1 and j2 over K

is an ideal in K[y1, y
′
1, . . . , y2, y

′
2, . . .]. Let J be the differential ideal generated

by the third order differential equations satisfied by j1 and by j2, and let

K[y1, y
′
1, . . . , y2, y

′
2, . . .] → K(y1, y

′
1, y
′′
1) ⊗K K(y2, y

′
2, y
′′
2) be the quotient by J

followed by localizations.

As j1 and j2 do not satisfy any lower order differential equations, this ideal

is the preimage of an ideal I of L = K(y1, y
′
1, y
′′
1)⊗K K(y2, y

′
2, y
′′
2) stable by

D(2) = ∂ + y′1
∂

∂y1
+ y′2

∂

∂y2
+ y′′1

∂

∂y′1
+ y′′2

∂

∂y′2

+

Å
3

2

y′′21

y′1
− (y′1)3RΓ(y1)

ã
∂

∂y′′1
+

Å
3

2

y′′22

y′2
− (y′2)3RΓ(y2)

ã
∂

∂y′′2
.

(5.1)

The ideal I is the kernel of the evaluation in (j1, j2) with values in a field of

meromorphic function, thus it is prime. From geometric triviality, the subfield

of constants of F = Frac(L/I) with respect to the derivation D(2) is C.

We claim that I is stable under the diagonal action of psl2.

The algebra L/I is an algebraic extension of both fields K(y1; y′1; y′′1) and

K(y2; y′2; y′′2), and as usual, D1, X1, H1, Y1, D2, X2, H2, Y2 and their “verti-

calization” will also denote their unique extensions to L/I.

Lemma 5.11. On L/I we have D1 = D(2) = D2.

Proof. Restrict the derivation D(2) of L/I to its subalgebra L1. The def-

inition of D(2) gives that this restriction is D1. Now, the extension to the

algebraic extension L/I of L1 is unique, and then D(2) = D1. The same

argument gives D(2) = D2. �
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So we will just write this derivation as D.

Lemma 5.12. There exists a ∈ C such that, on L/I , X1 = X2, H1 =

H2 + a(X2 −D) and Y1 = Y2 + a(H2 − tD) + a2

2 (X2 −D).

Proof. Using Fact 5.7, we have that any algebraic relations between j1
and j2 (together with derivatives) can be defined over C. Hence I is generated

by I ∩ C(y1, y
′
1, y
′′
1) ⊗ C(y2, y

′
2, y
′′
2). Then, on L/I, both X1 and X2 coincide

with ∂
∂t . This proves X1 = X2.

The two triples Xv
1 , Hv

1 , Y v
1 and Xv

2 , Hv
2 , Y v

2 are two bases of the deriva-

tions of F = Frac(L/I) over K. Let A be the matrix with coefficient in F

such that (Xv
1 , H

v
1 , Y

v
1 ) = (Xv

2 , H
v
2 , Y

v
2 )A. From the bracket with D one gets

0 = [D, (Xv
1 , H

v
1 , Y

v
1 )] = (Xv

2 , H
v
2 , Y

v
2 )D(A). So the coefficients of A are con-

stant.

Now the two triples are basis of two realizations of psl2(C) with the same

structure constants. Then A is an automorphism of the Lie algebra psl2(C).

All automorphisms of psl2(C) are inner (see [57, Prop. 14.21]), thus there exists

a g ∈ PSL2(C) such that Ad(g) = A. This automorphism fixes X1, hence there

exists a ∈ C such that g = ( 1 a
0 1 ). Then

(Xv
1 , H

v
1 , Y

v
1 ) = (Xv

2 , H
v
2 , Y

v
2 )

Ñ
1 a a2

2

0 1 a

0 0 1

é
.

This proves the lemma. �

In F , y2 is an algebraic function over C(t, y1, y
′
1, y
′′
1) satisfying X2(y2) =

H2(y2) = Y2(y2) = 0. Hence, using Lemma 5.12, one easily computes that

X1(y2) = 0,(5.2)

H1(y2) =−aD(y2),(5.3)

Y1(y2) =

Å
−at− a2

2

ã
D(y2) =

(
t+

a

2

)
H1(y2).(5.4)

We will prove that this system of partial differential equations over

C(t, y1, y
′
1, y
′′
1) has an algebraic solution if and only if a = 0. For contra-

diction, assume not. We expand y2 as a Puiseux series in 1/z with z =
y′′1
y′21

;

that is, we think of y2 as being an element of C(t, y1, y
′
1)alg

〈〈
1
z

〉〉
:

y2 =
∑
λ≤n

Aλ(t, y1, y
′
1)zλ.

In the coordinates t, y1, y
′
1, z, one has

• X1 = ∂
∂t ;

• H1 = t ∂∂t − y
′
1
∂
∂y′1

;

• Y1 = t2

2
∂
∂t − ty

′
1
∂
∂y′1
− 1

y′1

∂
∂z :
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• D = ∂
∂t − y

′
1
∂
∂y1

+ z(y′1)2 ∂
∂y′1
−
(

1
2z

2y′1 +RΓ(y1)y′1
)
∂
∂z .

The induced continuous action of X1 on C(t, y1, y
′
1)alg

〈〈
1
z

〉〉
gives

(5.5) X1(y2) =
∑
λ≤n

∂Aλ
∂t

zλ.

Equations (5.2) and (5.5) give λ, ∂Aλ
∂t = 0 for all. Then by direct computation

one gets

H1(y2) =
∑
λ≤n
−y′1

∂Aλ
∂y′1

zλ,(5.6)

Y1(y2) =
∑
λ≤n
−ty′1

∂Aλ
∂y′1

(z)λ − λAλ
1

y′1
zλ−1,(5.7)

D(y2) =
∑
λ≤n

RΓ(y1)y′1λAλz
λ−1 + y′1

∂Aλ
∂y1

zλ(5.8)

+

Å
(y′1)2∂Aλ

∂y′1
− 1

2
y′1λAλ

ã
zλ+1.

Lemma 5.13. If y2 is an algebraic solution of equations (5.2), (5.3) and

(5.4), then H1(y2) = 0.

Proof. If a = 0, then there is nothing to prove. Assume it is not. We have

already seen that ∂Aλ
∂t = 0. Let q ∈ Q be such that Aq 6= 0. One can assume

that q is maximal among the elements q′ ∈ q + Z such that Aq′ 6= 0. From

(5.4), one gets −ty′1
∂Aq
∂y′1

= (t+ a
2 )
Ä
−y′1

∂Aq
∂y′1

ä
and then

∂Aq
∂y′1

= 0. Now (5.3) gives

(y′1)2 ∂Aq
∂y′1
− 1

2y
′
1qAq = 0. This implies q = 0 so that n = 0 and the range of λ

is −N.

Equation (5.4) can be written as follows: for all k ∈ N,

(5.4) (k)
a

2

∂A−k−1

∂y′1
= k

A−k
y′1

.

Let k0 be the maximal integer such that for all strictly positive k smaller

than k0, A−k = 0. The equality (5.4) (0) gives that A−1 does not depend on y′1.

Then (5.4) (1) is an equality between a derivative of an algebraic function in

y′1 and and rational function with a simple pole at 0. This implies that the

latter is identically zero: k0 is greater than 2.

Now if k0 is finite, then (5.4) (k0 − 1) is
∂A−k0
∂y′1

= 0 and (5.4) (k0) is
∂A−k0−1

∂y′1
=

A−k0
y′1

. As a derivative of an algebraic function cannot have sim-

ple pole, A−k0 = 0, which contradicts the existence of k0.

Then (5.6) proves the lemma. �
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If a 6= 0, then Lemma 5.13 and equation (5.3) show that D(y2) = 0. But

the subfield of constants of D in F is C and y2 is not constant. This contradicts

the assumption on a, and one gets a = 0.

Now, on F , X1 = X2, H1 = H2 and Y1 = Y2. These three derivations

are linearly independent and their kernel is denoted by N . Formulas for these

derivations give y1 ∈ N and y2 ∈ N .

The sequence of extensions C ⊂ N ⊂ F is such that tr.deg.CN ≥ 1,

tr.deg.NF ≥ 3 and tr.deg.CF = 4. Then the transcendence degree of N over C
is 1. This proves that I contains some non-zero P ∈ C[y1, y2]. It is not difficult

to see that P generates I as a D-ideal. �

Remark 5.14. It is not hard to see that Theorem 5.10 also holds for all gen-

eral Schwarzian equations (?′) provided that they are strongly minimal (and so

geometrically trivial). Indeed, the above proof did not use the fact that Fuch-

sian groups are involved. In particular, Theorem 5.10 holds if Condition 3.1 is

true of the corresponding Riccati equations.

It now remains to understand the kind of polynomials P ∈ C[y1, y2] that

can occur. Notice that if P (jΓ(g1t), jΓ(g2t)) = 0 gives an algebraic relation

between two solutions jΓ(g1t) and jΓ(g2t), then trivially there is an algebraic

relation between jΓ(t) and jΓ(g2g
−1
1 t), namely, P (jΓ(t), jΓ(g2g

−1
1 t)) = 0. So it

suffices to characterize interalgebraicity with jΓ(t).

Lemma 5.15. For g1 /∈ Comm(Γ), jΓ(t) is algebraically independent from

jΓ(gt) over C.

Proof. Let g /∈ Comm(Γ). For a contradiction, assume first that P is an

algebraic relation over C holding between jΓ(t) and jΓ(gt). Then for all a ∈ H,

we have that P (jΓ(a), jΓ(ga)) = 0. For γ ∈ Γ, consider the point bγ = γ · a.

Letting a = bγ , we have that P (jΓ(bγ), jΓ(gbγ)) = 0.

But, since jΓ(bγ) = jΓ(a), we have that P (jΓ(a), jΓ(gbγ)) = 0. Now, by

the Γ-invariance of jΓ, we have that for any γ1 ∈ Γ, P (jΓ(γ1a), jΓ(γ1gγa)) = 0.

But jΓ(γ1a) = jΓ(a), so we have that

P (jΓ(a), jΓ(γ1gγa)) = 0

for all γ1, γ ∈ Γ. However, jΓ is precisely Γ-invariant, and for g /∈ Comm(Γ),

there are infinitely many left coset representatives of Γ among the double coset

ΓgΓ. Then there are infinitely many distinct points y for which P (jΓ(a), y) = 0

holds, contradicting the fact that P = 0 gives an algebraic relation. �

Lemma 5.16 ([60, §7.2]). For g ∈ Comm(Γ), jΓ(t) is algebraically depen-

dent with jΓ(gt) over C.

Definition 5.17. By Lemma 5.16, when g ∈ Comm(Γ), there is an irre-

ducible polynomial Ψg̃(x, y) ∈ C[x, y] such that Ψg̃(jΓ(t), jΓ(gt)) = 0. We call
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Ψg̃ a Γ-special polynomial and the zero set of such a polynomial a Γ-special

curve.

Now from Theorems 2.12 and 5.10 and Lemmas 5.15 and 5.16, one gets

the weak form of the Ax-Lindemann-Weierstrass Theorems 2.13 and 2.14.

Theorem 5.18. Let K be a differential extension of (C(t), ∂∂t), and let

jΓ(g1t), . . . , jΓ(gnt) be distinct solutions of the Schwarzian equation (?) that

are not algebraic over K nor pairwise related by Γ-special polynomials. Then

the 3n functions

jΓ(g1t), j
′
Γ(g1t), j

′′
Γ(g1t), . . . , jΓ(gnt), j

′
Γ(gnt), j

′′
Γ(gnt)

are algebraically independent over K.

Proof. For contradiction, assume that the 3n functions

jΓ(g1t), j
′
Γ(g1t), j

′′
Γ(g1t), . . . , jΓ(gnt), j

′
Γ(gnt), j

′′
Γ(gnt)

are algebraically dependent over K. Define the field K̃ as

K̃ =K
(
jΓ(g2t), j

′
Γ(g2t), j

′′
Γ(g2t), . . . , jΓ(gnt), j

′
Γ(gnt), j

′′
Γ(gnt)

)
=K 〈jΓ(g2t), . . . , jΓ(gnt)〉 .

By strong minimality of equation (?), it must be that jΓ(g1t) ∈ K̃alg, and by

geometric triviality of (?), we have that

jΓ(g1t) ∈ K 〈jΓ(git)〉alg

for some i = 2, . . . , n. Using Theorem 5.10 we get that

jΓ(g1t) ∈ C(jΓ(git))
alg

and so

jΓ(t) ∈ C(jΓ(gig
−1
1 t))alg.

Now using Lemma 5.15, it must be the case that g = gig
−1
1 ∈ Comm(Γ). So

for the Γ-special polynomial Ψg̃, we get

Ψg̃(jΓ(t), jΓ(gig
−1
1 t)) = 0

and hence

Ψg̃(jΓ(g1t), jΓ(git)) = 0.

This contradicts our assumption that jΓ(g1t) and jΓ(git) are not related by

any Γ-special polynomials. �
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6. Orthogonality and the Ax-Lindemann-Weierstrass theorem

In the previous sections, we have understood the structure of the solution

set of

S d
dt

(y) + (y′)2 ·RjΓ(y) = 0.

Define

χΓ, d
dt

(y) = S d
dt

(y) + (y′)2 ·RjΓ(y).(6.1)

In this section, we consider equations of the form χΓ, d
dt

(y) = a for a an element

in some differential field extension of Q, and we produce a similar analysis.

6.1. Strong minimality and algebraic relations on other fibers. First, we

prove the solution set of the equation χΓ, d
dt

(y) = a is strongly minimal and

characterize the algebraic relations between solutions. Essentially, the analysis

from [12, §5.1] adapts to this case, but for the sake of completeness, we will

provide a brief explanation here.

Let a ∈ K be an element in some differential field extension of Q. By

Seidenberg’s embedding theorem, we can, without loss of generality, assume

a = a(t) is given by a meromorphic function over some domain U , and the

derivation is given by d
dt . After sufficiently shrinking the domain, there is

some meromorphic function ã(t) satisfying S d
dt

(ã) = a such that

χΓ, d
dt

(jΓ(ã(t))) = a(t).

The following lemma follows by the Schwarzian chain rule and is nearly

identical to [12, Lemma 5.1]:

Lemma 6.1. Let K be a differentially closed d
dt -field containing a. There

exists ∂ ∈ K d
dt such that χΓ,∂(y) = 0.

Proof. The equation S d
dt

(ã) = a, with unknown ã, can be considered as

a differential equation over C〈a〉. By Seidenberg’s theorem this field can be

assumed to be a field of meromorphic functions on some domain U ⊂ C, and

by the usual Cauchy theorem, one can build a solution, holomorphic on some

domain U ′ ⊂ U .

By the differential Nullstellensatz there exists ã∈K a solution of S d
dt

(ã)=a.

Then ∂ = 1
ã′

d
dt . �

Theorem 6.2. The sets defined by χΓ, d
dt

(y) = a are strongly minimal and

geometrically trivial. If a1, . . . , an satisfy χΓ, d
dt

(ai) = a and are dependent, then

there exist i, j ≤ n and a Γ-special polynomial P such that P (ai, aj) = 0.

The proof of Theorem 6.2 is quite similar to that of [12, Prop. 5.2], but

we include it here for completeness.
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Proof. We first explain why χΓ, d
dt

(y) = a is strongly minimal; it suffices

to show that over some differentially closed field that contains the coefficients

of the equation, every differentially constructible set is finite or cofinite. Using

properties of differentially closed fields, one can find ã in K as above.

By Lemma 6.1, K is a ∂-differential field, and the sets χΓ, d
dt

(y) = a and

χΓ,∂(y) = 0 coincide. Now strong minimality follows by Theorem 3.2 and the

fact that d
dt -differentially constructible sets are ∂-differentially constructible

(over K).

Algebraic dependencies among elements of the set χΓ, d
dt

(y) = a give al-

gebraic dependencies among elements of the set χΓ,∂(y) = 0, and thus by

Theorem 5.18 must be given by Γ-special polynomials. �

The final piece of our analysis of the fibers of χ shows that there are no

algebraic relations between different fibers.

Theorem 6.3. For a 6= b, the strongly minimal sets defined by χΓ, d
dt

(y) =

a and by χΓ, d
dt

(y) = b are orthogonal.

Theorem 6.3 is more general than [12, Th. 5.4], but the proof there cannot

be adapted to the case of non-arithmetic fuchsian groups.

Proof. Throughout, we respectively use M (U) and D(p, r) for the field of

meromorphic functions on a domain U ⊂ C, and the open complex disk cen-

tered at p ∈ C with radius r. As both χ−1

Γ, d
dt

(a) and χ−1

Γ, d
dt

(b) are strongly min-

imal and geometrically trivial, if χ−1

Γ, d
dt

(a) 6⊥ χ−1

Γ, d
dt

(b), then there is a finite-to-

finite correspondence between the sets, defined over Q〈a, b〉. Using Seidenberg’s

embedding theorem, we regard a, b as meromorphic functions on a domain

U ⊂ C. Recall that ã denotes a meromorphic function such that S d
dt

(ã) = a.

The function b̃ is defined similarly.

Using the holomorphic inverse function theorem, we claim that without

loss of generality, it is enough to prove the result for the case a = 0. Indeed,

since jΓ(ã(t)) is interalgebraic with jΓ(gb̃(t)) for some g ∈ GL2(C), we have

that jΓ(t) is interalgebraic with jΓ(gb̃(ã−1(t)). (Since b̃ is defined up to com-

position with linear fractional transformations, we can assume that there is a

common regular point for ã and b̃ and work locally around this point.) Letting

c̃ = b̃ ◦ ã−1 and c = S d
dt

(c̃), we see that χ−1

Γ, d
dt

(0) 6⊥ χ−1

Γ, d
dt

(c), and by geometric

triviality this occurs over Q〈c〉.
So we assume that a = 0. Let p be a regular point for b̃(t), and let

D1 = D(p, ε) be a disc of regular points of b̃(t). Also let γ be a linear fractional

transformation sending D2 = D(p, 1
2ε) to H.
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Since χ−1

Γ, d
dt

(0) 6⊥ χ−1

Γ, d
dt

(b), we have that for some g ∈ GL2(C), the solution

jΓ(gb̃(t)) is algebraic over Q〈b, jΓ(γt)〉 ⊂M (D1)(jΓ◦γ, j′Γ◦γ, j′′Γ◦γ) ⊂M (D2).

But notice that for any domain U such that D2 ⊆ U ⊆ D1, if jΓ(gb̃(t)) is

algebraic over M (U), then jΓ(γt) will also be algebraic over M (U). This

follows from the fact that M (D1) ⊆ M (U), and jΓ(gb̃(t)) is interalgebraic

with jΓ(γt) over Q 〈b〉 ⊂ M (D1). But jΓ(t) cannot be extended algebraically

on a neighborhood of H, hence U = D2.

The disc D2 is thus the maximal among domains U such that jΓ(gb̃(t))

is algebraic over M (U). But such a domain satisfies gb̃(D2) = H; that is, the

image of D2 by the regular holomorphic map b̃ is the disc g−1H. A corollary

of Schwarz’s lemma gives that biholomorphisms from a disc to a disc are re-

strictions of homographies. Hence b̃ is an homography h ∈ PSL2(C) and so

b = 0. �

We can finally turn to the proof of the Ax-Lindemann-Weierstrass theo-

rem 2.16.

Proof of Theorem 2.16. Recall that V ⊂ An, and for each i = 1, . . . , n,

the variety V is assumed to project dominantly onto A1 under projection to

the ith coordinate. Thus, the ith coordinate function is non-constant, and it

is possible to equip the field generated by the ith coordinate functions with

various differential structures, which will be essential to the technique in our

proof.

Lemma 6.4. There is a derivation δ on C(V ) such that for each of the

coordinate functions ti for i = 1, . . . , n, we have δ(ti) 6= 0.

Proof. Let z1, . . . , zk be a transcendence basis of C(V ) over C, and let

α1, . . . , αk be Q-linearly independent complex numbers. As C(V ) is an al-

gebraic extension of C(z1, . . . , zk), the derivation δ =
∑

i αizi
∂
∂zi

extends a

derivation of C(V ) and the field of constants in C(V ) is an algebraic extension

of the field of constant in C(z1, . . . , zk). The latter is C. As the projection of

V on the ith coordinate is dominant, δ(ti) 6= 0. �

The transcendence degree over C(V ) of the 3n functions

jΓ(t1), j′Γ(t1), j′′Γ(t1), . . . , jΓ(tn), j′Γ(tn), j′′Γ(tn)

is identical to that of the 3n functions

jΓ(t1), δ(jΓ(t1)), δ2(jΓ(t1)), . . . , jΓ(tn), δ(jΓ(tn)), δ2(jΓ(tn)).

Now, for any ti, since jΓ(ti) is not an algebraic function, it follows by

strong minimality that jΓ(ti) is a generic solution to a δ-differential equation

of the form χΓ,δ(y) = ai with ai = Sδ(ti) ∈ C(V ).
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If the 3n functions are not algebraically independent, then there exist i, j

such that the functions

j(ti), δ(j(ti)), δ
2(j(ti)), j(tj), δ(j(tj)), δ

2(j(tj))

are algebraically dependent over K, the δ-field extension of C(V ) generated by

j(tk) for those k in some subset of {1, . . . , n}\{i, j}. Moreover one can choose8

K such that j(ti) and j(tj) are not algebraic over K.

But then by strong minimality of the equations χΓ,δ(y)=ai and χΓ,δ(y)=aj
(Theorem 6.2), there is a finite-to-finite correspondence between χΓ,δ(y) = ai
and χΓ,δ(y) = aj defined over K. By Theorem 6.3, it must be that ai = aj
and ti and tj are Γ-geodesically dependent — a contradiction. �

6.2. Orthogonality and commutators. In this section, we analyze the al-

gebraic relations between solutions of

S d
dt

(y) + (y′)2 ·RjΓ1
(y) = 0,(6.2)

S d
dt

(y) + (y′)2 ·RjΓ2
(y) = 0(6.3)

when Γ1 is not necessarily commensurable with Γ2. If Γ1 is commensurable

with Γ2, then it is well known that jΓ1 is interalgebraic with jΓ2 over C. More-

over, this is not the whole story: we say that Γ1 is commensurable with Γ2 in

the wide sense if Γ1 is commensurable to some conjugate of Γ2. When such is

the case and Γ1 is commensurable with g−1Γ2g, then again one has that jΓ1 is

interalgebraic with jΓ2 ◦ g over C.

Note that if Γ1 is commensurable with Γ2 in the wide sense, then Comm(Γ1)

is conjugate to Comm(Γ2).

Theorem 6.5. Suppose that Γ1 is not commensurable with Γ2 in the wide

sense. Then the sets defined by equations (6.2) and (6.3) are orthogonal. In

particular, for any differential field K ,

tr.deg.KK
(
jΓ1(t1), j′Γ1

(t1), j′′Γ1
(t1), jΓ2(t2), j′Γ2

(t2), j′′Γ2
(t2)
)

= tr.deg.KK
(
jΓ1(t1), j′Γ1

(t1), j′′Γ1
(t1)
)

+ tr.deg.KK
(
jΓ2(t2), j′Γ2

(t2), j′′Γ2
(t2)
)
.

Proof. Let XΓ1 and XΓ2 be the set defined by equations (6.2) and (6.3)

respectively. Assume for contradiction that XΓ1 6⊥ XΓ2 . Since XΓ1 and XΓ2

are trivial strongly minimal sets, we have that non-orthogonality is witnessed

over C (i.e., the sets are non-weakly orthogonal). So for any solution y1 ∈ XΓ1

8Fix a subset of the coordinates such that there is an algebraic dependence as described

above. Then there is some minimal such set. Picking i, j to be any two coordinates of this

minimal set, the subset is the collection of coordinates in the remainder of the minimal set.
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there is a solution y2 ∈ XΓ2 such that y1 ∈ C 〈y2〉alg. By invoking Fact 2.3, we

have that jΓ1(t) ∈ C 〈jΓ2(gt)〉alg for some g ∈ GL2(C). Let us write

P (jΓ1(t), jΓ2(gt), j′Γ2
(gt), j′′Γ2

(gt), t) = 0

for this algebraic relation over C. For any γ1 ∈ Γ1, using the fact that

jΓ1(γ1t) = jΓ1(t), we have that

P (jΓ1(t), jΓ2(gγ1t), j
′
Γ2

(gγ1t), j
′′
Γ2

(gγ1t), γ1t) = 0.

So this implies that for any γ1 ∈ Γ1, we get that jΓ1(t) ∈ C 〈jΓ2(gγ1t)〉alg. In

particular, C 〈jΓ2(gt)〉alg = C 〈jΓ2(gγ1t)〉alg for all γ1 ∈ Γ1. By Theorem 5.18,

it must be the case that gγ1g
−1 ∈ Comm(Γ2) for all γ1 ∈ Γ1; that is, it must

be that gΓ1g
−1 ⊆ Comm(Γ2).

Now, to get our contradiction, we consider three cases (without loss of

generality):

(1) Assume Γ1 is arithmetic and Γ2 is nonarithmetic. In this case, χΓ1 is

not ℵ0-categorical, while χΓ2 is ℵ0-categorical. (This follows from Theo-

rem 5.18.) This case could also be handled in a more elementary manner

similar to our technique in the third case.

(2) Assume that both Γ1,Γ2 are arithmetic groups. We have, by the above

arguments, that gΓ1g
−1 is contained in Comm(Γ2). We will be done if we

show that gΓ1g
−1 and Γ2 are commensurable in the strict sense. This

follows by arguments of [30, p. 4], where the following fact is shown: for

any two arithmetic Fuchsian groups G1 and G2, if G1 is contained in the

commensurator of G2, then G1 and G2 are commensurable in the strict

sense.

(3) Assume that both Γ1 and Γ2 are non-arithmetic. By the above argument,

we have that gΓ1g
−1 ≤ Comm(Γ2) for some g ∈ GL2(C). By a symmetric

argument, we have some h ∈ GL2(C) such that hΓ2h
−1 ≤ Comm(Γ1).

Replacing one of Γi with a suitable conjugate, we may assume that Γ1 ≤
Comm(Γ2) and Γ2 ≤ Comm(Γ1). From this, we will show that Γ1 and Γ2

are commensurable. By Margulis’ Theorem, Γi is finite index in Comm(Γi).

We need only show that Γ2 is finite index in Comm(Γ1).

We have that Γ1 is contained in Comm(Γ2), Γ1 contains only finitely

many left coset representatives of Γ2. Since Γ1 is finite index in its own

commensurator, the conclusion follows. �

Remark 6.6. The following stronger result should hold: The sets defined

by χΓ1,
d
dt

(y) = a1 and by χΓ2,
d
dt

(y) = a2 are orthogonal if Γ1 is not commen-

surable with Γ2 in the wide sense. However, we have not been able to prove it

yet.
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7. Effective finiteness results around the André-Pink conjecture

The André-Pink conjecture predicts that when W is an algebraic subva-

riety of a Shimura variety and S is a Hecke orbit, if W ∩ S is Zariski dense

in W , then W is weakly special. For details, definitions, and proofs of certain

special cases of the conjecture, see [39], [40], [13].

In the setting of the present paper the conjecture concerns the intersection

of an algebraic variety W ⊂ An with the image, under jΓ applied to each

coordinate, of the orbit under Comm(Γ)n of some point in ā ∈ H.

Given a Fuchsian group Γ and a point a ∈ C, we denote, by IsoΓ(a), the

collection of points b ∈ C such that P (a, b) = 0 for some Γ-special polyno-

mial P. Equivalently, for some (all) ã, b̃ ∈ H such that jΓ(ã) = a and jΓ(b̃) = b,

there is γ ∈ Comm(Γ) such that γã = b̃.

Given a Fuchsian group Γ and a point ā = (a1, . . . , an) ∈ An(C), let

IsoΓ(ā) denote the product of the orbits of the points a1, . . . , an under Γ-special

polynomials; that is,

IsoΓ(ā) =
n∏
i=1

IsoΓ(ai).

We call a polynomial p(x1, . . . , xn) (Γ)-(a1, . . . , an)-special if

(1) p(x̄) = xi − bi where bi ∈ IsoΓ(a); or

(2) for some i, j, IsoΓ(ai) = IsoΓ(aj), and p(x̄) is a Comm(Γ)-special polyno-

mial in xi, xj .

An irreducible subvariety of Cn will be called (Γ)-(a1, . . . , an)-special if it

is given by a finite conjunction of (Γ)-(a1, . . . , an)-special polynomials. If an

irreducible variety V is (Γ)-(a1, . . . , an)-special, then it follows that V has a

Zariski dense set of points from IsoΓ(ā). Our first result of this section shows

that the converse holds, at least when ā is a tuple of transcendental numbers

(perhaps with algebraic relations between them).

Theorem 7.1. Fix a complex algebraic variety V ⊂ An(C), a genus zero

Fuchsian group Γ of the first kind, and a point ā = (a1, . . . , an) ∈ An(C) such

that for all but at most one i ∈ {1, . . . , n}, ai /∈ Qalg. Then V ∩ IsoΓ(ā)
Zar

is a

finite union of (Γ)-(a1, . . . , an)-special varieties.

Proof. The (perhaps reducible) variety V ∩ IsoΓ(ā)
Zar

consists of finitely

many components W1, . . . ,Wk, and so we need only show that the varieties

Wi are (Γ)-(a1, . . . , an)-special. Working component by component, it suffices

to show that for an arbitrary irreducible variety V , if IsoΓ(ā) is Zariski dense

in V , then V is (Γ)-(a1, . . . , an)-special.

Without loss of generality, assume that all of the coordinates of ā, except

perhaps a1, are transcendental over Q. We also assume a1 ∈ Qalg without loss
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of generality — otherwise just ignore arguments about this coordinate in the

proof.

Embed Q(a2, . . . , an) into the field of meromorphic functions on some

connected subset of H such that a2, . . . , an are non-constant.

Let ã2, . . . , ãn be as in the proof of Theorem 6.2 — that is, jΓi(ãi) = ai
for i = 2, . . . , n. In the differential closure K of the field generated by the ai
over Q we have, by Theorem 6.2, that

{x ∈ K |χΓ(x) = χΓ(ai)} = IsoΓ(ai),

so χΓ(ai) = χΓ(aj) if and only if IsoΓ(ai) = IsoΓ(aj).

Consider the collection of i ∈ {1, . . . , n} such that V projects dominantly

onto the coordinate corresponding to xi. Then if IsoΓ(ā) is dense in V , and if

we let b2, . . . , bn be a collection of generic solutions of χΓ(bi) = χΓ(ai) and let

b1 be a generic constant, then we have that the tuple b̄ is dependent over C,

but as b2, . . . , bn satisfy equations which are strongly minimal and trivial, it

must be that two of the coordinates are non-orthogonal. But now we are done,

since all instances of non-orthogonality are given by Theorem 6.2, since none

of the coordinates 2, . . . , n can be non-orthogonal to b1, a constant. �

Remark 7.2. The assumption in Theorem 7.1 that all but at most one

of the elements in the tuple ā are transcendental is an inherent restriction of

the method we employ, which is similar to the technique employed in various

applications of differential algebra to diophantine problems. We replace an

arithmetic (discrete) object by the solution to a system of differential equations,

then reduce the general case to an analytic statement using a strong version

of Seidenberg’s embedding theorem. Generally speaking, the technique works

when the discrete set satisfies some interesting differential equation, which one

is able to understand. But the only derivation on Qalg is the trivial one, and so

the above strategy cannot work when more than one coordinates are in Qalg.

For other instances of applications of this general idea, see [15], [17], [55], [8].

It would be interesting to see if the methods here might be combined with

methods solving other special cases of the conjecture (e.g., [39]) to remove the

transcendence restrictions of Theorem 7.1.

Remark 7.3. The technique by which we prove Theorem 7.1 has natural

limitations described in Remark 7.2, but it also has an interesting natural ad-

vantage over other techniques. Because we replace an arithmetic object, whose

definition is very non-uniform, with a differential algebraic variety, results from

differential algebraic geometry can be used to give effective bounds the degree

of the Zariski-closure of the solutions set.

A general purpose Bezout-type theorem for algebraic differential equations

(generalizing a theorem of Hrushovski and Pillay) was established in [11]. In
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what follows, τ`An denotes the `th-prolongation space of An, and for a differ-

ential field K, we define

(X,S \ T )](K) = {a ∈ X(K) : (a, a′, . . . , a(`)) ∈ S \ T (K)}.

Theorem 7.4. Let X be a closed subvariety of An, with dim(X) = m,

and let S, T be closed subvarieties (not necessarily irreducible) of τ`An for

some ` ∈ N. Then the degree of the Zariski closure of (X,S \T )](C) is at most

deg(X)`2
m`

deg(S)2m`−1. In particular, if (X,S \ T )](C) is a finite set, this

expression bounds the number of points in that set.

Next, we aim to put our differential relations in a form such that we may

apply Theorem 7.4. Recall our Schwarzian differential equation:

(?) S d
dt

(y) + (y′)2 ·RjΓ(y) = 0,

where S d
dt

(y) = y′′′

y′ −
3
2

Ä
y′′

y′

ä2
denotes the Schwarzian derivative (′ = d

dt) and

RjΓ ∈ C(y) depends on the choice of jΓ. For the purposes of this section, all

that matters is the degree of the rational function RjΓ . (The coefficients, which

are complex numbers, will not be important in stating or proving our results.)

If the Γ-action on H has a fundamental half domain given by a r-sided polygon

P (note that this is the case for any Fuchsian group of the first kind as r is

equal to the number of generators of Γ [21]), then

RjΓ(y) =
1

2

r∑
i=1

1− α2
i

(y − ai)2
+

r∑
i=1

Ai
y − ai

,

where the coefficients are complex numbers depending on specific character-

istics of the domain. The crucial point for our results is that the degree of

RjΓ (by which we mean the maximum of the degree of the numerator and the

denominator) is given by 2r, where r is the number of generators of Γ.

Clearing the denominator of the rational function and the Schwarzian in

equation (?), we obtain

0 = (y′′′y′ − 3

2
(y′′)2)

r∏
i=1

(y − αi)2

+ (y′)4

Ñ
1

2

r∑
i=1

Ñ
(1− αi)

∏
j∈[r], j 6=i

(y − ai)2

é
+

r∑
i=1

Ñ
Ai(y − ai)

∏
j∈[r],j 6=i

(y − aj)2

éé
.

(Q(?))

As a polynomial, the previous equation has degree 2r + 2.
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Theorem 7.5. Fix a complex algebraic variety V ⊂ An(C), a genus zero

Fuchsian group Γ of the first kind, and a point ā = (a1, . . . , an) ∈ An(C) such

that for all i ∈ {1, . . . , n}, ai /∈ Qalg. Then V ∩ IsoΓ(ā)
Zar

is a finite union of

(Γ)-(a1, . . . , an)-special varieties, and the sum of the degrees of the varieties in

this union is at most

((2r + 2)n · deg(V ))23n−1.

Proof. We need only put the equations appearing in Theorem 7.1 in a

form suitable to apply Theorem 7.4. We can write the Schwarzian differential

equations as ∇−1
3 (S) on each coordinate, where S is the locus of (Q(?)) in

τ3(A1). On each coordinate, this equation has degree 2r, so the intersection of

these relations with V is a variety in τ3(An) of degree at most (2r+2)n deg(V ).

Now the degree bound follows from Theorem 7.4 with X = An, l = 3, and V

as given above. �

Remark 7.6. One can also establish (by the same means as in the pre-

vious proof) a version of Theorem 7.5 with one coordinate algebraic rather

than transcendental. (The bound is slightly better in this case.) The bounds

of Theorem 7.5 can also be improved (using more elaborate arguments) by

applying the results of [5], a process carried out in [5] in the case that Γ is the

modular group.

Appendix A. Strong minimality

for the special case of triangle groups

In this appendix, we discuss an alternate method of proving strong min-

imality of the Schwarzian equation in the special case of triangle groups. As

before, we assume that Γ is a Fuchsian group of first kind and of genus zero.

The group Γ is said to be a Fuchsian triangle group of type (k, l,m) if its sig-

nature is (0; k, l,m) (see Section 2). Without loss of generality we will always

assume that 2 ≤ k ≤ l ≤ m ≤ ∞. We write Γ(k,l,m) for the Fuchsian triangle

group of type (k, l,m).

The fundamental domain in H of Γ(k,l,m) is the union of a hyperbolic

triangle with angles π
k , π

l and π
m at the vertices vk, vl and vm respectively,

together with its image via hyperbolic reflection of one side connecting the

vertices. Notice that since k, l,m relates to the angle of an hyperbolic triangle,

if Γ(k,l,m) is a triangle group, then

1

k
+

1

l
+

1

m
< 1.

Also, the vertices vk, vl and vm are the fixed points of the generators g1, g2

and g3 respectively.



758 G. CASALE, J. FREITAG, and J. NAGLOO

Definition A.1. The function j(k,l,m) will denote the (unique) Hauptmodul

Γ(k,l,m) \HΓ(k,l,m)
→ P1(C) sending vk, vl, vm to 1, 0, ∞ respectively.

With this definition (cf. [1, Ch. 5]) we have that j(k,l,m) satisfies the

Schwarzian equation (?) with

Rj(k,l,m)
(y) =

1− l−2

y2
+

1− k−2

(y − 1)2
+
k−2 + l−2 −m−2 − 1

y(y − 1)
.(A.1)

Notice that with Definition A.1, the Hauptmodul j(2,3,∞) for PSL2(Z) is not the

classical j-funtion. Rather, one has that j = 1728j(2,3,∞) (see Example 2.2).

Finally let us mention that there is a full classification, up to PSL2(R)-

conjugation, of the arithmetic triangle groups.

Fact A.2. Up to PSL2(R)-conjugation, there are finitely many arithmetic

triangle groups ; 76 cocompact and nine non-cocompact [61]. Among these,

there are 19 distinct commensurability classes represented [62].

In the special case of triangle groups, proving that the Riccati equation

(4.4) has no algebraic solutions (and thus establishing the strong minimality of

the associated order three non-linear Schwarzian differential equations) can be

accomplished without any appeal to Picard-Vesiot theory but instead by using

classical work around the hypergeometric equation. Already, in [37, p. 601],

Nishioka shows that equation (4.5) has no algebraic solutions in the case the

Γ is a cocompact triangle group (which corresponds to the case that none of

k, l,m are ∞). Hence Condition 3.1, and thus Theorem 3.2, holds in the case

of cocompact triangle groups. We will, via a very similar argument, show the

same result holds in the case that Γ is not cocompact. To emphasize, these

results are a special case of our general result on Fuchsian groups, but we feel

their inclusion is worthwhile in part because the method, which deals more

directly with the order two linear equation (4.1) and Riccati equation (4.5),

might generalize to Schwarzian equations of the form of equation (?′) that do

not necessarily come from a group action of Γ on H. This restriction appears

to be more inherent in our main approach of the previous section.

Let

λ =
1

l
,(A.2)

µ =
1

k
,(A.3)

ν =
1

m
,(A.4)

where the integers 2 ≤ k ≤ l ≤ m ≤ ∞ are as above. We have already seen

λ+µ+ν < 1. Now let α, β and γ be any complex numbers such that, λ = 1−γ,

µ = γ − α− β, and ν = α− β.
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Now, we know that the second order equation (4.1) corresponding to equa-

tion (?) with rational function (A.1) (equation (5) of [37]) is reducible if and

only if one of α, β, γ − α, γ − β is an integer. Since [37] covers the cocompact

case, we can assume without loss of generality that m =∞, equivalently ν = 0.

Thus, in the above notation, α = β. Now,

α =
1− 1

l −
1
k

2
.

In this case, by the triangle requirement, 1
l + 1

k < 1, so α is never an integer.

Further, we have

γ − α =
1− 1

l + 1
k

2
.

This quantity is never an integer, since 1
l + 1

k < 1. Thus, in the non-cocompact

case, we have that the corresponding equation (4.1) is always irreducible,

which, by the correspondence explained in Section 4 implies that there are

no rational solutions to equation (4.4) in this case.

Now, under the assumption of irreducibility of equation (4.1), we have

that there is an algebraic (but irrational) solution of (4.4) if and only if two

of λ− 1
2 , µ−

1
2 , ν −

1
2 are integers [29, pp. 96–100]. This is impossible for any

triangle group as at most one of these is an integer as long as λ+ µ+ ν < 1.

Thus, we have shown, in a more direct way, that Condition 3.1 and thus

Theorem 3.2 also holds in the case of non-cocompact triangle groups.

Remark A.3. At first glance the above arguments only seem to show that

the differential equations for the unformizers j(k,l,m) are strongly minimal.

However, all other uniformizers are rational functions (over C) of the j(k,l,m)’s.

From this, strong minimality follows for the other equations as well.
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fessées à Stockholm (1895), in Oeuvres de Paul Painlevé. Tome I, Éditions du
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