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SUMMARY
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct
identities. Cell differentiation is a highly regulated process that involves the function of numerous transcrip-
tion factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs).
Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput,
and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional
data composed of more than two data types is challenging. Here, we use linked self-organizing maps to
combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and
perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build
a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-
DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional
regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimen-
sional multi-omic datasets.
INTRODUCTION

Understanding the transcriptional control of cellular differentia-

tion programs is fundamentally important in biology and regener-

ative medicine. Simple linear pathways of gene regulation are

insufficient to explain complex biological phenomena. This is

because genes function in complex networks, and the emergent

properties of these networks ultimately generate biological out-

comes (Levine and Davidson, 2005; Davidson, 2010). Thus,

identifying network structure is a necessary step toward com-

prehending the causes of cellular states and behaviors in

embryogenesis, in adults, and in disease.

Efforts were made to compile the available molecular data into

gene regulatory networks (GRNs) describingmesendoderm (ME)

development in Xenopus (Loose and Patient, 2004; Koide et al.,

2005). Arguably, these developmental events represent most

influential developmental periods in metazoan organisms, lead-

ing to large-scale morphogenetic changes and body axis forma-
This is an open access article und
tion. Recently, a highly curated interactome map was generated

based on over 200 publications (Charney et al., 2017a), which

represents the most thoroughly examined ME GRN in any chor-

date. It revealed that germ layer specifications are controlled by

a set of transcription factors (TFs) acting in a complex network.

Additionally, previous work has suggested that critical aspects

of the ME GRN are conserved in all vertebrates (Zorn and Wells,

2009). Therefore, a highly robust XenopusGRN is likely to inform

conserved paradigms in human development and strategies to

direct human cell differentiation.

Although the current GRN has revealed critical principles gov-

erning early embryonic development (Charney et al., 2017a; Par-

aiso et al., 2020), it is far from complete. This is in part because, in

the past, network connections were not fully embedded within

the larger regulatory architecture nor included temporal and

spatial data. Thus, the ME GRN is likely to miss many important

interactions. An alternative approach is to generate aGRNbased

on a combination of computational methods with extensive
Cell Reports 38, 110364, February 15, 2022 ª 2022 The Authors. 1
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perturbation analysis. Availability of large-scale genomics data-

sets in recent years allows us to test the utility of such an

approach. However, one difficulty is the potential to produce

numerous putative interactions that may contain false positives.

This concern is supported by chromatin immunoprecipitation

sequencing (ChIP-seq) analyses, which often uncover tens of

thousands of TF-bound sites, but only a fraction of such sites

directly affect gene expression (Li et al., 2008; Kvon et al.,

2012). Therefore, it would be valuable to develop an approach

that embraces the scale of the genomic data, while minimizing

false positives. Although other methods have been developed

to solve this problem through refinement of peak calling of

ChIP-seq datasets (Bardet et al., 2013), we hypothesized that

integration of genetic perturbation data types into the analysis

of chromatin datasets would allow for a more informed identifi-

cation of functional binding sites.

Given the current accumulation of large genomic datasets,

computational GRN inference has become a popular field of

research. One commonway that thesemethods operate is using

co-expression matrices to build ‘‘influential’’ GRNs (reviewed in

Delgado and Gómez-Vela, 2019), which rely on correlations be-

tween genes rather than direct mechanistic regulation between

TFs and target genes. The vastmajority of GRN inference studies

using high-throughput data build networks of this type. For the

current work, we wished to build a ‘‘mechanistic’’ GRN, so we

sought to find direct connections that engage cis-regulatory re-

gions. This is extremely difficult using only one type of data (re-

viewed in Hu et al., 2020). Some recent predictive algorithms

usemulti-omic data to build lists of putative functional enhancers

(Sethi et al., 2020; Xiang et al., 2020), but they do not incorporate

TF binding data to determine whether the TF can directly regu-

late these enhancers. Others focus on integrating single-cell

data types, e.g., Seurat/Cicero (Stuart et al., 2019), but they

can create ‘‘influential’’ GRNs only from gene correlation

matrices. Here, we describe the use of widely available bulk

data for constructing mechanistic GRNs.

We adapted our linked self-organizing map (SOM) method

(Jansen et al., 2019) to the multiple data types available for ME

development: ChIP-seq, ATAC-seq, and RNA-seq of wild-type

(temporal and spatial) and perturbation conditions. SOMs (re-

viewed in Kohonen, 2001) are a type of unsupervised neural

network that train on a set of data to generate a low-dimensional

representation. Previous works have successfully used the

SOM’s remarkable ability to generate robust clusters (Kiang

and Kumar, 2001) by incorporating them into the analysis of

highly dimensional genomic data. For example, SOMs have

identified complex relationships between genes and genomic re-

gions in multiple cell types in human and mouse (The ENCODE

Project Consortium, 2012; Mortazavi et al., 2013; Cheng et al.,

2014; Yue et al., 2014; Partridge et al., 2020). The linked SOM

method combines the clustering of multiple SOMs, each built

with a different type of data (e.g., ChIP-seq and RNA-seq), into

one analysis.

Here, to apply the linked SOM method, we generated a clus-

tering of genes by training a SOM on 95 transcriptomic RNA-

seq datasets to capture gene expression profiles that co-vary

across different experimental conditions. Similarly, a clustering

of genome regions was generated by training a SOM over 63
2 Cell Reports 38, 110364, February 15, 2022
ChIP/ATAC-seq (Assay for Transposase-Accessible Chromatin

using sequencing) experiments. Next, we combined the RNA

and DNA clusterings by associating the individual genomic re-

gions within the DNA clusters to the closest gene. This generated

a multi-clustering, in which each cluster contained genome re-

gion-gene pairs that had a similar DNA (in the genome regions)

and RNA signal (in the genes). These linked metaclusters (LMs)

are extremely similarly regulated, so motif analysis on the

genome regions, even after strict enrichment filtering, is more

successful than scanning the whole genome alone (Jansen

et al., 2019), and thus identified many new functional TF-DNA in-

teractions. These inferred interactions were validated using re-

porter gene assays, supporting that the linked SOM approach

is a valuable method to build mechanistic GRNs. This method

was also applied to the RNA-seq data from spatial dissections

to find TF-gene pairs with unique spatial properties during ME

development. This analysis found six TFs, which based on their

gene expression profiles and the expression of their predicted

targets, should be included in the core network. By extending

the linked SOM method for Xenopus ME development, we

have developed a useful approach to find TFs important for

germ layer specification.

RESULTS

Reconciling the known biology with evidence from high-
throughput data
The scope of the problem of building GRNswith high-throughput

genomic data can be illustrated by examining the known regula-

tory loci surrounding the gene encoding the Spemann organizer

TF Gsc (Cho et al., 1991), which contains two regulatory ele-

ments near the promoter, called the proximal and distal elements

(Watabe et al., 1995), and a farther upstream element (Mochizuki

et al., 2000). These DNA regions are bound and controlled by a

small set of ME TFs (Koide et al., 2005). However, recent ChIP-

seq datasets highlight the possibility of the function of various

maternal TFs (Nakamura et al., 2016; Charney et al., 2017b; Par-

aiso et al., 2019), organizer TFs (Yasuoka et al., 2014), andmeso-

dermal TFs (Gentsch et al., 2013) in regulating gsc through these

cis-regulatory modules (CRMs; Figure 1A). Further, these known

elements represent the minority of peaks identified upstream of

the gsc transcription start site. The chromatin context within this

region highlights the need for integrative analysis of genomic

datasets.

Strategy for integration of different highly dimensional
genomic data types
To investigate X. tropicalis ME gene regulation, we assembled a

highly dimensional dataset of 95 RNA-seq and 63 ChIP-seq/

ATAC-seq experiments (Figure 1B; Key resources table). The

chromatin datasets include the openness of the loci, TF binding,

epigenetic modifications, and RNA polymerase II association.

The transcriptomic datasets include spatial expression, tempo-

ral expression at relevant developmental stages, and knock-

down (KD) data of critical TFs and signaling pathways. These

data were individually analyzed and collected into two large

matrices for unsupervised learning (STAR Methods). For the

RNA-seq experiments, gene expression was quantified in



Figure 1. Using self-organizing maps (SOMs) to discover ME GRN
(A) Genome browser view of TF binding during X. tropicalis development. Shown are maternally expressed (Foxh1, Otx1, Sox7, Vegt, Ctnnb1, Smad1, and

Smad2/3) and zygotically expressed (Foxa4, Gsc, Eomes, Tbxt, and Vegt) TF binding in the gsc gene locus. Shaded are the well-characterized proximal, distal,

and upstream CRMs, associated with TF binding. Further upstream are binding sites in possibly unexplored CRMs.

(B) Datasets used in this analysis, targeting several wild-type and MO-injected embryos at developmental stages important for ME development.

(C) The X. tropicalis genome is partitioned (grey shadings in bottom track) using ChIP-seq and ATAC-seq peak locations. Each partition is assigned ChIP-seq and

ATAC-seq signal quantified as reads per kilobase per million (RPKMs) for all chromatin datasets.

(D) The RNA-seq and ChIP-seq/ATAC-seq datasets were each converted into training matrices and clustered using SOMmetaclustering using SOMatic. These

clusters were then linked using the SOM Linking tool within SOMatic. The pairwise linked metaclusters (LMs) and spatial SOM data were mined for regulatory

connections and built into networks.
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transcripts per million (TPM) for each experiment. For the ChIP/

ATAC-based experiments, we first partitioned the genome using

peak calls identified from these chromatin datasets. Then, we

calculated reads per kilobase per million (RPKM) signal for

each experiment within each of these partitions. As an example,

compare the conversion of the ChIP-seq peaks (Figure 1A) with

the RPKM ChIP-seq signals (Figure 1C) in the gsc locus. These

normalized tracks properly transform the raw signal into a form

that our downstream unsupervised neural networks can accept

to perform clustering.

Next, we implemented a strategy for highly dimensional data

integration through linked SOMs (Jansen et al., 2019) (Figure 1D).

This involved performing unsupervised learning through SOMs

on each type of data separately, followed by metaclustering to

generate a separate RNA SOM and DNA SOM. For the RNA

SOM, genes are clustered in terms of similarities in expression:

spatially, temporally, and by effects of perturbation. For the

DNA SOM, the DNA regions are clustered based on similarities
in DNA accessibility, histone modifications, and combinations

of TFs bound. These RNA SOM and DNA SOM clusters are

then linked such that clustered genes are associated with nearby

clustered DNA partitions. Additionally, separately created spatial

RNA SOM clusters were incorporated into the network analysis

(discussed further below). This combined approach allows for

groups of CRMs to be linked to their nearby target gene expres-

sion profiles for further network analysis (Figure 1D).

RNA SOM identifies gene expression modules
To identify different gene expression cohorts present during

early Xenopus development, we performed unsupervised

learning on the RNA-seq experimental data by training a SOM

followed by metaclustering (STAR Methods). Due to the experi-

mental matrix being ‘‘dominated’’ by time-course expression

data, the trained map displayed a time-course-dependent struc-

ture such that genes that have similar temporal profiles, such as

gsc, nodal1, lhx1, osr1, hhex, and osr2 being located in SOM
Cell Reports 38, 110364, February 15, 2022 3



Figure 2. RNA-seq SOM metaclustering reveals developmental gene modules that contain similarly regulated genes

(A) SOM slices relating to gene expression signal Wildtype at stage 10.5 and the fold change between Foxh1 MO and control experiments at stage 10.5. Creation

of SOM visualization is described in STAR Methods. Metaclusters containing genes from the core ME network show unique temporal dynamics during devel-

opment. nodal, nodal2, and sia are grouped left and gsc, nodal1, lhx, and osr2 are grouped right (top). Overlaid metacluster boundaries show the genes that are

up- and down-regulated upon Foxh1 MO KD (bottom).

(B) Eachmetacluster is filledwith genes with a similar expression profile (labeled ‘‘Eigen-Profile’’); for example, a heatmap of the genes inmetacluster 11 is shown.

(C) Heatmap of average temporal expression profiles of genes belonging to 13 RNAmetaclusters. Parentheses after RNAmetaclusters indicate number of genes

in each RNA metacluster.

(D) Two-tailed Wilcox hypothesis analysis applied on gene metaclusters. Each metacluster responded to each MO experiment differently at different time points.

(E) GO term enrichments for genes within three example RNA SOMmetaclusters. Eachmetacluster had unique functional enrichments supporting the coherence

of these clusters.

See Figure S1.
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units in one general area of the 2Dmap, whereas genes that tend

to peak earlier, such as nodal, nodal2, and sia1, were in SOM

units in another section (Figure S1A) (Owens et al., 2016). In

contrast, although comparisons between gene expression KDs

using antisense morpholino oligonucleotides (MOs) and their

controls were a minority in this dataset (Figure 1B), they do

show local differences on the 2D maps across adjacent meta-

clusters (Figure S1B). Thus, the metaclustering of the units of

the map had the capacity to capture these differences.

In all, we recovered 84 distinct RNA SOM metaclusters that

capture the different gene expression profiles present in the

included data (Figures 2A and S1B; Table S1A) (labeled R# for

each RNAmetacluster). Genes that share similar expression pro-

files across all experiments such as dorsal ME genes activated

duringmidblastula stage, including nodal, nodal2, and sia1, clus-

tered together in metacluster R82. Organizer genes gsc and
4 Cell Reports 38, 110364, February 15, 2022
hhex, which showed transient zygotic expression peaking at

stage 10, clustered together in metacluster R11 (Figure 2B).

Meanwhile, genes in metacluster R76 (Figure 2C), which include

foxa2 and gli3, did not become highly expressed until mid-gas-

trula stage 11 and steadily increased until stage 13. In addition

to spatiotemporal expression, genes within each metacluster

showed distinct responses to perturbation experiments (Fig-

ure 2D). For example, the 110 genes in metacluster R11 had

similar responses tomultipleMOperturbation and temporal con-

ditions. Notably, the genes in this group were down-regulated in

stage 10 after inhibiting Foxh1 expression (Foxh1 MO experi-

ment), whereas the 728 genes in R58 and the 527 in R72 were

up-regulated. To further show that each metacluster is distinct,

we performed Gene Ontology (GO) enrichment analysis on

each (Figure 2E). Metacluster R11 contained genes with func-

tions related to dorsal/ventral patterning and cell fate, whereas



Figure 3. SOM-based clustering shows Foxh1 co-binding and functional gene modules during gastrulation

(A) Heatmap of Foxh1 ChIP-enriched metaclusters that visualizes the different patterns of co-regulation present in Foxh1-bound CRMs. The heatmap is initially

expressed as TPMs and then maximum normalized. Blue and red represent regions with low and high signals, respectively.

(B) Experiment hierarchy of ATAC/ChIP-seq data after metacluster correction. The developmental stages of each experiment are indicated by the same color

coding as (A).

(C) GO term enrichments for genes nearby genome regions within three example ATAC/ChIP SOM metaclusters.
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metacluster R72 had genes related to cell proliferation. See Ta-

ble S1B for other GO term analysis of metaclusters. The differ-

ences in biological functions and properties among these GO

term lists suggest that the RNA SOM distinguishes sets of genes

based on their expression behaviors under different conditions.

DNA SOM identifies chromatin states and combinatorial
TF binding
To prepare the data from the collected ChIP-seq/ATAC-seq ex-

periments for machine learning, we separated the X. tropicalis

genome into 731,726 genome partitions using called peaks from

each experiment (Figures 1C and S3) and computed RPKMs for

each experiment over these regions.We then performed unsuper-

vised learning on this matrix with a SOM, and further metacluster-

ing identified 88 distinct DNA profiles present in the data (see Fig-

ure 3A for Foxh1-enrichedmetacluster profiles; see Figure S3 and

Table S2A for all metacluster profiles) (labeled D# for each DNA

metacluster). Like ChromHMM, these clustered partitions are

differentiated by histone marks according to different chromatin

states, such as H3K4me1-marked active or primed enhancers

(metacluster D71 and D58; Figure 3A) (Heintzman et al., 2007;

Creyghton et al., 2010; Buenrostro et al., 2013), H3K9me2/3-
and H4K20me3-marked heterochromatic regions (metacluster

D72 and D29; Figure S3) (Schotta et al., 2004), and unmodified re-

gions (metacluster D9; Figure S3) (Hontelez et al., 2015). Addition-

ally, the hierarchical clustering over these metacluster profiles

(Figures 3B and S3) shows Polycomb repressive H3K27me3

marked regions (Cao et al., 2002) are separated from other chro-

matin marks in metaclusters D45 and D84 (Figure S3). Similarly,

promoter regions marked by H3K4me3 ChIP-seq signals clus-

tered together (D28 and D87; Figure S3) (Santos-Rosa et al.,

2002). Interestingly, metacluster D51 has a strong H3K27me3

and H3K4me1 signal, which indicated that this metacluster con-

tains inactive promoters and putative poised enhancers, whereas

metacluster D77 replaced the H3K27me3 signal with H3K27ac,

which indicated active promoters and Ep300-positive enhancers.

Next, we searchedwithin enhancer-marked regions and visual-

ized interactions of known TF co-bindings via 2D-SOM. For

example, previously, we have shown that the maternally ex-

pressed endodermal TFs Otx1, Vegt, and Foxh1 can co-bind

CRMs, and Otx1 and Vegt synergistically activate endodermal

gene expression during cleavage to early blastula stage 8 (Paraiso

et al., 2019). In this analysis, Figure S1C highlights that Otx1, Vegt,

and Foxh1 ChIP-seq data showed considerable overlap and
Cell Reports 38, 110364, February 15, 2022 5
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simultaneous enrichment in metaclusters D77, D71, and D50 (see

Figure 3A for their full DNA signal profile). Second, there are signif-

icant metacluster overlaps (D20, D39, D58, D71, D77, D45, and

D51) betweenEp300 and Foxh1 at stage 9 (FigureS1D), indicating

a close association between these two factors. Lastly, unlike the

early binding of Foxh1 during blastula stages 8–9, Foxh1 binding

during early gastrula stage 10 is enriched near dorsal ME genes

and is associated with the Nodal co-factor Smad2/3 binding as

seen inD77 (Chiu et al., 2014; Charney et al., 2017b). Consistently,

Foxh1 binding and Smad2/3 binding were highly correlated as

shown by an extensive overlapping heatmap, whereas a heatmap

representing Foxh1 binding during blastula stage only partially

overlapped with Smad2/3 (Figures S1D and S3). The fact that

metaclusters D39, D58, and D71 are free of Smad2/3 but asso-

ciate with Ep300 indicates that many of the Foxh1-bound regions

have Nodal signaling-independent activity. These analyses illus-

trate the advantage of presenting the ChIP-seq data with a

SOM analysis to visually inspect TF-TF interactions and uncover-

ing functional differences of closely related TFs.

Outside known interactions, we find some surprising combina-

tions of TF binding. For example, there is a substantial overlap be-

tween the Foxh1 andGsc SOMmaps from the stage 10.5 gastrula

(Figure S1D). Interaction between Gsc and Foxh1 has not been

well documented, but there is evidence that they directly interact

and regulate the expression of the endodermal gene mix1 (Izzi

et al., 2007). Our SOM results suggest that such an interaction

may bemorewidespread duringME specification. Next, the bind-

ing of mesodermal regulator Tbxt (Smith et al., 1991) at stage 12

and the endodermal regulator Sox17 (Hudson et al., 1997; Mu-

kherjee et al., 2020) at stage 10.5 correlated well with each other

(Figures S1E and S3). This finding indicates that Sox17 and Tbxt

bind to similar locations in the genome even if they are expressed

in different locationswithin the embryo. If Sox17 remains bound to

these regions until stage 12, this could indicate either a competi-

tive or an independent interaction between Tbxt and Sox17 at

stage 12 to generate distinct mesodermal and endodermal line-

ages. In support of the latter, the expression patterns of Tbxt

and Sox17 are also non-overlapping in mice (Lolas et al., 2014).

In all, this provides evidence toward a possible conserved mutual

exclusion mechanism between Tbxt and Sox17 regulating meso-

derm and endoderm development. Lastly, at early gastrula stage

10, the binding of dorsal ME factors Ctnnb1 (b-catenin; Wnt

signaling TF) (Nakamura et al., 2016; Heasman et al., 1994) and

Foxh1 (Nodal signaling co-factor) (Chen et al., 1996) clusters

with the ventral specifying TF Smad1 (BMP signaling TF) (Graff

et al., 1996; Afouda et al., 2020) (Figures S1F and S3). Some of

theseCRMs that show interactionswithWnt, BMP (bonemorpho-

genetic protein), and Nodal signaling pathwaysmay represent the

nodes critical in controlling the formation of the dorsal-ventral axis

during early embryogenesis. These newly identified combinatorial

interactions of TFs underline the usefulness of SOM analysis and

would be the topic of further research.

Distinct genes and consensus DNA binding motif
profiles are associated with different DNA SOM
metaclusters
To further characterize DNA metaclusters, we performed GO

enrichment analysis on the genes whose TSS (transcriptional
6 Cell Reports 38, 110364, February 15, 2022
start site) was the closest to the regions within each DNA meta-

cluster (Figure 3C; see Table S2B for the full list). Embryonic pro-

cesses correlated with the gene set associatedwith DNA regions

in metacluster D45 are linked to organ and tissue development,

while those near metacluster D77 are associated more specif-

ically with morphogenesis and patterning. Additionally, the

genes near regions inmetacluster D51 are enriched for GO terms

associated with cellular and developmental processes. When

matched with the RNA metaclusters, these genes were highly

enriched in R4, R16, and R76 (see Figure 2A for these profiles),

which were all characterized by expression at later time points.

The GO analysis thus indicated the genome segments in these

DNA metaclusters are used in different transcriptional programs

and, thus, require differential gene regulation.

In order to identify the TFs that may control the expression of

genes with these distinct metaclusters (D45, D51, and D77), we

performed consensus DNA binding motif analysis on eachmeta-

cluster. After removing the shared motifs among the metaclus-

ters, 63 unique TF motifs to metacluster D45 were recovered,

such as Smad2/3, Sox7, and Ventx. These are well-known TFs

involved in ME development (Lagna et al., 1996; Ault et al.,

1996; Schmidt et al., 1996; Zhang et al., 2005). Metacluster

D77 contained 56 unique TF motifs, including Foxa2 and Tcf3

(also known as E2a), which are important in the regionalization

of ME (Zorn and Wells, 2009; Wills and Baker, 2015). Finally,

37 TF motifs, including Gata6, which is important for endoderm

development (Afouda et al., 2005), are found in metacluster

D51. D51 also includes the Tead1 motif, a known repressor in

stem cells (Maeda et al., 2002), and the regions in D51 are also

decorated with the repressive H3K27me3 mark. Based on these

analyses, we concluded that the DNA SOM clustering managed

to separate the genome partitions into groups with different bio-

logical functions.

A spatial RNA SOM discovers independent
spatiotemporal gene modules
Unlike the MO KD data, which were successfully incorporated

into the SOM metaclustering (Figure 2D), genes in the full RNA

SOM did not separate on the map based on their spatial expres-

sion profiles. This was due to the full RNA SOM being too

focused on the temporal data provided, and so we decided to

perform a parallel analysis to provide further insights. For this,

we trained a separate SOM, based on just the spatial RNA

data from dissected early gastrula (stage 10.5) tissues (Blitz

et al., 2017). This analysis provided an excellent separation of

genes based on their spatial expression (Figure 4A), and the

metaclustering separation followed the differential areas of the

map well (labeled sR# for each spatial RNA metacluster). sRs

sR9, sR8, and sR1 had quite visible differential spatial gene

expression, and sR15 and sR8 showed differential gene expres-

sion when the average fold change from each experiment to the

whole embryo for each metacluster was plotted (Figure 4B). To

show statistical significance of this differential expression, we

used the hypothesis tool in SOMatic to find that sR1, 6, 8, 9,

12, and 15 were significantly different from whole-embryo

expression levels (Figure 4C). sR8, 15, and 9 were enriched in

the endoderm (vegetal pole), and sR12, 1, and 6 were enriched

in the mesoderm (marginal zones) and ectoderm (animal cap).



Figure 4. RNA metaclusters can be further segregated by spatial RNA SOM

(A) SOM slices from the spatial RNA SOM analysis corresponding to RNAs from the animal, dorsal, and vegetal explants with overlaid spatial RNA metacluster

(sR) boundaries. Some important sR locations are noted.

(B) Heatmap of the fold change of genes within sRs over whole-embryo signal, indicating enrichment and reduction of genes in particular RNA metaclusters.

(C) Heatmap of statistical difference between gene expression in each tissue and the whole embryo. Six sRs showed statistically significant differences in

ectoderm/mesoderm or in endoderm.

(D) Joint membership of genes in sRs and RNA metaclusters from the full RNA dataset. Rows and columns are hierarchically clustered.

(E) Temporal (from wild type) and spatial gene expression profiles for genes in sR9, sR6, sR15, and sR1 and R38.

(F) Average temporal and spatial gene expression profiles for genes in R23, R16, R11, R10, or R1, based on sRs.
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To further explore these sets of genes, we overlapped them

(Figure 4D) with the full RNA SOM clustering shown in Figure 2C.

Hierarchically clustering the sRs based on gene overlap showed

three separate sR groupings, sR8/sR12, sR1/sR9, and sR6/15,

that had similar overlap with the full RNA SOM. Interestingly,

each group contained one metacluster significantly enriched in

the endoderm and the other enriched in the ectodermal and

mesodermal experiments (e.g., Figure 4C, compare sR8 and

sR12), and each grouping had a specific set of full RNA meta-

clusters (temporal profiles) with which it overlapped. These ob-

servations suggested that there might be sets of potential

spatial-specific TFs activated simultaneously in different parts

of the embryo that bring about the spatial gene patterns we

see in the developing embryo.

To ensure that this observation was not an artifact of the clus-

tering method, we plotted the raw profiles of multiple genes in

one full RNA metacluster (R38) and classified those genes by

their eventual membership in the differential sRs (Figure 4E).

Based on the time-course data, these genes are activated at
about 5 h of development, and they each have very different

spatial profiles. We also plotted the average profiles of each of

the genes in each of the metacluster overlaps (Figure 4F). As ex-

pected, the temporal profiles of the genes match in each of the

full RNA SOM metaclusters. However, we noted significant

spatial differences. This prompted us to explore the regulatory

elements near these genes to identify the spatial-specific TFs

that are driving this behavior.

Multi-omic data integration of ChIP/ATAC SOM and
spatial RNA SOM provides direction of transcription
output
Previously, we developed the linked SOMmethod specifically to

integrate scRNA-seq and scATAC-seq datasets (Jansen et al.,

2019). Metaclusters of a scRNA-seq SOM were linked to a scA-

TAC-seq SOM to build sets of genome regions that had similar

scATAC-seq profiles near genes with similar scRNA-seq pro-

files. We determined that this linked SOM approach could be im-

plemented similarly with the spatial Xenopus RNA-seq and the
Cell Reports 38, 110364, February 15, 2022 7



Figure 5. sR assists in identifying candidate TFs for Xenopus ME differentiation

(A and B) Temporal and spatial gene expression profiles of TFs withmotifs found near endodermally (A) or ectodermally (B) enriched genes. Asterisks indicate TFs

that show distinct spatial expression.

(C) Temporal and spatial gene expression profiles for spatially differential TFs (bold) matched with the average gene expression profile of their predicted targets.

Correlations were calculated by comparing their spatial gene expression profiles.

(D) The temporal and spatial gene expression profiles of genes important in Xenopus ME development, separated by RNA metacluster.
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abundance of ChIP/ATAC-seq data to uncover the TFs that drive

the observed spatial patterns.

Our goal is to identify specific TFmotifs that are enrichedamong

genes that are expressed in specific regions of embryos. We

applied the linked SOM approach to the spatial RNA SOM and

DNA SOM and generated a linkage between the 16 spatial RNA

and the 88 DNA metaclusters, resulting in 1,408 (16 3 88) LMs.

Amotif searchwasperformedoneachLMseparatelyusing thehu-

manmotif database, andmotifs thatwere specifically enriched in a

subset of LMs were identified. Of these motifs, we focused on

those that appeared near genes in the six differential sRs (Fig-

ure 4C) forming three groups: sR8/sR12, sR15/sR6, and sR9/

sR1 (Figure 4D). For each pairing, any motifs that appeared in

the union of the sRswere filtered out, andmotifs thatwere specific

to onemetaclusterwere retained (FigureS4A). To further enrich for

TFs with targets showing spatial expression, we searched for the

motifs that were shared in at least two of the sets (Figure S4B),

and plotted the temporal/spatial expression of 20 candidate TFs

that could bind to these motifs (Figures 5A and 5B).

Among those, we selected the TFs that showed a significant

(q < 0.05) differential spatial expression. From the motif set
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near endodermally enriched genes, 6 TFs showed significant dif-

ferential spatial expression (Figure 5A, asterisks), whereas from

the motif set near ectodermally enriched genes, we found 14

TFs (Figure 5B, asterisks). Figure 5C shows the temporal/spatial

expression profiles of these TFs alongside the average expres-

sion of their predicted targets. By computing the correlation of

the spatial signal (and not temporal) from the TFs and their pre-

dicted targets, we predicted the overall direction of transcrip-

tional output: potential activating or repressing roles of these

TFs. For example, in ectoderm where foxa1 and foxa4 expres-

sions are low relative to in endoderm, target gene expression

levels are high in ectoderm. This suggests that Foxa1 and

Foxa4 had a strong negative correlation between their spatial

expression and their potential targets, indicating that they have

a role in repressing mesodermal and ectodermal fates.

This plot shows that the majority of predicted spatial regula-

tors of endodermal targets are activators, whereas for the ecto-

dermal targets, most regulators are repressive in nature. This is

consistent with the view that ME cells are induced from pluripo-

tent cells that differentiate via an ectodermal default path. For

cells to differentiate from an ectodermal to an ME state, certain
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ectodermally expressed genes need to be reduced in expression

(through endodermally/vegetally expressed repressors) and

other genes need to be expressed (through endodermally ex-

pressed activators). Of the 14 ectodermal TFs, only 4, Ghrl1,

Pou2f1, Sox11, and Atf3, had a positive spatial correlation with

their targets. Some of these genes are known activators in ecto-

dermal tissues in other organisms (Edgar et al., 2013). Sox11 is a

positive regulator of neuronal differentiation in frogs, chick, and

mouse (Bergsland et al., 2006; Lin et al., 2010; Chen et al.,

2016). Pou2f1 is an activator that is expressed in a wide variety

of cell types, including in ectodermal cell lineages in Xenopus

laevis (Veenstra et al., 1995).

There were 10 TFs with motifs near ectodermally expressed

genes that were marked as repressive because their expression

was significantly higher in the endoderm. Some of these were

already included in the core ME network, such as Foxa1,

Foxa2, Foxa4, and Otx1, with others being new potential addi-

tions. The data support the notion that these TFs have a repres-

sive role to suppress unwanted ectodermal gene expression in

the endoderm. Of the six new TFs, only two are expressed at

high enough levels at stage 10 to be considered for being added

to the core network: Hsf2 and Hes7.2. Additionally, there are

three TFs with motifs that were found near endodermal genes

with a high enough gene expression at stage 10 to be considered

as well: Phox2a, Mycn, and Uncx. Each of these genes has

similar temporal/spatial profiles to the genes from the core ME

network (Figure 5D) and were included in the downstream

network analysis.

Generation of a comprehensive ME GRN using multi-
omic data integration
In our hand-curated ME GRN (Charney et al., 2017a), a bipartite

criterion was used to determine direct TF regulation, whereby a

gene was considered a likely TF target if its expression is

affected by the perturbation of the TF and if the CRMs near the

gene show physical association with the TF. This work required

a large investment in manpower and effort, and yet the network

was incomplete. With the success of the linked SOMmethod on

finding specific motifs from the spatial RNA and DNA data, we

moved to implementing the approach on the full RNA SOM

and DNA SOM. This generated a linkage between the 84 RNA

metaclusters and the 88 DNA metaclusters, resulting in 7,392

(84 3 88) LMs.

Unlike the spatial/DNA-linked SOM analysis, we were inter-

ested in using a set of more specific motifs for known maternal

and signaling factors, and as such, we utilized ChIP experiments

to build a Xenopus-specific DNA binding motif database of

Eomes, Foxa2, Foxh1, Gsc, Mix1, Otx1, Otx2, Smad2/3,

Sox17, Sox7, and Vegt (Table S3) and motifs for human Tcf7l1/

2. When we scanned each LM for these motifs using FIMO

with a q of 0.1, we received a set of 271,736 total significant motif

instances. Of these, the largest portion belonged to Foxh1 with

134,238 detected motif instances. These initial motif lists were

again filtered by LM motif density (STAR Methods) to find signif-

icantly (p < 0.05) represented motifs in each LM, which reduced

the overall number to 201,157, with 118,722 belonging to Foxh1.

Next, we developed a filtering strategy to focus on the targets

active at the developmental time of interest, starting with Foxh1
targets. Limiting the Foxh1motif instances to those in DNAmeta-

clusters with Foxh1 ChIP signal in the 75th percentile near genes

in RNAmetaclusters with significant gene expression (>1 TPM) in

stages 8–10.5 reduced the number further to 117,253. This small

reduction shows that the motif analysis was mostly concordant

with the ChIP signal, even before filtering, suggesting that

most of the 118,722 genome regions with an identified Foxh1

motif were actually bound by Foxh1. To ensure that we analyzed

only active Foxh1 binding sites, we incorporated ChIP-seq/

ATAC-seq metaclusters that have an enriched Ep300 signal at

stage 9. Application of this filter dramatically dropped the list

of potential functional Foxh1 motifs from 118,722 to 26,445

and reduced the number of predicted target genes from

12,831 to 6,717.

To assess the quality of our GRN, we sought to estimate the

false positive rate (FPR) for predicted Foxh1 targets. Because

a set of true negative gene targets does not exist, we built a

list of likely true negative targets for Foxh1 by calling significantly

un-changing genes from each of the Foxh1 MO experiments

(stages 8, 9, and 10) with DEseq2 (Love et al., 2014) and inter-

sected the lists (Table S4). Of the 5,864 likely true negative target

genes, 696 were found within our set of potential targets. This

gave the analysis an 11.9%FPR (10.3%FDR), whichwe deemed

acceptable.

To further focus the network, we employed additional con-

straints by selecting RNA metaclusters that contained genes

that regulate gastrulation (Charney et al., 2017a), thereby filtering

to 11,295 Foxh1motifs located near 2,747 unique genes (see Ta-

ble S5 for full table). Next, we filtered out genes that did not

encode TFs or growth factors from our previous works. After

this process, 1,492 Foxh1 functional motifs were predicted to

be near 242 TFs, and all genes from the curated coreME network

(Charney et al., 2017a) remained in the list of 242 (Table S6). This

final network includes 2,725 predicted connections for all 12 of

our ChIPed TFs with 321 total targets (https://tinyurl.com/

3jtrkrct for a full Cytoscape visualization; Figure S5B for full

filtering strategy). Finally, we visualized known and predicted

network connections of the 36 targets of Foxh1, Sox17, Tcf7l1,

Vegt, and Smad2/3 that were present in the core ME network

(Charney et al., 2017a) (Figures 6A and 7). Of these, 17 connec-

tions for Foxh1, 11 for Sox17, 8 for Tcf7l1, 5 for Vegt, and 2 for

Smad2/3 were new to this analysis, which does not include other

new connections to the newmembers of the network. These new

potential TF/gene connections inform us what other TFs impinge

on ME GRN and thus should improve our understanding of the

regulatory processes behind the determination of ME cell states.

To assess whether Foxh1 and Sox17 function through these

CRMs, we mutated the DNA sequence motifs that bind these

TFs and then compared the activities of the mutant with wild-

type reporters (Figures 6B and 6C). In all cases, mutation of

Foxh1 and Sox17 binding sites resulted in a decrease in lucif-

erase expression relative to wild-type controls, supporting the

notion that these TFs primarily function to activate these genes.

We note that wild-type nodal reporter’s activity was elevated in

response to Sox17 KD, suggesting Sox17 represses nodal,

whereas the Sox17 binding site mutant’s decrease implicates

Sox17 as an activator of this gene. The reason for this discrep-

ancy is currently unclear. We also performed a luciferase
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Figure 6. GRN centered on the activity of Tcf7l1, Sox17, Vegt, Smad2/3, and Foxh1

(A) Our predicted developmental GRN. The active CRMs were identified based on the enrichment of their respective TFs, enrichment of Ep300 signal, and DNA

binding motif presence. Shown are literature identified targets (‘‘prior direct targets’’) and potential new connections (‘‘new potential targets’’). Note that only a

subset of targets is shown, and the network is focused only on TF and signaling molecule targets.

(B) Fold change of relative luciferase units in log scale of putative CRMs comparing Foxh1 binding site mutations over wild type. Each of these shows that

enhancer activity depends on Foxh1 binding sites. Two biologically independent experiments were performed.

(C) Fold change of relative luciferase units of putative CRMs comparing Sox17 binding site mutations over wild type. Each shows that enhancer activity depends

on Sox17 binding sites. Two biologically independent experiments were performed.

See Figure S6.
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reporter analysis of wild-type and Foxh1 and Sox17 MO KD em-

bryos. The MO KD results were similar to that of TF binding mu-

tants (Figure S6D), suggesting that Foxh1 and Sox17 predomi-

nantly function as an activator for the genes belonging to

metaclusters R38 and R16.

To further test this method, we compared the predicted Tcf7l1

targets with a hold-out Ctnnb1 ChIP dataset (Afouda et al., 2020)

(Figure S6D). Of the 26 predicted Tcf7l1 targets, we confirmed 15

during stages 8 and 9, including 6 new Tcf7l1 connections to TFs

sox17b, ventx2,mixer, gata2, hnf1b, and uncx. These peak over-

laps were significant according to regioneR (Gel et al., 2016)

analysis (p = �3.3 3 10�3). Taken together, we conclude that

the linked SOM method of regulatory prediction combined with

our new filtering methods shows a high-fidelity rate (10

confirmed cases of 12 tested directly for Foxh1 and Sox17; 15/

26 confirmed Tcf7l1 regulatory targets from only two stages),

while producing significantly more TF-CRM connections than

previous methods.
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Finally, to determine the potential effect of each of the pre-

dicted binding sites above, we examined several different

scoring methods and compared those methods’ abilities to pre-

dict the effect of each of the 12 validation experiments. Among

six methods used (average of each of the following: the

H3K4me1; H3K27ac; Ep300; TF ChIP signals to create a TF

signal density score; ATAC signals to build a chromatin accessi-

bility score; and a combined score by averaging each of the

above scores), the H3K4me1 score performed the best at pre-

dicting the downstream effect of validation (Figure S6E; Table

S7).

DISCUSSION

Here, in addition to publicly available Xenopus genomic data-

sets, we generated additional RNA-seq and ChIP-seq data.

We then combined three different SOM analyses to prioritize

and identify key ME TF targets. This integrated multi-omic



Figure 7. New and known core ME TF targets

List of targets in the core ME network for the TFs: Foxh1, Sox17, Tcf7l1, Vegt,

and Smad2/3. Bolded entries are new to this analysis. Underlined entries were

successfully validated.
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approachwas successful in accurately recapitulating cellular dif-

ferentiation programs through network analysis. The generated

GRN was validated both experimentally and statistically, to pro-

vide a highly confident set of predictions of gene regulation con-

trolling XenopusME development. These predicted connections

included the known core ME networks from previous works

(Charney et al., 2017b; Paraiso et al., 2020) and also provided

a significant number of new connections. Our analysis repre-

sents one of the most data-driven and integrative attempts to

recapitulate the GRN of an in vivo developmental system.

Novel network targets of key mesendermal TFs
Numerous genomic analyses of individual TFs have been used to

understand early Xenopus development (Charney et al., 2017a).

In these experiments, combining a single, or a few, ChIP-seq da-

taset(s) and RNA-seq datasets in wild-type and perturbed states

has been used to identify direct transcriptional targets of TFs. A

major limitation of this type of analysis is that target identification

using a combination of ChIP peaks and large gene expression

differences in MO loss-of-function analysis could miss small

expression differences. By using an integrative approach that

contextualizes a single TF ChIP-seq binding site with the binding

of a multitude of regulatory proteins and correlating the binding

with the expression of nearby genes, we improve on the previous

approaches by leveraging multiple large datasets and receive

�253 as many potential actionable targets for Foxh1 (2,747 in

this work compared with 109 in previous works) (Chiu et al.,

2014). The usage of multiple types of RNA experimentation in

the core analysis was critical to this success because SOMs built

on smaller subsets of the data generated less complex cluster-

ings, which led to less specific linked metaclusterings and,

thus, fewer actionable targets (�201,000 versus �102,000 mo-

tifs pre-filtering; 2,725 versus 44 connections in the final filtered

network).

Of the 40 genes from the core ME network (Charney et al.,

2017b), 34 had predicted functional Foxh1 motifs (Figure 7),

among which 14 genes were previously confirmed Foxh1 tar-
gets. Although some genes, such as cer1, lhx1, otx2, and sebox,

were previously shown to be regulated directly by Foxh1, bmp4,

gata4, gata6, and osr2were never implicated as direct Foxh1 tar-

gets. Additionally, the metacluster of these genes, R16, also

included nine additional predicted targets, such as hoxd1 and

irx2, which are critical to axis and pattern formation, respectively.

At present, their roles in early ME formation are unknown.

Another interesting metacluster is R38, of which only one of

the potential Foxh1 targets had previous evidence, wnt8a. The

majority of core ME genes in R38 (except tbxt), including

sox17a and sox17b, which is active in a different region from

wnt8a, were found to be similarly targeted by Foxh1. Comparing

the temporal profiles of R16 and R38 in Figure 2A shows that

these clusters have very similar temporal profiles, except genes

in R38 being expressed at a higher level than those in R16. This

suggests that although Foxh1 regulates the expression of these

genes, underlying mechanisms regulating these two metaclus-

ters are different.

The predicted ME network indicated that most of the genes in

R38 were regulated by Sox17, whereas none in R16 were pre-

dicted. Genes in R38 also maintained a higher gene expression

level than those in R16. One speculation is that this difference

in gene expression level is due to the positive feedback loop of

Sox17 (Sinner et al., 2004; Howard et al., 2007) pulling each of

these genes in lockstep with its expression. We tested themodel

using reporter genes driven by the CRMs of mixer, tbxt, and

wnt8a and validated that the output is regulated by both Foxh1

and Sox17 TF input in vivo (Figures S5A and 5C). Additionally,

the stage 10 expression of genes in metacluster R1 (in particular

snai1) peaks at nearly the same time point as R38. This is the only

maternally and zygotically expressed metacluster with this peak

and was the only one predicted to be regulated by Sox17. Based

on the current validation experiments, we conclude that many of

the newly predicted interactions between TFs and CRMs are

likely to have relevant function in vivo.

Enhanceosomes, cooperativity, and antagonism
Although the focus of this work was to elucidate the important

CRMs for gene regulation, an important component of the linked

SOM analysis, the ATAC/ChIP-seq SOM, revealed interesting

clustering of TF binding suggestive of active enhanceosomes.

The output of this SOM has shown consistency with known

TF-TF interactions, such as that of endodermal maternal TFs

(Paraiso et al., 2019), Spemann organizer TFs (Yasuoka et al.,

2014), and mesodermal T-box TFs (Gentsch et al., 2013). This

unbiased multi-omic clustering approach renders support for

the importance of these respective enhanceosomes, complexes

of TFs on enhancers. In the future, chromatin clustering with

additional data is likely to reveal other interesting enhanceosome

biology relevant to development.

Enhanceosomes positively regulate gene expression. The

Ep300 co-activator is a histone acetyltransferase, and its inter-

action with CRMs is one of the frequently used genomic markers

of enhancer regions (Heintzman et al., 2007). MEME (Multiple

Expectation maximizations for Motif Elicitation) analysis of

Ep300 peaks reveals the enrichment of Sox and Fox TF binding

motifs, indicating that Ep300 is recruited to DNA via Sox and/or

Fox family TFs. Consistent with this observation, we find that
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early Ep300 binding clusters with Foxh1 (at stage 9) and late

Ep300 binding clusters with Foxa2 (at stage 10). Interestingly,

Ep300 did not cluster with Sox7 nor Sox17, indicating that other

Sox family TFs, such as Sox3, may be responsible for Ep300

recruitment. We also note that Smad2/3 binding, which is a

sign of Foxh1-mediated Nodal signaling activity, had a very

poor correlation with Ep300 (of the 7,707 Smad2/3 CRMs, only

41 overlapped with a significant Ep300 ChIP signal). This sug-

gests that Ep300 interaction is dynamic. It is initially recruited

to the potential sites by maternally expressed Sox and Fox TFs

and gradually replaced by other zygotic TFs, such as Foxa2.

Our ATAC/ChIP-seq SOM revealed surprisingly close clus-

tering of ChIP signals for TFs that have distinct spatial expression

differences (Figure S3). One of three examples includes the clus-

ter containing dorsally expressed regulator Sia1 (Lemaire et al.,

1995) and the ventrally expressed homeobox Ventx2 (Schmidt

et al., 1996). This is unexpected because these TFs are known

to specify opposing cell types (dorsal versus ventral) and known

to be expressed in spatially distinct embryonic regions. One pos-

sibility is that these two TFs bind competitively to similar motifs

and recruit two distinct enhanceosomes to the same enhancers,

depending on the cellular environment. For instance, Sia1 may

activate a subset of genes through these enhancers, whereas

in a different region of the embryo, Ventx2 may use these

same enhancers to repress target genes via recruiting a different

combination of co-factors. Alternatively, these enhancers could

be similarly regulated in dorsal and ventral regions of the embryo

by Sia1 or Ventx2, but other spatial-specific factors could

change the topology of the chromatin to target two distinct

sets of genes from the same enhancer. Second, we identified

this same pattern in other dorsal-ventral pairs of TFs, such as

the signaling pathway TF Ctnnb1 (Wnt signaling TF) (Stevens

et al., 2017; Heasman et al., 1994), Foxh1 (Nodal signaling co-

factor) (Chen et al., 1996), and Smad1 (BMP signaling TF) (Graff

et al., 1996). The first two are both important for establishing the

dorsal domain of the embryo, while Smad1 helps establish

ventral identity. Finally, we note a similar pattern for the TFs

Sox17 (Hudson et al., 1997) and Tbxt (Smith et al., 1991), which

are critical TFs in forming the endoderm andmesoderm, respec-

tively. A study further focused on these competitive binding loca-

tions could help answer how cells dynamically regulate gene

expression by sharing similar enhanceosome modules during

gastrulation.

In conclusion, we show that linked SOMs are capable of

efficiently predicting TF-enhancer interactions to understand

the gene regulatory mechanism in an archetypical develop-

mental system. To do this, our approach used a multi-omic

dataset to create a highly accurate mechanistic GRN without

converting our ChIP/ATAC-seq data into RNA-seq-like data.

These results cemented the important role of endodermal

TFs, such as Foxh1 and Sox17, in coordinating the expression

of many important developmental genes. Our work provides a

useful, new platform for the data integration of multi-omic da-

tasets to uncover TF-enhancer interactions in in vivo cell and

developmental systems. Although we have applied linked

SOM for bulk sequencing data, the approach is flexible and

can easily integrate other datasets, such as single-cell

sequencing datasets.
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Limitations of the study
Thisworkmakes predictions of TF binding sites throughmachine

learning and motif discovery and, as such, will have false posi-

tives, which we have estimated at �12%. In addition, Xenopus

TF motifs are not as well studied as other organisms, and so

we were limited in the predictions we could make to those

well-studied TFs. Finally, due to practical limitations, we were

able to validate targets for only two of our main TFs.
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X. tropicalis DMSO- and SB431542-treated (Smad2/3 KD)

embryos Stage 8, 9 and 10.5, RNA-seq

Afouda et al. (2020) ArrayExpress: E-MTAB-8555

X. tropicalis wild type and Ctnnb1 MO injected embryos

Stage 7-12 RNA-seq

Mukherjee et al. (2020) GEO: GSE148726

X. tropicalis wild type, Control MO injected and Sox17 MO

injected embryos Stage 9-10 RNA-seq

Mukherjee et al. (2020) GEO: GSE148726

X. tropicalis wild type and Tcf7l1 MO injected embryos

Stage 9-10 RNA-seq

This Paper GEO: GSE118024

Experimental Models: Organisms/Strains

X. tropicalis, out-bred Nigerian University of Virginia, NASCO URL: https://www.enasco.com/

Oligonucleotides

Template switching oligo Picelli et al. (2014) N/A

ISPCR primers Picelli et al. (2014) N/A

Indexing primers Buenrostro et al. (2013) N/A

Foxh1 MO 50-TCATCCTGAGGCTCCGCCCTCTCTA-30 GeneTools; Chiu et al. (2014) N/A

Tcf7l1 MO 50-CGCCGCTGTTTAGTTGAGGCATGA-30 GeneTools; Liu et al. (2005) N/A

Sox17a MO 50-AGCCACCATCAGGGCTGCTCATGGT-30 GeneTools; Mukherjee et al. (2020) N/A

wt zic2 F: ctgtgagtatttacattttacccttgc

wt zic2 R: acaatgctacatgctcgg

IDT N/A

wt foxa2 F: cagatttcacacagaaaaattaggatc

wt foxa2 R: caccattattctttcaaccaccc

IDT N/A

wt eomes F: tacatctctataagtatgtgtgca

wt eomes R: caggataacagagaaggggct

IDT N/A

wt gata6 F: aacactcatagtttccctttg

wt gata6 R: atctcattatgctaaatagacagagg

IDT N/A

wt sox17b F: ggttagccagcaggtaactg

wt sox17b R: aagcaggagaacttgattataataaag

IDT N/A

wt osr2 F: gtccctgtacaagtaggacatt

wt osr2 R: ggaaggcattttaccaaatcctac

IDT N/A

wt bmp4 F: ggtggtatttccagggttcccttta

wt bmp4 R: aagcagcacactgcaacatttg

IDT N/A

wt gata4 F: agcatggacatgtttaatggact

wt gata4 R: ctatttacagctaataccgctcagtg

IDT N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

wt wnt8 F: aatgggcagaatatgagaagagt

wt wnt8 R: gttcacagtaggaagtgatctaaagc

IDT N/A

wt mixer F: gggcaaagtcatgagattggt

wt mixer R: aagagcattggtactgccg

IDT N/A

wt tbst F: gcgttcattttgccaccaa

wt tbst R: gtggcaatgcagataaatcaact

IDT N/A

wt nodal F: acactttaaaaggattaatgggatttatct

wt nodal R: gcacttggagtgaatagaatgg

IDT N/A

wt admp F: atatatatatatatactaacagtatatcttgcccaaag

wt admp R: aagtaaacttgcaacttaaaaaattaaattttatttc

IDT N/A

wt map7d3 F: agttttccttccaccaaagaaaa

wt map7d3 R: agcttgcctgtatgggat

IDT N/A

wt pcdh8.2.1 F: aaatctctttcatattcagccgg

wt pcdh8.2.1 R: tgagttgttttatgcaatatattttttatagaggc

IDT N/A

wt pcdh8.2.2 F: acctaaagtcacatcccatcag

wt pcdh8.2.2 R: ttgatgacatcaagaaaggtatctaatc

IDT N/A

wt pcdh8.2.3 F: ggtgcagtgaatggcttattc

wt pcdh8.2.3 R: caccttagtgccttcataattgg

IDT N/A

wt Pdk4 F: agactaaaactgttataagaatttctaatttttaataaatatttg

wt pdk4 R: gtaaagttgcactgctttattttacac

IDT N/A

wt serpinf2 F: agaaatggtgcaccactg

wt serpinf2 R: tcaaaatcatgcactgaaggatcaa

IDT N/A

wt sfrp2 F: aatgagaaaagtgtggtataaga

wt sfrp2 R: acactgctactttttaagacagat

IDT N/A

wt slc12a3.2 F: gaacatatatgtactatgcacttctaacc

wt slc12a3.2 R: ttatgctttattcagaaaatattgtaatatttatatgtg

IDT N/A

wt zic2 F: ctgtgagtatttacattttacccttgc

wt zic2 R: acaatgctacatgctcgg

IDT N/A

mutant foxa2 F: cagatttcacacagaaaaattaggatc

mutant foxa2 R: caccattattctttcaaccaccc

IDT N/A

mutant eomes F: tacatctctataagtatgtgtgca

mutant eomes R: caggataacagagaaggggct

IDT N/A

mutant gata6 F: aacactcatagtttccctttg

mutant gata6 R: atctcattatgctaaatagacagagg

IDT N/A

mutant sox17b F: ggttagccagcaggtaactg

mutant sox17b R: aagcaggagaacttgattataataaag

IDT N/A

mutant osr2 F: gtccctgtacaagtaggacatt

mutant osr2 R: ggaaggcattttaccaaatcctac

IDT N/A

mutant bmp4 F: ggtggtatttccagggttcccttta

mutant bmp4 R: aagcagcacactgcaacatttg

IDT N/A

mutant gata4 F: agcatggacatgtttaatggact

mutant gata4 R: ctatttacagctaataccgctcagtg

IDT N/A

mutant wnt8 F: aatgggcagaatatgagaagagt

mutant wnt8 R: gttcacagtaggaagtgatctaaagc

IDT N/A

mutant mixer F: gggcaaagtcatgagattggt

mutant mixer R: aagagcattggtactgccg

IDT N/A

mutant tbst F: gcgttcattttgccaccaa

mutant tbst R: gtggcaatgcagataaatcaact

IDT N/A

mutant nodal F: acactttaaaaggattaatgggatttatct

mutant nodal R: gcacttggagtgaatagaatgg

IDT N/A

Recombinant DNA

�104 gsc minimal promoter-pOLuc Watabe et al. (1995) N/A

pRL-SV40 Promega Cat#E2231

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

zic2 Luc reporter This Paper N/A

zic2 mutant Luc reporter This Paper N/A

foxa2 Luc reporter This Paper N/A

foxa2 mutant Luc reporter This Paper N/A

eomes Luc reporter This Paper N/A

eomes mutant Luc reporter This Paper N/A

gata6 Luc reporter This Paper N/A

gata6 mutant Luc reporter This Paper N/A

sox17b Luc reporter This Paper N/A

sox17b mutant Luc reporter This Paper N/A

osr2 Luc reporter This Paper N/A

osr2 mutant Luc reporter This Paper N/A

gata4 Luc reporter This Paper N/A

gata4 mutant Luc reporter This Paper N/A

wnt8 Luc reporter This Paper N/A

wnt8 mutant Luc reporter This Paper N/A

mixer Luc reporter This Paper N/A

mixer mutant Luc reporter This Paper N/A

tbxt Luc reporter This Paper N/A

tbxt mutant Luc reporter This Paper N/A

nodal Luc reporter This Paper N/A

nodal mutant Luc reporter This Paper N/A

Software and Algorithms

RSEM v.1.2.12 Li and Dewey (2011) RRID: SCR_013027; URL:

http://deweylab.biostat.

wisc.edu/rsem/

Bowtie 2 v2.2.7 Langmead and Salzberg (2012) RRID: SCR_016368; URL:

http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

MACS2 v2.0.10 Zhang et al. (2008) RRID: SCR_013291; URL:

https://github.com/taoliu/MACS

DEseq2 v3.11 Love et al. (2014) RRID: SCR_015687; URL:

https://bioconductor.org/

packages/release/bioc/

html/DESeq2.html

SOMatic Jansen et al. (2019) URL: https://github.com/

csjansen/SOMatic

FIMO v4.12.0 Grant et al. (2011) RRID: SCR_001783; URL:

http://meme-suite.org/tools/fimo

IGV v2.3.20 Robinson et al. (2011) RRID: SCR_011793; URL:

http://software.broadinstitute.

org/software/igv/

Xenmine/Gene Ontology Reid et al. (2017) N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ken W.Y.

Cho (kwcho@uci.edu).

Materials availability
All reporter genes are available upon written request. Antibodies may be available upon written request.
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Data and code availability
This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

The github for SOMatic was published previously (Jansen et al. al., 2019) and found at: https://github.com/csjansen/SOMatic. Raw

and processed RNA-seq and ChIP-seq datasets generated for this study are available at NCBI Gene Expression Omnibus using the

accession GEO: GSE161600.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Wild type Xenopus tropicalis, approximately 3-6 months old males and females were either obtained from NASCO (University of Vir-

ginia) or raised in the laboratory andweremaintained in accordance to the University of California, Irvine Institutional Animal Care Use

Committee (IACUC). 6-36 months old X. tropicalis females were injected with 10 units of Chorulon HCG 1-3 nights prior to use, and

were injectedwith 100 units of Chorulon HCG themorning of use. Eggs were collected into a glass dish coated with 0.1%BSA in 1/9x

MMR. Sperm suspension obtained from sacrificedmales (6-12 months) was used to in vitro fertilize the eggs. Ten minutes after fertil-

ization, the embryos were dejellied with 3% cysteine in 1/9x MMR, pH 7.8 and are then ready for further manipulation.

METHOD DETAILS

ChIP-seq and ATAC-seq
Majority of ChIP-seq datasets were obtained from NCBI’s Gene Expression Omnibus (see Key Resources Table). For newly gener-

ated datasets, ChIP-seq was performed as previously described (Chiu et al., 2014) at the appropriate developmental stage. The an-

tibodies and conditions for these datasets:

d 30 mg of published Vegt antibody (Sudou et al., 2012) per 2000-3000 embryos

d 30 mg of published Mix1 antibody (Sudou et al., 2012) per 2000-3000 embryos

d 30 mg of published Sia1 antibody (Sudou et al., 2012) per 2000-3000 embryos

d 4 mg of Sox7 rabbit polyclonal peptide antibody (Genscript) per 100 embryos; the peptide antibody was designed against a

region in the Sox7 transactivation domain in the C-terminus with the sequence QVSQASDIQPSETS

d 3.5 mg of Ventx2 rabbit polyclonal antibody per 100 embryos; the antibody was generated by Covance, Inc., using a GST fusion

to Ventx2.2 amino acids 2-153, upstream of the homeodomain.

d 2.5 mg of Smad1/5/8 antibody (Santa Cruz Biotechnology sc-6031x) per 100 embryos

Libraries were generated using NEXTflex ChIP-seq (Bioo Scientific, Cat# NOVA-5143-01) kit, quality tested using an Agilent Bio-

analyzer 2100, quantified using KAPA qPCR, and sequenced using Illumina sequencers at the UC Irvine Genomics High Throughput

Facility.

ATAC-seq was generated by Bright et al., 2021.

Gene knockdown and RNA-seq
Published RNA-seq datasets for different embryonic tissues and experimental conditions were obtained from NCBI’s Gene Expres-

sion Omnibus (see Key Resources Table). For the MO experiments, 2 ng/embryo of ctnnb1 MO (Mukherjee et al., 2020), 20 ng/em-

bryo foxh1 MO (Chiu et al., 2014; Charney et al., 2017b), 10 ng/embryo each of two sox17 MOs (targeting sox17a and sox17b1/2;

Mukherjee et al., 2020) or 4 ng/embryo tcf7l1 MO (Liu et al., 2005) were used. For the knockdown of receptor-mediated Smad2/3

phosphorylation, embryos were treated with SB4315422 at 100uM as previously described (Chiu et al., 2014; Charney et al.,

2017b). For each condition, embryos were harvested at the appropriate developmental stage adhering to the Xenopus develop-

mental table (Nieuwkoop and Faber, 1958). RNA samples were collected from embryos using the acid guanidium isothiocyanate

method (Chomczynski and Sacchi, 1987). RNA-seq libraries were generated using Smart-seq2 cDNA synthesis followed by tagmen-

tation (Picelli et al., 2014), quality tested using an Agilent Bioanalyzer 2100, quantified using KAPA qPCR, and sequenced using Illu-

mina sequencers at the UC Irvine Genomics High Throughput Facility.

Construction of luciferase reporter genes and assay of CRM activity
Minimal gsc promoter (-104gsc) was PCR amplified from -104gsc/Luc (Watabe et al., 1995) and cloned into the promoterless

pGL3 basic vector (Promega), which encodes firefly luciferase, between HindIII and NcoI restriction digestion sites. CRMs were

PCR amplified from Xenopus tropicalis genomic DNA (primers are listed in Key Resources Table) and cloned into the above

vector between the BglII and HindIII restriction digestion sites. Mutant CRMs were constructed by inverse PCR according pre-

viously published methods (Fisher and Pei, 1997). Oligonucleotides (see Key Resources Table) spanning the motif to be mutated

were designed with base substitutions (Foxh1 motifs AATMHACA were changed to AAGMHAAA and Sox17 motifs ACAAWRG

were changed to ATAGWRG) and were used in inverse PCR to generate reporter plasmids containing these mutant sequences.

All mutations in these plasmids were confirmed by Sanger sequencing. To examine the activity of each CRM’s responsiveness
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to TF MO knockdowns, 80 pg of luciferase reporter construct and 8 pg of pRL-SV40 (Promega) were co-injected vegetally into

1-cell stage embryos with and without 20 ng of either foxh1 (Chiu et al., 2014) or sox17 MO (Mukherjee et al., 2020). Luciferase

reporter construct without a CRM served as a negative control. Injected embryos were harvested at stage 10.5 (early gastrula)

by homogenizing 5 embryos in 50ul of 5X passive lysis buffer (Promega). 10ul of lysate cleared of cellular debris by microcen-

triugation were used per assay for luciferase activities according to the manufacturer instruction of Dual-Luciferase Reporter

Assay System (Promega). To assess the effects of mutating Foxh1 and Sox17 binding motifs in CRM reporters, 80 pg of either

wild-type or mutant reporter was injected vegetally and embryos were harvested at stage 10.5 as described above and assayed

for firefly luciferase activity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Chromatin dataset analysis
ATAC-seq and ChIP-seq reads were aligned to the X. tropicalis genome v 9.0 (Mitros et al., 2019) obtained from Xenbase (Karimi

et al., 2018) using Bowtie 2 v2.2.7 (Langmead and Salzberg, 2012). ATAC-seq and ChIP-seq datasets were peak called relative to

their appropriate input DNA controls using MACS2 v.2.0.10 (Zhang et al., 2008) with default options.

Self-organizing map (SOM) training, visualization, and metaclustering general procedure
Self-organizing maps are generated by randomly initializing a specified number of artificial neurons on a hexagonal lattice (number of

rows and columns is a parameter) to points in the data space. For each timestep, a data point is randomly chosen from the training

half of the data matrix (once per computational epoch) and the closest neuron to this point is found (the winning neuron). Then, every

neuron on the lattice ismoved toward the data point. The distancemoved for each neuron depends on the distance on the lattice from

the winning neuron, the learning rate (a parameter), and how many timesteps have occurred (this drops as a negative exponential

function compared to time) with the winning neuron moving the most.

The resulting positions for these neurons are, then, scored by finding the average distance between each data point in the full

data matrix and the closest SOM neuron. To find the final SOM, the SOM training algorithm is run for a number of trials (for each

parameter set attempted) and the trial with the best final score is chosen. As metaclustering will follow SOM training, finding the

correct number of rows and columns is not necessary as long as there are plenty of elements in the lattice to find all of the data-

dense regions of the n-dimensional experiment space. This can be determined by discovering no single-unit metaclusters in the

next step.

The final neuron positions can be visualized into a 2D map for each experiment (dimension) in the initial dataset. For instance, see

the first SOM slice in Figure 2A, which represents the wildtype gene expression at stage 10.5. The positions of the hexagonal units

represent the connections of the neurons on the lattice and the color is the final position of that neuron (aka signal strength) in the

experimental dimension. Each unit is a cluster with a number of closest genes or genome regions associated with it that show similar

behavior upon perturbations or among different experiments.

Metaclustering is performed by k-means clustering on the final SOM neuron positions such that the growth of each cluster in each

step is restricted to only allowing neighboring neurons on the SOM lattice into each cluster (maintaining the SOM’s structure). The

metaclustering is attempted for a number of trials for each metacluster number in a given range and the clustering with the best

BIC score (reference) is chosen to be the final clustering (and cluster number). This final clustering can be visualized on the SOM

maps as an overlay or as a heatmap showing the representative experimental eigen-profile for each metacluster. Metaclusters

can also be tested for enrichment or depletion in any given experimental condition.

Chromatin segmentation and DNA-SOM analysis
The Xenopus tropicalis v9 reference genome was partitioned using the partition tool of SOMatic (Jansen et al., 2019) using the

MACS2 peak files with a minimum partition size of 200 bp. Then, a RPKM matrix was calculated using the regionCounts tool

from SOMatic.

The DNA SOMwas built using the buildSite tool from SOMatic, using a size of 403 60, 100 epochs, 100 trials. SOMatic found 88

metaclusters had the best AIC score using 100 trials. GO term enrichments were found using the XenMine gene ontology tool (Reid

et al., 2017).

RNA-seq dataset analysis
RNA-seq reads were aligned to the X. tropicalis genome v 9.0 (Mitros et al., 2019) obtained from Xenbase (Karimi et al., 2018) using

RSEM v 1.2.12 (Li and Dewey, 2011) and Bowtie 2 v2.2.7 ( Langmed and Salzberg et al., 2012and Salzberg et al., 2012) to generate

gene expression in transcripts per million.

RNA-SOM analysis
The RNA SOM was built using the buildSite tool from SOMatic, using a size of 60 3 90, 100 epochs, 100 trials. SOMatic found 84

metaclusters had the best AIC score using 100 trials. Various SOMatic tools were used to create all of the heatmaps, including

the statistical enrichment graph, and GO term enrichments were found using the Xenbase GO term tool.
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Linking of DNA- and RNA-SOM and network analysis
The Link tool in SOMatic was used to convolve the 2 SOMs’ metaclusters, using the nearest gene option and limiting the search area

to 1Mb. A specific Xenopus option (-Xeno) was used because the Xenbase gtf file is a non-standard format.

For the initial ChIP/ATAC-seq SOM, the regions, including repeat regions, in each metacluster were scanned for motifs using the

HOCOMOCOv11 humanmotif database (Kulakovskiy et al., 2018) with FIMO v4.12.0 using a q-value threshold of 0.1. For the further

network analysis, each linked metacluster (LM) was scanned with FIMO v4.12.0 (Grant et al., 2011) using a q-value threshold of .1

using motifs calculated from the Xenopus ChIP data. The background for both analyses was calculated using the entire Xenopus

tropicalis v9 reference genome. For each of the 12 calculated TF motifs, the percentage of regions in each LM with that motif was

calculated and used to perform one-tailed z-score enrichment with a q-value of 0.05. These significant TF motif locations were map-

ped to the linked gene.

Gene enrichment analysis for unchanging genes throughout time-course
We used DESeq2 v3.11 (Love et al., 2014) to find significantly unchanging genes by using the altHypothesis=’’lessAbs’’ option

(qvalue < .05).
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