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Finite element network analysis (FENA) is a physics-informed, deep-learning-based framework for the
simulation of physical systems. FENA combines the conceptual flexibility of classical finite element meth-
ods with the computational power of pre-trained neural networks. A remarkable characteristic of FENA is
the ability to simulate assemblies of physical elements by concatenating pre-trained networks serving as
models of classes of physical systems. This characteristic places FENA in a new category of network-based
computational platforms because, unlike other techniques, it does not require ad hoc training for
problem-specific conditions.
The present study significantly expands the concept and functionalities of FENA by including 1D slen-

der beams and 2D thin plates and by further extending its concatenation functionality. Concatenation,
which is a key property to create multicomponent assemblies without requiring training, is reformulated
following an energy-based variational approach that significantly enhances accuracy and speed of con-
vergence. The approach is numerically validated against finite element solutions for different configura-
tions of structural assemblies, loads, and boundary conditions. Although presented in the context of one-
and two-dimensional structures, the present framework is extremely general and provides a foundation
to potentially simulate a broad range of physical systems.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of FENA, recently introduced by Jokar and Semper-
lotti [1], refers to a computational framework powered by deep
neural networks to achieve predictive simulations of the response
of physical systems. From a high-level perspective, FENA combines
the conceptual modularity and flexibility at the basis of the finite
element (FE) method with the extreme computational speed of
trained deep neural networks.

The most unique property of FENA stems from its ability to
solve boundary value problems of multicomponent assemblies
without requiring ad hoc training of the surrogate network models.
Surrogate models of selected physical elements are stored in a
library in the form of pre-trained deep neural networks. Note that
these networks are pre-trained on general classes of problems (e.g.
structural slender rod elements) independently of loading or
boundary conditions that are instead specific to a prescribed anal-
ysis. It follows that a boundary value problem can be solved with-
out the need to retrain the network for each specific condition.
Even more importantly, models of multicomponent physical sys-
tems involving assemblies of multiple components can be built
by interconnecting these pre-trained network models without
the need for any further training. While FENA is not a finite ele-
ment based approach, it is the underlying modular approach used
to assemble models of physical systems (based on fundamental
building blocks) that bears similarity with the general finite ele-
ment method. Aside from this similarity, FENA does not employ
any FE-based architecture, as in [2]. This difference is critical and
it is at the foundation of the computational power of FENA. Indeed,
the size of the model in FENA is not dictated by the discretization
requirements (as in [2]), and the computationally expensive oper-
ation involving matrix assembly and inversion is entirely replaced
by efficient surrogate neural network model predictions.
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1.1. Related work

To date, the most notable examples of deep learning techniques
in physical sciences have been in the general areas of modeling
complex nonlinear systems [3–7] as well as in the solution of dif-
ferential boundary value problems [8–10]. The remarkable model-
ing power of deep learning methodologies builds on the universal
approximation theorem [11] that guarantees a network can
approximate any complex nonlinear model provided enough data,
proper network architecture (number of layers and layer sizes),
and enough network training iterations.

While finite element analysis (FEA) and other similar numerical
methods based on discretization techniques (e.g. boundary ele-
ment and spectral methods [12,13]) offer a very flexible and pow-
erful route to the solution of initial and boundary value problems
on complex geometries [14–18], their computational cost grows
rapidly with the size of the model [19,20]. Takeuchi et al. [2] pro-
posed one of the first studies aiming at overcoming this limitation
by recasting the concept of finite element method in a deep neural
network perspective; an approach that was dubbed finite element
neural networks (FENN). In this initial attempt, the network layers
and their size (i.e. the number of neurons per layer), the activation
functions, and the connection between neurons were determined
to mimic the node distribution and the element shape functions.
This approach was further investigated in [21–24]. All the above
studies employed a network architecture that closely resembled
the internal structure of a traditional finite element model. While
this strategy provided clear instructions to build the network’s
internal architecture, it also implicitly embedded in it the typical
limitations and constraints characteristic of the finite element
methodology. It follows that any modification of the physical sys-
tem (such as material properties, loads, and boundary conditions)
or even a simple re-meshing operation will require building an
entirely new architecture as well as repeating the training process.
In addition, building an architecture that mimics the data flow
structure of the finite element process results in a network size
that scales with the number of physical degrees of freedom, hence
carrying over into the network model the same key limitations of
the finite element method.

Other studies have focused on developing surrogate network
models whose actual network architecture is independent of the
underlying physical characteristics of the system. From a general
perspective, these studies can be divided into two main categories,
(1) purely data-driven [25–28], and (2) physics-informed
approaches [29–34]. These two classes of methods differ particu-
larly in the way training loss functions are defined. In data-
driven approaches, training is typically based on a mean squared
error cost function that is minimized according to numerical data
contained in the training dataset [35]. Data-driven techniques gen-
erally require extensive datasets and are trained to model very
specific problem conditions, which very often are not representa-
tive of more general cases. From a computational perspective,
while the prediction of the output from a trained neural network
is an extremely efficient process, the training phase is very expen-
sive. Hence, in addition to data availability, another critical limita-
tion is associated with the recurrent training which is needed
every time the problem parameters (e.g. boundary conditions or
input sequence size) change.

Physics-based techniques were conceived with the intent of
alleviating some of the issues of data-driven methods by leverag-
ing the knowledge provided by the governing equations, whenever
available. The governing equations can be embedded in the net-
work via the training cost function [29,36] following a residual
minimization approach. Although this approach has shown signif-
icant potential to solve problems described by selected types of
partial differential equations (PDEs) [37], to increase network
2

model accuracy, and to reduce the size of the training dataset, it
still suffers from the same critical limitation concerning the recur-
rent training needed following changes to the problem’s condi-
tions. Given the significant computational cost of training, the
impact on the performance of this latter aspect cannot be under-
stated. Recently, Wang et al. [38] introduced the idea of genomics
flow network (GFNet) to address this issue. They presented an iter-
ative method to assemble a set of trained networks, where each
can simulate a boundary value problem with arbitrary boundary
conditions on a smaller subdomain. While this approach elimi-
nates the need for network retraining when the computational
domain is larger than the fundamental domain used to train the
GFNet, its application is still limited to the case of a uniform
domain governed by a single type of PDE.

The concept of FENA [1] was proposed with the intent of over-
coming the above limitations (particularly, the need for retraining
the network for specific conditions) while still leveraging the out-
standing computational efficiency of a trained network. In [1], the
authors formulated the basic idea of FENA, developed the funda-
mental architecture, and performed a numerical investigation to
validate the concept and assess the performance. While the general
concept put forward was general, the application focused exclu-
sively on a one-dimensional elasticity problem consisting in the
axial static response of a thin rod. Additionally, the trained net-
work concatenation strategy proposed in [1] was only applicable
to the problem of a 1D rod. In contrast, the present study provides
a significant expansion of both the formulation and the functional-
ities of FENA. More specifically, this paper makes the following key
contributions. First, the formulation of surrogate network models
is extended to include both one- and two-dimensional structural
elements such as slender Euler–Bernoulli beams and thin Kirchhoff
plates. Second, the concatenation strategy is modified and
improved in order to be able to handle dissimilar elements; this
is a key aspect to create multicomponent structural assemblies.
This specific result is obtained by reformulating the concatenation
algorithm based on the variational minimization of the total
energy. This strategy is then numerically tested by simulating the
static response of a stiffened panel, which is a prototypical exam-
ple of a multicomponent model. Third, an extensive numerical
study is performed to validate the formulation of the new surro-
gate models and of the concatenation strategy, and to assess the
performance with respect to different types of structural systems.
We highlight that the main emphasis of this paper is to extend
FENA to the static simulation of 1D and 2D elements and to show
the feasibility to model structural assemblies. The ability to con-
nect networks in a form akin to finite elements (and without ad
hoc training) is quite remarkable and, to the best of the authors’
knowledge, never proved before. We believe that, with this
methodology in place, many types of physical elements (not neces-
sarily only structural) can be implemented in FENA. The procedure
presented in the following is general and can be used to further
develop FENA for different structural elements and applications.

The remainder of the paper is structured as follows. First, we
briefly present the fundamental structure of FENA and describe
the general procedure to perform simulations. Next, we describe
the architecture of the newly introduced beam and plate finite net-
work elements (FNE) followed by the variational formulation of the
model assembly. Finally, we apply FENA to a set of different struc-
tural problems and discuss the overall performance.
2. A brief introduction to FENA

This section presents a brief review of the fundamental con-
cepts at the basis of the Finite Element Network analysis (FENA)
framework and of the key modules necessary to assemble models
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and run computations. The fundamental building blocks that allow
building models of physical systems in FENA consist of pre-trained
surrogate neural networks based on a bidirectional recurrent archi-
tecture [39]. These elements are referred to as finite network ele-
ments and, conceptually, play the role of elements (like beams,
plates, and solids) in FEA. The FNE surrogate models can represent
potentially any physical system or component depending on the
initial architecture and training. However, in the initial formulation
of FENA [1], only FNEs representing the static axial response of
one-dimensional slender rods were developed. The different FNEs
are stored in a library of elements (LE) from which they can be
selected to build a model. One of the distinguishing and most
remarkable features of FENA is its ability to combine different FNEs
in order to form the surrogate (assembly) model of a multicompo-
nent physical system. Remarkably, the resulting model does not
require any further training and can be used directly for computa-
tions. This ability to directly use pre-trained neural networks by
simply interconnecting them (without retraining) is referred to
as network concatenation, and it is implemented in a dedicated
module named Finite Concatenated Elements (FCE). This module
encompasses one of the most distinctive features of FENA and
makes this methodology different from any other network-based
computational tool currently available. While the LE and FCE mod-
ules are the key modules to build a physical model in the FENA
environment, two other modules are needed to perform the actual
computations, that are the Numerical Simulator (NS) and the
Model Assessment (MA). The NS module can be regarded as the
true computational engine of FENA and it is the component that
receives and applies problem-specific inputs (e.g. material proper-
ties and applied loads), executes the network, and predicts the
physical response. Once the numerical solution has been obtained,
the MAmodule is applied to evaluate the accuracy of the numerical
results. A comprehensive description of the framework and its
modules can be found in [1].

Given the four modules described above, the main steps to build
a model of a physical system in FENA are summarized schemati-
cally in Fig. 1 and described here below:

1. FNE selection: select the appropriate FNEs needed to simulate
the different components of the physical system. This step is
conceptually equivalent to selecting element types and shape
functions in FEA.

2. FCE algorithm selection: based on considerations of the physical
domain size and properties, an appropriate concatenation
scheme is selected in order to form an assembly representative
of the physical system. The stiffened plate is an example of a
Fig. 1. Schematic showing the sequence of operations to build the model and calculate
beams and plates are selected from the existing library of elements. In step 2, the eleme
panel model. In step 3, the complete (network) model is executed to simulate the physi
calculated solution. The most remarkable aspect is that these steps do not require any
handled by the trained FNEs available in the LE and the concatenation algorithms availa
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model built by assembling together surrogate networks repre-
senting beams and plates. This operation is reminiscent of the
FEA meshing process, where the system is discretized and pre-
pared for the numerical solution.

3. System simulation: Once the equivalent network model is
assembled and the sequence of problem-specific loads and
boundary conditions is provided, the NS module executes the
network and computes the output. This operation is conceptu-
ally equivalent to the matrix assembly and numerical solution
of the system of algebraic equations performed in FEA. How-
ever, in FENA, the matrix assembly and inversion, which are
the most expensive FEA computational tasks, are replaced with
efficient neural network predictions. This step is responsible for
the most considerable differences in computational cost and
efficiency observed between FEA and FENA.

4. Model and results assessment: the final step of the simulation
process consists in analyzing the predicted system’s response
and assessing its reliability and accuracy. This is a critical step
in FENA, given that the solution is obtained via surrogate mod-
els and not by performing a numerical solution of systems of
differential equations.

3. Network element models of slender beams and thin plates

As previously highlighted, the ability of FENA to model physical
systems rests on the availability of surrogate models (i.e. the FNEs)
to simulate the response of the different physical components. The
FNEs are pre-trained and stored in LE. Following from [1], the pre-
sent study expands the modeling capabilities of FENA by formulat-
ing new surrogate models for 1D Euler–Bernoulli beams and 2D
Kirchhoff plates [40]. These structural elements are the most com-
mon building blocks in lightweight structures and will allow build-
ing more elaborate structural assemblies in the FENA environment.
To be able to interconnect these different elements, the FCE algo-
rithm also requires further extension in order to manage the
exchange of information at the interface between different types
of surrogate models (or, equivalently, structural elements). We will
specifically discuss this aspect in the context of the integration of
beams and plates that are key components to build a stiffened
plate.

This section presents the conceptual formulation of the problem
and the development of neural networks serving as surrogate mod-
els for beam and plate elements. The numerical validation for
either individual elements or structural assemblies will be pro-
vided in the next section.
the physical response for a stiffened panel in FENA. In step 1, pre-trained FNEs of
nts are integrated (i.e. the FNEs are concatenated) to assemble the overall stiffened
cal response. Finally, in step 4, the MA module is used to assess the accuracy of the
additional training of the network; assembly, loads, and boundary conditions are
ble in the FCE module.



Fig. 2. Schematic showing the main degrees of freedom, external loads, and generalized stiffness boundary conditions for beam and plate elements. (a) Schematic of a slender
Euler–Bernoulli beam subject to distributed transverse nodal forces Fz and bending moments along y-axis My . The ends of the beam at x ¼ 0 and x ¼ L are connected to axial
springs Kz (resisting the displacement w along the z-axis) and to torsional springs Khx (resisting the rotation hx ¼ @w=@x). (b) Left: schematic view of a beam section between
nodes i and iþ 1 subject to Fz and My resulting in the nodal generalized displacements w and hx . Right: High-level view of the BRNN-based FNE architecture for a beam
element and the list of the corresponding input and output parameters. (c) The schematic of the plate problem. Plate is subject to the generic out-of-plane force nodal Fzðx; yÞ,
and bending moments Mxðx; yÞ and Myðx; yÞ. The plate has free boundaries at y ¼ 0 and y ¼ W . Also, the boundaries x ¼ 0 and x ¼ L have stiffness boundary condition. The
stiffness Kz;Khx , and Khy resist w; hx ¼ @w=@x, and hy ¼ @w=@y respectively.
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Before we further proceed with the network details, it is worth
clarifying our rationale for the selection of the aforementioned
structural elements. While the systems being considered in this
study are relatively simple from a structural mechanics perspec-
tive, in the context of neural-network-based analysis these sys-
tems are very challenging to simulate unless ad hoc training is
performed. Most of the existing network-based techniques (re-
gardless if data-driven or physics-informed) for the simulation of
physical systems require training to be performed on the exact
boundary conditions and loads. To date, this has been one of the
major limitations in using neural networks for predictive forward
simulations. This observation also explains why the main emphasis
of this work is to show how a platform for neural network-based
computations can be performed without continuously training
the system for selected analysis conditions. Recall that, indepen-
dently of the complexity of the physical system being analyzed,
this property has not been achieved before in neural-network-
based computations. Additionally, the FNEs of the fundamental
structures (beam and plate FNEs) are also used to demonstrate
the ability of FENA to deal with multicomponent (multi-element)
physical systems by simply assembling multiple FNEs. We will
showcase this remarkable capability by simulating a stiffened
panel. Once again, a stiffened panel is certainly a relatively simple
mechanical assembly from a structural mechanics perspective, but
it is a quite challenging system for the state of the art of neural-
network-based computation (if ad hoc training is not pursued).

Further, in this study FENA is presented and validated for anal-
yses on linear systems. However, FENA’s architecture is very gen-
eral and does not prevent its application to different types of
physical systems including, as an example, curved geometries
and nonlinearities. Indeed, recall that the ability of a neural net-
work to model any physical system derives from the universal
approximation theorem [11] according to which networks can
learn both linear and nonlinear input–output relationships. Hence,
the proposed methodology is independent of the specific details of
the analysis and could be readily extended to nonlinear systems
(following the definition of proper nonlinear finite element net-
works to be included in LE). The concatenation also would require
some adaptation; but again there are no conceptual limitations in
FENA preventing this extension. On the other hand, contrary to
FEA, the network elements size and calculations do not necessarily
scale with the complexity and order of the elements because the
4

neural network input-to-output mapping is intrinsically nonlinear.
Therefore, it is foreseeable that extending FENA to more complex
and nonlinear structures would further highlight the computa-
tional benefits over traditional techniques. Clearly, the above con-
siderations are still theoretical, so that the actual performance of
FENA for nonlinear analysis will have to be evaluated on specific
problems and our current study does not allow us to provide any
meaningful conceptual extrapolation. The concatenation algorithm
also will need to be modified to account for the nonlinear nature of
the system. However, given that the concatenation algorithm pre-
sented in the following is based on variational principles, we do
expect to be able to extend it to nonlinear problems.
3.1. Expanding the library of elements: beam and plate finite network
elements

As discussed in Section 2, the LE comprises various sets of pre-
trained neural networks (i.e. the finite network elements) serving
as surrogate models of classes of physical elements. Based on these
fundamental classes of FNEs, a multicomponent model can be built
by simply interconnecting different FNEs (via the concept of con-
catenation) as needed to achieve the final system configuration.
It follows that the ability to build diverse models relies on the
availability of a variety of surrogate elements in LE. For this reason,
in this section we first expand the LE to include two new FNEs that
simulate the response of two key structural elements: slender
Euler–Bernoulli beams and thin Kirchhoff plates.
3.1.1. Euler–Bernoulli Beam: FNE architecture
The first FNE developed to expand LE represents a surrogate

model that captures the static response of slender Euler Bernoulli
beams. In the following, we will present the general approach to
model the structural beam element via neural networks and
describe the link between the structural mechanics elements and
the beam FNE. Then, we provide specific details of the beam FNE
architecture and its layers.

The schematic of the physical beam element is shown in Fig. 2a.
The beam’s neutral axis is aligned along the x-axis. A generic dis-
tributed nodal transverse force Fz is assumed to act in the z direc-
tion in addition to a distributed nodal bending moment My; both
loads are applied at nþ 1 nodes. The boundary points are assumed
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connected to translational Kz and torsional Khx stiffness elements
(equivalent to linear and torsional springs) to allow for a general-
ized treatment of the boundary conditions. The beam FNE model
is developed to emulate the static response of an Euler–Bernoulli
beam element with two nodal variables, the transverse displace-
ment in the z direction w and the rotation hx ¼ @w=@x[41]. In
agreement with basic linear mechanics theory, small displace-
ments and rotations are assumed. Note that these conditions will
influence the FNE via the training data and do not affect directly
the network architecture. The goal is to synthesize a FNE that
can accept static loads (i.e. FzðxÞ and MyðxÞ) and boundary condi-
tions (i.e. Kz and Khx ) as input, and provide as output the traverse
displacement w and rotation hx consistent with the static response
of an Euler–Bernoulli beam element.

In FENA, FNEs are built by using deep bidirectional recurrent
neural network (BRNN) architectures. A BRNN is composed of
two sets of RNN cells each processing a sequence of input data
(e.g. In1; In2; . . . ; Inn) in opposite directions (1 ! n and n ! 1).
The output of the RNN cells is then further processed to calculate
the output sequence following each one of the n input states.
Detailed discussions on the internal architecture of the BRNN, the
rationale behind the selection of this type of network, and the role
of bidirectionality in the simulation of physical systems can be
found in [1]. The first step in the simulation of a problem via FNE
is to form the input data sequence. This is done by discretizing
the system domain into a set of n partitions (elements). We use
the properties and applied input at the partitions to form the
sequence of data used as input to the network (Fig. 2b). The size
of these elements is determined by the problem domain size (e.g.
length of the beam or size of the plate), the number of elements
that the selected FNE is trained to simulate, and the point of appli-
cation of the external input.

Once the partitioning of the physical system is determined, the
input sequence (Ini; i ¼ 1;2; . . . ;n) can be built as (see also Fig. 2b):

Ini ¼ ½Fzi ; Fziþ1
;Myi ;Myiþ1

; Ei; Ii; li�; i ¼ 1;2; . . . ;n ð1Þ

where the subscript i is the node number, while E; I, and l are the
Young’s modulus, the second area moment of inertia, and the length
of the element between the nodes i and iþ 1. Note that the element
parameters E; I, and l can potentially be different for each element
within the FNE. The left and right boundary stiffness values are also
provided as input in order to initialize the hidden states of the
BRNN core layers. Note that this will result in the propagation of
the boundary condition to the entire data sequence, hence allowing
for the generalization of the beam network element without any
need for retraining. Clearly, the limit cases of the boundary stiffness,
that is either Kz ! 1 and Khx ! 1 or Kz ! 0 and Khx ! 0, allow
implementing clamped and free boundaries, respectively. Based
on this input sequence, the network will return the output sequence
Outi), that is:
Fig. 3. The network contains a core bidirectional layer, with 50 LSTM cells in each dire
sequence (In) and output sequence (Out). The vectors on the bottom indicate the layers
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Outi ¼ ½wi;wiþ1; hxi ; hxiþ1
�; i ¼ 1;2; . . . ;n ð2Þ

where wi and hxi ¼ @wi=@x are the transverse displacement and the
rotation at the i-th node. The internal architecture of the beam FNE
is presented in Fig. 3. The network consists of fully connected layers
attached to a bidirectional core unit. The input sequence members
are first processed by four fully connected layers (left side of
Fig. 3) with size ½20;20;60;60�. The first layer employs tanhðxÞ acti-
vation function while the remaining layers use E-swish activation
function [42] defined by:

f ðxÞ ¼ bx
1þ e�x

ð3Þ

where b ¼ 1:5. The E-swish activation function was selected since it
provides faster learning and is able to train deeper networks than,
as an example, the ReLU activation function [42]. However, our
numerical simulations indicated that the use of the E-swish func-
tion for all of the four layers tended to produce numerically unsta-
ble training. Hence, we substituted the first layer activation
function with tanh, which is limited to the range ½�1;1�, to avoid
divergence of the loss function during training. Note that this com-
bination of activation functions was ultimately determined by a
trial and error process while monitoring the network prediction
accuracy and the numerical stability of the training. The BRNN core
layer uses 50 long short-term memory (LSTM) recurrent cells [43]
in each of the forward and backward directions. These recurrent
units are responsible for learning the mutual effect and the sequen-
tial logic behind the input sequence (Eq. (1)), as well as its relation
with the output sequence (Eq. (2)). Despite the common practice of
either zero or random initialization of the hidden states [35], we
opted to use boundary stiffness values for initialization of the hid-
den states of the LSTMs. Due to the bidirectional nature of the
BRNN, the effect of the boundary conditions propagates in both
the forward and backward directions through the recurrent cells
and affects the response of the FNE. To improve the learning capac-
ity of the recurrent cells inside the BRNN core layer, we added two
fully connected layers of size ½20;60� connecting the boundary con-
ditions to the core bidirectional layer hidden states, resulting in a
unique initial hidden state for each recurrent cell in the BRNN layer.
The BRNN core layer output is connected to 7 fully connected layers
(right side of the BRNN in Fig. 3) with E-swish activation function
and layer size of ½50;60;60;60;60;60;60�. A linear activation func-
tion is used for the output layer.

Following from Eq. (2), the output layer size is 4, hence resulting
in an output sequence of size ½4;n�. We highlight that, in this work,
we chose for the network elements to have the same input and
output sequence sizes. In other terms, the network receives the
properties and applied loads at the nodes of the partitioned system
and returns the output only at those nodes. The reason for this
decision was due to the fact that by using concatenation we can
create an element with as many output nodes as desired, hence
ction. The BRNN architecture is used to learn sequential dependencies of the input
size.



Fig. 4. Schematics illustrating how structural models can be assembled using concatenation of different (surrogate) elements. In this example, a stiffened panel is obtained by
connecting two separate beam elements (labeled 1 and 2) to a plate element. While in this figure the concept of concatenation is shown via a physical illustration of the
structural element, the actual process is performed via the FCE module applied to the FNEs, as explained in Section 3.2. The concatenation is performed by activating interface
loads acting on all shared nodes at the common boundaries (see blue and black dot markers). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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we still have the freedom to choose the level of discretization and
where the output can be obtained. However, if one was interested
in having different input and output sizes, we note that BRNNs can
be trained to predict output sequences with a different size than
the input. Such network elements would be able to predict the
response at a finer (or coarser) mesh than the mesh used to define
the input properties. The accuracy of the predictions in this case
will have to be assessed but, based on our experience, we believe
it should still provide high quality results. The details concerning
the generation of the training dataset and the network training
are presented in Appendix A.
3.1.2. Plate network element architecture
Consider a thin homogeneous Kirchhoff plate ðL�WÞ½m2�

defined in the x� y plane having thickness t. The plate is assumed
subject to a distributed transverse force Fz in the z direction, and to
bending moments Mx and My about the x and the y axes, respec-
tively (see Fig. 2c). Note that we are neglecting in-plane forces
(along x or y directions), hence the corresponding in-plane defor-
mation of the plate’s mid-surface is zero. The edges of the plate
are assumed supported by a set of translational (Kz) and torsional
(Khx ;Khy ) stiffness elements at x ¼ 0 and x ¼ L to resist transverse
deflection and rotation. The remaining two boundaries at y ¼ 0and
y ¼ W are free. We note that this choice of stiffness boundary does
not provide the most general representation of the possible bound-
ary conditions of a plate element; to achieve this generalization,
stiffness elements should be included on all the four edges. How-
ever, while less general, this choice does not alter one of the main
goals of this study that is to illustrate the procedure to develop 2D
FENA elements and their concatenated form. Note that even in the
case of the more general stiffness support at the four edges, the
concatenation algorithm and the assessment strategy will remain
unaltered while the plate FNE should be adapted to include the
input stiffness values corresponding to the additional edges. The
plate is uniformly partitioned (see the grid in Fig. 2c), resulting
in a total of q nodes at which the external forces (Fz) and bending
moments (Mx and My) can be applied.

As previously mentioned, the plate FNEs will be trained using
data generated by FEA. In the present work, we use four-noded
conforming rectangular elements [40] to discretize the plate. This
element has four nodal variables w; hx ¼ @w=@x; hy ¼ @w=@y, and
hxy ¼ @2w=@x@y, wherew is the out-of-plane (z direction) nodal dis-
placement. The input sequence of the plate FNE includes the three
externally applied generalized forces (i.e. both forces and
moments). More specifically, the network input sequence is set
to Ini ¼ ½Fzi ;Mxi ;Myi �; i ¼ 1;2; . . . ; q, where q is the total number of
nodes. Following these assumptions, the input size is ½3; q�. Except
for the input and output layers, the same network architecture
used for the beam FNE (see Fig. 3) was used for the plate. According
to this definition, the plate FNE will be able to predict the value of
6

the generalized nodal displacements Outi ¼ ½wi; hxi ; hyi ; hxyi � for a
given sequence of input loads. The details pertaining to the gener-
ation of the plate FNE training dataset and the training process are
presented in Appendix B.

3.2. Assembly of dissimilar finite network elements

The previous section presented the general architecture of two
new surrogate structural models that expand FENA’s LE database
to include the flexural static response of slender beams and thin
plates. As recalled in Section 2 and discussed in detail in [1], FENA
uses the concept of element concatenation to combine together
pre-trained elements and form physical assemblies. The introduc-
tory study on FENA [1] dealt only with surrogate models of rod ele-
ments, hence the concatenation between different FNEs was more
immediate because the elements shared the same type of degrees
of freedom. In [1], the concatenation was used to assemble models
of rods having an arbitrary length (i.e. beyond those available for
the pre-trained elements in the database) and heterogeneous
properties.

The addition of new element types to the LE opens the possibil-
ity to build more complex assemblies made of dissimilar structural
elements. This latter concept is schematically exemplified in Fig. 4
for the case of a typical stiffened panel. In the remainder of this
study, we choose the stiffened panel example to discuss how the
concatenation methodology can be modified and applied to multi-
ple element types (having dissimilar degrees of freedom). The stiff-
ened panel will also be used as a benchmark model to numerically
test FENA and to assess its performance.

From a practical perspective, the concatenation occurs at the
level of the surrogate models and it is performed via the FCE mod-
ule. A set of artificial loads (referred to as interface loads) is applied
to the nodal points at the interface of the different elements to be
connected. These interface loads bear a close similarity to the
internal forces exchanged between structural elements through
physical interfaces. Each node can have more than one degree of
freedom, according to the element physical definition (see Sec-
tion 3.1). Fig. 4 illustrates the interface nodes (highlighted by blue
lines) selected to connect a plate element with beam elements. The
black and blue dot markers on the plate and the beams, respec-
tively, indicate the nodes that are associated with artificial inter-
face loads. The concatenation strategy will be laid out in detail in
the following sections and specialized for the different elements.
From a general standpoint, the implementation of the concatena-
tion condition leverages a few key common elements: (1) continu-
ity of the generalized displacements at the interface nodes, and (2)
satisfaction of the principle of virtual displacements. In the follow-
ing, we detail the concatenation strategy for two different types of
interfaces: (1) single-type element interface (e.g. beam-beam or
plate-plate), and (2) multi-type element interface (e.g. beam-
plate).
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3.2.1. Single-type element interface
The case of single-element interface encompasses all the con-

nections between elements of the same type. This case was initially
considered in [1] and it is revisited and improved in this study in
order to account for elements possessing a higher number of
degrees of freedom per node. More specifically, while the initial
FCE method [1] was designed for the problem of rod concatenation
(having a single degree of freedom per node), we present a gener-
alized concatenation algorithm applicable to any type of structural
element and number of degrees of freedom per node. In the follow-
ing, we will discuss the case of concatenation for both beam-beam
and plate-plate interfaces.

Beam-beam interface: This type of interface emerges when
two surrogate network models of beam elements are connected
together. Consider a beam of length L, as shown in Fig. 5a. The
beam is first divided into sections (referred to as subdomains).
The number and length of these subdomains is an input parameter
that is conceptually equivalent to the choices made to discretize a
domain in mesh-based techniques (e.g. finite element method).
Despite this analogy, it is important to understand that, in FENA,
the solution accuracy and its stability are completely independent
from the chosen spatial discretization. Indeed, high accuracy could
be achieved even in the extreme case where only a single element
was used for the calculation. This particular characteristic is due to
the fact that the accuracy of the prediction is entirely controlled by
the network architecture and by the training process, not by the
number of elements and the corresponding degrees of freedom.
On the other side, the choice of the subdomain does affect the
number of points the response is available at.

In FENA, the two main parameters that determine the size of
the subdomains are the range of the physical dimensions and the
input sequence size (n). As a reminder, the first parameter refers
to the range of physical dimensions (e.g. for a beam it consists in
the length, while for a plate in both length and width) the network
was trained for. The second parameter refers to the number of
input loads and output points required by the problem. Recall also
that each FNE surrogate network model should never be used to
simulate systems exceeding the specified range of physical dimen-
sions. When the dimensions of the physical system exceed this
range, the concatenation strategy (i.e. the FCE module) should be
used [1].

Consider two beam sections simulated via two independent
FNEs (Fig. 5b). Each of these sections is modeled according to the
general configuration in Fig. 5a. The two sections are subject to
external distributed transverse loads FzðxÞ and bending moments
Fig. 5. Schematic of beam-beam and plate-plate (single-type element) concatenation. (a
into j subdomains to be solved with concatenation. (b) Schematic of beam-beam concate
each degree of freedom of the interface nodes are added to the original nodal load (Fzm and
case, the concatenation interface between the sections is a line that includes a set of nod
virtual stiffness elements Kz0 and Kh0 whose initial value is arbitrarily selected. In addi
freedom of the interface nodes and tuned to achieve the continuous structural interface
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MyðxÞ. The translational and rotational end springs are initialized
using two arbitrary values indicated by Kz0 and Kh0 to avoid under-
constrained conditions. The specific numerical value of these stiff-
ness constants is immaterial since, as explained in the following
section, the additional interface loads will converge to the correct
value necessary to guarantee the satisfaction of the continuity
and the virtual displacement conditions embedded in the cost
function J (see Eq. (4)). The value of these springs will produce only
an offset of the interface loads. Finally, interface loads (both trans-
lational and rotational) are added to interconnect the two beam
elements.

Fig. 5b shows an example of beam-beam (single-type element)
interface between two subdomains, labeled s� 1 and s connected
at node m. In addition to Fzm and Mym (externally applied loads at
node m), the interface loads F s�1

int and F s
int are also added to the

interface. Recall that each interface load set includes an interface
bending moment Myint and an interface transverse force Fzint and
are responsible for enforcing continuity. The four interface loads
½Fs�1

zint
;Ms�1

yint
; Fs

zint
;Ms

yint
� are added to the network input and tuned to

guarantee continuity of the concatenated response at the interface
node.

The value of the interface loads necessary to implement the
interface is obtained via an optimization process that minimizes
the following cost function J:

J f;N 1; . . . ;N j;F int
� � ¼ JC þ JdW

JC f;N 1; . . . ;N j;F int
� � ¼ a1

XNint

s¼1

ws�1
int �ws

int

� �2 þ a2
XNint

s¼1

hs�1
xint

� hsxint

� �2

JdW f;N 1; . . . ;N j;F int
� � ¼ b

Xnþ1

i¼1

@W
@U i

� �2

ð4Þ
where F int is the vector containing all the interface loads, j is the
total number of subdomains, N j is the FNE selected to simulate

the jth subdomain response (w and hx of the nodes in the subdomain
j), f ¼ ½Fz1 ;My1 ; . . . ; Fznþ1 ;Mynþ1 � is the applied external load vector
(nþ 1 is the total number of nodes in the structural assembly
including all the FNEs), JC is a term implementing the continuity
condition for both the nodal displacement w and rotation hx;Nint

is the total number of interface nodes, the superscripts refers to
subdomain number, and the subscript int refers to interface nodes
between the neighboring subdomains s� 1 and s. a1; a2, and b are
weight factors that are chosen using the initial guess for F int (see
) A beam subjected to distributed loads FzðxÞ and MyðxÞ with total length L, divided
nation between section s� 1 and s. A set of interface loads (F s�1

int and F s
int) applied at

Mym ). (c) Schematic of plate-plate concatenation between section s� 1 and s. In this
es. Similar to the beam concatenation, the domain boundaries are also connected to
tion to the external applied load, an interface load F�

int is added to each degree of
.
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Eq. (6)). Also, JdW is an energy-based functional that follows from
the principle of virtual displacements [40], W is the total energy
and U i ¼ ½wi; hxi � is the vector of the generalized nodal displace-
ments at node i. The total energy W for the concatenated beam is
given by:

W ¼ WI þWE

WI ¼
R
X rxx�xxdv

WE ¼ �f � U
ð5Þ

where WI is the total strain energy of the beam, WE is the work
done by the external loads, rxx is the normal stress in the x direc-
tion, �xx is the normal strain in the x direction, X is the beam
domain, and U ¼ ½w1; hx1 ; . . . ;wnþ1; hxnþ1 � is the beam displacement
vector.

The cost function (Eq. (4)) is made up of two fundamental com-
ponents. The first component, indicated by JC , implements a conti-
nuity condition of the generalized displacements (i.e. translations
and rotations). This condition ensures that the interface nodes
occupy the same physical location (i.e. remain superimposed) at
all times, hence guaranteeing a first order continuity. However,
this condition is not sufficient to guarantee a well-posed inverse
problem. Indeed, many different sets of interface loads can be
found to satisfy the same continuity condition. In order to improve
the formulation of the inverse problem, we complement the cost
function with an additional energy-based term JdW that is essen-
tially a statement of the principle of virtual displacements. Accord-
ing to this latter principle, if a continuous body is in equilibrium,
the virtual work of all forces in moving through a virtual displace-
ment is zero [40]. The additional energy-based term guarantees the
convergence to a set of nodal interface loads consistent with the
equilibrium of the system under the applied external loads.

Implementing the FCE algorithm for a beam interface starts
with the identification of the subdomains and the definition of
the corresponding interface loads. Then, we form the cost function
J using Eqs. 4 and 5. Note that the componentWI can be calculated
by numerical integration (we use a Gauss integration method
leveraging the Gaussian points of the beam element [41]). Also,
the gradient of W with respect to the nodal displacements is ana-
lytically calculated by reverse mode automatic differentiation
method by means of Python Autograd package. The initial guess
for the interface loads F int is obtained randomly within the range
½0;0:1�. Using this initial guess the weight factors a1; a2, and b are
given by:

a1 ¼ 1XNint

s¼1

ws�1
int

�ws
intð Þ2

����������
F int¼F int0

a2 ¼ 1XNint

s¼1

hs�1
xint

�hsxint

� �2

����������
F int¼F int0

b ¼ 1
WðF int0

Þ

ð6Þ

where F int0 is the initial guess for F int . Note that w�
int and h�xint (the

superscript � indicates the section number) are calculated using
the selected FNEs (N 1; . . . ;N j) for the applied external load
f þF int0 . The optimal values of interface loads (F�

int) are obtained by:

F�
int ¼ argmin

F int

J F intð Þ ð7Þ

The cost function JðF intÞ is then optimized to determine the inter-
face loads. Once convergence is reached, the response of each sub-
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domain is calculated (by executing the network) in the presence of
both external and interface loads F�

int . For the numerical samples
presented in Section 4, we utilized the Sequential Least Squares Pro-
gramming (SLSQP) method which is well suited for multi-variable
optimization. In addition, for the practical numerical implementa-
tion of the FCE algorithm, we used Python, NumPy, and Autograd
packages.

Plate-plate interface. This type of interface occurs when two
surrogate network models of plate elements are connected
together. The simulation strategy for the concatenation of this ele-
ment type follows along the same lines described for the beam-
beam interface. Consider a plate occupying the domain
X ¼ ½L�W � (Fig. 5c). Assume the plate is simulated by using two
subdomains �X ¼ ½L=2;W � concatenated together along x ¼ W=2
(so that X ¼ �X [ �X), as shown in Fig. 5c. The most significant differ-
ence for this type of interface is due to the different nodal degrees
of freedom and, consequently, to the number of interface loads per
node. Considering only the transverse deflection of the plate, the
nodal interface loads can be defined in vector form as
F�

int ¼ ½F�
zint

;M�
xint

;M�
yint

;M�
xyint

�, where the superscript � indicates the
section number, and Fzint ;Mxint ;Mxint , and Mxyint are the interface
loads corresponding to the nodal parameters w; hx; hy, and hxy.

The same cost function defined in Eq. (4) can be applied to the
plate-plate interface by simply updating the corresponding terms.
The continuity condition is expressed as:

JC ¼ a1
XNint

s¼1

ws�1
int �ws

int

� �2 þ a2

XNint

s¼1

hs�1
xint

� hsxint

� �2

þ a3
XNint

s¼1

hs�1
yint

� hsyint

� �2
þ a4

XNint

s¼1

hs�1
xyint

� hsxyint

� �2
ð8Þ

where ai with i ¼ 1; . . . ;4 are weight factors. The energy term JdW is
calculated according to Eq. (5). Note that, in this case, the displace-
ment vector is defined as U ¼ ½w1; hx1 ; hy1 ; . . . ;wq; hxq ; hyq � and the
external force vector is given by f ¼ ½Fz1 ;Mx1 ;My1 ; . . . ; Fzq ;Mxq ;Myq �
where q is the total number of nodes in the plate assembly. Also,
in this case WI is given by:

WI ¼
Z
X
rxx�xx þ ryy�yy þ 2rxy�xydv ð9Þ

Similarly to the case of beam-beam concatenation, to calculate the
internal elastic energy WI of the concatenated plate, we use a
numerical integration leveraging the Gaussian points of the plate
element [41]. The continuity and the energy conditions are used
to find the interface loads, analogously to what described for the
beam-beam interface.

3.2.2. Multi-type element interface
This kind of interface addresses the situation in which dissimi-

lar structural elements (or, equivalently, dissimilar FNEs) are con-
nected together to form a multicomponent assembly. As
mentioned above, this study uses as a benchmark model the case
of a stiffened panel.

From a general perspective, the same concatenation strategy
presented in the previous section does apply to this type of inter-
face. The approach starts with the identification of the fundamen-
tal subdomains forming the complete assembly. For example,
consider the stiffened plate shown in Fig. 4. In this specific case,
the system is composed of a plate and a set of two stiffeners (la-
beled as 1 and 2). For each nodal point at the interface (see the
black and blue dots in Fig. 4) between the plate and the stiffeners,
a set of interface loads must be applied to enforce continuity. The
load takes the general form ½F�;p

zint
;M�;p

xint
;M�;p

yint
;M�;p

xyint
� for a node

belonging to the plate (the black dot markers in Fig. 4), and



Fig. 6. Numerical predictions produced by FENA for the static response of an Euler–Bernoulli beam under generalized loads. Nodal locations are identified by markers. (a) The
external applied transverse force Fz and bending moment My used for Beam 1. (b) The external applied transverse force Fz and bending moment My used for Beam 2. (c) The
static response of Beam 1 obtained by averaging predictions from network models (superscript net) B1;B2, and B3. The result is compared with the finite element model
solution (superscript FEA). (d) The static response of Beam 2 obtained by averaging predictions from network models (superscript net) B1; B2, and B3. The result is compared
with the finite element model solution (superscript FEA). In both (c) and (d), the top figure shows the static response expressed in terms of the transverse displacementw and
the rotation hx . The bottom figure shows the percentage relative nodal error er calculated with respect to the FEA solution.
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½F�;b
zint

;M�;b
xint

� for a node belonging to the stiffener (the blue dot mark-

ers in Fig. 4). In the previous notation, the superscript �indicates
the interface node number, while the superscripts b and p identify
the interface nodes on either the plate or the beam stiffener,
respectively. In a similar way, a revised form of the continuity term
is needed:

JC ¼ a1
XNint

s¼1

ws;p
int �ws;b

int

� �2
þ a2

XNint

s¼1

hs;pxint � hs;bxint

� �2
ð10Þ

where Nint is the total number of interface nodes, and all other
terms follow the previous definition. Note that in the continuity
Algorithm 1. Finite Concatenated Element (FCE) for structural simula
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term, we only apply this condition to the nodal degrees of freedom
in common between a plate and a beam element, that is to w and hx.
To calculate JdW , we calculate the total energy of the entire structure
using Eq. (5) and (9). The derivatives (Eq. (4)) are calculated using
reverse mode differentiation method that is implemented via the
Python Autograd package.

The rest of the concatenation process follows exactly the same
steps as for the previous type of interfaces. We highlight that the
overall procedure is very flexible and can be extended to any other
structural component by a proper consideration of the associated
degrees of freedom. Algorithm 1 summarizes the general proce-
dure to solve a multi-element structural problem with the pre-
sented concatenation strategy.
tions
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3.3. Accuracy assessment

As discussed in Section 2 and more in detail in [1], FENA utilizes
network elements to calculate the system static response to a
given input load. From a general perspective, neural networks are
trained to model a specific type of problem (e.g. a specific physical
response) based on a set of training samples. After the training, the
network performance is typically evaluated by using sample test
data [35]. However, when the networks are used as surrogate mod-
els of classes of elements (as opposed to modeling specific sys-
tems), such as in the present study, dedicated tools are needed to
assess the prediction accuracy. In other terms, for any specific
physical configuration that does not belong to either the training
or testing dataset, the accuracy of the prediction should be esti-
mated based on predefined metrics. Different types of metrics
were introduced and discussed in [1]. In the present study, every
FENA model will be evaluated using the model ensemble (similar-
ity) index [1] due to its ability to provide an overall level of confi-
dence in the accuracy of the results.

Model ensemble index derives from the observation that the
use of a group of networks can improve the overall quality of the
prediction [44] compared to the case of a single network. The
underlying idea is that if an ensemble of trained models predicts
a set of highly correlated results, it is highly unlikely that these
results are inaccurate. In order to implement the model ensemble
index, a group of trained FNEs representative of the given system
properties and analysis conditions is selected from the LE. Then,
the predicted output of individual networks is inspected based
on the Pearson product-moment correlation coefficient (PPMCC).
PPMCC is a scale-free metric that allows assessing the correlation
level (i.e. the similarity) of different data sequences. In the present
case, it allows assessing the level of correlation between the pre-
dicted output of different networks. The PPMCC provides a sym-
metric matrix whose elements represent the scaled correlation
between the predictions of each pair of models. For a set of accu-
rate predictions, the datasets should be highly correlated, and
hence all the elements of the PPMCC matrix should tend to unity.
The closer this index is to unity (for multiple FNE predictions),
the more reliable and accurate the predictions are. Based on this
matrix, highly correlated models are picked and their average pro-
vides the problem solution. Further details on the assessment of
FENA’s performance by means of the PPMCC index will be dis-
cussed in Section 4.
4. Static analysis of structural elements and assemblies

This section presents practical examples and numerical results
obtained by applying FENA to a set of different structural elements.
In particular, these validation problems will consist in the static
analysis of beams, plates, and stiffened panels under the effect of
distributed loads. The first two classes of problems intend to
demonstrate the performance of FENA for the two newly intro-
duced surrogate models: the slender Euler Bernoulli beam and
the thin Kirchhoff plate. The third and last class of problems will
instead demonstrate the ability to assemble models of structural
Table 1
Material, geometric, and boundary condition parameters selected for the analysis of Beam
value at x ¼ 0 and x ¼ L, respectively.

E½GPa� I½m4] m

Beam 1 3:1 1:09� 10�8 0.3

Beam 2 11:7 2:27� 10�9 0.3
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assemblies by combining together FNEs of different elements.
FENA’s predictions for all these case studies will be compared
directly with those obtained via traditional FEA so to assess the
overall accuracy of the method.
4.1. Static analysis of slender Euler–Bernoulli beams

We consider the static analysis of homogeneous elastic slender
beams with finite stiffness boundary conditions applied at both
ends and subject to a combination of a distributed transverse load
and bending moment (Fig. 2a). Two different cases, labeled Beam 1
and Beam 2, are considered. The two cases differ in the type of
applied external loads as well as in the geometric and material
parameters. Concerning the external loads, Beam 1 is subject to a
random (both in amplitude and location) load, while Beam 2 is sub-
ject to a sinusoidal spatially distributed load. Both the transverse
force Fz and the bending moment My are assumed to follow the
same type of distribution. The applied external loads for both cases
are plotted in Fig. 6a-b. Table 1 provides the specific geometric,
material, and boundary parameters for the two case studies. Note
that the properties were randomly selected from a uniform distri-
bution within the training dataset parameters ranges (see
Table A.1).

To simulate the static response of a beam under general trans-
verse force Fz and bending moment My, we built and trained three
networks (indicated, in the following, by the label B#). Recall that
multiple FNEs are needed to implement the model ensemble index
and assess the accuracy of the FNEs predictions. (Section 3.3). The
architecture of each network follows the discussion in Section 3.1.
The details of the training strategy as well as the performance of
the trained network follow from the established methodologies
and are discussed in the Appendix A.

Numerical results: Recall that the first step to simulate a struc-
ture in FENA consists in selecting the FNEs representative of the
physical system. For both sample cases, Beam 1 and Beam 2, the
entire beam section can be represented by a single network since
the length of both beams lies within the training (length) range
of the available network models (B1�3), hence not requiring any
concatenation. The parameters for both beams were provided in
Table 1. In both configurations, the beam is subject to the dis-
tributed transverse force and bending moment shown in Fig. 6a-
b. The loads are applied at the nodal points that, following the dis-
cretization indicated in Table 1, amount at 29 and 45 points for
Beam 1 and Beam 2, respectively. In the case of Beam 1, the ampli-
tude of the applied loads was randomly generated from a uniform
distribution within the ranges of the network training dataset (see
Table A.1). The external loads are only applied at nodal points,
hence the discretization of the loads should be accomplished con-
sistently with the FNE sectioning process.

Once the FNEs are selected and their input sequence is formed,
the models are ready to simulate the response via the NS module.
We simulated the two beam cases using the three available net-
work models and then used the ensemble index (Section 3.3) to
assess the accuracy of the predictions. The PPMCC matrices for
the predicted responses are:
1 and Beam 2. The format ð�;�Þ used for Kz and Khx indicates the boundary stiffness

L½m� n Kz½kN=mm� Khx ½kN:m=rad�
4:95 44 ð703;887Þ ð944:6;10:1Þ
2:82 28 ð966;1002Þ ð234:5;10:2Þ



Fig. 7. Static response of Plate 1 subject to a spatially distributed load with random amplitude. (a) 2D profile of the applied distributed force Fz and bending moments Mx and
My. (b) Results for Plate 1. The predicted fields w; hx; hy , and hxy obtained by averaging predictions from models P1; P2, and P3. (c) Reference solution of each nodal degree of
freedom calculated via FE approach. (d) Distribution of the percentage relative error of the nodal degrees of freedom. The errors are calculated with respect to the FE results.
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ð11Þ

The column and row labels describe the corresponding network
model, while the numerical value indicates the normalized correla-
tion between each pair of network models. The matrices are
obtained via an element-wise average of the PPMCC matrix of w
and hx for the case study. The matrices obtained above indicate that,
for both problems, the network models predict a response that cor-
relates very well with each other, within a maximum error of
0:03%. Note that highly correlated network element predictions
indicate that the responses are likely to be accurate and reliable.
11
Since the results of all three models are well correlated, the average
of their predictions is taken as the actual beam response. The aver-
age response from the three networks (B1;B2; B3) is shown in Fig. 6c-
d for the two beams, respectively. As expected based on the PPMCC
results, a highly accurate response is predicted for both beam cases.
The maximum relative percentage error (er) is less than 1:2% for
Beam 1, and 1:5% for Beam 2. The error er is calculated as:
er� ¼ unet
� � uFEA

�
�� ��
maxð uFEAj jÞ � 100 ð12Þ
In the above expression, jð�Þj denotes absolute value, uFEA
� is the ref-

erence solution at a nodal degree of freedom (either in terms ofw or
hx) and unet

� is its corresponding network model prediction, where
the subscript � indicates the node number. The reference solution
is obtained by solving the same physical model via a finite element
approach implemented in an in-house code. The excellent agree-
ment between the two predictions shows that the beam FNEs are
well capable of simulating the static response of a beam subject
to generic loading and boundary conditions.



Fig. 8. Numerical response of Plate 2 subject to a randomly valued and randomly distributed out-of-plane force Fz calculated using plate-plate FCE. (a) Schematic of Plate 2
which consists of two plates of smaller size (subdomain 1 (0 6 x 6 1½m�) and subdomain 2 (1 6 x 6 2½m�)) connected along black dashed line. As in previous cases, the edges of
the subdomains are connected to stiffness elements Kz;Khx ;Khy . The interface loads F 1;2

int and fictitious stiffness K0 ¼ fKz0 ;Khx0
;Khy0

g are added to the interface boundary of
each subdomain. The values of the interface loads are determined by optimizing of the cost function J F intð Þ. (b) 2D profile of applied distributed force Fz for Plate 2. (c) The
response of Plate 2 to the applied force obtained by concatenation of subdomains 1 and 2. The black dashed line represents the interface between the concatenated sections.
(d) Reference solution of Plate 2 obtained from its FE model. (e) Percentage relative nodal error profile of each degree of freedom calculated with respect to the FE model of the
plate.
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4.2. Static analysis of thin Kirchhoff plates

Following the discussion and approach presented above to per-
form the static response of an elastic beam, we follow an equivalent
path to present the static analysis of thin plates. As for the beam, two
sample problems, labeled as Plate 1 and Plate 2, are considered. The
main difference between the two plate samples is their domain size.
More specifically, Plate 1 has dimensions ðL�WÞ ¼ ð1� 1Þ½m2� that
fall within the training range of an individual plate FNE, hence allow-
ing the simulation to be performed using a single FNE. In the case of
Plate 2, the dimensions are ðL�WÞ ¼ ð2� 1Þ½m2� which requires the
use of concatenation. The case of Plate 1 practically represents the sit-
uation illustrated in Fig. 2c, while Plate 2 corresponds to the case
depicted in Fig. 8a. A summary of the material and geometric param-
eters for the two plates is provided in Table 2. The specific parame-
ters were randomly selected within the ranges reported in
Table B.1). In both cases, the boundaries at y ¼ 0 and y ¼ 1 were left
free and those at x ¼ 0 and x ¼ 1 in Plate 1 (or, equivalently, at x ¼ 0
and x ¼ 2 in Plate 2) were connected to elastic elements (i.e. a stiff-
ness boundary condition) acting both in the direction of the transla-
tion w and of the rotation hx and hy. The corresponding values of the

stiffness elements are Kz ¼ 15� 106½N=m�;Khx ¼ Khy ¼
17:17½N:m=rad�. The specific applied loads are shown in Fig. 7a and
8b for Plate 1 and 2, respectively.

To simulate the response of a thin plate subject to generalized
distributed loads (including a transverse force Fz, and the bending
Table 2
Material, geometric, and boundary condition parameters selected for the analysis of Plate

E½MPa� m L½m� W½m�
Plate 1 30 0:3 1:0 1

Plate 2 30 0:3 2:0 1
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moments Mx, and My), we trained three FNEs; they will be indi-
cated in the following by the label P#. The general architecture of
the plate FNEs was described in Section 3.1. Also, we highlight
again that we will use the predicted response of the three plate
FNEs to implement the model assessment strategy described in
Section 3.3 and to evaluate the accuracy and reliability of the pre-
dictions. Details on the training process of the plate FNEs can be
found in Appendix B.

Numerical results: In this section, we present the prediction
performance provided by FENA for the two different plate samples.

For Plate 1, the computational domain size is consistent with
the ranges used for the training of the plate network elements in
the LE, hence concatenation is not needed and a single FNE can
be used to simulate the whole plate. The external loads were
applied on a grid of 11� 11 evenly spaced nodes (corresponding
to a spatial discretization of 0:1½m� in both the x and y directions).
This grid was consistent with the one used during the training
phase. The response of the plate was simulated using the three net-
works and their prediction accuracy was analyzed via the model
ensemble index. The PPMCC matrix for the predicted response of
Plate 1 is equal to:

ð13Þ
1 and 2.

t½m� Kz ½kN=m� Khx ½N:m=rad� Khy ½N:m=rad�
0:005 15� 103 17.17 17.17

0:005 15� 103 17.17 17.17
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The above matrix was obtained first by calculating the four PPMCC
matrices corresponding to w; hx; hy; hxy and then by averaging the
correlation of each pair of models over the four degrees of freedom.
It is seen that the three models provide highly correlated predic-
tions with less than 0.01 % error, which ultimately indicates the
accuracy of the predicted responses. The average of the P1�3 predic-
tions is used as the plate response to the applied external loads. The
numerical prediction of the static response of the plate is presented
in Fig. 7b. The reference solution is, once again, generated via an in-
house finite element code and plotted in Fig. 7c. The results show
that the network model accurately predicts the response of Plate
1, within 1.21% margin of error (see hy relative error map in
Fig. 7d) compared to the FE model solution. The distributions of
the relative percentage error between the prediction and the refer-
ence solution are also plotted in Fig. 7d. It is worth highlighting that,
in most of the domain, the prediction error falls below 0.5 %.

In order to further illustrate the capabilities and performance of
FENA, we also produced an independent set of results based on
other possible deep-learning-based methodologies. More specifi-
cally, we developed a surrogate model of a plate based on tradi-
tional architecture consisting in a deep fully connected
feedforward neural network (DNN). The results, presented in
Appendix Section B.3, show that FENA’s predictions are signifi-
cantly more accurate than DNN-based networks.

For Plate 2, the dimensions exceed the range used in the training
phase, hence requiring the use of concatenation to assemble the
full domain and to perform the simulation. Without loss of gener-
ality, we assumed that the external moments Mx and My were
equal to zero while the external transverse force Fz was random
in amplitude and applied over a grid of 21� 11 evenly spaced
nodes (q = 231).

The full plate model was built by concatenating two plate FNEs
having dimensions ðL�WÞ ¼ ð1� 1Þ½m� and containing 121 nodes
Fig. 9. Components of the stress field for Plate 1. (a) Stress field predicted by FENA. The s
models PS21 ; PS22 , and PS23 . (b) Reference stress fields calculated via FEA. (c) Percentage r
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(grid of 11� 11 nodes) each. The elements were concatenated
along the interface at x ¼ 1 (dashed black line in Fig. 8a) into a
plate of dimensions ðL�WÞ ¼ ð2� 1Þ½m�. As described in Sec-
tion 3.2, the concatenation involves the introduction of a set of
interface loads to all the interface nodes (Fig. 5c). The interface
between the left and right sections located at x ¼ 1 contains 11
nodes (according to the selected discretization), hence Nint ¼ 11.
Four interface loads are assigned to each node of each section,
hence the size of the vector F int is equal to 88 (total number of
loads). Following the formulation presented in Eqs. (4) and (8),
(9), a cost function was assembled. The optimization at the basis
of the concatenation process was initiated using the weights
obtained by randomly initializing the values of the interface loads,
as described in Section 3.2. For this specific problem, the optimiza-
tion was performed using the SLSQPmethod in Python (SciPy pack-
age) and converged in 214 steps.

The response of the full plate is presented in Fig. 8c and com-
pared with the reference solution produced by the finite element
method, as shown in Fig. 8d. The average relative percentage error
among the four nodal degrees of freedom yields a maximum of
1.6% in the prediction of hxy as seen in Fig. 8e, hence indicating that
the concatenation algorithm accurately captures the behavior of
the interface. It is important to recall that at no time during the
solution process, the networks were retrained. The simulations
only used the general pre-trained network models available in LE
to predict the response of the composite plate.

4.2.1. Post-Processing: Calculation of derived quantities
It is well known that the FE solution of a structural model pro-

duces the nodal quantities, such as nodal displacements. Other key
quantities, such as stress and strain fields, are calculated as a sec-
ondary step by post-processing the displacement data. Similarly, in
FENA, the FNEs provide the displacement field and other depen-
tress fields rxx , and ryy; sxy are obtained by averaging the predictions from the three
elative error between the predictions of FENA and FEA.
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dent quantities should be calculated in the post-processing step. In
this section, we present an example of how stresses and strains of a
plate element can be calculated in FENA.

The plate FNEs developed in this study are specifically trained
to predict (solely) nodal displacements in response to input loads.
In order to calculate the stress fields in FENA, we can envision two
possible approaches: 1) numerical stress–strain calculation, and 2)
neural network-based stress–strain calculations. The first approach
could somewhat be considered as analogous to the one used in
FEA, that is, strain fields are calculated from the numerical deriva-
tive of the displacements and the stresses are computed by consti-
tutive arguments. However, it is known that this approach may
result in large errors associated with the implementation of the
numerical derivatives. In addition, this approach might be poten-
tially inferior to its counterpart in FEA, which instead leverages
the derivatives of the shape functions to calculate the strains.
While the above is certainly a possible approach, we believe that
the network-based approach is superior and is the one to be
followed.

In the second approach, we can leverage neural networks to
perform the stress–strain calculations. In this case, the network
elements could be developed and trained to predict also stress
and strain fields, in addition to generalized displacements. For
example, in the case of plate FNEs, in addition to the four output
channels that provide the nodal generalized displacement
½w; hx; hy; hxy�, six output channels should be added to the FNEs to
predict the stress and strain fields. It follows that the network out-
put vector is represented by ½w; hx; hy; hxy;rxx;ryy; sxy; �xx; �yy; �xy�,
where r is normal stress, s is shear stress, and � is strain. Another
possibility is to train a separate network for the prediction of stress
and strain fields based on the external loads applied to the struc-
Fig. 10. Components of the strain field for Plate 1. (a) Strain field predicted by FENA. The
models PS21 ; PS22 , and PS23 . (b) Reference strain fields calculated via FEA. (c) Percentage r
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ture. In this case, we would obtain a network with the output chan-
nel ½rxx;ryy; sxy; �xx; �yy; �xy� that maps the plate applied external
loads to stress and strain fields. Along this similar line of thought,
a separate network could also be designed and trained to map the
displacement field generated by FENA to the stress and strain
fields. In the case of network-based calculations, the possibility
of large errors would be minimal, since no numerical calculations
are performed and the FNEs are specifically trained to simulate
resultant stress fields. Certainly, the quality of these predictions
will be dominated by classical considerations on the quality of
training data and the overall accuracy of a neural-network-based
prediction.

To assess the prediction performance and demonstrate the feasibil-
ity of the network-based approach, we developed two groups of net-
works dedicated to stress and stress fields calculations. The first
group directly maps the applied external loads to stress and strain
fields. The second group receives the displacement field predicted by
FENA and maps it to the stress and strain fields. We note that this sec-
ond group is the most realistic because it takes the actual (displace-
ment) output from FENA and post-process it to obtain additional
quantities. The networks in the first group are labeled PS11 ; PS12 , and
PS13 while those in the second group are labeled PS21 ; PS22 , and PS23 .
The average of the predictions of the three networks will be used to
define the stress or strain fields for a given problem (analogously to
the approach already used for displacements). The technical details
of the network development and training are presented in Appendix
Section B.4, while here we focus on the results.

To showcase the performance of the network-based approach,
we focus directly on the second group of networks (that is dis-
placements to stresses and strains) applied to Plate 1 which we
already defined above as the most suitable and logical for FENA.
strain fields �xx , and �yy; �xy are obtained by averaging the predictions from the three
elative error between the predictions of FENA and FEA.
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Figs. 9a and 10a present the stress and strain fields predicted by
processing the displacement field calculated by FENA through the
stress–strain networks for the sample problem Plate 1. Recall that
these fields are the result of the average of the prediction of the
three networks PS21 ; PS22 , and PS23 . The reference solution, which is
generated via FEA, is plotted in Figs. 9b and 10b. The distributions
of the relative percentage prediction error are plotted in Figs. 9c
and 10c. The results show a remarkable accuracy of the network
ensemble predictions with maximum relative error always below
1% (absolute maximum across all results is.91%) compared to the
FEA solution. In conclusion, the networks are able to accurately
map the displacement field predicted by FENA to the correspond-
ing stress and strain fields.

For completeness, we note that the prediction results of the first
group of networks showed relatively lower accuracy. Specifically,
the average maximum prediction error was within the range
½%2;%5� (see discussion in Appendix Section B.4).
4.3. Static analysis of structural assemblies: stiffened panel

The introduction of two new network elements (i.e beam and
plate) and the extended concatenation capabilities, we can address
the more general problem of building the model and simulating
the static response of structural assemblies made of multiple
dissimilar elements. Given the availability of both beam and plate
elements, it is quite natural to choose a stiffened plate as a repre-
sentative example of a structural assembly.

In this case, the problem domain is composed of a
ðL�WÞ ¼ ð1� 1Þ½m� plate and two stiffeners (i.e. beam elements)
placed orthogonal to each other (Fig. 11a). The material and geo-
metric properties of the plate as well as the boundary conditions
are consistent with those used in Plate 1 (see Table 2). The two
identical stiffeners connected to the plate have length equal to
1½m�, Young’s modulus E ¼ 5½GPa�, and area moment of inertia
I ¼ 5:73� 10�9½m4� (stiffeners are assumed to have a rectangular
cross section with the dimension width� height ¼ 5:7�
22:9½mm�). The plate was loaded by an external transverse load
Fz acting in the out-of-plane direction while the bending
moments were set to zero. The Fz load was made of nine identical
concentrated loads applied at the grid points ðx; yÞ ¼
½:4; :5; :6� � ½:4; :5; :6�½m�. Each load had an amplitude of 0:5½N�. The
resulting load is plotted in Fig. 11a. Fig. 11b compares the trans-
verse displacement profile, obtained via FEA, for the plate with
and without stiffeners. These plots highlight the effect of the stiff-
eners on the static response of the plate and are provided as a ref-
erence solution to better interpret the prediction obtained from
FENA.

In FENA, the stiffened plate model is assembled using the multi-
element concatenation method described in Section 3.2. The struc-
ture is composed of one plate and two beam stiffeners; each sub-
domain is simulated via a single FNE directly extracted from LE.
The plate is discretized using a grid of 11� 11 evenly spaced nodes
analogous to that used in the finite element solution, as shown in
Fig. 11a. Each beam is also divided into ten sections (a total of 11
nodes per beam) so to match the plate discretization and easily
allow interfacing the elements at the 11 interface nodes. As previ-
ously explained, the implementation of the interface requires the
addition of a set of interface loads per interface node; these inter-
face loads must be added on the nodes belonging to both the plate
and the beam stiffeners. Following the procedure outlined in Sec-
tion 3.2.2, the chosen interface requires 132 interface loads. The
specific load values are determined via an optimization process
that minimizes the cost function J F intð Þ (Eqs. (4) and (10)). The
same optimization strategy followed for the simulation of Plate 2
was also used in this case.
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Fig. 11c shows the response predicted by FENA for the fully
assembled system. red with the reference results obtained by solv-
ing the same structural assembly via an in-house FE code. The rel-
ative percentage error (Eq. (12)) is also estimated for each degree
of freedom by using the FEA solution as reference. Across the four
nodal degrees of freedom, the maximum error never exceeds 1.0%.
This maximum value is observed on the hxy degree of freedom, as
seen in Fig. 11e. As seen from previous analysis conducted on indi-
vidual element types, also for structural assemblies FENA is cap-
able of providing a highly accurate prediction without requiring
any training after model assembly. Recall that all the FNEs repre-
sent surrogate models of generic classes of elements. When build-
ing a model, they are pulled directly from LE and never trained on
the specific configuration.
4.4. Remarks on the computational performance of FENA

At this point, it is important to provide a few remarks on the
computational aspects of FENA. There are different contributions
to the overall computational cost associated with the development
and application of FENA.

The first contribution is related to the development of FENA’s
elements database (LE), that is the cost of generating the training
data samples and of training the FNEs. To this point, it is important
to recall that both the training data generation and the network
training in FENA are operations that are performed only once when
building the simulation capabilities. This operation can be concep-
tually compared to building a finite element package; once the
package is built in all its components, it can be used for any future
analysis with no further computational burden. It is from this per-
spective that the training cost in FENA should not be counted as
part of the total simulation time because it would not be required
for a simulation if the FENA package is already available. Despite
these considerations, we still provide here below an analysis of
the computational cost for both data generation and network
training in addition to the most critical component that is the cost
of the actual predictions.

(1) Generation of training datasets: With reference to the
specific structural elements considered in this study, data genera-
tion and network training are not very computationally expensive
steps since the simulated domains do not involve a large number of
degrees of freedom. Specifically, generating the training datasets
for both beams and plates required less than 3600 [s]. The data
were generated on a HPC cluster node equipped with a Xeon Gold
5218R CPU with 40 cores at 2.10 GHz base frequency and 192 GB of
memory. Nevertheless, it can be envisioned that the data genera-
tion step can increase with the increasing complexity of either
the models or the analyses; as an example, consider the cases of
either largescale systems or nonlinear analyses.

From a more general perspective, the data generation for prob-
lems involving largescale systems can be approached in different
ways. In its current formulation, FENA leverages the powerful con-
cept of concatenation to assemble arbitrary sized models from the
basic classes of elements available in LE. This concept was exten-
sively explained in the manuscript and allows modeling domains
with any size starting from pre-trained FNEs. The data generation
in this approach is neither computationally expensive nor depends
on the availability of powerful computational resources since only
small domains need to be simulated and trained. Another possible
deep-learning-based approach for problems with a limited number
of available training data (for example, in the case of largescale and
nonlinear systems), the concept of transfer learning [45–48] could
be implemented. In this method, trainable parameters of a trained
neural network are fine-tuned to solve a similar physical problem
with a slightly different configuration. Transfer learning has been



Fig. 11. Static response of a stiffened plate to a transverse distributed load. (a) Schematic of the stiffened plate. The plate is reinforced with two stiffeners (labeled 1 and 2)
and subject to a transverse load applied to nine nodes, as shown by the blue arrows. While the figure shows the assembled plate, recall that the three structural elements are
connected only in terms of FNEs via concatenation. The black grid shows the uniform mesh used in both models (i.e. FE and FENA). The plate has free boundaries at y ¼ 0 and
y ¼ 1, and stiffness boundary conditions at x ¼ 0 and x ¼ 1½m�. The stiffness values of Kz ;Khx ;Khy are presented in Table 2. (b) The static deflection of the plate calculated by
finite element method (left) without and (right) with stiffeners. The stiffeners location is indicated by the dashed white lines. (c) Static response of the stiffened plate
calculated by FENA and presented in terms of each individual degree of freedom w; hx; hy , and hxy . (d) Reference solution for the static response of the stiffened plate obtained
via FEA. (e) Percentage relative error distribution for each degree of freedom (calculated with respect to the reference FEA solution).
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widely used in image processing and natural language processing.
In these applications, the networks are pre-trained with very large
datasets [45]. These networks are then fine-tuned to perform a
similar task using a smaller dataset. The transfer learning concept
is based on the fact that the network parameters ideally converge
to slightly different values for similar tasks. Hence, a neural net-
work can be trained with an available dataset (with a large number
of training data samples) and then fine-tuned to perform a similar
task using a smaller number of data that are available for this new
similar task.

(2) Network training and predictions: The HPC node used for
data generation was also equipped with an NVIDIA Tesla V100
GPU, which was used to train the networks. The average training
time for the beam and plate FNEs was 8.5 and 22[h], respectively.
We highlight that, once the networks are trained, the computa-
tional cost for network predictions is negligible (given that the pre-
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diction phase does not involve solving the governing equations of
the problem). As discussed in Q1, a trained network can be inter-
preted as a transfer function that relates the input to the output
via the system parameters. Hence, a minimal computational effort
is needed to predict the network output once the transfer function
is determined (i.e. the network trainable parameters are calcu-
lated). As an example, the FE model takes 1:052½s� to simulate Plate
1 and calculate the deformation of the plate. However, the plate
network elements predict the response in 0:033½s�. The difference
in the computational time is mainly due to the stiffness matrix
assembly and inversion that are performed in the FE analysis.
When using neural networks, these steps are completely elimi-
nated, hence providing a remarkable computational advantage.

Continuing with the analysis of the computational performance,
in the sample problem Plate 2 we looked at the analysis of multi-
component models based on interconnected pre-trained networks



Fig. 12. Ratio tr of the computational time of FENA and FEA as a function of the
increasing number of degrees of freedom for the case of Plate 2.
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via FCE. The computational time for FEA and FENA is 9:680½s� and
5:88½s�, respectively. Hence, FENA is 39.3% faster than FEA. The sim-
ulation time of FEA and FENA for the stiffened plate problem is
6:733½s� and 1:905½s�, respectively. This is a 72% decrease in the
computational time.

We further illustrate the performance of FENA and its concate-
nation approach (FCE) via an example that uses a structural system
similar to Plate 2, but it is simulated using an increasing number of
elements. More specifically, we simulated plates with an increas-
ing number of DOFs ranging from 924 to 19404 in increments of
440 (by adding a subsection with 10� 10 elements to the domain
at each increment). The properties and boundary conditions of the
sample problems were the same as Plate 2. The applied external
loads of each problem were selected randomly from a uniform dis-
tribution. The structural response was obtained via both FEA and
FENA (using FCE). In these simulations, we calculated the interface
load with BFGS and SLSQP optimization methods. All the simula-
tions were performed on the same HPC node. The performance of
FENA are expressed in terms of a ratio between the simulation
time of FENA and FEA (tr ¼ tFENA=tFEA). Fig. 12 presents tr vs DOF
for the two optimization methods. The results show that for all
the simulated sample problems, FENA simulation time is lower
than FEA. It is also seen that the concatenation simulation time
(and consequently tr) depends on the optimization algorithm.
More specifically, for lower DOF, SLSQP method can determine
the interface loads faster than BFGS, while for larger DOF BFGS
optimization method requires less time to calculate the interface
loads. Note that the proposed concatenation methodology has
not been optimized for performance yet. Therefore, we envision
that further computational gains can be obtained by further refin-
ing this step. Nonetheless, FENA consistently outperforms FEA.
Indeed, an optimized concatenation strategy that does not rely
on a numerical optimization method will further enhance the com-
putational efficiency of FENA. An additional supporting example
case can be found in [1].
5. Conclusions

The concept of Finite Element Network Analysis (FENA), a neu-
ral network-based computational framework for the simulation of
physical systems, was significantly extended in two key areas: (1)
the database of elements was expanded to include additional
structural element types, and (2) to demonstrate the ability of
FENA to simulate structural assemblies made of dissimilar ele-
ments. FENA uses a library of network elements trained to simulate
general classes of structural elements, spanning a variety of geo-
metric and material properties, loads, and boundary conditions.
These elements can be specialized for a given type of analysis pro-
vided detailed properties, external loads, and boundary conditions
without requiring any additional training. This is a remarkable fea-
ture compared to other network-based simulation approaches that
require ad hoc training for any minor change in the problem
conditions.
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This unique behavior is made possible thanks to a combination
of innovative factors. The surrogate models are synthesized based
on bidirectional recurrent neural networks (BRNN) architectures.
BRNNs allow a bidirectional flow of information that enables the
network to be affected not only by prior but also by future states.
When the states represent the spatial response of the systems, this
property allows a unique capability to deal with different bound-
ary conditions without any need for retraining the network. In
addition, the basic RNN architecture allows dealing with input
sequences having different sizes, which is a property uniquely sui-
ted to account for problem-specific input (e.g. external loads).

The BRNN architecture also enables implementing the funda-
mental concept of concatenation, which allows assembling differ-
ent pre-trained network elements (available from the library) to
form multicomponent models and without requiring any further
training. While this characteristic was shown in a previous study
for one-dimensional elements, this study extended it for one-
and two-dimensional elements further generalizing the concept
by means of a variational formulation. Following the introduction
of the new elements formulation and of the concatenation
approach, several numerical test cases were presented in order to
test FENA’s performance. The comparison with traditional finite
element solutions, retained as baseline results in this study, high-
lighted the excellent predictive capabilities of FENA and, even
more important, validated the ability to build network-based mod-
els without any need for problem-specific training. Several addi-
tional result sets were also provided to further elucidate the
computational cost of FENA and the ability to obtain post-
processed quantities such as stress and strain fields.

It could be envisioned that, by further expanding FENA’s func-
tionalities and analysis capabilities, the framework could enable
the accurate and rapid simulation of extremely large physical sys-
tems, such as those characterized by multiscale features in either
space or time.
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Appendix A. Beam FNE training

In the following, we describe the dataset used to build FNEs rep-
resentative of Euler–Bernoulli beams. We also discuss the training
details of the beam FNEs.

A.1. Training dataset

The dataset used to train the beam FNE was generated via an in-
house finite element code formulated according to [41]. The devel-
oped FEA code was validated by comparing a few sample cases
with the solution obtained via the commercial FEA software COM-
SOL. The decision to use an in-house FEA code was made because it
allows for a more efficient dataset generation when considering a
variety of applied loads and boundary conditions. The ranges of
the input parameters used for the data generation are reported



Table A.1
Parameters used to generate the training dataset for the beam FNEs.

parameter value parameter value

E½GPa� ½2:5;20� Fz½N� ½�1;1�
I½m4� ½5:21� 10�11;1:33� 10�8� My½N=m� ½�0:2; :2�
l½m� ½2:5� 10�2;2:0� 10�1� Kz½N=m� ½2:56� 106;2:05� 108�
n ½10;60� Khx ½N:m=rad� ½1:95;19:53�
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in Table A.1. Note that the assumption of linearity for the beam
behavior allows for a simple and intuitive scaling process of the
range of parameters and of the output of the trained network in
order to simulate problems outside the range indicated in
Table A.1. More specifically, since the problem is linear, the ranges
used for training can be easily scaled. We also assumed that each
sample problem had a uniform area moment of inertia I and
Young’s modulus E. The values of E and I were randomly selected
from a uniform distribution within the ranges presented in
Table A.1 in order to obtain general networks that are not biased
towards a specific region of the training parameters. Further, for
each input sequence size n (total number of elements in the beam
domain), we sampled the values of the length of each element and
the applied loads (Fz and My) via Latin Hypercube Sampling (LHS)
method to ensure that all portions of the parameters space were
appropriately sampled [49].

For each n within the range ½10;60�, we generated 3200 sample
problems (25 batches of 128 sample problems). Hence, the entire
training dataset includes 163,200 (25� 128� 51) sample prob-
lems. We also generated three validation datasets to assess any
eventual overfitting during the training for each beam FNE. The
validation datasets included 24480 samples, that is equal to 15%
of the training dataset size.

We generated three datasets with the above mentioned condi-
tions and used them to train the network elements B1;B2, and B3,
respectively. Individual randomly generated datasets were used
to guarantee statistical independence of the networks B1�3. Recall
that independent networks are needed to apply the model ensem-
ble index of the MA module(Section 3.3).

We note that the solutions based on FEM is only one of the pos-
sible options to construct training datasets. In fact, any available
solution of a system (e.g. solution of an analytical model or even
experimentally obtained data) can be leveraged to train network
elements representing the system. Even a hybrid training approach
based on data from different sources (analytical, numerical, and
experimental) can be envisioned. Once the training is completed,
it is expected that the network element predicts a solution close
to (hence an approximation of) the original solution used to gener-
ate training dataset samples.

A.2. Network training

In this section we discuss the training of the beam FNE. As men-
tioned in Section A.1, to simulate the static response of a beam
under general transverse force Fz and bending moment My, we
built and trained three networks B1;B2, and B3 via Python, Keras,
and Tensorflow packages. The architecture of each network follows
the discussion in Section 3.1. The described architecture of the
beam FNE results in a total of 81;394 trainable parameters.

From a general perspective, a neural network can be considered
as a (nonlinear) mapping between the network input and output.
This mapping is controlled by a set of trainable parameters
(weights and biases) that are optimized during the training. More
specifically, the output of a network is given by:

Out ¼ NðIn;HÞ ðA:1Þ
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where N is the network, x is the network input, y is the network
output, and H is the network trainable parameters. H is calculated
during the training procedure through an optimization process. The
training process can be expressed as:

H� ¼ arg min
H

L½N ðIn;HÞ;Outtrue� ðA:2Þ

where ytrue is the true output value corresponding to input x, which
is available in the training dataset that consists in pairs of input and
their true outputs, i.e. ðx; ytrueÞ. The loss function L is an index that
measures the difference between network prediction and true out-
put values (ytrue), e.g. mean square of prediction error. The training
step, in fact, tunes the network trainable parameters in order to
obtain network predictions close to ytrue. Hence, for example, if
the ytrue is obtained from the analytical solution of a system, then
during the training, the network learns to predict output close to
the analytical solution.

We used a physical law informed loss function for training the
networks. The loss function was defined by the weighted summa-
tion of two terms: 1) LMSE and 2) LdW . The general expression is
given by:

L ¼ k1LMSE þ k2LdW

LMSE ¼ 1
Nb

XNb

i¼1

Unet
i � Utrue

i

� �2

LdWi
¼ 1

Nb

XNb

i¼1

@W
@Unet

i

� �2

ðA:3Þ

where k1 and k2 are weight factors, LMSE is the traditional mean
squared error (MSE) of network predictions, LdW is the energy term,
Nb is the batch size, Unet is the beam displacement vector predicted
by the network, U true is the correct beam displacement vector
obtained from dataset, W is the total energy of the beam (see Eq.
(4)) calculated based on network prediction Unet . While the first
term of the loss function enforces the predictions to be the same
as the true values provided by the training samples, the latter term
(LdW) enforces the physical law of the problem. More specifically,
LdW enforces the principle of virtual displacements. At the begin-
ning of the training phase, we randomly selected 256 batches of
sample problems to determine the weight factors k1 and k2 using
the following relation:

k1 ¼ 1

1
256

X256
i¼1

LMSE jith batch

; k2 ¼ 1

1
256

X256
i¼1

LdW j
ith batch

ðA:4Þ

We used the default weight and bias initializer [50,51] in the Keras
package. More specifically, the biases were initialized to zero, while
the Glorot uniform initializer [52] (also known as Xavier uniform ini-
tializer) was used to initialize the weights. This initializer extracts
samples from a uniform distribution within the range ½�a; a�, where
a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=ðnin þ noutÞ
p

; nin is the layer input size (number of neurons in
a layer), and nout is the layer output size. Using ADAM (adaptive
momentum)[53] optimization algorithm, the networks were
trained for a total of 1000 epochs. The learning rate was initially
set to :0001, and was divided by a factor of two every 250 epochs
(implemented via Keras learning rate scheduler).

Further, given that each training iteration must be performed
via a batch of data with the same input–output sequence length,
we defined and utilized a data generator function to load batches
of sample problems with the same size and used the Keras fit_gen-
erator training method to train the networks. The data generator
function loads batches of sample problems (having the same
sequence length from the training dataset) that are used by the
fit_generator at each training iteration. In each training epoch, the
data generator function loads all the samples with different



M. Jokar and F. Semperlotti Computers and Structures 266 (2022) 106784
sequence sizes (batch by batch) to be used by fit_generator. Also,
the order of sequence sizes of the data batches was set to be shuf-
fled at the beginning of each epoch.

We trained the networks using a GPU platform. We used NVI-
DIA Tesla V100 GPU, which has 5120 CUDA cores and 32 GB
HBM2 memory, to train the FNEs. The GPU was installed on a
HPC cluster node that had a Xeon Gold 5218R CPU with 40 cores
at 2.10 GHz base frequency and 192 GB of memory.

Note that, owing to the stochastic initialization of the network
parameters and of the training algorithms as well as to the differ-
ent training datasets, the values of the trainable parameters (i.e.
the weights) of the different B# networks are different, hence the
network models are independent. This aspect has important impli-
cations in increasing both accuracy and reliability of the predicted
results (Section 3.3).

Fig. A.1 shows the trend of the training and validation loss func-
tions versus the training epoch for each of the three networks. It is
seen that the FNEs training and validation losses converge to val-
ues very close to each other. Hence, the models are not overfitted
on their training datasets. Recall that during the training process,
the learning rate scheduler was set to divide the rate by a factor
of two every 250 epochs. The changes in the learning rate explain
the sudden drops visible in the loss function values.

Before we proceed with the plate FNEs training results, we clar-
ify our rationale for determining the total training epoch and learn-
ing rate division step. The training hyperparameters were mainly
determined through a trial and error process. However, for the
specific task of determining the total number of training epochs
and the learning rate division step, we mainly based our decision
on the trend of the loss function during training. Specifically, while
we monitored the loss function trend to determine the point at
which the loss did not further decrease, we also monitored the dif-
ference between the training and test loss functions to ensure that
the network was not overfitted or underfitted on the training
dataset.

We determined the epoch number at which the learning rate
was revised for the first time (epoch 250) based on the trend of
the training loss. More specifically, as it is seen in Fig. A.1, the loss
trend turns into a flat line (which means no further improvement
in the accuracy of the network) before the first division. Hence,
we selected epoch 250 for the first learning rate division. After each
learning rate revision, we trained the networks for the same num-
ber of epochs, e.g. 250 epochs per each learning rate value for the
beam networks.

To determine the total training epochs, we also considered the
gap between the loss values each time the learning rates were
revised. The beam network loss (Fig. A.1a) drops about an order
of magnitude at the first two revisions (epoch 250 and 500), but
it does not decrease appreciably after the third revision (epoch
750). Hence, we did not revise the learning rate further and did
Fig. A.1. Trend of the loss function during the training phase of the beam FNEs: (a) trainin
B3.
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not continue the training after epoch 1000. It is worth mentioning
that we also tried higher learning rate division factors. Higher fac-
tors (e.g., using a division factor of 10) decelerated the training loss
reduction rate and resulted in higher loss values which remained
flat after the first learning rate revision.

Certainly, the training hyperparameters have not been opti-
mized and there could be potentially other combinations of param-
eters that would result in (trained) FNEs with similar accuracy on
the same test datasets. We highlight that having achieved good
accuracy without any particular effort on optimizing the set of
hyperparameters is a very positive aspect because it suggests
intrinsic robustness of the network elements formulation.

Appendix B. Plate FNE training

A training strategy similar to that described in the previous sec-
tion for the beam was used also for the plate FNE. In order to train
the P1; P2, and P3 networks, one training dataset per each FNE was
generated by using the in-house finite element code. The four-
noded conforming rectangular element presented in [40] was used
for this task. In the following, we describe the dataset generation
and the details of the network training.

B.1. Training dataset

The parameters used for the data generation are summarized in
Table B.1. The plate occupies the domain 0 6 x 6 L and 0 6 y 6 W
and has free boundary conditions at y ¼ 0 and y ¼ W . The bound-
aries x ¼ 0 and x ¼ L were connected to stiffness elements Kz;Khx ,
and Khy that were acting on the nodal displacements w; hx, and
hy, respectively. Each plate was uniformly discretized, resulting in

a grid of 11� 11 nodes. We generated a total of 105 samples for
each dataset. We also generated 15� 103 validation samples per
each network element. Similar to the beam problem, we used
LHS sampling method to guarantee that all parts of the applied
load space were properly sampled.

B.2. Network training

As for the beam FNEs, we built the plate networks P1�3 using
Python, Keras, and Tensorflow packages. The plate FNE architec-
ture presented in Section 3.1.2 has a total of 80;994 trainable
parameters (weights and biases). Note that the difference in the
size of the input and output layers of the plate and beam FNEs
causes the difference in the total number of network trainable
parameters in the two networks.

We trained the plate FNEs using ADAM optimization algorithm
and the training loss function described in Eq. (A.3). The Xavier uni-
form initializer [52] was used to initialize the weights and the
g loss, and (b) validation loss. Results are reported for the three networks B1; B2, and



Table B.1
Parameters used to generate the training dataset for the plate FNE.

parameter value parameter value

E½MPa� 30 Khx ½N:m=rad� 17:17
m 0:3 Khy ½N:m=rad� 17:17
L½m� 1:0 Fz½N� ½�1;1�
W½m� 1:0 Mx½N:m� ½�0:1;0:1�
t½m� 0:005 My½N:m� ½�0:1;0:1�
Kz½N=m� 15� 106 q 121
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biases were initialized to zero. We used the same GPU platform
used for the beam networks (see Section A.2) to train the plate
FNEs. Each network was trained for 2000 epochs with a batch size
of 64 and an initial learning rate of :0001, which was divided by a
factor of two every 800 epochs by the learning rate scheduler.
Again, note that the training parameters were determined via a
trial and error procedure, with particular attention placed on the
overall prediction performance of the network as well as the trend
of the training and validation losses.

Fig. B.1 shows the trend of the training and validation loss func-
tions during training for the three networks P1�3. Results show that
all models converge approximately to the same loss value, hence
they are expected to have a similar level of accuracy. The train
and validation losses converged to very close values, indicating
that the network models are not overfitted on their training
datasets.

Additionally, as it is seen in B.1, around epoch 750, the loss
trends for the plate FNE gradually become flat. Hence, we selected
epoch 800 as the plate FNEs learning rate division step. Note that
the sudden drops in the losses values are due to the change in
the learning rate. Further, there is a minimal decrease in the loss
value of the plate networks after the second learning rate revision.
Also, the loss trend remains flat in the last 400 epochs. Hence, we
did not revise the learning rate further and stopped training the
plate networks at epoch 2000.
Fig. B.1. Loss function versus epoch number for the plate FNEs: (a) training loss, and (b) v
plate FNE was trained for 2000 epochs.

Fig. B.2. Loss function versus epoch number for the DNN-based plate network element: (
network models P1; P2, and P3.
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B.3. DNN-based plate network elements

In order to further illustrate the simulation performance of
BRNN-based network elements in FENA compared to other deep-
learning-based methodologies, we developed a plate network ele-
ment based on a deep fully connected feedforward neural network
(DNN). We selected DNN since it is the most commonly used net-
work architecture in studies focused on deep learning techniques
applied to the simulation of physical systems. However, the flexi-
bility of DNN-based solution methods is significantly limited due
to the intrinsic properties of the DNN architecture. The most
important limitation is that DNN input and output sizes scale with
the size of the physical domain and of the inputs (see [1] for a
detailed discussion on why BRNN is a considerably better choice
to develop deep-learning-based simulation methodologies). More
specifically, DNN has a fixed input and output size and all system
inputs must be provided to the DNN simultaneously. Hence, the
input size of the plate network element based on DNN is ½3� q�
(q is the number of nodes), that is the applied external nodal load
vector ½Fzi ;Mxxi ;Myyi �; i ¼ 1;2; . . . ; q. The DNN output also scales
with the number of nodes and has the size of ½4� q� (four nodal
DOF times the total number of nodes). Note that in BRNN, the input
and output sizes do not scale with the domain size as we sequen-
tially feed in the applied external load vector to the network
element.

The DNN that was tested included 16 hidden layers with 50
neurons in each layer. This architecture was selected to have
almost the same number of trainable parameters in both BRNN-
based (80994 trainable parameters) and DNN-based plate network
elements (81134 trainable parameters). We used E-swish activa-
tion function for the hidden layers and linear activation function
for the output layer of the DNN. We trained three DNN-based plate
network elements and used the (BRNN-based) plate FNEs training
and test datasets to train them. We also followed the same training
scheme and hyperparameters discussed in Appendix Section B.2.
alidation loss. Results are reported for the three network models P1; P2, and P3. Each

a) training loss, and (b) validation loss. Results are reported for the three DNN-based
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Fig. B.2 shows the trend of training and validation loss of the
three DNN-based network elements. It is seen that during training
the loss values decreased only about an order of magnitude (com-
pare to the results of Fig. B.1 wherein the loss value decreased by
more than two orders of magnitude). Comparing the test loss
results of Fig. B.2b and B.1b shows that DNN-based plate network
elements have higher test loss values compared to the BRNN-based
plate elements. Hence, the developed (BRNN-based) FENA plate
network elements have higher simulation accuracy than the
DNN-based networks. This can be clearly seen in the simulation
results of sample problem Plate 1 simulated with the DNN-based
network elements, reported in Fig. B.3. It is seen that the maximum
error values of all the nodal DOF increased at least 500% (compare
with the results shown in Fig. 7 where the maximum relative error
is 1.2%).
Fig. B.3. Static response of Plate 1 subject to a spatially distributed load with random amp
The predicted fields w; hx; hy , and hxy obtained by averaging predictions from the three DN
calculated via FE approach. (c) Distribution of the percentage relative error of the nodal

Fig. B.4. Trend of the loss function during the training phase of the first group of plate str
maps the applied external loads to the stress and strain fields. Results are reported for
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Further, from a computational standpoint, the average DNN-
based networks simulation time for Plate 1 is 0:031½s�, which is
almost the same as the simulation time of BRNN based network
elements. Hence, the DNNs do not offer any superiority from a
computational point of view while they fail to provide a level of
accuracy comparable with the BRNN-based network elements.
Note that, for both DNN and BRNN, we did not perform any archi-
tecture optimization. In principle, it might be possible to obtain
other network architectures with better prediction accuracy for
both types of network architectures, but the main characteristics
observed in this example will likely remain unaltered. Even consid-
ering the case where a DNN-based architecture could deliver sim-
ilar accuracy to the BRNN-based network elements, the internal
architecture of DNNs remains a significantly limiting factor that
cannot be overcome.
litude simulated with the DNN-based plate network elements. (a) Results for Plate 1.
N-based network elements. (b) Reference solution of each nodal degree of freedom
degrees of freedom. The errors are calculated with respect to the FE results.

ess–strain networks. (a) training loss, and (b) validation loss. This group of networks
the three networks PS11 ; PS12 , and PS13 .



Fig. B.5. Loss function trend during the training of the second group of plate stress–strain networks: (a) training loss, and (b) validation loss. Results are reported for the three
networks PS21 ; PS22 , and PS23 . This group of networks maps the deformation fields predicted by the plate FNEs (P1�3) to the stress and strain fields.
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B.4. Stress and Strain Fields Predictions by Networks

As we discussed in Section 4.2.1, in order to assess the predic-
tion performance and demonstrate the feasibility of the network-
based approach, we developed two groups of networks dedicated
to stress and stress fields calculations. The first group directly maps
the external loads applied onto the structure to stress and strain
fields. The second group receives the displacement field predicted
by the plate FNEs and maps it to the stress and strain fields.

We used the same network architecture employed for the plate
FNEs (see Section 3.1.2). To build the training dataset, we calcu-
lated the stress and strain fields for the plate training samples
via the FEA elements shape functions. Note that we decided to
use FEA because it was readily available from the previous calcula-
tions but, as extensively discussed above, any other available
source of data could be used to train stress–strain networks.
Specifically, stress–strain solutions based on either experimental
data or analytical solutions could be used to train the networks
(or to fine-tune pre-trained stress–strain networks parameters),
whenever available. The major takeaway from the above results
is that the stress–strain networks trained on FEA data can return
solutions very close to the FEA, hence they do not contribute addi-
tional errors to the stress and strain calculations. This latter com-
ment is in contrast with the stress–strain calculations based on
numerical derivatives of the displacement field. The training loss
function was defined based on the MSE of the predictions. We used
the same training scheme and hyperparameters to perform the
training of both groups of networks (Appendix Section B). Three
networks were trained for each group. The networks in the first
group are labeled PS11 ; PS12 , and PS13 while those in the second group
are labeled PS21 ; PS22 , and PS23 . The average of the predictions of the
three networks will be used to define the stress or strain fields for a
given problem.

Figs. B.4 and B.5 show the trend of both the training and valida-
tion losses for the two stress–strain networks groups, respectively.
All the three networks in each group converged approximately to
the same training and validation loss value, hence confirming the
absence of any overfitting in their training datasets. Note that
the sudden drops in the loss function value are due to the change
in the learning rate (see Appendix Section A.2 and Section B.2).

We highlight that the second group of networks is trained to
learn a relatively less complex mapping (compared to the first
group), as they have access to the physical solution of the system
(i.e. the displacement field resulting from the applied external
load). On the other hand, the first group has to learn a relatively
more complex mapping, that is the direct mapping from external
loads to stress and strain fields. Hence, the second group is
expected to achieve a higher prediction accuracy, which is con-
firmed by comparing the converged loss values of the two groups
(recall that the output channels and the loss functions of both
22
groups are the same). Specifically, the converged loss values of
the networks in the second group are approximately one order of
magnitude smaller than the first group of networks, which shows
higher accuracy of the second group (compare Figs. B.4 and B.5).
The maximum prediction error of the first group is within the
range ½2%;5%� while the second group error is typically below
1%. We do not present the prediction results of the first group
due to their relatively lower accuracy. Nevertheless, it was pointed
out in Section 4.2.1 that the second group still provides the most
logical approach because it maps the calculated solution (in terms
of displacements) to stress and strain fields; hence treating them
as derived quantities similarly to classical FEA.
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