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SUMMARY

Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct
identities. Cell differentiation is a highly regulated process that involves the function of numerous transcrip-
tion factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs).
Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput,
and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional
data composed of more than two data types is challenging. Here, we use linked self-organizing maps to
combine chromatin immunoprecipitation sequencing (ChlP-seq)/ATAC-seq with temporal, spatial, and
perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build
a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-
DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional
regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimen-

sional multi-omic datasets.

INTRODUCTION

Understanding the transcriptional control of cellular differentia-
tion programs is fundamentally important in biology and regener-
ative medicine. Simple linear pathways of gene regulation are
insufficient to explain complex biological phenomena. This is
because genes function in complex networks, and the emergent
properties of these networks ultimately generate biological out-
comes (Levine and Davidson, 2005; Davidson, 2010). Thus,
identifying network structure is a necessary step toward com-
prehending the causes of cellular states and behaviors in
embryogenesis, in adults, and in disease.

Efforts were made to compile the available molecular data into
gene regulatory networks (GRNs) describing mesendoderm (ME)
development in Xenopus (Loose and Patient, 2004; Koide et al.,
2005). Arguably, these developmental events represent most
influential developmental periods in metazoan organisms, lead-
ing to large-scale morphogenetic changes and body axis forma-
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tion. Recently, a highly curated interactome map was generated
based on over 200 publications (Charney et al., 2017a), which
represents the most thoroughly examined ME GRN in any chor-
date. It revealed that germ layer specifications are controlled by
a set of transcription factors (TFs) acting in a complex network.
Additionally, previous work has suggested that critical aspects
of the ME GRN are conserved in all vertebrates (Zorn and Wells,
2009). Therefore, a highly robust Xenopus GRN is likely to inform
conserved paradigms in human development and strategies to
direct human cell differentiation.

Although the current GRN has revealed critical principles gov-
erning early embryonic development (Charney et al., 2017a; Par-
aiso et al., 2020), itis far from complete. This is in part because, in
the past, network connections were not fully embedded within
the larger regulatory architecture nor included temporal and
spatial data. Thus, the ME GRN is likely to miss many important
interactions. An alternative approach is to generate a GRN based
on a combination of computational methods with extensive
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perturbation analysis. Availability of large-scale genomics data-
sets in recent years allows us to test the utility of such an
approach. However, one difficulty is the potential to produce
numerous putative interactions that may contain false positives.
This concern is supported by chromatin immunoprecipitation
sequencing (ChlP-seq) analyses, which often uncover tens of
thousands of TF-bound sites, but only a fraction of such sites
directly affect gene expression (Li et al., 2008; Kvon et al.,
2012). Therefore, it would be valuable to develop an approach
that embraces the scale of the genomic data, while minimizing
false positives. Although other methods have been developed
to solve this problem through refinement of peak calling of
ChlIP-seq datasets (Bardet et al., 2013), we hypothesized that
integration of genetic perturbation data types into the analysis
of chromatin datasets would allow for a more informed identifi-
cation of functional binding sites.

Given the current accumulation of large genomic datasets,
computational GRN inference has become a popular field of
research. One common way that these methods operate is using
co-expression matrices to build “influential” GRNs (reviewed in
Delgado and Goémez-Vela, 2019), which rely on correlations be-
tween genes rather than direct mechanistic regulation between
TFs and target genes. The vast majority of GRN inference studies
using high-throughput data build networks of this type. For the
current work, we wished to build a “mechanistic” GRN, so we
sought to find direct connections that engage cis-regulatory re-
gions. This is extremely difficult using only one type of data (re-
viewed in Hu et al., 2020). Some recent predictive algorithms
use multi-omic data to build lists of putative functional enhancers
(Sethi et al., 2020; Xiang et al., 2020), but they do not incorporate
TF binding data to determine whether the TF can directly regu-
late these enhancers. Others focus on integrating single-cell
data types, e.g., Seurat/Cicero (Stuart et al., 2019), but they
can create “influential” GRNs only from gene correlation
matrices. Here, we describe the use of widely available bulk
data for constructing mechanistic GRNSs.

We adapted our linked self-organizing map (SOM) method
(Jansen et al., 2019) to the multiple data types available for ME
development: ChlP-seq, ATAC-seq, and RNA-seq of wild-type
(temporal and spatial) and perturbation conditions. SOMs (re-
viewed in Kohonen, 2001) are a type of unsupervised neural
network that train on a set of data to generate a low-dimensional
representation. Previous works have successfully used the
SOM’s remarkable ability to generate robust clusters (Kiang
and Kumar, 2001) by incorporating them into the analysis of
highly dimensional genomic data. For example, SOMs have
identified complex relationships between genes and genomic re-
gions in multiple cell types in human and mouse (The ENCODE
Project Consortium, 2012; Mortazavi et al., 2013; Cheng et al.,
2014; Yue et al., 2014; Partridge et al., 2020). The linked SOM
method combines the clustering of multiple SOMs, each built
with a different type of data (e.g., ChIP-seq and RNA-seq), into
one analysis.

Here, to apply the linked SOM method, we generated a clus-
tering of genes by training a SOM on 95 transcriptomic RNA-
seq datasets to capture gene expression profiles that co-vary
across different experimental conditions. Similarly, a clustering
of genome regions was generated by training a SOM over 63
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ChIP/ATAC-seq (Assay for Transposase-Accessible Chromatin
using sequencing) experiments. Next, we combined the RNA
and DNA clusterings by associating the individual genomic re-
gions within the DNA clusters to the closest gene. This generated
a multi-clustering, in which each cluster contained genome re-
gion-gene pairs that had a similar DNA (in the genome regions)
and RNA signal (in the genes). These linked metaclusters (LMs)
are extremely similarly regulated, so motif analysis on the
genome regions, even after strict enrichment filtering, is more
successful than scanning the whole genome alone (Jansen
etal., 2019), and thus identified many new functional TF-DNA in-
teractions. These inferred interactions were validated using re-
porter gene assays, supporting that the linked SOM approach
is a valuable method to build mechanistic GRNs. This method
was also applied to the RNA-seq data from spatial dissections
to find TF-gene pairs with unique spatial properties during ME
development. This analysis found six TFs, which based on their
gene expression profiles and the expression of their predicted
targets, should be included in the core network. By extending
the linked SOM method for Xenopus ME development, we
have developed a useful approach to find TFs important for
germ layer specification.

RESULTS

Reconciling the known biology with evidence from high-
throughput data

The scope of the problem of building GRNs with high-throughput
genomic data can be illustrated by examining the known regula-
tory loci surrounding the gene encoding the Spemann organizer
TF Gsc (Cho et al., 1991), which contains two regulatory ele-
ments near the promoter, called the proximal and distal elements
(Watabe et al., 1995), and a farther upstream element (Mochizuki
et al., 2000). These DNA regions are bound and controlled by a
small set of ME TFs (Koide et al., 2005). However, recent ChIP-
seq datasets highlight the possibility of the function of various
maternal TFs (Nakamura et al., 2016; Charney et al., 2017b; Par-
aiso et al., 2019), organizer TFs (Yasuoka et al., 2014), and meso-
dermal TFs (Gentsch et al., 2013) in regulating gsc through these
cis-regulatory modules (CRMs; Figure 1A). Further, these known
elements represent the minority of peaks identified upstream of
the gsc transcription start site. The chromatin context within this
region highlights the need for integrative analysis of genomic
datasets.

Strategy for integration of different highly dimensional
genomic data types

To investigate X. tropicalis ME gene regulation, we assembled a
highly dimensional dataset of 95 RNA-seq and 63 ChlP-seq/
ATAC-seq experiments (Figure 1B; Key resources table). The
chromatin datasets include the openness of the loci, TF binding,
epigenetic modifications, and RNA polymerase Il association.
The transcriptomic datasets include spatial expression, tempo-
ral expression at relevant developmental stages, and knock-
down (KD) data of critical TFs and signaling pathways. These
data were individually analyzed and collected into two large
matrices for unsupervised learning (STAR Methods). For the
RNA-seq experiments, gene expression was quantified in
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Figure 1. Using self-organizing maps (SOMs) to discover ME GRN
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(A) Genome browser view of TF binding during X. tropicalis development. Shown are maternally expressed (Foxh1, Otx1, Sox7, Vegt, Ctnnb1, Smad1, and
Smad2/3) and zygotically expressed (Foxa4, Gsc, Eomes, Tbxt, and Vegt) TF binding in the gsc gene locus. Shaded are the well-characterized proximal, distal,
and upstream CRMs, associated with TF binding. Further upstream are binding sites in possibly unexplored CRMs.

(B) Datasets used in this analysis, targeting several wild-type and MO-injected embryos at developmental stages important for ME development.

(C) The X. tropicalis genome is partitioned (grey shadings in bottom track) using ChlP-seq and ATAC-seq peak locations. Each partition is assigned ChlP-seq and
ATAC-seq signal quantified as reads per kilobase per million (RPKMSs) for all chromatin datasets.

(D) The RNA-seq and ChIP-seq/ATAC-seq datasets were each converted into training matrices and clustered using SOM metaclustering using SOMatic. These
clusters were then linked using the SOM Linking tool within SOMatic. The pairwise linked metaclusters (LMs) and spatial SOM data were mined for regulatory

connections and built into networks.

transcripts per million (TPM) for each experiment. For the ChIP/
ATAC-based experiments, we first partitioned the genome using
peak calls identified from these chromatin datasets. Then, we
calculated reads per kilobase per million (RPKM) signal for
each experiment within each of these partitions. As an example,
compare the conversion of the ChlP-seq peaks (Figure 1A) with
the RPKM ChlP-seq signals (Figure 1C) in the gsc locus. These
normalized tracks properly transform the raw signal into a form
that our downstream unsupervised neural networks can accept
to perform clustering.

Next, we implemented a strategy for highly dimensional data
integration through linked SOMs (Jansen et al., 2019) (Figure 1D).
This involved performing unsupervised learning through SOMs
on each type of data separately, followed by metaclustering to
generate a separate RNA SOM and DNA SOM. For the RNA
SOM, genes are clustered in terms of similarities in expression:
spatially, temporally, and by effects of perturbation. For the
DNA SOM, the DNA regions are clustered based on similarities

in DNA accessibility, histone modifications, and combinations
of TFs bound. These RNA SOM and DNA SOM clusters are
then linked such that clustered genes are associated with nearby
clustered DNA partitions. Additionally, separately created spatial
RNA SOM clusters were incorporated into the network analysis
(discussed further below). This combined approach allows for
groups of CRMs to be linked to their nearby target gene expres-
sion profiles for further network analysis (Figure 1D).

RNA SOM identifies gene expression modules

To identify different gene expression cohorts present during
early Xenopus development, we performed unsupervised
learning on the RNA-seq experimental data by training a SOM
followed by metaclustering (STAR Methods). Due to the experi-
mental matrix being “dominated” by time-course expression
data, the trained map displayed a time-course-dependent struc-
ture such that genes that have similar temporal profiles, such as
gsc, nodall, lhx1, osr1, hhex, and osr2 being located in SOM
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Figure 2. RNA-seq SOM metaclustering reveals developmental gene modules that contain similarly regulated genes

(A) SOM slices relating to gene expression signal Wildtype at stage 10.5 and the fold change between Foxh1 MO and control experiments at stage 10.5. Creation
of SOM visualization is described in STAR Methods. Metaclusters containing genes from the core ME network show unique temporal dynamics during devel-
opment. nodal, nodal2, and sia are grouped left and gsc, nodal1, Ihx, and osr2 are grouped right (top). Overlaid metacluster boundaries show the genes that are

up- and down-regulated upon Foxh1 MO KD (bottom).

(B) Each metacluster is filled with genes with a similar expression profile (labeled “Eigen-Profile”); for example, a heatmap of the genes in metacluster 11 is shown.
(C) Heatmap of average temporal expression profiles of genes belonging to 13 RNA metaclusters. Parentheses after RNA metaclusters indicate number of genes

in each RNA metacluster.

(D) Two-tailed Wilcox hypothesis analysis applied on gene metaclusters. Each metacluster responded to each MO experiment differently at different time points.
(E) GO term enrichments for genes within three example RNA SOM metaclusters. Each metacluster had unique functional enrichments supporting the coherence

of these clusters.
See Figure S1.

units in one general area of the 2D map, whereas genes that tend
to peak earlier, such as nodal, nodal2, and sial, were in SOM
units in another section (Figure S1A) (Owens et al., 2016). In
contrast, although comparisons between gene expression KDs
using antisense morpholino oligonucleotides (MOs) and their
controls were a minority in this dataset (Figure 1B), they do
show local differences on the 2D maps across adjacent meta-
clusters (Figure S1B). Thus, the metaclustering of the units of
the map had the capacity to capture these differences.

In all, we recovered 84 distinct RNA SOM metaclusters that
capture the different gene expression profiles present in the
included data (Figures 2A and S1B; Table S1A) (labeled R# for
each RNA metacluster). Genes that share similar expression pro-
files across all experiments such as dorsal ME genes activated
during midblastula stage, including nodal, nodal2, and sia1, clus-
tered together in metacluster R82. Organizer genes gsc and

4 Cell Reports 38, 110364, February 15, 2022

hhex, which showed transient zygotic expression peaking at
stage 10, clustered together in metacluster R11 (Figure 2B).
Meanwhile, genes in metacluster R76 (Figure 2C), which include
foxa2 and gli3, did not become highly expressed until mid-gas-
trula stage 11 and steadily increased until stage 13. In addition
to spatiotemporal expression, genes within each metacluster
showed distinct responses to perturbation experiments (Fig-
ure 2D). For example, the 110 genes in metacluster R11 had
similar responses to multiple MO perturbation and temporal con-
ditions. Notably, the genes in this group were down-regulated in
stage 10 after inhibiting Foxh1 expression (Foxh1 MO experi-
ment), whereas the 728 genes in R58 and the 527 in R72 were
up-regulated. To further show that each metacluster is distinct,
we performed Gene Ontology (GO) enrichment analysis on
each (Figure 2E). Metacluster R11 contained genes with func-
tions related to dorsal/ventral patterning and cell fate, whereas
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Figure 3. SOM-based clustering shows Foxh1 co-binding and functional gene modules during gastrulation

(A) Heatmap of Foxh1 ChIP-enriched metaclusters that visualizes the different patterns of co-regulation present in Foxh1-bound CRMs. The heatmap is initially
expressed as TPMs and then maximum normalized. Blue and red represent regions with low and high signals, respectively.

(B) Experiment hierarchy of ATAC/ChIP-seq data after metacluster correction. The developmental stages of each experiment are indicated by the same color

coding as (A).

(C) GO term enrichments for genes nearby genome regions within three example ATAC/ChIP SOM metaclusters.

metacluster R72 had genes related to cell proliferation. See Ta-
ble S1B for other GO term analysis of metaclusters. The differ-
ences in biological functions and properties among these GO
term lists suggest that the RNA SOM distinguishes sets of genes
based on their expression behaviors under different conditions.

DNA SOM identifies chromatin states and combinatorial
TF binding

To prepare the data from the collected ChIP-seq/ATAC-seq ex-
periments for machine learning, we separated the X. tropicalis
genome into 731,726 genome partitions using called peaks from
each experiment (Figures 1C and S3) and computed RPKMs for
each experiment over these regions. We then performed unsuper-
vised learning on this matrix with a SOM, and further metacluster-
ing identified 88 distinct DNA profiles present in the data (see Fig-
ure 3A for Foxh1-enriched metacluster profiles; see Figure S3 and
Table S2A for all metacluster profiles) (labeled D# for each DNA
metacluster). Like ChromHMM, these clustered partitions are
differentiated by histone marks according to different chromatin
states, such as H3K4me1-marked active or primed enhancers
(metacluster D71 and D58; Figure 3A) (Heintzman et al., 2007;
Creyghton et al., 2010; Buenrostro et al., 2013), H3K9me2/3-

and H4K20me3-marked heterochromatic regions (metacluster
D72 and D29; Figure S3) (Schotta et al., 2004), and unmodified re-
gions (metacluster D9; Figure S3) (Hontelez et al., 2015). Addition-
ally, the hierarchical clustering over these metacluster profiles
(Figures 3B and S3) shows Polycomb repressive H3K27me3
marked regions (Cao et al., 2002) are separated from other chro-
matin marks in metaclusters D45 and D84 (Figure S3). Similarly,
promoter regions marked by H3K4me3 ChIP-seq signals clus-
tered together (D28 and D87; Figure S3) (Santos-Rosa et al.,
2002). Interestingly, metacluster D51 has a strong H3K27me3
and H3K4me1 signal, which indicated that this metacluster con-
tains inactive promoters and putative poised enhancers, whereas
metacluster D77 replaced the H3K27me3 signal with H3K27ac,
which indicated active promoters and Ep300-positive enhancers.

Next, we searched within enhancer-marked regions and visual-
ized interactions of known TF co-bindings via 2D-SOM. For
example, previously, we have shown that the maternally ex-
pressed endodermal TFs Otx1, Vegt, and Foxh1 can co-bind
CRMs, and Otx1 and Vegt synergistically activate endodermal
gene expression during cleavage to early blastula stage 8 (Paraiso
etal., 2019). In this analysis, Figure S1C highlights that Otx1, Vegt,
and Foxh1 ChIP-seq data showed considerable overlap and
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simultaneous enrichment in metaclusters D77, D71, and D50 (see
Figure 3A for their full DNA signal profile). Second, there are signif-
icant metacluster overlaps (D20, D39, D58, D71, D77, D45, and
D51) between Ep300 and Foxh1 at stage 9 (Figure S1D), indicating
a close association between these two factors. Lastly, unlike the
early binding of Foxh1 during blastula stages 8-9, Foxh1 binding
during early gastrula stage 10 is enriched near dorsal ME genes
and is associated with the Nodal co-factor Smad2/3 binding as
seenin D77 (Chiuetal.,, 2014; Charney et al., 2017b). Consistently,
Foxh1 binding and Smad2/3 binding were highly correlated as
shown by an extensive overlapping heatmap, whereas a heatmap
representing Foxh1 binding during blastula stage only partially
overlapped with Smad2/3 (Figures S1D and S3). The fact that
metaclusters D39, D58, and D71 are free of Smad2/3 but asso-
ciate with Ep300 indicates that many of the Foxh1-bound regions
have Nodal signaling-independent activity. These analyses illus-
trate the advantage of presenting the ChIP-seq data with a
SOM analysis to visually inspect TF-TF interactions and uncover-
ing functional differences of closely related TFs.

Outside known interactions, we find some surprising combina-
tions of TF binding. For example, there is a substantial overlap be-
tween the Foxh1 and Gsc SOM maps from the stage 10.5 gastrula
(Figure S1D). Interaction between Gsc and Foxh1 has not been
well documented, but there is evidence that they directly interact
and regulate the expression of the endodermal gene mix1 (Izzi
et al., 2007). Our SOM results suggest that such an interaction
may be more widespread during ME specification. Next, the bind-
ing of mesodermal regulator Tbxt (Smith et al., 1991) at stage 12
and the endodermal regulator Sox17 (Hudson et al., 1997; Mu-
kherjee et al., 2020) at stage 10.5 correlated well with each other
(Figures S1E and S83). This finding indicates that Sox17 and Tbxt
bind to similar locations in the genome even if they are expressed
in different locations within the embryo. If Sox17 remains bound to
these regions until stage 12, this could indicate either a competi-
tive or an independent interaction between Tbxt and Sox17 at
stage 12 to generate distinct mesodermal and endodermal line-
ages. In support of the latter, the expression patterns of Tbxt
and Sox17 are also non-overlapping in mice (Lolas et al., 2014).
In all, this provides evidence toward a possible conserved mutual
exclusion mechanism between Tbxt and Sox17 regulating meso-
derm and endoderm development. Lastly, at early gastrula stage
10, the binding of dorsal ME factors Ctnnb1 (B-catenin; Wnt
signaling TF) (Nakamura et al., 2016; Heasman et al., 1994) and
Foxh1 (Nodal signaling co-factor) (Chen et al., 1996) clusters
with the ventral specifying TF Smad1 (BMP signaling TF) (Graff
et al., 1996; Afouda et al., 2020) (Figures ST1F and S3). Some of
these CRMs that show interactions with Wnt, BMP (bone morpho-
genetic protein), and Nodal signaling pathways may represent the
nodes critical in controlling the formation of the dorsal-ventral axis
during early embryogenesis. These newly identified combinatorial
interactions of TFs underline the usefulness of SOM analysis and
would be the topic of further research.

Distinct genes and consensus DNA binding motif
profiles are associated with different DNA SOM
metaclusters

To further characterize DNA metaclusters, we performed GO
enrichment analysis on the genes whose TSS (transcriptional
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start site) was the closest to the regions within each DNA meta-
cluster (Figure 3C; see Table S2B for the full list). Embryonic pro-
cesses correlated with the gene set associated with DNA regions
in metacluster D45 are linked to organ and tissue development,
while those near metacluster D77 are associated more specif-
ically with morphogenesis and patterning. Additionally, the
genes near regions in metacluster D51 are enriched for GO terms
associated with cellular and developmental processes. When
matched with the RNA metaclusters, these genes were highly
enriched in R4, R16, and R76 (see Figure 2A for these profiles),
which were all characterized by expression at later time points.
The GO analysis thus indicated the genome segments in these
DNA metaclusters are used in different transcriptional programs
and, thus, require differential gene regulation.

In order to identify the TFs that may control the expression of
genes with these distinct metaclusters (D45, D51, and D77), we
performed consensus DNA binding motif analysis on each meta-
cluster. After removing the shared motifs among the metaclus-
ters, 63 unique TF motifs to metacluster D45 were recovered,
such as Smad2/3, Sox7, and Ventx. These are well-known TFs
involved in ME development (Lagna et al., 1996; Ault et al.,
1996; Schmidt et al., 1996; Zhang et al., 2005). Metacluster
D77 contained 56 unique TF maotifs, including Foxa2 and Tcf3
(also known as E2a), which are important in the regionalization
of ME (Zorn and Wells, 2009; Wills and Baker, 2015). Finally,
37 TF motifs, including Gata6, which is important for endoderm
development (Afouda et al., 2005), are found in metacluster
D51. D51 also includes the Tead1 motif, a known repressor in
stem cells (Maeda et al., 2002), and the regions in D51 are also
decorated with the repressive H3K27me3 mark. Based on these
analyses, we concluded that the DNA SOM clustering managed
to separate the genome partitions into groups with different bio-
logical functions.

A spatial RNA SOM discovers independent
spatiotemporal gene modules

Unlike the MO KD data, which were successfully incorporated
into the SOM metaclustering (Figure 2D), genes in the full RNA
SOM did not separate on the map based on their spatial expres-
sion profiles. This was due to the full RNA SOM being too
focused on the temporal data provided, and so we decided to
perform a parallel analysis to provide further insights. For this,
we trained a separate SOM, based on just the spatial RNA
data from dissected early gastrula (stage 10.5) tissues (Blitz
et al., 2017). This analysis provided an excellent separation of
genes based on their spatial expression (Figure 4A), and the
metaclustering separation followed the differential areas of the
map well (labeled sR# for each spatial RNA metacluster). sRs
sR9, sR8, and sR1 had quite visible differential spatial gene
expression, and sR15 and sR8 showed differential gene expres-
sion when the average fold change from each experiment to the
whole embryo for each metacluster was plotted (Figure 4B). To
show statistical significance of this differential expression, we
used the hypothesis tool in SOMatic to find that sR1, 6, 8, 9,
12, and 15 were significantly different from whole-embryo
expression levels (Figure 4C). sR8, 15, and 9 were enriched in
the endoderm (vegetal pole), and sR12, 1, and 6 were enriched
in the mesoderm (marginal zones) and ectoderm (animal cap).
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Figure 4. RNA metaclusters can be further segregated by spatial RNA SOM
(A) SOM slices from the spatial RNA SOM analysis corresponding to RNAs from the animal, dorsal, and vegetal explants with overlaid spatial RNA metacluster

(sR) boundaries. Some important sR locations are noted.

(B) Heatmap of the fold change of genes within sRs over whole-embryo signal, indicating enrichment and reduction of genes in particular RNA metaclusters.
(C) Heatmap of statistical difference between gene expression in each tissue and the whole embryo. Six sRs showed statistically significant differences in

ectoderm/mesoderm or in endoderm.

(D) Joint membership of genes in sRs and RNA metaclusters from the full RNA dataset. Rows and columns are hierarchically clustered.
(E) Temporal (from wild type) and spatial gene expression profiles for genes in sR9, sR6, sR15, and sR1 and R38.
(F) Average temporal and spatial gene expression profiles for genes in R23, R16, R11, R10, or R1, based on sRs.

To further explore these sets of genes, we overlapped them
(Figure 4D) with the full RNA SOM clustering shown in Figure 2C.
Hierarchically clustering the sRs based on gene overlap showed
three separate sR groupings, sR8/sR12, sR1/sR9, and sR6/15,
that had similar overlap with the full RNA SOM. Interestingly,
each group contained one metacluster significantly enriched in
the endoderm and the other enriched in the ectodermal and
mesodermal experiments (e.g., Figure 4C, compare sR8 and
sR12), and each grouping had a specific set of full RNA meta-
clusters (temporal profiles) with which it overlapped. These ob-
servations suggested that there might be sets of potential
spatial-specific TFs activated simultaneously in different parts
of the embryo that bring about the spatial gene patterns we
see in the developing embryo.

To ensure that this observation was not an artifact of the clus-
tering method, we plotted the raw profiles of multiple genes in
one full RNA metacluster (R38) and classified those genes by
their eventual membership in the differential sRs (Figure 4E).
Based on the time-course data, these genes are activated at

about 5 h of development, and they each have very different
spatial profiles. We also plotted the average profiles of each of
the genes in each of the metacluster overlaps (Figure 4F). As ex-
pected, the temporal profiles of the genes match in each of the
full RNA SOM metaclusters. However, we noted significant
spatial differences. This prompted us to explore the regulatory
elements near these genes to identify the spatial-specific TFs
that are driving this behavior.

Multi-omic data integration of ChIP/ATAC SOM and
spatial RNA SOM provides direction of transcription
output

Previously, we developed the linked SOM method specifically to
integrate scRNA-seq and scATAC-seq datasets (Jansen et al.,
2019). Metaclusters of a scRNA-seq SOM were linked to a scA-
TAC-seq SOM to build sets of genome regions that had similar
scATAC-seq profiles near genes with similar scRNA-seq pro-
files. We determined that this linked SOM approach could be im-
plemented similarly with the spatial Xenopus RNA-seq and the
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Figure 5. sR assists in identifying candidate TFs for Xenopus ME differentiation
(A and B) Temporal and spatial gene expression profiles of TFs with motifs found near endodermally (A) or ectodermally (B) enriched genes. Asterisks indicate TFs

that show distinct spatial expression.

(C) Temporal and spatial gene expression profiles for spatially differential TFs (bold) matched with the average gene expression profile of their predicted targets.
Correlations were calculated by comparing their spatial gene expression profiles.
(D) The temporal and spatial gene expression profiles of genes important in Xenopus ME development, separated by RNA metacluster.

abundance of ChIP/ATAC-seq data to uncover the TFs that drive
the observed spatial patterns.

Our goal is to identify specific TF motifs that are enriched among
genes that are expressed in specific regions of embryos. We
applied the linked SOM approach to the spatial RNA SOM and
DNA SOM and generated a linkage between the 16 spatial RNA
and the 88 DNA metaclusters, resulting in 1,408 (16 x 88) LMs.
Amotif search was performed on each LM separately using the hu-
man motif database, and motifs that were specifically enriched ina
subset of LMs were identified. Of these motifs, we focused on
those that appeared near genes in the six differential sRs (Fig-
ure 4C) forming three groups: sR8/sR12, sR15/sR6, and sR9/
sR1 (Figure 4D). For each pairing, any motifs that appeared in
the union of the sRs were filtered out, and motifs that were specific
to one metacluster were retained (Figure S4A). To further enrich for
TFs with targets showing spatial expression, we searched for the
motifs that were shared in at least two of the sets (Figure S4B),
and plotted the temporal/spatial expression of 20 candidate TFs
that could bind to these motifs (Figures 5A and 5B).

Among those, we selected the TFs that showed a significant
(g < 0.05) differential spatial expression. From the motif set
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near endodermally enriched genes, 6 TFs showed significant dif-
ferential spatial expression (Figure 5A, asterisks), whereas from
the motif set near ectodermally enriched genes, we found 14
TFs (Figure 5B, asterisks). Figure 5C shows the temporal/spatial
expression profiles of these TFs alongside the average expres-
sion of their predicted targets. By computing the correlation of
the spatial signal (and not temporal) from the TFs and their pre-
dicted targets, we predicted the overall direction of transcrip-
tional output: potential activating or repressing roles of these
TFs. For example, in ectoderm where foxal and foxa4 expres-
sions are low relative to in endoderm, target gene expression
levels are high in ectoderm. This suggests that Foxal and
Foxa4 had a strong negative correlation between their spatial
expression and their potential targets, indicating that they have
a role in repressing mesodermal and ectodermal fates.

This plot shows that the majority of predicted spatial regula-
tors of endodermal targets are activators, whereas for the ecto-
dermal targets, most regulators are repressive in nature. This is
consistent with the view that ME cells are induced from pluripo-
tent cells that differentiate via an ectodermal default path. For
cells to differentiate from an ectodermal to an ME state, certain
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ectodermally expressed genes need to be reduced in expression
(through endodermally/vegetally expressed repressors) and
other genes need to be expressed (through endodermally ex-
pressed activators). Of the 14 ectodermal TFs, only 4, Ghrl1,
Pou2f1, Sox11, and Atf3, had a positive spatial correlation with
their targets. Some of these genes are known activators in ecto-
dermal tissues in other organisms (Edgar et al., 2013). Sox11isa
positive regulator of neuronal differentiation in frogs, chick, and
mouse (Bergsland et al., 2006; Lin et al., 2010; Chen et al.,
2016). Pou2f1 is an activator that is expressed in a wide variety
of cell types, including in ectodermal cell lineages in Xenopus
laevis (Veenstra et al., 1995).

There were 10 TFs with motifs near ectodermally expressed
genes that were marked as repressive because their expression
was significantly higher in the endoderm. Some of these were
already included in the core ME network, such as Foxai,
Foxa2, Foxa4, and Otx1, with others being new potential addi-
tions. The data support the notion that these TFs have a repres-
sive role to suppress unwanted ectodermal gene expression in
the endoderm. Of the six new TFs, only two are expressed at
high enough levels at stage 10 to be considered for being added
to the core network: Hsf2 and Hes7.2. Additionally, there are
three TFs with motifs that were found near endodermal genes
with a high enough gene expression at stage 10 to be considered
as well: Phox2a, Mycn, and Uncx. Each of these genes has
similar temporal/spatial profiles to the genes from the core ME
network (Figure 5D) and were included in the downstream
network analysis.

Generation of a comprehensive ME GRN using multi-
omic data integration

In our hand-curated ME GRN (Charney et al., 2017a), a bipartite
criterion was used to determine direct TF regulation, whereby a
gene was considered a likely TF target if its expression is
affected by the perturbation of the TF and if the CRMs near the
gene show physical association with the TF. This work required
a large investment in manpower and effort, and yet the network
was incomplete. With the success of the linked SOM method on
finding specific motifs from the spatial RNA and DNA data, we
moved to implementing the approach on the full RNA SOM
and DNA SOM. This generated a linkage between the 84 RNA
metaclusters and the 88 DNA metaclusters, resulting in 7,392
(84 x 88) LMs.

Unlike the spatial/DNA-linked SOM analysis, we were inter-
ested in using a set of more specific motifs for known maternal
and signaling factors, and as such, we utilized ChIP experiments
to build a Xenopus-specific DNA binding motif database of
Eomes, Foxa2, Foxh1, Gsc, Mix1, Otx1, Otx2, Smad2/3,
Sox17, Sox7, and Vegt (Table S3) and motifs for human Tcf711/
2. When we scanned each LM for these motifs using FIMO
with a g of 0.1, we received a set of 271,736 total significant motif
instances. Of these, the largest portion belonged to Foxh1 with
134,238 detected motif instances. These initial motif lists were
again filtered by LM motif density (STAR Methods) to find signif-
icantly (p < 0.05) represented motifs in each LM, which reduced
the overall number to 201,157, with 118,722 belonging to Foxh1.

Next, we developed a filtering strategy to focus on the targets
active at the developmental time of interest, starting with Foxh1
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targets. Limiting the Foxh1 motif instances to those in DNA meta-
clusters with Foxh1 ChlIP signal in the 75th percentile near genes
in RNA metaclusters with significant gene expression (>1 TPM) in
stages 8-10.5 reduced the number further to 117,253. This small
reduction shows that the motif analysis was mostly concordant
with the ChIP signal, even before filtering, suggesting that
most of the 118,722 genome regions with an identified Foxh1
motif were actually bound by Foxh1. To ensure that we analyzed
only active Foxh1 binding sites, we incorporated ChIP-seq/
ATAC-seq metaclusters that have an enriched Ep300 signal at
stage 9. Application of this filter dramatically dropped the list
of potential functional Foxh1 motifs from 118,722 to 26,445
and reduced the number of predicted target genes from
12,831 t0 6,717.

To assess the quality of our GRN, we sought to estimate the
false positive rate (FPR) for predicted Foxh1 targets. Because
a set of true negative gene targets does not exist, we built a
list of likely true negative targets for Foxh1 by calling significantly
un-changing genes from each of the Foxh1 MO experiments
(stages 8, 9, and 10) with DEseq2 (Love et al., 2014) and inter-
sected the lists (Table S4). Of the 5,864 likely true negative target
genes, 696 were found within our set of potential targets. This
gave the analysis an 11.9% FPR (10.3% FDR), which we deemed
acceptable.

To further focus the network, we employed additional con-
straints by selecting RNA metaclusters that contained genes
that regulate gastrulation (Charney et al., 2017a), thereby filtering
to 11,295 Foxh1 motifs located near 2,747 unique genes (see Ta-
ble S5 for full table). Next, we filtered out genes that did not
encode TFs or growth factors from our previous works. After
this process, 1,492 Foxh1 functional motifs were predicted to
be near 242 TFs, and all genes from the curated core ME network
(Charney et al., 2017a) remained in the list of 242 (Table S6). This
final network includes 2,725 predicted connections for all 12 of
our ChlPed TFs with 321 total targets (https://tinyurl.com/
3jtrkrct for a full Cytoscape visualization; Figure S5B for full
filtering strategy). Finally, we visualized known and predicted
network connections of the 36 targets of Foxh1, Sox17, Tcf7I1,
Vegt, and Smad2/3 that were present in the core ME network
(Charney et al., 2017a) (Figures 6A and 7). Of these, 17 connec-
tions for Foxh1, 11 for Sox17, 8 for Tcf7I1, 5 for Vegt, and 2 for
Smad?2/3 were new to this analysis, which does not include other
new connections to the new members of the network. These new
potential TF/gene connections inform us what other TFs impinge
on ME GRN and thus should improve our understanding of the
regulatory processes behind the determination of ME cell states.

To assess whether Foxh1 and Sox17 function through these
CRMs, we mutated the DNA sequence motifs that bind these
TFs and then compared the activities of the mutant with wild-
type reporters (Figures 6B and 6C). In all cases, mutation of
Foxh1 and Sox17 binding sites resulted in a decrease in lucif-
erase expression relative to wild-type controls, supporting the
notion that these TFs primarily function to activate these genes.
We note that wild-type nodal reporter’s activity was elevated in
response to Sox17 KD, suggesting Sox17 represses nodal,
whereas the Sox17 binding site mutant’s decrease implicates
Sox17 as an activator of this gene. The reason for this discrep-
ancy is currently unclear. We also performed a luciferase
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Figure 6. GRN centered on the activity of Tcf711, Sox17, Vegt, Smad2/3, and Foxh1

(A) Our predicted developmental GRN. The active CRMs were identified based on the enrichment of their respective TFs, enrichment of Ep300 signal, and DNA
binding motif presence. Shown are literature identified targets (“prior direct targets”) and potential new connections (“new potential targets”). Note that only a
subset of targets is shown, and the network is focused only on TF and signaling molecule targets.

(B) Fold change of relative luciferase units in log scale of putative CRMs comparing Foxh1 binding site mutations over wild type. Each of these shows that
enhancer activity depends on Foxh1 binding sites. Two biologically independent experiments were performed.

(C) Fold change of relative luciferase units of putative CRMs comparing Sox17 binding site mutations over wild type. Each shows that enhancer activity depends
on Sox17 binding sites. Two biologically independent experiments were performed.

See Figure S6.

reporter analysis of wild-type and Foxh1 and Sox17 MO KD em-
bryos. The MO KD results were similar to that of TF binding mu-
tants (Figure S6D), suggesting that Foxh1 and Sox17 predomi-
nantly function as an activator for the genes belonging to
metaclusters R38 and R16.

To further test this method, we compared the predicted Tcf711
targets with a hold-out Ctnnb1 ChlIP dataset (Afouda et al., 2020)
(Figure S6D). Of the 26 predicted Tcf7I1 targets, we confirmed 15
during stages 8 and 9, including 6 new Tcf7I1 connections to TFs
sox17b, ventx2, mixer, gata2, hnf1b, and uncx. These peak over-
laps were significant according to regioneR (Gel et al., 2016)
analysis (p = ~3.3 x 107%). Taken together, we conclude that
the linked SOM method of regulatory prediction combined with
our new filtering methods shows a high-fidelity rate (10
confirmed cases of 12 tested directly for Foxh1 and Sox17; 15/
26 confirmed Tcf7I1 regulatory targets from only two stages),
while producing significantly more TF-CRM connections than
previous methods.

10 Cell Reports 38, 110364, February 15, 2022

Finally, to determine the potential effect of each of the pre-
dicted binding sites above, we examined several different
scoring methods and compared those methods’ abilities to pre-
dict the effect of each of the 12 validation experiments. Among
six methods used (average of each of the following: the
H3K4me1; H3K27ac; Ep300; TF ChIP signals to create a TF
signal density score; ATAC signals to build a chromatin accessi-
bility score; and a combined score by averaging each of the
above scores), the H3K4me1 score performed the best at pre-
dicting the downstream effect of validation (Figure S6E; Table
S7).

DISCUSSION

Here, in addition to publicly available Xenopus genomic data-
sets, we generated additional RNA-seq and ChIP-seq data.
We then combined three different SOM analyses to prioritize
and identify key ME TF targets. This integrated multi-omic
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Foxh1 bmpd4, cerl, eomes, foxal, foxa2, foxad, gata2, gatad, gataé,
gdf3, gsc, hes7.2, hhex, hnflb, hsf2, Ihx1, mix1, mixer, mtf1,
mycn, nodall, nodal2, nodal5, nodal6, osr2, otx1, otx2, pitx2,
sebox, sial, sia2, snail, sox17b, sox17a, tbxt, uncx, ventx1,
ventx2, wnt8a, zic2

Sox17 eomes, foxal, foxad, mix1, mixer, nodal, pitx2, snail, sox17a,

thxt, ventx2, wnt8a

Tcf711 bmpd4, cerl, eomes, foxal, gata2, gata6, hhex, hnflb, Ihx1,
mixer, mycn, nodall, nodal2, nodal6, otx2, phox2a, sial, sia2,

snail, sox17a, sox17b, tbxt, uncx, ventx1, ventx2, wnt8a

Vegt foxad, gsc, hes7.2, hnflb, mycn, nodall, nodal2, snail, uncx,
ventx2, wnt8a
Smad2/3 mycn, nodal, nodal6, osr2, otx2, phox2a, pitx2, uncx, zic2

Figure 7. New and known core ME TF targets

List of targets in the core ME network for the TFs: Foxh1, Sox17, Tcf7I1, Vegt,
and Smad2/3. Bolded entries are new to this analysis. Underlined entries were
successfully validated.

approach was successful in accurately recapitulating cellular dif-
ferentiation programs through network analysis. The generated
GRN was validated both experimentally and statistically, to pro-
vide a highly confident set of predictions of gene regulation con-
trolling Xenopus ME development. These predicted connections
included the known core ME networks from previous works
(Charney et al., 2017b; Paraiso et al., 2020) and also provided
a significant number of new connections. Our analysis repre-
sents one of the most data-driven and integrative attempts to
recapitulate the GRN of an in vivo developmental system.

Novel network targets of key mesendermal TFs
Numerous genomic analyses of individual TFs have been used to
understand early Xenopus development (Charney et al., 2017a).
In these experiments, combining a single, or a few, ChlP-seq da-
taset(s) and RNA-seq datasets in wild-type and perturbed states
has been used to identify direct transcriptional targets of TFs. A
major limitation of this type of analysis is that target identification
using a combination of ChIP peaks and large gene expression
differences in MO loss-of-function analysis could miss small
expression differences. By using an integrative approach that
contextualizes a single TF ChIP-seq binding site with the binding
of a multitude of regulatory proteins and correlating the binding
with the expression of nearby genes, we improve on the previous
approaches by leveraging multiple large datasets and receive
~25% as many potential actionable targets for Foxh1 (2,747 in
this work compared with 109 in previous works) (Chiu et al.,
2014). The usage of multiple types of RNA experimentation in
the core analysis was critical to this success because SOMs built
on smaller subsets of the data generated less complex cluster-
ings, which led to less specific linked metaclusterings and,
thus, fewer actionable targets (~201,000 versus ~102,000 mo-
tifs pre-filtering; 2,725 versus 44 connections in the final filtered
network).

Of the 40 genes from the core ME network (Charney et al.,
2017b), 34 had predicted functional Foxh1 motifs (Figure 7),
among which 14 genes were previously confirmed Foxh1 tar-
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gets. Although some genes, such as cer1, Ihx1, otx2, and sebox,
were previously shown to be regulated directly by Foxh1, bmp4,
gata4, gata6, and osr2 were never implicated as direct Foxh1 tar-
gets. Additionally, the metacluster of these genes, R16, also
included nine additional predicted targets, such as hoxd? and
irx2, which are critical to axis and pattern formation, respectively.
At present, their roles in early ME formation are unknown.
Another interesting metacluster is R38, of which only one of
the potential Foxh1 targets had previous evidence, wnt8a. The
majority of core ME genes in R38 (except tbxt), including
sox17a and sox17b, which is active in a different region from
wnt8a, were found to be similarly targeted by Foxh1. Comparing
the temporal profiles of R16 and R38 in Figure 2A shows that
these clusters have very similar temporal profiles, except genes
in R38 being expressed at a higher level than those in R16. This
suggests that although Foxh1 regulates the expression of these
genes, underlying mechanisms regulating these two metaclus-
ters are different.

The predicted ME network indicated that most of the genes in
R38 were regulated by Sox17, whereas none in R16 were pre-
dicted. Genes in R38 also maintained a higher gene expression
level than those in R16. One speculation is that this difference
in gene expression level is due to the positive feedback loop of
Sox17 (Sinner et al., 2004; Howard et al., 2007) pulling each of
these genes in lockstep with its expression. We tested the model
using reporter genes driven by the CRMs of mixer, tbxt, and
wnt8a and validated that the output is regulated by both Foxh1
and Sox17 TF input in vivo (Figures S5A and 5C). Additionally,
the stage 10 expression of genes in metacluster R1 (in particular
snai1) peaks at nearly the same time point as R38. This is the only
maternally and zygotically expressed metacluster with this peak
and was the only one predicted to be regulated by Sox17. Based
on the current validation experiments, we conclude that many of
the newly predicted interactions between TFs and CRMs are
likely to have relevant function in vivo.

Enhanceosomes, cooperativity, and antagonism

Although the focus of this work was to elucidate the important
CRMs for gene regulation, an important component of the linked
SOM analysis, the ATAC/ChIP-seq SOM, revealed interesting
clustering of TF binding suggestive of active enhanceosomes.
The output of this SOM has shown consistency with known
TF-TF interactions, such as that of endodermal maternal TFs
(Paraiso et al., 2019), Spemann organizer TFs (Yasuoka et al.,
2014), and mesodermal T-box TFs (Gentsch et al., 2013). This
unbiased multi-omic clustering approach renders support for
the importance of these respective enhanceosomes, complexes
of TFs on enhancers. In the future, chromatin clustering with
additional data is likely to reveal other interesting enhanceosome
biology relevant to development.

Enhanceosomes positively regulate gene expression. The
Ep300 co-activator is a histone acetyltransferase, and its inter-
action with CRMs is one of the frequently used genomic markers
of enhancer regions (Heintzman et al., 2007). MEME (Multiple
Expectation maximizations for Motif Elicitation) analysis of
Ep300 peaks reveals the enrichment of Sox and Fox TF binding
motifs, indicating that Ep300 is recruited to DNA via Sox and/or
Fox family TFs. Consistent with this observation, we find that
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early Ep300 binding clusters with Foxh1 (at stage 9) and late
Ep300 binding clusters with Foxa2 (at stage 10). Interestingly,
Ep300 did not cluster with Sox7 nor Sox17, indicating that other
Sox family TFs, such as Sox3, may be responsible for Ep300
recruitment. We also note that Smad2/3 binding, which is a
sign of Foxh1-mediated Nodal signaling activity, had a very
poor correlation with Ep300 (of the 7,707 Smad2/3 CRMs, only
41 overlapped with a significant Ep300 ChIP signal). This sug-
gests that Ep300 interaction is dynamic. It is initially recruited
to the potential sites by maternally expressed Sox and Fox TFs
and gradually replaced by other zygotic TFs, such as Foxa2.

Our ATAC/ChIP-seq SOM revealed surprisingly close clus-
tering of ChlP signals for TFs that have distinct spatial expression
differences (Figure S3). One of three examples includes the clus-
ter containing dorsally expressed regulator Sial (Lemaire et al.,
1995) and the ventrally expressed homeobox Ventx2 (Schmidt
et al., 1996). This is unexpected because these TFs are known
to specify opposing cell types (dorsal versus ventral) and known
to be expressed in spatially distinct embryonic regions. One pos-
sibility is that these two TFs bind competitively to similar motifs
and recruit two distinct enhanceosomes to the same enhancers,
depending on the cellular environment. For instance, Sial may
activate a subset of genes through these enhancers, whereas
in a different region of the embryo, Ventx2 may use these
same enhancers to repress target genes via recruiting a different
combination of co-factors. Alternatively, these enhancers could
be similarly regulated in dorsal and ventral regions of the embryo
by Sial or Ventx2, but other spatial-specific factors could
change the topology of the chromatin to target two distinct
sets of genes from the same enhancer. Second, we identified
this same pattern in other dorsal-ventral pairs of TFs, such as
the signaling pathway TF Ctnnb1 (Wnt signaling TF) (Stevens
et al., 2017; Heasman et al., 1994), Foxh1 (Nodal signaling co-
factor) (Chen et al., 1996), and Smad1 (BMP signaling TF) (Graff
et al., 1996). The first two are both important for establishing the
dorsal domain of the embryo, while Smad1 helps establish
ventral identity. Finally, we note a similar pattern for the TFs
Sox17 (Hudson et al., 1997) and Tbxt (Smith et al., 1991), which
are critical TFs in forming the endoderm and mesoderm, respec-
tively. A study further focused on these competitive binding loca-
tions could help answer how cells dynamically regulate gene
expression by sharing similar enhanceosome modules during
gastrulation.

In conclusion, we show that linked SOMs are capable of
efficiently predicting TF-enhancer interactions to understand
the gene regulatory mechanism in an archetypical develop-
mental system. To do this, our approach used a multi-omic
dataset to create a highly accurate mechanistic GRN without
converting our ChIP/ATAC-seq data into RNA-seq-like data.
These results cemented the important role of endodermal
TFs, such as Foxh1 and Sox17, in coordinating the expression
of many important developmental genes. Our work provides a
useful, new platform for the data integration of multi-omic da-
tasets to uncover TF-enhancer interactions in in vivo cell and
developmental systems. Although we have applied linked
SOM for bulk sequencing data, the approach is flexible and
can easily integrate other datasets, such as single-cell
sequencing datasets.
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Limitations of the study

This work makes predictions of TF binding sites through machine
learning and motif discovery and, as such, will have false posi-
tives, which we have estimated at ~12%. In addition, Xenopus
TF motifs are not as well studied as other organisms, and so
we were limited in the predictions we could make to those
well-studied TFs. Finally, due to practical limitations, we were
able to validate targets for only two of our main TFs.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

X. tropicalis anti-Ventx2 rabbit polyclonal antibody Covance; This paper N/A

X. troplicalis anti-Sox7 rabbit peptide polyclonal antibody Charney et al. (2017b) N/A

H. sapiens anti-Smad1/5/8 rabbit polyclonal antibody Santa Cruz Biotechnology Cat#sc-6031x
X. tropicalis anti-Mix1 rabbit polyclonal antibody Sudou et al. (2012) N/A

X. tropicalis anti-Sia1 rabbit polyclonal antibody Sudou et al. (2012) N/A

X. tropicalis anti-Vegt rabbit polyclonal antibody Sudou et al. (2012) N/A
Chemicals, Peptides, and Recombinant Proteins

Dynabeads Protein G Life Technologies Cat#10003D

Critical Commercial Assays

NEXTflex ChIP-seq kit
Superscript Il

KAPA HiFi HotStart ReadyMix (2x)
Agencourt AMPure XP beads
Nextera DNA Library Prep Kit

Bioo Scientific
Life Technologies
Kapa Biosystems
Beckman Coulter
lllumina

Cat#NOVA-5143-01
Cat#18064014
Cat#KK2601
Cat#A63881
Cat#FC-121-1030

Deposited Data

X. tropicalis genome version 9.0

tropicalis Tbxt Stage 12 and 20 ChIP-seq
tropicalis Eomes Stage 12, ChIP-seq
tropicalis Vegt Stage 12, ChlP-seq
tropicalis Foxh1 Stage 10.5, ChIP-seq
tropicalis Smad2/3 Stage 10.5, ChIP-seq
tropicalis Gsc Stage 10.5, ChIP-seq
tropicalis Lhx1 Stage 10.5, ChIP-seq
tropicalis Otx2 Stage 10.5, ChIP-seq
tropicalis Ep300 Stage 10.5, ChIP-seq
tropicalis Tle Stage 10.5, ChIP-seq
tropicalis H3K4me1 Stage 10.5, ChlP-seq
tropicalis H3K27ac Stage 10.5, ChIP-seq

tropicalis control and a-amanitin treated embryos
H3K27me3 Stage 11, ChIP-seq

X. tropicalis H3K27me3 Stage 9 and 10.5, ChIP-seq
X. tropicalis H3K36me3 Stage 9 and 10.5, ChlP-seq

X. tropicalis control and a-amanitin treated embryos
H3K4me3 Stage 11, ChiIP-seq

X. tropicalis H3K4me3 Stage 9 and 10.5, ChIP-seq
X. tropicalis H3K9ac Stage 9 and 10.5, ChIP-seq

X. tropicalis H3K9me2 Stage 9 and 10.5, ChIP-seq
X. tropicalis H3K9me3 Stage 9 and 10.5, ChIP-seq
X. tropicalis H4K20me3 Stage 9 and 10.5, ChIP-seq

X. tropicalis control and a-amanitin treated embryos
Ep300 Stage 11, ChIP-seq

X. tropicalis Ep300 Stage 9 and 10.5, ChIP-seq
X. tropicalis Ctnnb1 Stage 10, ChIP-seq
X. tropicalis Foxh1 Stage 8 and 9, ChiIP-seq
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Hellsten et al., 2010;
Karimi et al. (2018)

Gentsch et al. (2013)
Gentsch et al. (2013)
Gentsch et al. (2013)
Chiu et al. (2014)
Chiu et al. (2014)

(
Yasuoka et al. (2014
Yasuoka et al. (
Yasuoka et al. (
Yasuoka et al. (2014
Yasuoka et al. (2014

Hontelez et al. (2015)

Hontelez et al. (2015)
Hontelez et al. (2015)
Hontelez et al. (2015)

2015
2015
2015
2015
2015
2015

Hontelez et al.
Hontelez et al.
Hontelez et al.
Hontelez et al.
Hontelez et al.

—_~ e~ o s o~

)
)
)
)
)
Hontelez et al. )

Hontelez et al. (2015)
Nakamura et al. (2016)
Charney et al. (2017b)

RRID: SCR_003280; URL:
http://www.xenbase.org/

GEO: GSE48560
GEO: GSE48560
GEO: GSE48560
GEO: GSE53654
GEO: GSE53654
DRA: DRA000576
DRA: DRA0O00509
DRA: DRA000508
DRA: DRA000505
DRA: DRA000506
DRA: DRA000573
DRA: DRA000574
GEO: GSE67974

GEO: GSE67974
GEO: GSE67974
GEO: GSE67974

GEO: GSE67974
GEO: GSE67974
GEO: GSE67974
GEO: GSE67974
GEO: GSE67974
GEO: GSE67974

GEO: GSE67974
GEO: GSE72657
GEO: GSE85273
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REAGENT or RESOURCE SOURCE IDENTIFIER

X. tropicalis Foxa2 Stage 10, ChIP-seq Charney et al. (2017b) GEO: GSE85273
X. tropicalis RNA Pol Il Stage 8, 9 and 10.5, ChIP-seq Charney et al. (2017b) GEO: GSE85273
X. tropicalis Vegt Stage 8, ChIP-seq Paraiso et al. (2019) GEO: GSE118024
X. tropicalis Otx1 Stage 8, ChlP-seq Paraiso et al. (2019) GEO: GSE118024
X. tropicalis Sox17 Stage 10.5, ChIP-seq Mukherjee et al. (2020) GEO: GSE148726
X. tropicalis Mix1 Stage 10.5, ChIP-seq This Paper GEO: GSE118024
X. tropicalis Sial Stage 10, ChIP-seq This Paper GEO: GSE118024
X. tropicalis Sox7 Stage 8, ChIP-seq This Paper GEO: GSE118024
X. tropicalis Ventx2 Stage 11, ChIP-seq This Paper GEO: GSE118024
X. tropicalis Smad1 Stage 11, ChIP-seq This Paper GEO: GSE118024
X. tropicalis Vegt Stage 9 and 10.5, ChIP-seq This Paper GEO: GSE118024
X. tropicalis ATAC-seq Stages 9, 10.5 and 12 Bright et al. (2021) GEO: GSE145619
X. tropicalis wild type embryo temporal profiling 0.0-9.5 Owens et al. (2016) GEO: GSE65785
hpf, RNA-seq

X. tropicalis gastrula stage (Stage 10.5) dissected Blitz et al. (2017) GEO: GSE81458
fragments, RNA-seq

X. tropicalis wild type and Foxh1 MO injected embryos Afouda et al. (2020) ArrayExpress: E-MTAB-8555
Stage 8, 9 and 10.5, RNA-seq

X. tropicalis DMSO- and SB431542-treated (Smad2/3 KD) Afouda et al. (2020) ArrayExpress: E-MTAB-8555
embryos Stage 8, 9 and 10.5, RNA-seq

X. tropicalis wild type and Ctnnb1 MO injected embryos Mukherjee et al. (2020) GEO: GSE148726
Stage 7-12 RNA-seq

X. tropicalis wild type, Control MO injected and Sox17 MO Mukherjee et al. (2020) GEO: GSE148726
injected embryos Stage 9-10 RNA-seq

X. tropicalis wild type and Tcf7I1 MO injected embryos This Paper GEO: GSE118024

Stage 9-10 RNA-seq

Experimental Models: Organisms/Strains

X. tropicalis, out-bred Nigerian University of Virginia, NASCO URL: https://www.enasco.com/
Oligonucleotides

Template switching oligo Picelli et al. (2014) N/A

ISPCR primers Picelli et al. (2014) N/A

Indexing primers Buenrostro et al. (2013) N/A

Foxh1 MO 5'-TCATCCTGAGGCTCCGCCCTCTCTA-3’ GeneTools; Chiu et al. (2014) N/A

Tcf711 MO 5'-CGCCGCTGTTTAGTTGAGGCATGA-3' GeneTools; Liu et al. (2005) N/A

Sox17a MO 5'-AGCCACCATCAGGGCTGCTCATGGT-3’ GeneTools; Mukherjee et al. (2020) N/A

wt zic2 F: ctgtgagtatttacattttacccttge IDT N/A

wt zic2 R: acaatgctacatgctcgg

wt foxa2 F: cagatttcacacagaaaaattaggatc IDT N/A
wt foxa2 R: caccattattctttcaaccacce

wt eomes F: tacatctctataagtatgtgtgca IDT N/A
wt eomes R: caggataacagagaaggggct

wt gata6 F: aacactcatagtttccctttg IDT N/A
wt gata6 R: atctcattatgctaaatagacagagg

wt sox17b F: ggttagccagcaggtaactg IDT N/A
wt sox17b R: aagcaggagaacttgattataataaag

wt osr2 F: gtccctgtacaagtaggacatt IDT N/A
wt osr2 R: ggaaggcattttaccaaatcctac

wt bmp4 F: ggtggtatttccagggttcccttta IDT N/A
wt bmp4 R: aagcagcacactgcaacatttg

wt gata4 F: agcatggacatgtttaatggact IDT N/A
wt gata4 R: ctatttacagctaataccgctcagtg

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
wt wnt8 F: aatgggcagaatatgagaagagt IDT N/A
wt wnt8 R: gttcacagtaggaagtgatctaaagc

wt mixer F: gggcaaagtcatgagattggt IDT N/A
wt mixer R: aagagcattggtactgccg

wt tbst F: gcgttcattttgccaccaa IDT N/A
wt tbst R: gtggcaatgcagataaatcaact

wt nodal F: acactttaaaaggattaatgggatttatct IDT N/A
wt nodal R: gcacttggagtgaatagaatgg

wt admp F: atatatatatatatactaacagtatatcttgcccaaag IDT N/A
wt admp R: aagtaaacttgcaacttaaaaaattaaattttatttc

wt map7d3 F: agttttccttccaccaaagaaaa IDT N/A
wt map7d3 R: agcttgcctgtatgggat

wt pcdh8.2.1 F: aaatctctttcatattcagccgg IDT N/A
wt pcdh8.2.1 R: tgagttgttttatgcaatatattttttatagaggc

wt pcdh8.2.2 F: acctaaagtcacatcccatcag IDT N/A
wt pcdh8.2.2 R: ttgatgacatcaagaaaggtatctaatc

wt pcdh8.2.3 F: ggtgcagtgaatggcttattc IDT N/A
wt pcdh8.2.3 R: caccttagtgccttcataattgg

wt Pdk4 F: agactaaaactgttataagaatttctaatttttaataaatatttg IDT N/A
wt pdk4 R: gtaaagttgcactgctttattttacac

wt serpinf2 F: agaaatggtgcaccactg IDT N/A
wt serpinf2 R: tcaaaatcatgcactgaaggatcaa

wt sfrp2 F: aatgagaaaagtgtggtataaga IDT N/A
wt sfrp2 R: acactgctactttttaagacagat

wt slc12a3.2 F: gaacatatatgtactatgcacttctaacc IDT N/A
wt slc12a3.2 R: ttatgctttattcagaaaatattgtaatatttatatgtg

wt zic2 F: ctgtgagtatttacattttacccttgc IDT N/A
wt zic2 R: acaatgctacatgctcgg

mutant foxa2 F: cagatttcacacagaaaaattaggatc IDT N/A
mutant foxa2 R: caccattattctttcaaccaccc

mutant eomes F: tacatctctataagtatgtgtgca IDT N/A
mutant eomes R: caggataacagagaaggggct

mutant gata6 F: aacactcatagtttccctttg IDT N/A
mutant gata6 R: atctcattatgctaaatagacagagg

mutant sox17b F: ggttagccagcaggtaactg IDT N/A
mutant sox17b R: aagcaggagaacttgattataataaag

mutant osr2 F: gtccctgtacaagtaggacatt IDT N/A
mutant osr2 R: ggaaggcattttaccaaatcctac

mutant bmp4 F: ggtggtatttccagggttcccttta IDT N/A
mutant bmp4 R: aagcagcacactgcaacatttg

mutant gata4 F: agcatggacatgtttaatggact IDT N/A
mutant gata4 R: ctatttacagctaataccgctcagtg

mutant wnt8 F: aatgggcagaatatgagaagagt IDT N/A
mutant wnt8 R: gttcacagtaggaagtgatctaaagc

mutant mixer F: gggcaaagtcatgagattggt IDT N/A
mutant mixer R: aagagcattggtactgccg

mutant tbst F: gcgttcattttgccaccaa IDT N/A
mutant tbst R: gtggcaatgcagataaatcaact

mutant nodal F: acactttaaaaggattaatgggatttatct IDT N/A
mutant nodal R: gcacttggagtgaatagaatgg

Recombinant DNA

—104 gsc minimal promoter-pOLuc Watabe et al. (1995) N/A
pRL-SV40 Promega Cat#E2231
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REAGENT or RESOURCE SOURCE IDENTIFIER
zic2 Luc reporter This Paper N/A
zic2 mutant Luc reporter This Paper N/A
foxa2 Luc reporter This Paper N/A
foxa2 mutant Luc reporter This Paper N/A
eomes Luc reporter This Paper N/A
eomes mutant Luc reporter This Paper N/A
gata6 Luc reporter This Paper N/A
gata6é mutant Luc reporter This Paper N/A
sox17b Luc reporter This Paper N/A
sox17b mutant Luc reporter This Paper N/A
osr2 Luc reporter This Paper N/A
osr2 mutant Luc reporter This Paper N/A
gata4 Luc reporter This Paper N/A
gata4 mutant Luc reporter This Paper N/A
wnt8 Luc reporter This Paper N/A
wnt8 mutant Luc reporter This Paper N/A
mixer Luc reporter This Paper N/A
mixer mutant Luc reporter This Paper N/A
tbxt Luc reporter This Paper N/A
tbxt mutant Luc reporter This Paper N/A
nodal Luc reporter This Paper N/A
nodal mutant Luc reporter This Paper N/A

Software and Algorithms

RSEM v.1.2.12 Li and Dewey (2011) RRID: SCR_013027; URL:
http://deweylab.biostat.
wisc.edu/rsem/

Bowtie 2 v2.2.7 Langmead and Salzberg (2012) RRID: SCR_016368; URL:
http://bowtie-bio.sourceforge.
net/bowtie2/index.shtml

MACS2 v2.0.10 Zhang et al. (2008) RRID: SCR_013291; URL:
https://github.com/taoliu/MACS
DEseqg2 v3.11 Love et al. (2014) RRID: SCR_015687; URL:

https://bioconductor.org/
packages/release/bioc/
html/DESeqg2.html

SOMatic Jansen et al. (2019) URL: https://github.com/
csjansen/SOMatic

FIMO v4.12.0 Grant et al. (2011) RRID: SCR_001783; URL:
http://meme-suite.org/tools/fimo

IGV v2.3.20 Robinson et al. (2011) RRID: SCR_011793; URL:
http://software.broadinstitute.
org/software/igv/

Xenmine/Gene Ontology Reid et al. (2017) N/A

RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ken W.Y.

Cho (kwcho@uci.edu).

Materials availability
All reporter genes are available upon written request. Antibodies may be available upon written request.
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Data and code availability
This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is available
from the lead contact upon request.

The github for SOMatic was published previously (Jansen et al. al., 2019) and found at: https://github.com/csjansen/SOMatic. Raw
and processed RNA-seq and ChIP-seq datasets generated for this study are available at NCBI Gene Expression Omnibus using the
accession GEO: GSE161600.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Wild type Xenopus tropicalis, approximately 3-6 months old males and females were either obtained from NASCO (University of Vir-
ginia) or raised in the laboratory and were maintained in accordance to the University of California, Irvine Institutional Animal Care Use
Committee (IACUC). 6-36 months old X. tropicalis females were injected with 10 units of Chorulon HCG 1-3 nights prior to use, and
were injected with 100 units of Chorulon HCG the morning of use. Eggs were collected into a glass dish coated with 0.1% BSA in 1/9x
MMR. Sperm suspension obtained from sacrificed males (6-12 months) was used to in vitro fertilize the eggs. Ten minutes after fertil-
ization, the embryos were dejellied with 3% cysteine in 1/9x MMR, pH 7.8 and are then ready for further manipulation.

METHOD DETAILS

ChiP-seq and ATAC-seq

Maijority of ChlP-seq datasets were obtained from NCBI’s Gene Expression Omnibus (see Key Resources Table). For newly gener-
ated datasets, ChlP-seq was performed as previously described (Chiu et al., 2014) at the appropriate developmental stage. The an-
tibodies and conditions for these datasets:

30 pg of published Vegt antibody (Sudou et al., 2012) per 2000-3000 embryos

30 pg of published Mix1 antibody (Sudou et al., 2012) per 2000-3000 embryos

30 pg of published Sia1 antibody (Sudou et al., 2012) per 2000-3000 embryos

4 ng of Sox7 rabbit polyclonal peptide antibody (Genscript) per 100 embryos; the peptide antibody was designed against a
region in the Sox7 transactivation domain in the C-terminus with the sequence QVSQASDIQPSETS

3.5 pg of Ventx2 rabbit polyclonal antibody per 100 embryos; the antibody was generated by Covance, Inc., using a GST fusion
to Ventx2.2 amino acids 2-153, upstream of the homeodomain.

® 2.5 ug of Smad1/5/8 antibody (Santa Cruz Biotechnology sc-6031x) per 100 embryos

Libraries were generated using NEXTflex ChIP-seq (Bioo Scientific, Cat# NOVA-5143-01) kit, quality tested using an Agilent Bio-
analyzer 2100, quantified using KAPA gPCR, and sequenced using lllumina sequencers at the UC Irvine Genomics High Throughput
Facility.

ATAC-seq was generated by Bright et al., 2021.

Gene knockdown and RNA-seq

Published RNA-seq datasets for different embryonic tissues and experimental conditions were obtained from NCBI’s Gene Expres-
sion Omnibus (see Key Resources Table). For the MO experiments, 2 ng/embryo of ctnnb1 MO (Mukherjee et al., 2020), 20 ng/em-
bryo foxh1 MO (Chiu et al., 2014; Charney et al., 2017b), 10 ng/embryo each of two sox77 MOs (targeting sox77a and sox17b1/2;
Mukherjee et al., 2020) or 4 ng/embryo tcf7I7 MO (Liu et al., 2005) were used. For the knockdown of receptor-mediated Smad2/3
phosphorylation, embryos were treated with SB4315422 at 100uM as previously described (Chiu et al., 2014; Charney et al.,
2017b). For each condition, embryos were harvested at the appropriate developmental stage adhering to the Xenopus develop-
mental table (Nieuwkoop and Faber, 1958). RNA samples were collected from embryos using the acid guanidium isothiocyanate
method (Chomczynski and Sacchi, 1987). RNA-seq libraries were generated using Smart-seq2 cDNA synthesis followed by tagmen-
tation (Picelli et al., 2014), quality tested using an Agilent Bioanalyzer 2100, quantified using KAPA gPCR, and sequenced using lllu-
mina sequencers at the UC Irvine Genomics High Throughput Facility.

Construction of luciferase reporter genes and assay of CRM activity

Minimal gsc promoter (-104gsc) was PCR amplified from -104gsc/Luc (Watabe et al., 1995) and cloned into the promoterless
pGL3 basic vector (Promega), which encodes firefly luciferase, between Hindlll and Ncol restriction digestion sites. CRMs were
PCR amplified from Xenopus tropicalis genomic DNA (primers are listed in Key Resources Table) and cloned into the above
vector between the Bglll and HindlIl restriction digestion sites. Mutant CRMs were constructed by inverse PCR according pre-
viously published methods (Fisher and Pei, 1997). Oligonucleotides (see Key Resources Table) spanning the motif to be mutated
were designed with base substitutions (Foxh1 motifs AATMHACA were changed to AAGMHAAA and Sox17 motifs ACAAWRG
were changed to ATAGWRG) and were used in inverse PCR to generate reporter plasmids containing these mutant sequences.
All mutations in these plasmids were confirmed by Sanger sequencing. To examine the activity of each CRM’s responsiveness
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to TF MO knockdowns, 80 pg of luciferase reporter construct and 8 pg of pRL-SV40 (Promega) were co-injected vegetally into
1-cell stage embryos with and without 20 ng of either foxh1 (Chiu et al., 2014) or sox17 MO (Mukherjee et al., 2020). Luciferase
reporter construct without a CRM served as a negative control. Injected embryos were harvested at stage 10.5 (early gastrula)
by homogenizing 5 embryos in 50ul of 5X passive lysis buffer (Promega). 10ul of lysate cleared of cellular debris by microcen-
triugation were used per assay for luciferase activities according to the manufacturer instruction of Dual-Luciferase Reporter
Assay System (Promega). To assess the effects of mutating Foxh1 and Sox17 binding motifs in CRM reporters, 80 pg of either
wild-type or mutant reporter was injected vegetally and embryos were harvested at stage 10.5 as described above and assayed
for firefly luciferase activity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Chromatin dataset analysis

ATAC-seq and ChlP-seq reads were aligned to the X. tropicalis genome v 9.0 (Mitros et al., 2019) obtained from Xenbase (Karimi
et al., 2018) using Bowtie 2 v2.2.7 (Langmead and Salzberg, 2012). ATAC-seq and ChlIP-seq datasets were peak called relative to
their appropriate input DNA controls using MACS2 v.2.0.10 (Zhang et al., 2008) with default options.

Self-organizing map (SOM) training, visualization, and metaclustering general procedure

Self-organizing maps are generated by randomly initializing a specified number of artificial neurons on a hexagonal lattice (humber of
rows and columns is a parameter) to points in the data space. For each timestep, a data point is randomly chosen from the training
half of the data matrix (once per computational epoch) and the closest neuron to this point is found (the winning neuron). Then, every
neuron on the lattice is moved toward the data point. The distance moved for each neuron depends on the distance on the lattice from
the winning neuron, the learning rate (a parameter), and how many timesteps have occurred (this drops as a negative exponential
function compared to time) with the winning neuron moving the most.

The resulting positions for these neurons are, then, scored by finding the average distance between each data point in the full
data matrix and the closest SOM neuron. To find the final SOM, the SOM training algorithm is run for a number of trials (for each
parameter set attempted) and the trial with the best final score is chosen. As metaclustering will follow SOM training, finding the
correct number of rows and columns is not necessary as long as there are plenty of elements in the lattice to find all of the data-
dense regions of the n-dimensional experiment space. This can be determined by discovering no single-unit metaclusters in the
next step.

The final neuron positions can be visualized into a 2D map for each experiment (dimension) in the initial dataset. For instance, see
the first SOM slice in Figure 2A, which represents the wildtype gene expression at stage 10.5. The positions of the hexagonal units
represent the connections of the neurons on the lattice and the color is the final position of that neuron (aka signal strength) in the
experimental dimension. Each unit is a cluster with a number of closest genes or genome regions associated with it that show similar
behavior upon perturbations or among different experiments.

Metaclustering is performed by k-means clustering on the final SOM neuron positions such that the growth of each cluster in each
step is restricted to only allowing neighboring neurons on the SOM lattice into each cluster (maintaining the SOM’s structure). The
metaclustering is attempted for a number of trials for each metacluster number in a given range and the clustering with the best
BIC score (reference) is chosen to be the final clustering (and cluster number). This final clustering can be visualized on the SOM
maps as an overlay or as a heatmap showing the representative experimental eigen-profile for each metacluster. Metaclusters
can also be tested for enrichment or depletion in any given experimental condition.

Chromatin segmentation and DNA-SOM analysis
The Xenopus tropicalis v9 reference genome was partitioned using the partition tool of SOMatic (Jansen et al., 2019) using the
MACS2 peak files with a minimum partition size of 200 bp. Then, a RPKM matrix was calculated using the regionCounts tool
from SOMatic.

The DNA SOM was built using the buildSite tool from SOMatic, using a size of 40 x 60, 100 epochs, 100 trials. SOMatic found 88
metaclusters had the best AIC score using 100 trials. GO term enrichments were found using the XenMine gene ontology tool (Reid
etal., 2017).

RNA-seq dataset analysis

RNA-seq reads were aligned to the X. tropicalis genome v 9.0 (Mitros et al., 2019) obtained from Xenbase (Karimi et al., 2018) using
RSEM v 1.2.12 (Li and Dewey, 2011) and Bowtie 2 v2.2.7 ( Langmed and Salzberg et al., 2012and Salzberg et al., 2012) to generate
gene expression in transcripts per million.

RNA-SOM analysis

The RNA SOM was built using the buildSite tool from SOMatic, using a size of 60 x 90, 100 epochs, 100 trials. SOMatic found 84
metaclusters had the best AIC score using 100 trials. Various SOMatic tools were used to create all of the heatmaps, including
the statistical enrichment graph, and GO term enrichments were found using the Xenbase GO term tool.
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Linking of DNA- and RNA-SOM and network analysis
The Link tool in SOMatic was used to convolve the 2 SOMs’ metaclusters, using the nearest gene option and limiting the search area
to 1Mb. A specific Xenopus option (-Xeno) was used because the Xenbase gtf file is a non-standard format.

For the initial ChIP/ATAC-seq SOM, the regions, including repeat regions, in each metacluster were scanned for motifs using the
HOCOMOCOVv11 human motif database (Kulakovskiy et al., 2018) with FIMO v4.12.0 using a g-value threshold of 0.1. For the further
network analysis, each linked metacluster (LM) was scanned with FIMO v4.12.0 (Grant et al., 2011) using a g-value threshold of .1
using motifs calculated from the Xenopus ChIP data. The background for both analyses was calculated using the entire Xenopus
tropicalis v9 reference genome. For each of the 12 calculated TF motifs, the percentage of regions in each LM with that motif was
calculated and used to perform one-tailed z-score enrichment with a g-value of 0.05. These significant TF motif locations were map-
ped to the linked gene.

Gene enrichment analysis for unchanging genes throughout time-course

We used DESeg2 v3.11 (Love et al., 2014) to find significantly unchanging genes by using the altHypothesis="lessAbs” option
(gvalue < .05).
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