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MODEL THEORY AND COMBINATORICS OF BANNED SEQUENCES

HUNTER CHASE AND JAMES FREITAG

Abstract. We set up a general context in which one can prove Sauer–Shelah type lemmas.We apply our
general results to answer a question of Bhaskar [1] and give a slight improvement to a result ofMalliaris and
Terry [7]. We also prove a new Sauer–Shelah type lemma in the context of op-rank, a notion of Guingona
and Hill [4].

§1. Introduction. Asingle combinatorial notion called VC dimension determines
important dividing lines in both machine learning (PAC learnability of a class) and
model theory (the independence/nonindependence dichotomy, IP/NIP) [5], and
the finiteness of this quantity plays an essential role in the development of various
structural results in theories without the independence property and in machine
learning. Often at the root of these developments is the Sauer–Shelah Lemma,
which for a formula φ(x; y) without the independence property, gives a polynomial
bound on the shatter function associated with φ—that is, the number of consistent
φ-types over finite sets. Without NIP, however, the number of φ-types can grow
exponentially in the size of the finite parameter set. In a recent paper, Bhaskar
[1] noticed that when the formula φ is actually stable, that is, φ has finite Shelah
2-rank (also called Littlestone dimension or thicket dimension in the context of
set systems), one can relax the way in which the φ-types are constructed, allowing
for trees of parameters (explained below) while still proving polynomial bounds on
the resulting collection of consistent φ-types. Again, in the absence of stability the
number of types formed in this manner can grow exponentially in the height of the
tree. Following Bhaskar, we refer to this growth dichotomy theorem as the stable
Sauer–Shelah Lemma. In [2], we notice that stability also determines an important
dividing line inmachine learning; stability determines learnability in various settings
of online learning. In these settings of learning, various results at their core rely on
the polynomial growth of the stable shatter function.
In both settings described above, the growth of the number of types being

polynomially bounded or exponential is completely determined by whether a simple
combinatorial notion of dimension is finite, and the upper bound (which is tight
in general) on the number of such types (in terms of the appropriate notion of
dimension) is identical in both cases. In light of this, Bhaskar naturally asks if there
is a single combinatorial principle which explains both the Sauer–Shelah Lemma
and the stable variant. Themain purpose of our paper is to set up a general context in
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2 HUNTER CHASE AND JAMES FREITAG

which one can prove Sauer–Shelah type results intowhich both of the above contexts
fit, answering Bhaskar’s question as well as proving new results. Our solution to the
problem is quite general and deals with what we call banned sequence problems.
Our general setup of banned sequence problems is an interesting combinatorial

setting in its own right, and we will roughly describe the simplest context here.
Suppose that you consider the collection of all binary sequences of length n, and for
each subset of the indices of size k, there is at least one “banned subsequence” of
length k. How many binary sequences of length n are there which avoid each of the
banned sequences on all subsets of the indices of size k? Subject to some very mild
assumptions onhow the banned sequences are chosen,we show that there are atmost

k–1∑
i=0

(
n

i

)

such sequences. This bound is the bound of the Sauer–Shelah Lemma. Without the
mild assumptions, we show that this bound can be violated. The generality of our
setup covers both the settings mentioned above as well as yielding some new results.
We give a slight improvement of a result of Malliaris and Terry [7] regarding

sizes of cliques and independent sets in stable graphs. Essentially, their result uses
the finiteness of a certain combinatorial dimension, tree rank, in order to establish
polynomial bounds strong enough to get a version of the Erdos–Hajnal conjecture,
among other results (Malliaris and Terry also develop further structural properties
of graphs which we will not touch on in this paper). We examine tree rank in
the general context of banned sequence problems, and as a result, give a slight
improvement to their bounds.
In the last part of the paper, we turn to the setting of op-ranks. For each s ∈ N,

Guingona and Hill [4] define a rank of partial types, ops -rank. For instance, when
s = 1, op1-rank is equal to the Shelah 2-rank. Working with set systems of finite
ops -rank, we establish a new variant of the Sauer–Shelah Lemma using our banned
sequence setup.
We note that not every known variant of the Sauer–Shelah Lemma seems to fit

into the context of banned sequence problems; the main results of [3] establish a
variant of Sauer–Shelah for n-dependent theories which does not seem to easily fit
into our context of banned sequence problems. Is there a general setup which also
covers the known Sauer–Shelah style results for n-dependent theories? This seems
reasonable to ask because n-dependent theories generalize NIP theories in a way
similar to how theories with finite ops -rank generalize stable theories.

1.1. Organization. In Section 2, we give the necessary preliminary notation for
our results. In Section 3, we lay out the basic theory of banned sequence problems
along with some applications. In Section 4, we generalize our banned sequence
problems. In Section 4.2, we apply generalized banned problems to the op-rank
setting.

§2. Preliminaries. Our primary combinatorial tool applies to theorems surround-
ing VC dimension and Littlestone dimension (also known as Shelah’s 2-rank in
model theory or thicket dimension in [1]), and we recall those definitions and

https://doi.org/10.1017/jsl.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.35


MODEL THEORY AND COMBINATORICS OF BANNED SEQUENCES 3

relevant theorems. The next several definitions can be found in various sources, for
example, [9].
Throughout, any indexing starts at 0, and [n] := {0, 1, ... , n – 1}. By

([n]
k

)
wemean

the collection of all subsets of [n] of size k.
Recall that a set system (X,F) (often referred to as F when X is understood)

consists of a set X and a collection F ⊆ P(X ) of subsets of X. For Y ⊆ X , the
projection of F onto Y is the set system with base set Y and collection of subsets

FY := {F ∩ Y |F ∈ F}.

VC dimension measures the ability of a set system to pick out subsets of a set of
a given size.

Definition 2.1. A set system (X,F) shatters a set Y if FY = P(Y ). The VC
dimension of F is the largest k < � such that F shatters some set of size k, or is
infinite if F shatters arbitrarily large sets. The shatter function

�F (n) := sup
Y⊆X,|Y |=n

|FY |

is given by the supremum of the size of the projection onto subsets of a given size.

If a set system has finite VC dimension, then we obtain a polynomial bound on
the shatter function.

Theorem 2.2 (Sauer–Shelah Lemma). Let F be a set system of VC dimension k.
Then the maximum size of a projection from F onto a set A = {a0, ... , an–1} of size n
is

∑k
i=0

(
n
i

)
. In particular,

�F (n) ≤
k∑
i=0

(
n

i

)
.

Several proofs of the Sauer–Shelah Lemma can be found in various sources, for
example, [9, 8].
Littlestone dimension is a variant of VC dimension; our development follows

[1]. (Bhaskar calls Littlestone dimension “thicket dimension”—we prefer to use
Littlestone dimension, or use “stable” to describe the general setting.) Given a set
from the set system, elements are presented sequentially, with the element presented
depending on membership of previous elements.

Definition 2.3. A binary element tree of height nwith labels fromX is a function
T : 2<n → X . A node is a binary sequence � ∈ 2<n along with its label, a� := T (�).
A leaf is a binary sequence of length n, � : [n]→ {0, 1}. A leaf � is properly labeled
by a set A if for all m < n,

a�|[m] ∈ A iff �(m) = 1.

Definition 2.4. The Littlestone dimension of a set system (X,F) is the largest
k < � such that there is a binary element tree of height k with labels from X such
that every leaf can be properly labeled by elements of F , or is infinite if there are
such trees of arbitrary height. The stable shatter function (what Bhaskar calls the
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4 HUNTER CHASE AND JAMES FREITAG

“thicket shatter function”) �F (n) is the maximum number of leaves properly labeled
by elements of F in a binary element tree of height n.

Theorem 2.5 (Stable (Thicket) Sauer–Shelah Lemma [1]). Let F be a set system
of Littlestone dimension k. Then the maximum number of properly labeled leaves in a
binary element tree of height n is

∑k
i=0

(
n
i

)
. In particular,

�F (n) ≤
k∑
i=0

(
n

i

)
.

VC dimension and the (VC) shatter function can be viewed in the context of
binary element trees where every node of the same height is labeled with the same
element, that is, a� = a�′ whenever |�| = |� ′|.
There are dual notions of bothVCdimension andLittlestone dimension, and their

corresponding shatter functions, where the roles of elements and sets are reversed.

Definition 2.6. Given a set system (X,F), the dual set system (X,F)∗, or just
F∗, is the set system with base set F where the subsets are given by

{F |F ∈ F , x ∈ F }

for each x ∈ X . The dual VC (resp., Littlestone) dimension of F is the VC (resp.,
Littlestone) dimension of F∗.

Dual Littlestone dimension can be calculated by examining binary decision trees,
where nodes are labeled by sets in the set system, and leaves are labeled by elements.
Dual VC dimension can be calculated similarly.
In model theory, given a modelM, the VC (resp., Littlestone) dimension of a

partitioned formulaφ(x; y) is the VC (resp., Littlestone) dimension of the set system

(M |x|, {φ(M |x|, b) | b ∈M |y|}).

These combinatorial notions encode model-theoretic dividing lines. A formula is
NIP iff it has finite VC dimension, and is stable iff it has finite Littlestone dimension.

§3. The combinatorics of banned sequences. The binary element tree structure
used to define Littlestone dimension allows us to identify a leaf of the tree with
the binary sequence corresponding to the path through the tree to that leaf. Then
counting properly labeled leaves amounts to counting the corresponding binary
sequences. We establish a framework for counting binary sequences under certain
conditions reflecting the tree structure, from which we will obtain a unified proof of
the Sauer–Shelah Lemmas.

3.1. Banned binary sequences and Sauer–Shelah Lemmas. Our framework for
counting binary sequences will reflect the height of the tree as well as the dimension
(either Littlestone or VC) of the set system. We find it easier to count banned
sequences. Having Littlestone dimension k – 1 says that in a tree of height k, there
are some leaves which cannot be properly labeled, and those leaves correspond to
sequences that we ban.
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MODEL THEORY AND COMBINATORICS OF BANNED SEQUENCES 5

Definition 3.1. A k- fold banned binary sequence problem (BBSP) of length n,
for 0 ≤ k ≤ n is a function

f :
(
[n]
k

)
× 2n–k → P(2k) \ {2k}.

Informally, for each k-subset of [n] and each binary sequence of length n – k, the
binary sequences of length k not selected by f are banned, and we ban at least one
such sequence. Sometimes we will refer to the sequences omitted by the function f
as banned subsequences.

Remark 3.2. It will be convenient to view binary sequences as functions, where
the domain is the appropriate set of indices. Given S ∈

([n]
k

)
, let S̄ := [n] \ S. When

we considerf(S,Y ) for somefixedS, we viewY ∈ 2n–k as a functionY : S̄ → {0, 1},
and elements of f(S,Y ) as functions Z : S → {0, 1}, identifying 2n–k with 2S̄ and
2k with 2S .
Given X : [n]→ {0, 1} and S ⊆ [n], let XS denote the restriction X |S of X to S,

that is, the subsequence obtained by restricting to the indices in S.
We shall denote the union of two binary sequencesY andZ with disjoint domains

as Y � Z. For example, if Y has domain {0, 2}, with Y (0) = Y (2) = 0, and Z has
domain {1} with Z(1) = 1, then Y � Z is the binary sequence 010. When we wish
to extend a sequence by appending some j ∈ {0, 1}, we will merely write Y � j,
with the index of j usually understood from the context.
For a fixed S ∈

([n]
k

)
, we denote the elements of S by {s0, ... , sk–1}, where s0 <

s1 < ··· < sk–1.
Definition 3.3. A solution to a k-fold banned binary sequence problem f of

length n is a binary sequence X ∈ 2n such that for any S ∈
([n]
k

)
,

XS ∈ f(S,XS̄).

A sequence which is not a solution is banned .

Intuitively, a solution to a banned binary sequence problem is a sequence which
avoids every banned subsequence. In applications to binary element trees, properly
labeled leaves will correspond to solutions of a certain banned binary sequence
problem.
Without further assumptions, the number of solutions of a BBSP can grow

exponentially in n for a fixed k.

Proposition 3.4. A k-fold BBSP f of length n has at most (2k – 1)2n–k solutions.

Proof. Fix S ∈
(
n
k

)
. For Y : S̄ → {0, 1} and Z : S → {0, 1}, Y � Z can only be

a solution if Z ∈ f(S,Y ), and for each of 2n–k many such Y ’s, there are at most
2k – 1 many Z’s. �
We observe that to obtain this bound, and so have only 2n–k banned sequences,

we must be able to find a collection B of 2n–k sequences X : [n]→ {0, 1} such that
for all S ∈

([n]
k

)
and all Y : S̄ → {0, 1}, there is some X ∈ B such that Y ⊆ X . Then

we can setf(S,Y ) := {XS}, and then everyX ∈ 2n \ B is a solution. In general this
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6 HUNTER CHASE AND JAMES FREITAG

is not possible. It is possible for k = n, where we simply pick a sequence of length n
to ban, k = n – 1, where B can consist of, say, the two constant sequences, k = 1,
given below, and k = 0, which is trivial. But this condition already cannot be met
for k = 2 and n = 4. In this case, one can verify that the minimum size of B to
satisfy the above condition is 5, and so a 2-fold BBSP of length 4 can have at most
11 solutions.

Example 3.5. Let f be the 1-fold BBSP of length n given by

f({s}, Y ) =
{
1 Y has an even number of 1s,
0 Y otherwise.

Then f has 2n–1 solutions, given by those binary sequences which have an even
number of 1s.

We therefore need stronger hypotheses in order to bound the number of solutions
by the Sauer–Shelah bound.

Definition 3.6. A k-fold banned binary sequence problem f of length n is not
hereditary if there is S ∈

([n]
k

)
and a function g : 2S → 2S̄ such that

• for all Z : S → {0, 1}, we have Z ∈ f(S, g(Z)), and
• for all Zα 	= Z	 , the first index at which g(Zα) � Zα and g(Z	) � Z	 differ
is in S.

Otherwise, say f is hereditary.

One can think of the second condition as stating that g is continuous in the sense
that for any t ∈ S̄, g(Zα)(t) = g(Z	)(t) whenever (Zα)S∩[t] = (Z	)S∩[t], that is,
g(Z)(t) depends only on ZS∩[t].
We will usually suppress the function g, and instead use indices to indicate the

mapping—given Zα : S → {0, 1}, we let Yα := g(Zα). Then being not hereditary
amounts to finding S ∈

([n]
k

)
such that for all Zα : S → {0, 1}, we can associate a

Yα : S̄ → {0, 1} such that Zα ∈ f(S,Yα), and for any Zα 	= Z	 , the first index at
which Yα � Zα and Y	 ∧ Z	 differ is in S.
For our purposes, being hereditary is the desirable property; hereditary BBSPs

allow us to obtain the Sauer–Shelah bound on the number of solutions. We
can also study binary element trees using hereditary BBSPs, and thus derive the
corresponding Sauer–Shelah Lemmas. We choose to call these BBSPs hereditary
because proving the Sauer–Shelah bound on the number of solutions uses derivative
BBSPs in the inductive step, and being hereditary is preserved in these derivative
problems.

Theorem 3.7. Any hereditary k-fold banned binary sequence problem of length n
has at most

∑k–1
i=0

(
n
i

)
solutions.

The proof is by induction. We will make use of the recursive property of binomial
coefficients, (

n

i

)
=

(
n – 1
i – 1

)
+

(
n – 1
i

)
,
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from which it follows that

k–1∑
i=0

(
n

i

)
=
k–2∑
i=0

(
n – 1
i

)
+
k–1∑
i=0

(
n – 1
i

)
.

In particular, we use the inductive strategy suggested by these equalities. The base
cases will be k = 0 and k = n. In the inductive step, given a hereditary k-fold banned
binary sequence problem f of length n, we seek two derivative problems: a (k – 1)-
fold banned binary sequence problem of length n – 1, and a k-fold banned binary
sequence problem of length n – 1, both of which are hereditary. We will use banned
sequences of these derivative problems to construct banned sequences of the original
problem.

Definition 3.8. Let f be a k-fold banned binary sequence problem of length n,
for 1 ≤ k ≤ n – 1.

• Let f̂ be the (k – 1)-fold banned binary sequence problem of length n – 1 given
as follows: for all T ∈

([n–1]
k–1

)
, all Y ∈ 2n–k , and all Z ∈ 2k–1, let

Z /∈ f̂(T,Y ) iff ∃j ∈ {0, 1} Z � j /∈ f(T � {n – 1}, Y ).

• Let f′ be the k-fold banned binary sequence problem of length n – 1 given as
follows: for all S ∈

([n–1]
k

)
, all Y ∈ 2n–k–1, and all Z ∈ 2k , let

Z /∈ f′(S,Y ) iff ∀j ∈ {0, 1} Z /∈ f(S,Y � j).

That is, the banned subsequences in f̂(T,Y ) are those subsequences which can
be extended by a particular j to a banned subsequence in f(T ∪ {n – 1}, Y ). In
particular, any banned sequence of f̂ has some extensionwhich is a banned sequence
of f.
The banned subsequences in f′(S,Y ) are those subsequences which are banned

subsequences inf(S,Y � j) for any extension ofY by j. In particular, any extension
of any banned sequence of f′ is a banned sequence of f.

Lemma 3.9. Suppose f is a hereditary k-fold banned binary sequence problem of
length n, for 1 ≤ k ≤ n – 1. Then both f̂ and f′ are also hereditary.

Proof. Suppose for contradiction that f̂ is not hereditary. Then there exists
T ∈

([n–1]
k–1

)
such that for each Zα : T → {0, 1}, there is Yα : T̄ → {0, 1} such that

Zα ∈ f̂(T,Yα), and for anyZα 	= Z	 , the first index at whichYα � Zα andY	 � Z	
differ belongs to T. Note that for some Zα and some j ∈ {0, 1}, we have that

Zα � j /∈ f(T ∪ {n – 1}, Yα),

or else associating each Zα � j with Yα would witness that f itself is not hereditary.
Then, by definition of f̂, Zα /∈ f̂(T,Yα), a contradiction. So f̂ is hereditary.
Suppose for contradiction that f′ is not hereditary. Then there exists S ∈

([n–1]
k

)
such that for allZα : S → {0, 1}, there isYα : S̄ → {0, 1} such thatZα ∈ f′(S,Yα),
and for any Zα 	= Z	 , the first index at which Yα � Zα and Y	 � Z	 differ belongs
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8 HUNTER CHASE AND JAMES FREITAG

to S. By definition of f′, for each Zα , there is jα ∈ {0, 1} such that

Zα ∈ f(S,Yα � jα).

Let Y ′
α be Yα � jα . Then associating Zα with Y ′

α witnesses that f is not hereditary,
a contradiction. So f′ is hereditary. �
Proof of Theorem 3.7. We prove the result by induction on n and k. Let f be

a hereditary k-fold banned binary sequence problem of length n. Let B(f) denote
the number of sequences banned by f. It suffices to prove that

B(f) ≥ 2n –
k–1∑
i=0

(
n

i

)
.

The base cases are k = n and k = 0.When k = n, we have 2n –
∑k–1
i=0

(
n
i

)
= 1, and

any BBSP has at least one banned sequence. When k = 0, for all Y ∈ 2n, we have
f(∅, Y ) = ∅. Then for all X ∈ 2n, we have X∅ = ∅ /∈ f(∅, X[n]). So all X ∈ 2n are
banned, and f has no solutions.
Otherwise, we proceed by induction. We show

B(f) ≥ B( f̂) + B(f′).

For each sequence X̂ that is banned by f̂, there is at least one extension X which is
banned by f, and we pick one such extension. For each sequenceX ′ banned byf′, at
most one extension of X ′ was already obtained by extending a sequence X̂ banned
by f̂. So there is at least one extension X of X ′ which is banned by f (by definition
of f′) but was not obtained by extending banned sequences for f̂. Therefore these
banned sequences of f constructed from f′ and f̂ have no common members, and
so we have

B(f) ≥ B( f̂) + B(f′),

as desired. By induction, we have that

B(f) ≥
(
2n–1 –

k–2∑
i=0

(
n – 1
i

))
+

(
2n–1 –

k–1∑
i=0

(
n – 1
i

))

≥ 2n –
k–1∑
i=0

(
n

i

)
.

Thus f has at most
∑k–1
i=0

(
n
i

)
solutions. �

It shall be useful to identify a stronger banned binary sequence problem, namely
those in which f(S,Y ) depends only on S.

Definition 3.10. A banned binary sequence problem f is independent if
f(S,Y ) = f(S,Y ′) for anyY,Y ′ : S̄ → 0, 1.When f is independent, we writef(S).

Corollary 3.11. Any independent k-fold banned binary sequence problem f of
length n has at most

∑k–1
i=0

(
n
i

)
solutions.

https://doi.org/10.1017/jsl.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.35


MODEL THEORY AND COMBINATORICS OF BANNED SEQUENCES 9

Proof. We check that f is hereditary. If not, then there is S ∈
([n]
k

)
such that for

all Zα : S → {0, 1}, there is Yα : S̄ → {0, 1} with Zα ∈ f(S,Yα) = f(S). But then
f(S) = 2k , a contradiction. The result follows from Theorem 3.7. �
Banned binary sequence problems provide a common framework to prove Sauer–

Shelah type bounds.

Proof of Theorem 2.2. We obtain a k + 1-fold independent BBSP f of length n
as follows. Given S = {as0 , ... ask} ∈

(
A
k+1

)
, letf(S) be the set of binary sequencesZ

of length k + 1 such that there is someF ∈ F such that asi ∈ F iffZ(i) = 1.We have
that f(S) 	= 2k+1 since the VC dimension of F is k, and f is clearly independent.
Then a subsetB ofA is in the projection fromF ontoA iff the characteristic sequence
of B (i.e., the sequence where the jth entry is 1 iff aj ∈ B) is a solution to f. The
result follows from Corollary 3.11. �
Proof of Theorem 2.5. Let T be a binary element tree of height n, with nodes a�

for � ∈ 2<n. We obtain a k + 1-fold hereditary BBSP of length n, f, as follows. Given
S = {s0, ... , sk} ∈

( [n]
k+1

)
where s0 < s1 < ··· < sk and Y : S̄ → {0, 1}, we obtain a

binary element tree of height k + 1 by taking all paths � ∈ 2n through T such that
Y ⊆ �. Any two such paths first differ at some node a� where |�| ∈ S, so removing
all other nodes gives us the binary element tree TS,Y of height k + 1. Since F has
Littlestone dimension k, not all leaves ofTS,Y can be properly labeled, so letf(S,Y )
be the set of all sequenceswhose corresponding leaves inTS,Y canbeproperly labeled.
Then a leaf in T can only be properly labeled if the corresponding sequence is a
solution to f.
We now show that f as constructed above is hereditary. Fix S = {s0, ... , sk}, and

suppose for contradiction that this choice of S witnesses that f is not hereditary.
Then, for each Zα : S → {0, 1}, there is Yα : S̄ → {0, 1} such that Zα ∈ f(S,Yα).
We obtain a complete binary tree of height k + 1 specified by each path Yα � Zα
constructed in this manner, restricted to S. In particular, any two paths constructed
in this manner first differ at some index in S, as the first index at which Yα � Zα and
Y	 � Z	 differ is in S. Since each Zα is not banned, we have a complete binary tree
of height k + 1 in which every leaf can be properly labeled, a contradiction.
The result then follows from Theorem 3.7. �

3.2. An application to type trees. Banned binary sequence problems can be
applied to other problems with a tree structure. We use this to improve a result
of Malliaris and Terry [7].

Definition 3.12. Given a graph G = (V,E) on n vertices and A ⊆ 2<n, closed
under initial segments, we say that a labeling V = {a
 | 
 ∈ A} is a type tree if for
each 
 ∈ A :
(1) If 
 � 0 ∈ A, then a
�0 is nonadjacent to a
. If 
 � 1 ∈ A, then a
�1 is adjacent
to a
.

(2) If 
 � 
′ � 
′′, then a
 is adjacent to a
′ if and only if a
 is adjacent to a
′′ .

A type tree has height h if A ⊆ 2<h but A � 2<h–1.

More generally, given a model M, a finite set B ⊆M , a finite collection Δ of
partitioned formulas closed under cycling of the variables, and A ⊆ �<� closed
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10 HUNTER CHASE AND JAMES FREITAG

under initial segments, a type tree is a labeling B = {b
 | 
 ∈ A} such that, for
any 
, 
′ ∈ A, b
 and b
′ have the same Δ-type over their common predecessors
{b� | � � 
, 	 � 
′} iff 
 ⊆ 
′ or 
′ ⊆ 
. Type trees are used in more generality in [6],
but we restrict our attention to type trees of graphs.

Definition 3.13. The tree rank of a graphG = (V,E) is the largest integer t such
that there is a subsetV ′ ⊂ V and some indexingV ′ = {a
 | 
 ∈ 2<t} which is a type
tree for the induced graph on V ′, that is, the type tree of V ′ is a full binary tree of
height t.

The main interest in type trees for graphs lies in the fact that if we have a branch
of length h for a graph (V,E) with tree rank t, there is a clique or independent
set of size at least max{ h2 , t} [7, Lemma 4.4]. More generally, branches through a
type tree can be used to extract indiscernible sequences [6, Theorem 3.5]. In both
cases, stability establishes the length of long branches through the type tree. For
graphs, this is by way of tree rank—observe that the edge relation having Littlestone
dimension k implies that the tree rank is at most k + 1. We use banned binary
sequence problems to improve the bounds from [7, Theorem 4.6]. The improvement
is modest, but it demonstrates how banned binary sequence problems accommodate
the combinatorics of type trees, at least in the case of the graph edge relation.

Theorem 3.14. Let G = (V,E) be a graph with |V | = n and tree rank t ≥ 2.
Suppose A ⊆ 2<n and V = {a
 | 
 ∈ A} is a type tree with height h, where h ≥ 2t.
Then

h ≥
(
n · (t – 2)! )

1
t + 1.

The assumptions on t and h are not restrictive if our aim is to obtain cliques
or independent sets. If t = 1, then there is no branching, and we obtain a clique
or independent set of size n2 . If h < 2t, then the largest clique or independent set
guaranteed by [7, Lemma 4.4] is just the tree rank t.

Proof. We will associate a hereditary t-fold banned binary sequence problem of
length h – 1 with the type tree. Fix any subset S = {s0, ... , st–1} in

([h–1]
t

)
and any

Y : S̄ → {0, 1}. Let f(S,Y ) consist of all Z : S → {0, 1} such that (Y � Z)[st–1+1]
is an element of 2<h which is in the index set A of the type tree.
Suppose for contradiction that f(S,Y ) = 2t . For each 
 ∈ 2<t+1, we identify 


with a partial function Z
 : S ⇀ {0, 1}, where 
(i) = Z
(si). For each i < t and
each 
 : [i ]→ {0, 1} in 2<t+1 \ 2t , let b
 = a(Y�Z
)[si ] . For each 
 : [t]→ {0, 1} in 2t ,
let b
 = a(Y�Z
)[st–1+1]

. Note that each b
 is well-defined—in particular, for 
 ∈ 2t ,
if b
 = a(Y�Z
)[st–1+1]

was not an element of the type tree, then we would have

Z
 /∈ f(S,Y ). The rest of the elements are well-defined since the index set of a type
tree is closed under initial segments. Then the b
 define a full binary type tree of
height t + 1, contradicting our assumption that the tree rank of G is t. So f is a
t-fold BBSP of length h – 1.
We check that f is hereditary. Suppose for contradiction that f is not hereditary,

witnessed by some S ∈
([h–1]
t

)
. So for each Zα : S → {0, 1}, there is Yα : S̄ → {0, 1}

such that Zα ∈ f(S,Yα), and for α 	= 	 , the first index at which Yα � Zα and
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Y	 � Z	 differ is in S. Identify each 
 ∈ 2<t+1 with Z
 as above. For each i < t and
each 
 : [i ]→ {0, 1}, let b
 = a(Yα�Zα)[si ] for any α such that Z
 ⊆ Zα . For each

 : [t]→ {0, 1}, let b
 = a(Y
�Z
)[st–1+1] . These b
 are defined sinceZ
 /∈ f(S,Y
) by
hypothesis. All other b
, for 
 : [i ]→ {0, 1}, i < t, are defined since type trees are
closed under initial segments, and well-defined since if Z
 ⊆ Zα,Z	 , then the first
index at which Yα � Zα and Y	 � Z	 differ is in S and is at least si . Then the b

form a type tree of height t + 1, a contradiction.
Thus a type tree of height h gives a hereditary t-fold banned binary sequence

problem of length h – 1. Now, by Theorem 3.7, the number of nodes at level h0,
h0 = 0, ... , h – 1, is at most

t–1∑
i=0

(
h0
i

)
.

Thus, the total number of nodes of a type tree of height h and tree rank t is at most

h–1∑
h0=0

t–1∑
i=0

(
h0
i

)
= 1 +

h–1∑
h0=1

t–1∑
i=0

(
h0
i

)

= 1 +
h–1∑
h0=1

(
1 +

t–1∑
i=1

(
h0
i

))

≤
h–1∑
h0=1

t–1∑
i=1

(
h – 1
i

)
(1)

≤
h–1∑
h0=1

t–1∑
i=1

(h – 1)t–1

(t – 1)!

≤
h–1∑
h0=1

(h – 1)t–1

(t – 2)!

≤ (h – 1)
t

(t – 2)!
, (2)

where estimates in (1) and (2) follow from hypotheses on t and h. Then

(h – 1)t

(t – 2)!
≥ n,

so

h ≥
(
n · (t – 2)! )

1
t + 1. �

Under the hypotheses of Theorem 3.14, applying [7, Lemma 4.4] gives us a clique
or independent set of size at least

(
n · (t – 2)! )

1
t + 1

2
.
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12 HUNTER CHASE AND JAMES FREITAG

This is an improvement of the lower bound given by Malliaris and Terry [7,
Corollary 4.7].

§4. Generalized banned sequence problems and applications. In this section we
generalize Theorem 3.7 to the setting of j-ary sequences, and apply the resulting
combinatorics to prove Sauer–Shelah type lemmas in the op-rank context [4].

4.1. Banned j-ary sequence problems.

Definition 4.1. A k- fold banned j- ary sequence problem of length n, for 0 ≤ k ≤
n, is a function

f :
(
[n]
k

)
× jn–k → P(jk) \ {jk}.

A solution to g is a j-ary sequence X ∈ jn such that for any S ∈
([n]
k

)
,

XS ∈ f(S,XS̄).

As before, for a fixed S ∈
([n]
k

)
,we denote the elements of S by {s0, ... , sk–1}, where

s0 < s1 < ··· < sk–1. When we consider f(S,Y ), we view Y ∈ jn–k as a function
Y : S̄ → [ j] = {0, 1, ... , j – 1}, and elements of f(S,Y ) as functions Z : S → [ j],
identifying jn–k with jS̄ and jk with jS .

Definition 4.2. A k-fold banned j-ary sequence problem (j-ary BSP) f of length
n is not hereditary if there is S ∈

([n]
k

)
and a function g : jS → jS̄ such that

• for all Z : S → [ j], we have Z ∈ f(S, g(Z)), and
• for all Zα 	= Z	 , the first index at which g(Zα) � Zα and g(Z	) � Z	 differ
is in S.

Otherwise, say f is hereditary .

As before, we suppress g and use indices to indicate the mapping, letting Yα
denote Zα .

Theorem 4.3. Any hereditary k-fold banned j-ary sequence problem of length n has
at most

∑k–1
i=0(j – 1)

n–i
(
n
i

)
solutions.

The proof is similar to the proof of Theorem 3.7. We use the generalized versions
of the derivative problems for the induction.

Definition 4.4. Let f be a k-fold banned j-ary sequence problem of length n, for
1 ≤ k ≤ n – 1.

• Let f̂ be the (k – 1)-fold banned j-ary sequence problem of length n – 1 given
as follows: for all T ∈

([n–1]
k–1

)
, all Y ∈ jn–k , and all Z ∈ jk–1, let

Z /∈ f̂(T,Y ) iff ∃l ∈ [ j] Z � l /∈ f(T � {n – 1}, Y ).
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• Let f′ be the k-fold banned j-ary sequence problem of length n – 1 given as
follows: for all S ∈

([n–1]
k

)
, all Y ∈ jn–k–1, and all Z ∈ jk , let

Z /∈ f′(S,Y ) iff ∀l ∈ [ j] Z /∈ f(S,Y � l).

Lemma 4.5. Suppose f is a hereditary k-fold banned j-ary sequence problem of
length n, for 1 ≤ k ≤ n – 1. Then both f̂ and f′ are also hereditary.

The proof is a straightforward generalization of Lemma 3.9.

Proof ofTheorem4.3. Theproof is by induction on n andk. Let f be a hereditary
k-fold banned j-ary sequence problem of length n.
Let B(f) denote the number of sequences banned by f. It suffices to prove that

B(f) ≥ jn –
k–1∑
i=0

(j – 1)n–i
(
n

i

)
.

The base cases are k = n and k = 0. When k = n, jn –
∑k–1
i=0(j – 1)

n–i
(
n
i

)
= 1,

and any j-ary BSP has at least one banned sequence. When k = 0, for all X ∈ jn,
we have X∅ = ∅ /∈ f(∅, X[n]) = ∅. So all X ∈ jn are banned.
Otherwise, we proceed by induction. We show

B(f) ≥ B( f̂) + B(f′) · (j – 1).

For each sequence X̂ that is banned by f̂, there is at least one extension X which
is banned by f, and we pick one such extension. For each sequence X ′ banned by
f′, there are at least j – 1 extensions X of X ′ which are banned by f but were not
obtained by extending banned sequences for f̂. Therefore these banned sequences
constructed from f′ and f̂ have no common members, and so we have

B(f) ≥ B( f̂) + B(f′) · (j – 1),

as desired. By induction, we have that

B(f) ≥ jn–1 –
k–2∑
i=0

(j – 1)n–1–i
(
n – 1
i

)

+ (j – 1)

(
jn–1 –

k–1∑
i=0

(j – 1)n–1–i
(
n – 1
i

))

= jn –
k–1∑
i=0

(j – 1)n–i
(
n

i

)
.

Thus, f has at most
∑k–1
i=0(j – 1)

n–i
(
n
i

)
solutions. �

4.2. On the op-rank shatter function. The context of banned j-ary sequences
allows us to work in the op-rank context of [4], which we reframe in terms of set
systems.WhereasVCdimension andLittlestone dimensionmake use of binary trees,
ops -rank makes use of 2

s -ary trees.
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14 HUNTER CHASE AND JAMES FREITAG

Definition 4.6. A 2s - ary element tree T of height n with labels from X is a
labeling of each node 
 ∈ (2s)<n by s-tuples x
 = (x
,0, ... , x
,s–1) from X. A leaf of
T is an element of (2s)n. A leaf � is properly labeled by a set A if, for all j < n and
for all i < s , x�|[ j],i ∈ A iff �(j)(i) = 1.

While this will be the definition that we use in practice, it is often useful think of
such trees as binary trees with certain requirements on uniformity of labels within
levels.

Definition 4.7. An alternative 2s - ary element tree T of height nwith labels from
X is a labeling of 2<ns by elements of X such that given any two nodes � and �′ with
labels x� and x�′ , if |�| = |�′| = l and �|

s[� ls 	]
= �′|

s[� ls 	]
, then x� = x�′ . A leaf of

T is an element of 2ns , that is, a binary sequence of length ns . A leaf � is properly
labeled by a set A if, for all j < ns , x�|[ j] ∈ A iff �(j) = 1.

Definition 4.8. The ops - rank of a set system (X,F), written opRs(X,F) or
opRs(F), is the largest k < � such that there is a 2s -ary element tree of height
k with labels from X such that every leaf can be properly labeled by elements of
F , or is infinite if there are such trees of arbitrary height. As a convention, we set
opRs(F) =–∞ if F = ∅. The ops shatter function �sF (n) is the maximum number
of leaves properly labeled by elements of F in a 2s -ary element tree of height n.
It is easy to verify that the ops -rank and ops shatter function do not depend on

which definition of 2s -ary element tree we take.
The ops context is therefore intermediate between the stable context and VC

context. Instead of picking labels node by node (as in the stable context) or uniformly
for a single level (as in the VC context), we pick labels s at a time. We observe that
Littlestone dimension is just the op1-rank, and VC dimension is the greatest integer
s such that the ops -rank is at least 1.
Likewise, the ops shatter function is a natural generalization of both the VC

and stable shatter functions—observe that the VC shatter function �F (n) is exactly
�nF (1), and the stable shatter function �F (n) is exactly �

1
F (n). Although the op-

ranks as developed in [4] were indeed intended as a generalization of Littlestone
dimension (there referred to as Shelah’s 2-rank) and have natural connections
with VC dimension, they more strongly considered the geometric properties as
they pertained to model theory, and did not study the combinatorics surrounding
the shatter function. We study the shatter function here, in particular examining
connections between finite op-ranks and growth rates of op-shatter functions.
As before, the dual ops -rank and dual ops shatter function of a set system are the

ops -rank and ops shatter function of the dual set system.

Corollary 4.9. Let F be a set system with opRs(F) = k. Then

�sF (n) ≤
k∑
i=0

(2s – 1)n–i
(
n

i

)
.

The proof follows our proof of Theorem 2.5, using j-ary banned sequence
problems.
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Proof. Let T be an 2s -ary element tree of height n. Identifying the 2s binary
sequences of length s with [2s ], we obtain a hereditary (k + 1)-fold banned 2s -ary
sequence problem f of length n as follows. Given S = {s0, ... , sk} ∈

( [n]
k+1

)
, where

s0 < s1 < ··· < sk and Y : S̄ → 2s , we obtain a 2s -ary element tree of height k + 1
by taking all paths � ∈ (2s)n throughT such thatY ⊂ �. Decisions will only bemade
at nodes 
, where |
| ∈ S, so removing all other nodes gives us a 2s -ary element tree
TS,Y of height k + 1. Since opRs(F) = k, not all leaves of TS,Y can be properly
labeled, so let f(S,Y ) be the set of all sequences whose corresponding leaves in
TS,Y can be properly labeled. Then a leaf in T can only be properly labeled if the
corresponding sequence is a solution to f.
It remains to show that f is hereditary. Fix S = {s0, ... , sk}, and suppose for

contradiction that this choice of S witnesses that f is not hereditary. Then, for
any Zα : S → [2s ], there is Yα : S̄ → [2s ] such that Zα ∈ f(S,Yα). We obtain a
complete 2s -ary tree of height k + 1 specified by each path Yα � Zα constructed in
this manner, restricted to S. Since each Zα is not banned, we have a 2s -ary tree of
height k + 1 in which every leaf can be properly labeled, a contradiction.
The result then follows from Theorem 4.3. �
The bound of Corollary 4.9 can be improved by using more information—in

particular, when bounding the ops shatter function, we can consider opr-ranks for
r ≤ s . We can already give a better bound for the case where a set system has
opr-rank 0 for some r.

Proposition 4.10. Let F be a set system with opRr(F) = 0. Then

�sF (n) ≤
(
r–1∑
i=0

(
s

i

))n
.

Proof. Call a node live if it is the initial segment of a leaf that can be properly
labeled. At each node of the tree, we consider s elements. Observing that opRr(F) =
0 says precisely that the VC dimension of F is strictly less than r, Theorem 2.2 tells
us that we can find sets which properly label at most

∑r–1
i=0

(
s
i

)
of the possible boolean

combinations of the s elements. That is, each live node has at most
∑r–1
i=0

(
s
i

)
live

successors in the next level. Therefore, there are at most
(∑r–1

i=0

(
s
i

))m
live nodes at

the level of height m (counting from 0). Since leaves in a tree of height n appear at
the nth level, the result follows. �
The set system of half-spaces inRr achieves the bound of Proposition 4.10 for the

dual ops shatter function. (This is the famous cake-cutting problem.)

Proposition 4.11. Let F be the dual set system to the set system of Rr consisting
of half-spaces. Then

�sF (n) =

(
r∑
i=0

(
s

i

))n
.

In particular, opRr+1(F) = 0.
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16 HUNTER CHASE AND JAMES FREITAG

Proof. It suffices to verify that taking s hyperplanes in general position (i.e., so
that any m hyperplanes intersect in a (r – m)-dimensional subspace) partitions Rr

into
∑r
i=0

(
s
i

)
pieces, each of which contains an open set (in the Euclidean topology).

Such a partition corresponds to one level in the 2s -ary tree. Each piece may then be
partitioned further in the same manner for each successive level of the tree.
We proceed by induction. The s = 1 case is obvious, for all r. The r = 1 case is

obvious, for all s.
Consider the s + 1 and r + 1 case. Removing one of the s + 1 hyperplanes, we

have
∑r+1
i=0

(
s
i

)
pieces by induction. Restore the hyperplane that we removed. Viewing

that hyperplane as a copy of Rr , it is partitioned into
∑r
i=0

(
s
i

)
pieces by the other

hyperplanes, by induction. Each such piece corresponds to a piece in Rr+1 which
is cut into two pieces by the restored hyperplane. We therefore find that the total
number of pieces is

r+1∑
i=0

(
s

i

)
+

r∑
i=0

(
s

i

)
=
r+1∑
i=0

(
s + 1
i

)
.

as desired. �
We can further refine our methods. Fix a base set X. We identify any set system

(X,F) on X with F .

Proposition 4.12.

(1) Let F1 ⊆ F2. Then, for any s, opRs(F1) ≤ opRs(F2).
(2) Let s1 < s2. Then opRs1(F) ≥ � s2s1 � opRs2(F).

Proof. (1) is trivial. For (2), suppose that we have a 2s2 -ary element tree T of
height n2 := opRs2(F), with labels x
 = (x
,0, ... , x
,s2–1) for each 
 ∈ (2

s2)<n2 , in
which every leaf can be properly labeled. Then we can obtain a 2s1 -ary element tree
T ′ of height n1 := � s2s1 �n2 in which every leaf can be properly labeled. Let t = � s2s1 �.
Intuitively, we split each level of the 2s2 -ary tree into t levels of the 2s1 -ary tree, with
any label x
 = (x
,0, ... , x
,s2–1) splitting into t labels

(x
,0, ... , x
,s1–1), (x
,s1 , x
,2s1–1), ... , (x
,(t–1)s1 , ... , x
,ts1–1).

More formally, suppose � ∈ (2s1)i , for i < n1. Suppose i = jt + k, for 0 ≤ k < t.
Then label � with

x� = (x
�,ks1 , ... x
� ,(k+1)s1–1),

where 
� ∈ (2s2)j is as follows. Let �l = �(l) ∈ 2s1 . Then let �m ∈ 2s2 be the
concatenation of �mt, ... , �(m+1)t–1, appending as many 0s as needed to obtain a
sequence of length s2. Then let


� := (�0, ... , �j–1).

Then the labeling of T ′ by the x� gives a 2s1 -ary tree of height n1 in which every leaf
can be properly labeled (in particular, by one of the labels of the leaves of the 2s2 -ary
tree). �
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x0, x1

x8, x9

A15A14A13A12

00

01 10

11

x6, x7

A11A10A9A8

00

01 10

11

x4, x5

A7A6A5A4

00

01 10

11

x2, x3

A3A2A1A0

00

01 10

11

00
01 10

11

Figure 1. A 22-ary element tree of height 2. A9 properly labels its leaf if it contains
x0 and x7, but does not contain x1 and x6, with no requirements on membership of
the other elements.

x0

x1

x8

x9

A15A14

x9

A13A12

x6

x7

A11A10

x7

A9A8

0 1
x1

x4

x5

A7A6

x5

A5A4

x2

x3

A3A2

x3

A1A0

0 1

0 1

Figure 2. An alternative 22-ary element tree of height 2. Observe that the labels
on the first two levels are uniform. Then, on the fourth level (and, trivially, the
third level), labels are uniform across all nodes with the same initial segment of
length 2. We identify 1 with the right branch. As before, A9 properly labels its leaf
if it contains x0 and x7, but does not contain x1 and x6, with no requirements on
membership of the other elements.

(2) shows how different finite ops ranks can interact; in particular, a finite ops
rank establishes upper bounds on ops′ ranks, for s < s

′. (2) above is somewhat
easier to see using the alternative definition—we simply view the tree as a 2s1 -ary
tree instead of a 2s2 -ary tree, possibly after removing some levels. Figure 2 is the
21-ary tree obtained from Figure 1 by this process.
Given F , x0, ... , xs–1 ∈ X , and � : [s]→ 2, let

F� := {Y ∈ F | for all i < n, xi ∈ Y iff �(i) = 1}.

Call each F� a child of F . Then, in an ops -tree with root (x0, ... , xs–1), F� consists
of all sets in F which properly label a leaf whose path begins with �. Observe that
if for all � : [s]→ 2, opRs(F�) ≥ a, then opRs(F) ≥ a + 1; we can obtain a 2s -ary
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tree of height a + 1 by labeling the root with (x0, ... , xs–1), and appending 2s -ary
trees of height a witnessing opRs(F�) ≥ a at the appropriate successor nodes.
The following lemma generalizes the observation that, given F with Littlestone

dimension a <∞ and any x ∈ X , at most one of {F ∈ F |x ∈ F } and {F ∈ F |x /∈
F } has Littlestone dimension a; if both had Littlestone dimension a, joining the two
binary element trees witnessing this with root xwould witness thatF has Littlestone
dimension a + 1.

Lemma 4.13. Suppose opRr(F) = a <∞. Then, given any x0, ... , xs–1 ∈ X , we
have opRr(X�) ≤ a – 1 for at least 2s –

∑r–1
i=0

(
s
i

)
children F� . More generally, we

have opRr(X�) ≤ a – l for at least 2s –
∑lr–1
i=0

(
s
i

)
children F� .

Proof. We obtain an independent r-fold banned binary sequence problem f of
length s as follows. For each S ∈

([s]
r

)
, let f(S) be those functions 
 : S → 2 such

that opRr(F
) ≤ a – 1, where
F
 := {Y ∈ F | for all i ∈ S, xi ∈ Y iff 
(i) = 1}.

Each f(S) is nonempty, or else those F
 witness that that opRr(F) ≥ a + 1, a
contradiction. Then � : [s]→ 2 is banned by f if there is some S ∈

([s]
r

)
such that

opRr(F�S ) ≤ a – 1, whence opRr(F�) ≤ a – 1. So sequences banned by f have the
corresponding child drop in opr-rank, of which there are at least 2

s –
∑r–1
i=0

(
s
i

)
many.

For the more general case, we instead obtain an independent lr-fold banned
binary sequence problem. For each S ∈

([s]
lr

)
, let f(S) be those 
 : S → 2 such that

opRr(F
) ≤ a – l . Eachf(S) is nonempty, or else thoseF
 witness that opRr(F) ≥
a + 1. Then sequences banned by f have the corresponding child drop in opr-rank
by at least l, of which there are at least 2s –

∑lr–1
i=0

(
s
i

)
many. �

The boundary between finite and infinite op-ranks serves as an important
parameter in obtaining better bounds. It is also of model-theoretic interest,
coinciding with other known properties.

Definition 4.14. The op- dimension of a set system F is
sup{r | opRr(F) =∞}.

Expressed in model-theoretic terms, the op-dimension of a (type-)definable set X
in some model is the supremum of the op-dimension of set systems on X generated
finite sets of formulas. In this context, op-dimension coincides with o-minimal
dimension in o-minimal theories and dp-rank in distal theories [4].
We use Lemma 4.13 to obtain better bounds on the ops shatter function by using

op-dimension.

Definition 4.15. Let �sr,b(n) be the greatest possible number of properly labeled
leaves in a 2s -ary tree of height n by any set system F with opRr(F) ≤ b < �.

Theorem 4.16. Let a0 :=
∑r–1
i=0

(
s
i

)
and a1 = 2s – a0. Then

�sr,b(n) ≤
b∑
i=0

(
n

i

)
an–i0 a

i
1.
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Proof. The case n = 0 is trivial for all b. We proceed by induction on b. The case
b = 0 is Proposition 4.10.
For the case b + 1, we observe that, by monotonicity of �sr,b(n) in b, we maximize

the possible number of properly labeled leaves by having asmany children as possible
not decrease in opr-rank. We now proceed by induction on n. By Lemma 4.13, we
can have at most a0 such children, and the remaining a1 children must drop in
opr-rank by at least 1. We therefore obtain the recurrence

�sr,b+1(n) ≤ a0�sr,b+1(n – 1) + a1�sr,b(n – 1)

≤ a0
b+1∑
i=0

(
n – 1
i

)
an–i–10 ai1 + a1

b∑
i=0

(
n – 1
i

)
an–i–10 ai1 by induction

≤
b+1∑
i=0

(
n – 1
i

)
an–i0 a

i
1 +

b∑
i=0

(
n – 1
i

)
an–i–10 ai+11

≤
(
n – 1
0

)
an0 +

b+1∑
i=1

(
n – 1
i

)
an–i0 a

i
1 +

b+1∑
i=1

(
n – 1
i – 1

)
an–i0 a

i
1

≤
(
n

0

)
an0 +

b+1∑
i=1

(
n

i

)
an–i0 a

i
1

≤
b+1∑
i=0

(
n

i

)
an–i0 a

i
1

as desired. �
In particular, for a set systemwith op-dimension d, we take r = d + 1.Then the op

shatter function is bounded by an exponential function with the base a0 determined
by d. Furthermore, coefficients for lower order terms can be improved when r ≤ s

2 ,
as then the more general case of Lemma 4.13 dictates that some children must drop
in opr-rank by more than 1. This creates a more complicated recurrence, but the
result remains exponential in a0.
Finally, we observe that we can recover both the VC and stable Sauer–Shelah

bounds from Theorem 4.16. If F has VC dimension r, then opRr+1(F) = 0. Then

�F (s) = �sF (1) ≤ �sr+1,0(1) ≤
r∑
i=0

(
s

i

)
.

Similarly, if F has Littlestone dimension b, this says that opR1(F) = b. Then

�F (n) = �1F (n) ≤ �11,b(n) ≤
b∑
i=0

(
n

i

)
.
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