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MODEL THEORY AND MACHINE LEARNING

HUNTER CHASE AND JAMES FREITAG

Abstract. About 25 years ago. it came to light that a single combinatorial property
determines both an important dividing line in model theory (NIP) and machine learning
(PAC-learnability). The following years saw a fruitful exchange of ideas between PAC-learning
and the model theory of NIP structures. In this article, we point out a new and similar con-
nection between model theory and machine learning, this time developing a correspondence
between szability and learnability in various settings of online learning. In particular, this gives
many new examples of mathematically interesting classes which are learnable in the online
setting.

81. Introduction. The purpose of this note is to describe the connections
between several notions of computational learning theory and model the-
ory. The connection between probably approximately correct (PAC) learning
and the nonindependence property (NIP) is well known and was orig-
inally noticed by Laskowski [8]. In the ensuing years, there have been
numerous interactions between the combinatorics associated with PAC-
learning and model theory in the NIP setting. Below, we provide a quick
introduction to the PAC-learning setting as well as learning in general.
Our main purpose, however, is to explain a new connection between the
model theory and machine learning. Roughly speaking, our manuscript
is similar to [8], but develops the connection between stability and online
learning.

That the combinatorial quantity of VC-dimension plays an essential role
in isolating the main dividing line in both PAC-learning and perhaps the
second most prominent dividing line in model-theoretic classification the-
ory (NIP/IP) is a remarkable fact. This connection has been the subject of
numerous works in recent years [5-7, 11]. In the setting of online learning
(described below), another combinatorial notion, the Littlestone dimension,
isolates the dividing line between learnability and nonlearnability of a con-
cept class. Given how well studied the connection between model theory
and the combinatorics associated with machine learning is, it is surprising
that it hasn’t been noticed until now that the same combinatorial quantity
isolates what is perhaps the most prominent dividing line in classification
theory (stable/unstable).
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Now, we roughly describe the PAC setting, in part to contrast the setting
with that of online learning. Given an infinite set X with a probability
measure 4 on X and a collection of measurable subsets of X, denoted by
C. one attempts to “learn” a fixed but unknown 4 € C by sampling from
X . For some large n, n elements of X are randomly sampled, and the goal
is to estimate the probability u(A4) by the proportion of elements of the
sample which lie in 4. For some ¢ > 0 fixed ahead of time, we say that
the sample estimates the set 4 ¢-well if the proportion of elements of the
sample which lie in A is within ¢ of u(A). The class C is learnable if for
any o there is a large enough n such that the measure of the samples of
size n (computed using the product measure x") which estimate the sample
e-well is greater than 1 — . Roughly, for large enough sample size, we can
get arbitrarily high likelihood that a sample estimates the true probability
arbitrarily well. That is, for a large enough sample size, predictions are
probably approximately correct, hence the name PAC. It turns out that there
is a purely combinatorial characterization of C being PAC-learnable (which
remarkably does not depend on the distribution u); the collection C is PAC-
learnable if and only if C has finite VC-dimension.

The connection to model theory is as follows: when X is taken to be M,
a model of a first order theory T and ¢(x. y) is a formula in the language
of T, welet C = {¢p(M,a)|a € M}. Then, the VC-dimension of C is finite
if and only if ¢(x, y) is NIP.

In the most straightforward (and restrictive) setup of online learning, we
are given an infinite set X (with no distribution) along with a collection C of
subsets of X. The collection C is known to the learner. Fix some 4 € C which
is not known to the learner. Fixing some large n, there will be n rounds. In
round 7, an element x; is selected, and the learner must predict the value of
1 4(x;). that is, whether or not x; is in the unknown set A. We call the value
of the learner’s prediction ;. The goal of online learning is to minimize the
number of mistakes made during these predictions

Z‘f/i = La(xi)].
i-1

In this setting, there is no assumption about how the elements ¥ =
(x1,....x,) are chosen, and the choice of x;,; is allowed to depend on
the predictions made by the learner in the previous rounds. One seeks to
minimize the number of mistakes over all possible sequences of samples.
This setting of computational learning often arises when the data become
available in sequential order or the data are chosen by a process which is
assumed to be adversarial to the learner (a process or opponent seeking to
make the number of mistakes large). Variations on how the samples are cho-
sen are possible as well; for instance, a certain limited amount of randomness
is often injected into how the elements x; are chosen without moving the
sampling back into the PAC context.

It turns out that the number of mistakes that the best deterministic algo-
rithm makes (over all possible samples) can be bounded in terms of a
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combinatorial quantity associated with the collection C, the Littlestone
dimension. When X is taken to be M, a model of a first-order theory
T, ¢(x.y)is a formula in the language of 7', and C = {¢p(M, a)|a € M},
the Littlestone dimension (also called thicket dimension) is precisely the
Shelah 2-rank of ¢(x, y), which is finite if and only if ¢(x, y) is stable. A
number of variants of this basic setup have much less restrictive assump-
tions (sometimes with a certain amount of randomness similar to the PAC
setting) while also having the property that learnability is characterized by
stability. In Section 4, we will give an exposition of the various settings in
which stability characterizes learnability.

It seems surprising to the authors that the connection pointed out in the
previous paragraph has not been previously noticed. but the following quote
of [15] offers something of an explanation:

A reflection on the past two decades of research in learning the-
ory reveals (in our somewhat biased view) an interesting difference
between Statistical Learning Theory and Online Learning. In the
former, the focus has been primarily on understanding complexity
measures rather than algorithms... In contrast, Online Learning has
been mainly centered around algorithms.

The dividing lines in model-theoretic classification theory are more natu-
rally associated with combinatorial properties and the various complexity
measures associated with PAC-learning than with algorithms, and in the
less restrictive online setups, the role of Littlestone dimension is perhaps
somewhat more hidden than the role of VC-dimension in the PAC setup.

The correspondence between online learnability and stability is similar
to the correspondence between PAC-learnability and NIP, but it should be
mentioned that the fields (online learning and stability theory) are in rather
different positions than in PAC-learning correspondence with NIP. At this
point, stability theory has been extensively developed, while at the time of [8],
the study of theories without the independence property was in its infancy,
while PAC-learning was much more developed. Various notions from PAC-
learning eventually played a big role in the development of structural results
for NIP structures. In the case of the correspondence between stability and
online learning, there seems to be more potential for the application of model
theoretic ideas in online learning. For instance, in the final sentence of [2],
the authors mention that one of the main open questions in the theory is to
close the gap between the lower bounds and upper bounds for the expected
number of mistakes a learner makes in various online contexts, and that
this question seems to have as a main obstacle a lack of interesting infinite
concept classes with finite Littlestone dimension. Model theory offers a
remedy for this obstacle; a great many mathematically interesting theories
have been proven to be stable over the last forty plus years of classification
theory, often with highly nontrivial proofs. So, following our discussion of
online learning, we give some prominent examples of stable theories, giving
various new examples of classes of finite Littlestone dimension.
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Now, we describe the organization of this manuscript. In Section 2, we
describe the setting of computational learning in very general terms. In
Section 3 we specialize to the PAC-setting. In Section 4, we specialize to
the setting of online learning before describing several variants. In the final
section, we survey some stable theories, and use the connection pointed
out earlier in the paper to give many new examples of classes with finite
Littlestone dimension.

§2. Machine learning generalities. In this section, we describe the gener-
alities of machine learning, in quite a general setup, while mentioning the
cases of particular interest to us. Let Y be a set, which we will call the set of
labels. Let Y’ be another set, which we will refer to as the predictions. Fix a
function

L:Y xY' — R

which we call the loss function.

REMARK 2.1. The most common setup occurs when ¥ = Y’ = {0, 1}
and L(y.y") = [y — y'|.

Another common example occurs when ¥ = Y/ =T C R, with I a
bounded interval. In this case, a common loss function is given by L(y. y’) =
(y — »’)?. Settings in which ¥, Y’ C R are sometimes called margin-based.
These settings are less natural to connect directly to model theory, though
it might make sense to study margin-based machine learning in the context
of continuous model theory [20].

Let X be another set, which we call the set of examples (also sometimes
called inputs or instances). A conceptisamap A : X — Y. In the example
given above with ¥ = {0, 1}, a concept is simply a subset of X. A concept
class C is a collection of concepts.

Fix some concept 4. The learner will make a series of predictions about
a sample of inputs from X by selecting a prediction J; for the label of each
element x; from the sample. The learner incurs a loss for each element x;
of the sample. by evaluating L(A4(x;). y;). If the elements of the sample are
indexed by the set /, then the total loss incurred is given by

Z L(A(x;). ).
icl
The goal of the learner is always the same—minimize the total loss coming
from making predictions about a series of elements of X. Besides the objects
described above, the differences in various settings of learning theory are
derived from the assumptions about what data the learner have available
and how the elements of the sample are chosen.

83. PAC-learning and NIP. In this section, we will quickly explain the
connection between PAC-learning and NIP. Our presentation essentially
follows [6]. Fix a concept class C on a set X with ¥ = Y’ = {0,1}. Let
Crin = {A|z|Z C X. Z finite, A € C}. Let u be a probability measure on
X such that each element of C is measurable. We will think of the learner
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as having complete knowledge of the elements of C, and the elements for a
sample being drawn randomly with respect to the distribution given by u.
Let G : Cyjp — 2% be a function. Let @ = (ay.....a,). Define

erri(G.4.@) = u({e € X | f(e) # GAl)(e)}).

Here, one should think that G is a function being used to generate pre-
dictions, while the error is the probability that the next prediction is
incorrect.

We say that C is probably approximately correct learnable (PAC-learnable)
if thereisa G : Cpj — 2% such that for all ¢ > 0 and all § > 0, there is
N.s € Nsuch that for all 4 € C, and all £ on X such that all elements of C
measurable,

uo ({a € XM

err,(G.A.a) > 8}) <4,

where u™+s is the product measure. That is. the probability that the error
is high (bigger than ¢) is small (less than ). Supposing that the class C is
PAC-learnable, there is a minimal N, s for which the inequality holds, which
is called the sample complexity.

The following theorem establishes the connection between VC-dimension
and PAC-learnability:

THEOREM 3.1. Let C be a concept class on X. Then the following are
equivalent:

(1) C has finite VC-dimension.
(2) C is PAC-learnable, and

4 2\ 84 13
N,s < max {E log, <5> . ?log2 (;) } .

In fact, even more is true—if C is PAC-learnable with sample com-
plexity N,s, then one can show that the expected value of the function
a s err,(G. A, a) is bounded by 6 + ¢(1 — ).

In the years since Laskowski’s paper [8], connections between the VC
theory and NIP have developed extensively with important notions from
VC-theory adapted to the model-theoretic setting and vice versa [5-7, 11].

84. Online learning and stability. The initial setting of online learning
which we describe is due to Littlestone [9]; the particular setting received
relatively little attention. perhaps due to the very strong assumptions ( [9]
is in fact famous for several other contributions). Littlestone’s work was
generalized in various ways in the ensuing years, with the assumptions
being significantly weakened. We will begin with the original setup of [9],
and eventually describe two settings laid out in [2]. First, we set up some of
the combinatorial notions pertinent in each of the settings we consider.

The next several definitions follow the notation and terminology of
Bhaskar [3].

DEerINITION 4.1. A binary element tree of height h, denoted by 7;, is a
rooted complete binary tree of height 4 whose nonleaf vertices are labeled
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by elements of the set X and whose leaves are labeled by elements of C (see
Figure 1).

For the following definitions, fix a binary element tree of height 4.

DEFINITION 4.2, A vertex v; is below a vertex v, if v, lies on the (unique)
path from v; to the root of the tree. We say that v; is left-below v, if vy is
below v, and the first edge along the path from v, to v; goes down and to the
left. The notion of right-below is defined analogously. When a vertex labeled
by b is left-below a vertex labeled by a, we write a <; b. Similarly, when a
vertex labeled by b is right-below a vertex labeled by a, we write ¢ <g b.

DErFINITION 4.3. A leaf, labeled by 4 € C is said to be well labeled if for
each vertex above Y, say labeled by a,

a € Aifand only if a <, A.

DEFINITION 4.4. The thicket shatter function pr : Z=2° — 720 is defined
by letting p#(n) be the maximum number of well-labeled leaves on a binary
element tree of height n, 7,,. whose leaves are labeled with elements of 7. The
thicket dimension Ldim(F) is the maximum integer n such that pz(n) = 2",
or else Ldim(F) = co.

Thicket dimension has appeared in at least several other contexts under
different names; in fact Bhaskar [3] was aware of the terminology and
definitions of [18], which we reproduce next:

DErINITION 4.5. Let M be a monster model of a complete £L-theory. Fix
a consistent partial type 7(x) and a partitioned formula ¢(x; y). Then the
ordinal R(7, ¢, 2), called the Shelah 2-rank, is defined as follows:

o R(m, o, 2) > 0.
e For any limit ordinal A, R(n, ¢.2) > Aif R(n. ¢.2) > a for all o < A.

e For any ordinal o, R(7, ¢.2) > o + 1 if there is some ¢ (x, a) such that
R(nU{¢(x.a)}.¢.2) > aand R(nU {—¢(x.a)}.4.2) > a.

as ag dg ar

Ay Ay Ay As As Ag A7 Ag

FIGURE 1. A binary element tree of height three. Here, «; €
X and A4; € C. The leaf labeled with A4 is well-labeled if and
only if a; € A4 and a,, aq ¢ A4. For all other q;, there is no
requirement about membership in Ay.
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In general, R(7. A.2) can also be defined for a finite collection of formulas
A, but this case can be shown to reduce to the case of a single formula. The
formula ¢(x, y) is stable if and only if R({x = x}, ¢, 2) is finite [18]; a theory
is stable if every formula is stable. It is reasonably clear that the R(7., ¢.2) is
the thicket dimension of the set system on M| given by the collection of
sets {¢(b, M) | b € n(M)}; for more details, see [3].

The thicket dimension also appears for the first time in the context of
learning theory in [9]; the quantity came to be called the Littlestone dimension

2.

4.1. The realizable case. Fix a set system C on a set X. Assume that
Y = Y’ = {0, 1} and the loss function for a prediction $ and concept (that
is, a set) 4 on input x is given by |p — 14(x)|. Over all possible algorithms,
we seek to minimize our loss, that is, the number of mistakes we make over
n rounds of predictions. In the realizable case, we assume that 4 € C, so
that the true concept is among the set of concepts C accessible to the learner.
There are no assumptions on the choices of the instances x,. The goal is to
minimize the worst case number of mistakes made by our predictions over
all possible samples of the instances and choice of the concept. So, we seek
to bound

>

n
M= mar ) 2 )
where j, is chosen by some deterministic algorithm.

For applications and purposes of discussing the bounds, one often views
the entity selecting the instances X as antagonistic to the learner—and in
our current simplified setting, bounding the worst case number of mistakes
bounds the actual number of mistakes made when the antagonistic sampling
entity has perfect information about the prediction process.

THEOREM 4.6. [9] The worst case number of mistakes of any deterministic
algorithm in the online learning setting with concept class C is at least the
Littlestone dimension of C, and there is an algorithm that makes at most this
many mistakes.

REMARK 4.7. The algorithm which minimizes the number of worst-case
mistakes in the above setting is referred to as the Standard Optimal Algo-
rithm (SOA), and we describe it briefly here. Begin with V; = C. At each
stage, the learner inductively defines V;. At stage ¢, the learner receives X,
and sets, forr =0, 1,

Vt(r> = {A eV, ’ lA(xl) = }"}.

The learner predicts , = r which maximizes the Littlestone dimension of
V") (ties are predicted in some fixed manner, say §, = 0 in the case of a tie).
Then the learner gets the value of 1 4(x;) and realizes whether a mistake has
been made. At this point, set V, = Vzl’*(x’).

The essential point here is that if a mistake is made, it must be the case that
the Littlestone dimension of V/ is strictly less than the Littlestone dimension
of V,_y (proving this is an easy exercise). Of course, this bounds the total
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number of mistakes which the algorithm can ever make under any choice of
X by the Littlestone dimension.

Where C is generated by a stable formula ¢(z, x), say C = {¢(b, M) |b €
M}, the algorithm equivalently functions as follows. Begin with the partial
type mo(z) = {z = z}, and inductively define 7;(z). When the learner
receives x,. the learner predicts §; = r, where r maximizes R(m,_; U
{p(z.x,)"}.¢.2). where ¢(z. x)! = ¢(z, x) and ¢(z. x)° = =¢(z. x). Upon
receiving 14(x,), set 7, (z) = m,_1(z) U {¢(z. x,)' 1)}, Again, a mistake on
x; will mean R(n,, ¢.2) < R(m;_1.9.2).

4.2. Learning from experts. The case in which we assume that the learner
has access to true concept A € C is often referred to as the realizable case of
online learning. For various applications, this assumption is too strong (as
are other assumptions from the previous subsection which we will deal with
in later sections). In this section, we will explain a context of online learning
which removes the realizability assumption.

The goal again is to minimize mistakes, but here, the minimization will
be relative to a particular class of {0, 1}-valued functions, which we will
call H. That is, we wish to minimize, for any sampling of instances, X =
(x1....,x7), the difference between the number of mistakes made by the
learner and the minimal number of mistakes made by any of the functions
in H. So, in this case, the loss function is taken to be

Z Do =yl = irélql-}z [h(x0) = .

Here, one often thinks intuitively that the functions in #H are experts making
predictions, and the learner’s job is to choose which expert’s prediction to
believe.

Littlestone and Warmuth [10] consider this problem in the case that H is
finite via a probabilistic weighted majority algorithm. We will now describe
their algorithm. At the outset, each of the N many experts { f;}Y | = H is
assigned weight 1, and the weight of expert i at stage ¢ will be denoted by
w!. We fix the learning rate # > 0. which dictates how much we discount
the weight of an expert for providing incorrect advice. At each stage, the
learner receives the expert advice, (f1(x;), ..., fn(x,)). a tuple in {0, 1}¥.
The learner predicts 1 with probability

N
1 _
=N o E W] ilx).
i1

i1 Wi
Then, once the actual value y, is revealed, the weights are updated via:
w! = w!~te=rl/ix)=xl That is, those experts who were wrong see their

weight drop by a factor of e ™.
The expected value of the loss function of their algorithm with a sample
of size T is

T T
1
E(|p, — — mi h -yl <A/=zIn(N)T.
Z (190 = yel) %171_};‘ (X)) =il < 3 n(N)

t=1
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Here, the assumption that # is finite is often too strong for applications,
however, [2] generalize the setup to the case in which H is infinite, but of
finite Littlestone dimension, proving:

THEOREM 4.8. There is an algorithm such that for all h € H and any
sequence of instances X = (X1,....x7),

T

> (5= 50)~ i3 ) 50 < 5 Ldim ) ),

=1
In [2] it is also shown that no algorithm (even allowing randomization)

can achieve an expected bound better than 4/ %Ldl’m(?—[) T. Closing the gap

between the lower and upper bounds for the loss function (sometimes called
regret in this context) is one of the main open problems mentioned in [2].
where the authors remark that there are few known interesting examples of
infinite classes with finite Littlestone dimension. Certainly, the model theory
provides a large array of mathematically interesting examples of such classes
which may be useful in providing examples which improve various bounds
discussed above.

4.3. Bounded stochastic noise. Suppose that we work in the general setup
from the previous section (again, not assuming realizability), but with a
difference in the way we generate labels and measure mistakes. Suppose
that there is a function # € #H such that the labels y;,...,yr are inde-
pendent {0, 1}-valued random variables with the property that for all ¢,
Pr(h(x;) # y;) < y with y € (0.1). This value y will be called the noise
rate.

In this setting, one seeks to minimize the difference between the predictions
and the output of the noisy function on the samples:

T
E (Z | —J’z’> .
t=1

Note here that there are two sources of randomness—the choices of the
algorithm may be randomized and the labels y, are random variables. The
expectation is taken with respect to both of these.

THEOREM 4.9. For any concept class H, and any y € [0, %) there is an
algorithm (possibly randomized) so that for any h € H. and a sequence of
examples (x1.y1).....(x7.yr) with each y, a random variable as described

above,
P (Z 5 —h@)\) < Laim(#) IniT)
=1

1-2/p(1—y)

That is, the expected number of mistakes grows only logarithmically in
the sample size. In [2], the authors give an example of a class { which shows
that the left hand side of the inequality in the theorem is bounded below by
Q(Ldim(H) - In(T)).
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85. Stability theory. In this section, we use stability theory to point out
various mathematically interesting examples of classes which have finite
Littlestone dimension. We will assume some basic familiarity with first order
logic, but we provide some reminders for the nonmodel theorist for whom
this section is written.

Fix some complete theory 7 in a language £ and let M be a monster
model of 7. The nonmodel theorist can simply loosely assume that M is
a very large structure in which over a small subset 4 (say of cardinality
at most ) for any tuple ¢ in any model of T containing 4, there is some
b € M such that tp(c/A4) = tp(b/A). Here, tp(c/A) denotes the collection
of all first order formulas in the language £ with parameters from 4 which
are satisfied by c.

For n € N, the space of types of n-tuples of M over some subset 4 C M
is denoted by S, (A4). It comes naturally equipped with a topology in which
the basic open sets correspond to first order formulas with parameters in A.
Rather than considering all formulas, sometimes it is natural to restrict to
the ¢-type of a tuple, denoted tp¢(c /A), the collection of instances of ¢ with
parameters in 4 which hold of ¢. When ¢(x: y) is a formula, the space of
¢-types over A (treating the variables y as parameters) is denoted by S, (A4).

The theory T is called x-stable if for every set A C M with |4]| < &k, we
have |S,(A4)| < & for all n € N. The theory is stable if it is x-stable for some
k > |T|. Part of the utility of the notion is that it can be characterized in
several disparate ways (this is far from being an exhaustive list):

Fact 5.1. [18] The following conditions are equivalent:

(1) T is k-stable for some k.

(2) For any countable set A C M, S4(A) is countable.

(3) Every formula ¢(x:y) has finite Shelah 2-rank—that is, R({x = x},
¢.2) is a finite ordinal (recall that Shelah 2-rank is equal to Littlestone
dimension).

(4) No formula ¢(x:y) has the order property. A formula ¢(x:y) has the
order property if there are tuples (ay.by). (as.b,). ... from M so that
M = ¢la;:b;) if and only if i < j.

When « in the first condition of the above definition is be taken to be
N, the theory is (somewhat enigmatically) called w-stable. Not every stable
theory is w-stable, even when making strong assumptions about various
aspects of the language or structure. For instance, the theory of the integers
where the language consists of the additive group operation as a binary
function is stable, but not w-stable.

Stability is one of the dividing lines (probably the most prominent one)
which in certain contexts, model-theorists view as the border between
“tame” and “wild” structures; stability allows for the development of vari-
ous structural results, which are (often provably) impossible in the case of
unstable theories. Stability has various nonobvious interactions with alge-
braic structure, and understanding these interactions has been the subject
of a huge amount of model theoretic work over the past fifty years (for
instance, there is a deep structure theory of stable groups [14]).
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Consider the concept class Cs on MW! given by the collection of sets
{p(b, M)|b € M}. The theory T is stable precisely if each concept class of
this form has finite Littlestone dimension (see Section 4 for an explanation).

We will elaborate on condition (4). Given a class Cy, there is a natural
bipartite graph G, associated with any concept class. The sets of vertices
consist of 1) the elements of the underlying set and 2) concepts, with an
edge between an element and a concept if and only if the element is in the
concept. Finite Littlestone dimension of the concept class Cy is equivalent
to there being an upper bound on the size of any half-graph which appears
as an induced subgraph of G.

5.1. Examples of notable stable theories. We now make a list (very far
from comprehensive) of some notable stable theories and offer some expla-
nation of the set systems (families of definable sets) which arise in the various
settings. From our list, many mathematically interesting classes C4 with finite
Littlestone dimension can be obtained.

(1) ACF ., the theory of algebraically closed fields. By quantifier elimina-
tion for algebraically closed fields, the concept classes which appear as
Cy 1n the theory of algebraically closed fields are precisely the uniform
families of affine constructible sets. That is, when f : V' — W isa
rational map (everything defined over some fixed algebraically closed
field). the corresponding family of constructible sets is the collection
of fibers of the function f. More concretely, one can think of such
a family as being given by solutions sets of families of polynomial
equations and inequations:

filx.a) = fa(x.a)..... fu(x.a) =0. f(x.a) #0

where x is a tuple of indeterminates and « is a tuple which varies over
some constructible subset of Al“l.

(2) DCF,, the theory of differentially closed fields of characteristic zero,
was first investigated by Robinson [16] and Blum [4] gave an ele-
gant axiomatization from which it was straightforward to notice that
the theory is stable. See [12] for a more comprehensive discussion
of DCF,, as we will be brief here. Differentially closed fields are
universal domains for algebraic differential equations; that is, if a
system of equations has a solution in some field of functions, it
already has a solution in the differential closure of the field gener-
ated by the coefficients of the equations. By quantifier elimination
for differentially closed fields. the concept classes which appear as Cy
in the theory of differentially closed fields are precisely the uniform
families of constructible sets in the Kolchin topology (boolean com-
binations of the zero sets of algebraic differential equations). That
is, when f : V' — W is a differential rational map between affine
constructible sets V. W in the Kolchin topology (everything defined
over some fixed differentially closed field), the corresponding family
of constructible sets is the collection of fibers of the function f. Such
a family is alternatively given by a collection of differential equations
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and inequations

filx.a) = fa(x.a)..... fu(x.a) =0.f(x.a) #0

where x is a tuple of indeterminates from M = DCFyand a € M is
a tuple which varies over some Kolchin-constructible subset of Al¢!.
(3) The theory of separably closed fields with characteristic p # 0 and
fixed degree of imperfection ¢ € N (which we will describe here) is
complete and was shown to be stable by Wood [19]. When a field F
of characteristic p is closed under separable extensions, we say F is
separably closed. A set B C F is a p-basis of F if the collection of
products of powers of elements of B of degree at most p — 1 forms a
basis for F as an F?-vector space. The cardinality of such a set B is
called the degree of imperfection of F (which we assume to be finite).
Now, let {a;.....a.} be a p-basis of F, and let {m;,....my,} be the
collection of monomials in {ay,...,a,} of degree at most p — 1 in
each element. Every element of F can be written uniquely in the form

where x; € F. For each element x; in the above sum, we can repeat
the process, writing

Naturally, one can continue to iterate this process, defining x, for

any o a finite tuple of elements from {1,..., p°}. Let 4, be the unary
function x — x,.
Let £, be the language {+. —.-.=1,0, 1}U{ay,....a, }U{4; : 0 €

(p¢)=“}. The theory of separably closed fields of characteristic p with
degree of imperfection e eliminates quantifiers in the language £,..
So, in one variable, definable sets correspond to boolean combinations
of the zero sets of ideals in F|[x, ig(x)]ge(pe)gn, for some 7.

(4) Let X be a compact complex manifold. Consider the structure A(X)
where the basic relations are the complex analytic subsets of X" for
any n € N; we call a subset 4 C X" complex analytic if it is, for any
point p € X" there is a neighborhood U of p such that AN U is given
by the zero set of some fixed finite number of holomorphic functions
on U. The model theory of compact complex manifolds began with
Zilber’s observation [21] that if one adds as a relation all complex
analytic subsets of X for all n, then, the induced structure is stable.
For an overview of the model theory of compact complex manifolds,
see [13].

(5) Let R bearing and Ly be the language of right R-modules, consisting
of'a symbol for addition and a unary function f, foreach» € R, which
is interpreted as scalar multiplication by r. Let T be any complete
theory of right R-modules in the language L. By a result of Baur [1],
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every formula ¢ (x) is equivalent to a boolean combination of positive
primitive formulas, that is, formulas of the form Jyy (x, y). where v
is a conjunction of atomic formulas. In particular, every definable
subset of an R-module M is a boolean combination of cosets of
positive primitive definable subgroups of M. An abelian group can
be viewed as a Z-module, and from this characterization of definable
sets, it is not hard to show that every abelian group has a stable theory
in the language of groups.

(6) The theory of the nonabelian free group 7y, in the language of
groups was shown to be stable by Sela [17] (Sela shows the same
for any torsion-free hyperbolic group). Every formula in the language
of groups is, modulo the theory of the free group, equivalent to a
V3-formula. The strategy of the proof is complicated and is developed
by Sela over a series of seven previous papers; see [17] for complete
references.

REMARK 5.2. Recall that Shelah 2-rank is a local property—that is, it is
a property of a formula, rather than an entire theory. In particular, mathe-
matically interesting stable formulas can be found in unstable theories, and
these generate uniformly definable families with finite Littlestone dimension
just as well. For example, in RCF, the theory of real closed fields, one can
examine the family of solution sets of f(x.y) = 0, or f(x.y) # 0, for a
polynomial /. These families have finite Littlestone dimension, even though
RCF is unstable. Of course, one must take care not to modify a stable for-
mula so as to make it unstable. Whereas y = x + z? is a stable formula,
Jz(y = x + z?) is not.
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