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Abstract
Manual classification of eye-movements is used in research and as a basis for comparison with automatic algorithms in the
development phase. However, human classification will not be useful if it is unreliable and unrepeatable. Therefore, it is
important to know what factors might influence and enhance the accuracy and reliability of human classification of eye-
movements. In this report we compare three datasets of human manual classification, two from earlier datasets and one, our
own dataset, which we present here for the first time. For inter-rater reliability, we assess both the event-level F1-score and
sample-level Cohen’s κ , across groups of raters. The report points to several possible influences on human classification
reliability: eye-tracker quality, use of head restraint, characteristics of the recorded subjects, the availability of detailed
scoring rules, and the characteristics and training of the raters.

Keywords Eye-movements · Manual classification · Sample-level agreement · Event-level agreement · Cohen’s Kappa ·
F1-score

Introduction

Manual classification is used to detect different eye
movement types and is also used as a comparison to
automatic methods (Agtzidis et al. (2020), Andersson et al.
(2017), Dar et al. (2021a), Fuhl and Kasneci (2021), Hooge
et al. (2018), Jongerius et al. (2021), Korda et al. (2015),
Kothari et al. (2020), Larsson et al. (2013), Startsev et al.
(2019b), Stuart et al. (2018),Vargas-Cuentas et al. (2017),
Venker et al. (2020), Wadehn et al. (2018a), Zemblys et al.
(2018), Zemblys et al. (2019)). In addition, manual coding
is used to train machine-learning models (Zemblys et al.
(2018, 2019)). Manual classification will not be very useful,
however, if there is little inter-rater classification agreement.
In this study, we look at some qualities and characteristics of
studies that can affect inter-rater agreement. Our hope is that
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this analysis will help researchers develop more meaningful
and repeatable manual classification approaches.

To conduct this study, we needed to find manually
annotated datasets that contained periods of fixation,
saccades and possibly post-saccadic oscillations and did not
contain a substantial portion of time in smooth pursuit. We
were also only interested in datasets where the data was
publicly available. We performed a Medline search with the
following syntax:

eye movement AND manual AND (classification OR
annotated OR labelled OR coded) NOT (sleep OR
NREM OR REM).

This search produced 97 articles, and based on the title
and abstract we thought that 12 might be candidates. One
we knew of by other means (Fuhl & Kasneci, 2021). The
studies are listed in Table 1 along with an included/excluded
decision and reason. We included two studies from this list
in the present analysis (Hooge et al., 2018; Larsson et al.,
2013)1. These 2 studies along with the study we report herein
comprise the 3 datasets employed in the present analysis.

The Hooge et al. (2018) dataset was conducted to
determine if human classification can be a “gold standard”.

1A correction to Hooge et al. (2018) was published in Hooge et al.
(2021)
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Table 1 List Of Potential Studies

Study Include/Exclude

Jongerius et al. (2021) Classified areas of interest, not eye move-
ment types.

Fuhl and Kasneci
(2021)

Complex stimuli with lots of smooth pursuit
mixed with fixation and saccades.

Dar et al. (2021b) Excluded: Used data from Larsson et al.
(2013)

Kothari et al. (2020) Excluded:Head-free gaze behavior is signif-
icantly more complex with a wide range of
behaviors to be classified.

Agtzidis et al. (2020) Excluded: Complex video stimuli with much
smooth pursuit mixed with fixation and
saccades. One human rater.

Venker et al. (2020) Excluded: Manual coding of video, not eye
movement signals.

Startsev et al. (2019b) Excluded: Complex video stimuli with much
smooth pursuit mixed with fixation and
saccades.

Stuart et al. (2018) Excluded: Manual classification of images,
not eye-movement signals.

Wadehn et al. (2018b) Excluded: Used data from Larsson et al.
(2013).

Hooge et al. (2018) Included

Andersson et al. (2017) Excluded: Used data from Larsson et al.
(2013)

Vargas-Cuentas et al.
(2017)

Excluded: Manually classified images and
videos, not eye-movement signals.

Korda et al. (2015) Excluded: Data not available.

Larsson et al. (2013) Included

It was based on comparatively low quality data: a relatively
low quality eye-tracker (see Table 2)2, no head restraint
employed, 87% of recordings were from infant subjects
(57% of total recording time was from infants). Also Hooge
et al. (2018) did not rely on detailed scoring rules and
used no rater training but did use experts. Only fixation
classification was performed. The Larsson et al. (2013)
dataset was not originally intended to be used to evaluate
inter-rater reliability but was used as a basis for comparison
to a new automatic classification system. Nonetheless, it can
be used for the former purpose. As an evaluation of human
classification performance, it was based on data from

2Note that we are not saying that the Tobii TX 300 is low quality
compared to the universe of eye-trackers. Only that, of the 3 eye-
trackers involved in the current report, it is the lowest quality.

a high-end eye-tracker and it employed only adult subjects.
It was classified by two raters who were highly regarded
experts in eye movement classification (Marcus Nyström
and Richard Andersson). The present dataset used data from
a high-end eye-tracker, with head restraint. It was based
on young healthy adult subjects, employs detailed scoring
rules3 and very extensive rater training. The latter 2 datasets
classified fixations, saccades and PSOs.

We will compare these datasets in terms of inter-
rater reliability of manual classification using sample-level
Cohen’s κ , as well as event level F1-score analyses. Cohen’s
κ is frequently used in such studies (Dar et al. (2021a),
Hooge et al. (2018), Kothari et al. (2020), Larsson et al.
(2013), Startsev et al. (2019b), Zemblys et al. (2018),
Zemblys et al. (2019)) for sample-level agreement4. Recent
studies have employed the F1-score to assess event-level
agreement (Agtzidis et al. (2020), Hooge et al. (2018),
Kothari et al. (2020) Startsev et al. (2019c)).

There is a tutorial5 on the F1-score that we find useful
and recommend entitled “A Look at Precision, Recall, and
F1-Score”. According to the creator (Teemu Kanstrén):

The F1-Score is a measure combining both precision
and recall. It is generally described as the harmonic
mean of the two. Harmonic mean is just another
way to calculate an “average” of values, generally
described as more suitable for ratios (such as precision
and recall) than the traditional arithmetic mean. The
formula used for F1-score in this case is:
2 ∗ (P recision ∗ Recall)/(P recision + Recall)

The idea is to provide a single metric that weights
the two ratios (precision and recall) in a balanced way,
requiring both to have a higher value for the F1-score
value to rise.6

Methods

The (Hooge et al., 2018) dataset

We will use the words of Hooge et al. (2018) to describe
their dataset.

3Available at https://digital.library.txstate.edu/handle/10877/13373
4Percent agreement, which does not take into account the role of
chance, is deprecated since the introduction of Cohen’s κ .
5https://towardsdatascience.com/a-look-at-precision-recall-and-f1-
score-36b5fd0dd3ec
6For a presentation of the the problems that can arise when applying a
kappa versus the F1-score to event related data, see Friedman (2020).

https://digital.library.txstate.edu/handle/10877/13373
https://towardsdatascience.com/a-look-at-precision-recall-and-f1 -score-36b5fd0dd3ec
https://towardsdatascience.com/a-look-at-precision-recall-and-f1 -score-36b5fd0dd3ec
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Table 2 Comparing Eye Trackers on Data Quality

Eye-Tracker Sampling Rate Precision Ranking Accuracy Ranking Precision Ranking

Wang et al. (2017) Holmqvist (2017) Holmqvist (2017)

EyeLink 1000 1000 Hz 1st or 2nd of 10 1st of 12 2nd of 13

SMI HighSpeed 1250 500 Hz 1st or 2nd of 10 3rd of 12 3rd of 13

Tobii TX 300 300 Hz 8th of 10 4th of 12 5th of 13

Twelve experienced but untrained human coders
classified fixations in 6 min of adult and infant eye-
tracking data. (page 1864)

The eye-tracking stimulus set consists of 70 trials of
eye-tracking data measured with a Tobii TX300 at
300 Hz. We used eye-tracking data measured from
the left eye. Ten of the 70 trials contained 150.1 s
of eye-tracking data of two adults looking at Roy
Hessels’s holiday pictures taken in the arctic area
around Tromsø, Norway. The other 60 trials contained
202.1 s of eye-tracking data of infants performing a
search task Hooge et al. (2018). (page 1867)

Note that Hooge et al. (2018) employed 60 recordings
from 60 individual infants and employed 10 recordings
from 2 adults. Recordings of the same person are not
independent, whereas recordings from different subjects
are independent. We consider that mixing of independent
and dependent observations in one analysis confounds the
interpretation of the results.

With 150.1 s and 10 adults, there were, on average 15.01
seconds of recording for each adult. For 202.1 seconds and
60 infants, there were, on average, 3.6 seconds per infant
recording.

Compared to the other eye-trackers in this study, the Tobii
TX 300 was relatively low-ranked (see Table 2).

It is noteworthy that for this dataset, the actual number
of adults whose recordings were evaluated was 2. For the
Lund dataset, described below, we were able to analyze
the recordings from 12 different subjects. For the present
dataset, described below, we analyzed recordings from 19
distinct subjects. So, in the Hooge et al. (2018) dataset there
were 2 adult subjects who provided a total of 10 separate
recordings, whereas in the other datasets every recording
analyzed was from a unique subject. This should contribute
to the greater generality of the results from latter 2 datasets
as opposed to the Hooge et al. (2018) dataset.

Trials of both the adult and the infant eye-tracking
datasets were presented in random order on a 24-in.
TFT screen (1,920 X 1,200 pixels). The vertical axis

of the position signals was fixed (respectively, 0–1,920
and 0–1,080 pixels, since measurements were done on
the HD screen of the TX300). ...Each screen showed 1
s of data and contained the last 250 ms of the previous
display (to provide context) and 750 ms new data at a
time. (page 1867)

The infant subjects presented particular challenges. For
example, 11 of the 60 infant recordings had more than 50%
missing data, and one infant had 94% missing data. Also,
in their Table 2, they indicate that for every RMS noise
estimate, RMS error was higher in infants than adults7. For
this reason, we chose to analyze only the 10 adult recordings
from that dataset. For examples of the adult recordings in
Hooge et al. (2018), see Friedman (2020). The effect of this
choice is likely to be that the inter-rater reliability we report
for this study is higher than that which would have obtained
if we had included the infant recordings.

In a personal communication with Dr. Hooge,we were
informed that no forehead or chinrest was used to collect
this data. For a description of some of the data quality issues
that arise from a lack of head restraint see Niehorster et al.
(2018).

“We engaged 13 eye-tracking researchers in the
fixation labeling task. We removed one human coder
from the analysis because we found out he had never
looked at raw data before. The remaining 12 coders are
members from different research groups; details about
them may be found in Table 1.” (page 1867)

The coders were considered experts. We will refer to
these “coders” as “raters” henceforth.8 We did employ
the recently corrected data made available in Hooge et al.
(2021).

7Particularly noteworthy is the maximum RMS, which was a factor of
3 larger in infants compared to adults.
8For additional data-quality issues with this dataset, see Friedman
(2020)
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The Lund dataset

The Lund Dataset was first described in Larsson et al.
(2013). The eye-tracking signals were collected from 31
participants, including students and laboratory personnel.
The mean age of the participants was 31.2 +/- 9.9 (M +/-
SD) years. The signals were recorded binocularly (but only
the right eye data was analyzed) with the iView X HiSpeed
1250 eye-tracker from SensoMotoric Instruments (Berlin,
Germany). Different types of stimuli were presented. For
present purposes, we used only the data where subjects
were viewing static images for 10 seconds. We only used
datasets collected at 500Hz9. The recordings were classified
into fixations, saccades, post-saccadic oscillations, smooth
pursuit, blinks and undefined by two raters, (MN = Marcus
Nyström, RA = Richard Andersson). These two raters are
considered to be international experts in the classification of
eye movements. We had 12 pairs of recordings, with one of
each pair classified by rater MN and the other classified by
rater RA. Although these raters did classify smooth pursuit,
in general, smooth pursuit was very rare (0.92% of total
recording time for rater MN,4.78% for RA) when subjects
were viewing static images, as would be expected.

The two coders labeled the data samples manually and
separately, using the same Matlab GUI. This GUI contained
several panels that together showed, for a stretch of data in
time, the current x- and y- positions (in pixels), the velocity
(point-to-point, in degrees per second), and a scatterplot
representations of the data. Additionally, the GUI also
showed a zoomed in portion of the sample positions, as
well as a one-dimensional representation of the pupil size
across time. Although the data was recorded binocularly, the
human coding used only the right eye.

The SMI HiSpeed 1250 eye-tracker ranked well on both
accuracy and precision (See Table 2).

The present dataset

The eye tracking database

The eye tracking database from our group is fully described
in Griffith et al. (2020) and is labelled “GazeBase”. All
details regarding the overall design of the database, subject
recruitment, tasks and stimuli descriptions, calibration
efforts, and eye tracking equipment are presented there.
There were 9 temporally distinct “rounds” over a period
of 37 months, and round 1 had the largest sample. This

9A few recordings in this dataset were mistakenly recorded at 200 Hz
Friedman (2020)

report only includes 19 subjects10 randomly chosen from
322 subjects available from round 1. Briefly, subjects
were initially recruited from the undergraduate student
population at Texas State University through email and
targeted in-class announcements. A total of 322 subjects
(151-F, 171-M) were included in GazeBase (only 19 of
which were used in the present study, see below.). Subjects
completed two sessions of recording (median 19 min. apart)
for each round of collection. Each session consisted of
multiple tasks. The only task employed in the present
evaluation was the text reading task. Therefore, this dataset
will henceforth be labelled as the GazeBaseR dataset. Each
subject was asked to read, silently, an identical pair of
quatrains from the famous nonsense poem, “Hunting for a
Snark”, written by Lewis Carroll (written from 1874-1876).
The text was displayed in Times New Roman 20 pt. size
bold font and was single-spaced. The mean letter interval
for each piece of text was approximately 0.50 degree of the
visual angle. The height of the line of the text was 0.92
degrees of visual angle. Monocular (left) eye movements
were captured at a 1,000 Hz sampling rate using an EyeLink
1000 eye tracker (SR Research, Ottawa, Ontario, Canada).

Eye movement recording

On each visit to our laboratory, subjects were studied twice
(Sessions 1 and 2, for the present study, subjects were
chosen randomly from either session), approximately 20
minutes apart. The subjects were seated 55 cm in front of
a computer monitor with their heads resting on a chin/head
rest. The monitor subtended +/- 23.3 degrees of visual
angle in the horizontal direction, 11.7 degrees to the top
and 18.5 degrees to the bottom. The mean spatial accuracy
for our device was 0.71 (Friedman et al., 2021b), and the
precision was 0.035 (Friedman et al., 2021a). The EyeLink
1000 eye-tracker was relatively highly ranked (Table 2). For
further specifications, see EyeLink 1000 User Manual11.
The sampling rate for our data was 1000 Hz. Data were
calibrated using procedures provided by the manufacturer.
The EyeLink 1000 transformed the raw records into gaze
position data, in visual angle units, using the manufacturer-
supplied calibration routine. If the EyeLink 1000 could not
acquire a signal, as during blinks, NaN (not a number)
was returned. Only the first 26 seconds of recordings for
each subject were chosen for this dataset, because one of

10We started with 20 but dropped one very low quality recording.
11http://sr-research.jp/support/EyeLink%201000%20User
%20Manual%201.5.0.pdf

http://sr-research.jp/support/EyeLink %201000%20User%20Manual%201.5.0.pdf
http://sr-research.jp/support/EyeLink %201000%20User%20Manual%201.5.0.pdf
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the subjects chosen randomly finished reading the poem
in approximately 26 seconds, and we wanted the same
amount of data from each subject to be represented in each
recording.

The training process

Here we describe the eye movement experience of the 3
raters in the present dataset:

All three raters attended a graduate-level course entitled
“Human-Computer Interaction”, taught by Dr. Komogort-
sev, which included substantial discussion of eye-tracking
concepts. During that class the students became famil-
iar with the basic concepts of eye movements and classic
algorithms used for eye movement classification.

Rater 1: He was involved in an eye movement
classification related project for a couple of months as a
part-time activity. This project involved reading of the eye
movement classification literature and development of a
neural network for eye movement classification. He was
never involved in the manual labeling of eye movement
events.

Rater 2: He had used an eye tracker to collect data for
his undergraduate thesis. He had also read a key reference
text for eye movement reports (Holmqvist et al., 2011). He
had never manually marked the start and end of any eye
movement event.

Rater 3: He had never manually marked the start and end
of any eye movement event.

Training Leader: The first author led the entire training
effort. He has been studying eye movements, on and off,
for more than 25 years. He has had considerable experience
classifying and studying eye movements with 17 published
papers on the topic. Most of these papers concerned smooth
pursuit performance in psychiatric patient populations. In
addition, the first author has published an extensively
modified version of the widely cited algorithm of Nyström
and Holmqvist (2010), (Friedman et al., 2018). Although he
did rate the final dataset presented here, we do not present
his ratings. What we are interested in contrasting is the inter-
rater agreement between the 3 initially naive but extensively
trained raters with the experts from the Hooge et al. (2018)
and Larsson et al. (2013) studies. In the final analysis, the
training leader had lower agreement with other raters than
rater 1 but was comparable to raters 2 and 3.

There were seven iterative training rounds over a period
of 4.6 months. From one to five training recordings were
classified by each rater for each round. There were 20
consensus discussions, for a total time of 42.8 hours
(average consensus discussion length was 2.14 hours). The
scoring rules and a description of the interface we employed
for classification can be found at https://digital.library.
txstate.edu/handle/10877/13373.

All 3 raters classified all 26 seconds of all 19 datasets.

Preparing the eyemovement recordings for analysis
of agreement

Agreement statistics were analyzed between a single
“ground truth” (“GT”) rater and a comparison (“CMP”)
rater. All possible pairings of GTs and CMPs were analyzed.
The first step was to create an array with 2 columns, and
one row per sample, containing the coding for the GT
rater (column 1) and the CMP rater (column 2). Fixations
were coded as “1”, saccades as “2” and PSEs12 as “3”. All
other classified events (blinks, unclassified data, forms of
noise and artifact) were also coded. We wanted to analyze
only sections of the dataset where both raters classified
either fixations, saccades or PSEs. If we had not done
this, in certain cases, we would be comparing classification
of good signal with non-classification due to the absence
of classifiable signal (as during blinks and artefact). This
would create classification errors in which there was not
a true misclassification, but rather a classification versus
a unclassifiable portion of a signal. Each such contiguous
stretch was cut out of the entire recording and was referred
to as a “snippet” Across all rater combinations and subjects,
there was a minimum of 1 snippet and a maximum of
15 snippets (median = 4 snippets). For all 3 datasets,
snippets shorter than 300 msec were discarded. Each
snippet was analyzed separately, and agreement statistics
were accumulated across snippets for each GT-CMP pair
for each subject. For each snippet, there was a binarized
version for fixation, saccades and PSEs. In the binarized
version for fixation, fixation samples were labelled as 1 and
non-fixation periods were labelled as 0. There were also
binarized versions for saccades and PSEs. These binarized
snippets were then assessed for sample-level and event-level
agreement statistics.

Sample-level agreement statistics

To illustrate how this was done, consider the 2X2
contingency table below (Table 3). Consider filling this
table for a saccade binarized snippet. Every sample where
both GT and CMP classified a saccade, that was a true
positive (TP). For every sample where both GT and CMP
classified a non-saccade, that was a true negative (TN).
A sample where GT classified a non-saccade and CMP
classified a saccade was considered a false positive (FP). A

12In this paper, we use the term post-saccadic event (PSE) rather than
post-saccadic oscillation (PSO), since many saccades are followed by
a single signal change without evidence of an oscillation. All signal
changes that occur after a saccade ends and fixation resumes are
considered PSEs.

https://digital.library.txstate.edu/handle/10877/13373
https://digital.library.txstate.edu/handle/10877/13373
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Table 3 Contingency Table

CMP=1 CMP=0

GT=1 TP(1,1) FN(1,0)

GT=0 FP(0,1) TN(0,0)

sample where GT classified a saccade and CMP classified
a non-saccade was considered a false negative (FN). All the
data from all the snippets for each subject for each pair of
raters was accumulated in a table like Table 3, and Cohen’s
κ was computed.

Event level agreement statistics

The ultimate measure of event level agreement is the
harmonic mean of “precision” and “recall” and is expressed
as an F1-score (Powers, 2020). Typically, when referring
to event-related analyses, we refer to true positives as
“hits”, true negatives as “misses” and false positives as
“false alarms”, abbreviated as “FA”. For the table below,
the symbol “#” signifies “number of”. Also, during event-
related analysis, true negatives are ignored. With marginal
sums added, Table 3 above becomes Table 4 below:

“Precision” (also called positive predictive value) is
the fraction of all events labelled as true (#hits+#FA)
that are in fact true, or #hits/(#hits+#FA). “Recall”
(also known as sensitivity) is the fraction of all events
actually true (#hits+#misses) that were detected as true
(#hits/(#hits+#misses).

Fig. 1 illustrates the event-level agreement analysis. The
goal here was to assess the agreement between rater pairs at
the event level (a contiguous fixation, saccade or PSE block
of samples) in terms of an F1-score (Powers, 2020). Let’s
consider the measurement of saccade event-level agreement
for an single snippet. The process proceeds as follows:
We consider each GT-rated saccade event one at a time
sequentially. For a given GT-rated saccade, there could be
a number of different events (saccades or non-saccades) in
the CMP datastream that overlaps with the GT identified
event for at least 1 sample. One possibility was that the CMP
scored a saccade at exactly the same point in time (start and
end) as the GT rater. Another was that the CMP rater scored
a saccade which started either before or after the GT rater
or ended before or after the GT rater. Another was that the

Table 4 Contingency Table With Marginal Values

CMP=1 CMP=0

GT=1 #Hits #Misses #Hits+#Misses

GT=0 #FA

#Hits + #FA

CMP rater scored no saccade at all. There are numerous
other possibilities. For each GT-scored saccade event, we
created an array of CMP events (CMP array) that intersected
at least one sample with the GT saccade under analysis.
Let’s imagine that the CMP rater scored a saccade that
started later than the GT saccade and ended earlier than the
GT saccade. There would be 3 events in our array. The first
would be the non-saccade period before the CMP-saccade,
the second would be the CMP-rated saccade, and the third
would be the CMP-rated non-saccade after the CMP-rated
saccade. By processing these arrays we decide if the match
was a hit or a miss. To do this, we calculate the intersection-
over-union (IOU) ratio (also known as the Jaccard index
Jaccard (1901), see also Startsev et al. (2019a)) between the
GT-rated saccade and each event in the CMP array. We then
sort our array of CMP events in descending order by the
IOU ratio. If the first CMP event has an IOU ratio > 0.5
and it was classified as a saccade, we have a hit13. If the
first event in our array has an IOU ratio > 0.5 and it was not
classified as a saccade we have a miss. If none of the events
in our array has an IOU > 0.5 we have a miss. If a CMP
event in our array has already been used in a prior match,
we have a miss. After all hits and misses have been found,
any CMP event which was not matched to a GT event was
considered as a false alarm. Hits, misses and false alarms
were accumulated across snippets for each recording and
each GT-CMP rater pair. For each recording and rater pair,
we calculated the F1 score (Hooge et al., 2018; Powers,
2020; Rijsbergen, 1979) which was:

¨F1 = (2 ∗ #Hits)/(2 ∗ #Hits + #Misses + #FA) (1)

where “FA” means false alarms.

Including studies with a reasonable number of GT
events

We use the term “study” to refer to a particular subject,
rated by a single GT-CMP pair and for a single event type
(fixation, saccade or PSE). We did not want to include any
study which did not have enough GT events to produce
a reliable and meaningful assessment. Therefore, we only
calculated agreement level statistics on studies with 20 or
more GT events.

13The IOU threshold of 0.5 percent means that there must be at
least 50% overlap between two events to conclude that the event
classification agrees. We used this as did Startsev et al. (2019a).
According to Startsev et al. (2019a), this is the lowest threshold that
ensures that no two detected events can be candidate matches for a
single ground truth event. Additionally, if two events have the same
duration, their relative shift can be no more than one-third of their
duration.
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Fig. 1 Illustration of the analysis of event-level agreement. The top
line represents the event classification for the GT rater, and the bottom
line represents the event classification for the CMP rater. Events occur
at level 1, and non-events occur at level 0. Each GT event and each
CMP is labelled either ‘[A]’,‘[B]’,‘[C]’ or ‘[D]’. The x-axis is time, in
milliseconds. GT event [A] has an intersection-over-union (IOU) ratio
of 0.61 with CMP event [A]. Since this IOU is greater than 0.5, this
match is considered a hit. GT event B cannot also match with CMP

event [A] because CMP event [A] is already matched. Therefore, this
match is considered a miss. CMP event [B] is unmatched to any GT
event, and so it is considered a false alarm. CMP event C is also not
matched to any GT event so it is also classified as a false alarm. The
IOU for GT event [C] and CMP event [D] is less than 0.5 so this
match is considered a miss. It is also considered a false alarm, since
CMP event [D] is not matched to any GT event. GT event [D] has no
matching CMP event and so this is considered a miss

Statistical analysis

Differences between datasets for sample-level κ and event-
level F1-scores were tested with the Kruskal-Wallis test.
A non-parametric test was chosen after visual inspection
of Figs. 2 to 7 revealed mostly non-normal distributions.
It tests the null hypothesis that the distribution of the
dependent variable ( κ or F1) is the same across datasets.
When appropriate, these tests were followed up with post-
hoc comparisons. Multiple comparisons were controlled
using the Bonferroni method.

Results

Included studies

We use the term “study” to refer to a single comparison
between two raters (GT and CMP) for a particular subject

for a particular event type. With 3 raters, there were:

[(3 · 3) − 3) = 6]
rater combinations. So, for the present data, with 19
subjects, there were 19*6 or 114 studies (per event type).
As noted above, we did not calculate agreement statistics
(sample- or event-level) on studies which did not have at
least 20 GT events. Table 5 provides an accounting of the
number of studies of each type, the number of rejected
studies and the percentage of rejected studies.

Sample-level Agreement Statistics

The dot markers in Figs. 2 to 4 are median sample-level
scores for each GT against each available CMP rater. The
numbers plotted sideways in these plots are the medians
across raters (medians of medians). For this paragraph and
the next 5, when we refer to median, we are referring to the
medians across raters. The sample-level κ for fixations are

Table 5 Studies rejected based on too few events

Dataset Event Total Number Percent

Typet Studies Rejected Rejected

GazeBaseR Fixation 114 0 0.0

GazeBaseR Saccades 114 0 0.0

GazeBaseR PSEs 114 40 35.1

Lund Fixation 12 1 8.3

Lund Saccades 12 1 16.7

Lund PSEs 12 2 16.7

Hooge Fixation 1320 0 0.0
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Fig. 2 Sample-level κ for the classification of fixations. K-1...K3 refer
to the 3 raters in the present dataset (“GazeBaseR dataset”). L-1 refers
to rater MN from the Lund dataset. H-1...H12 refer to the twelve raters
in the Hooge et al. (2018) report. These codes refer to the ground truth
rater. Each plot contains N recording points (GazeBaseR = 19, Lund =
12, Hooge = 10). For each subject x, the κ plotted is the median κ for
all other raters versus the ground truth rater

illustrated in Fig. 2. All of the raters from the present dataset
have median sample-level κ values that were between 0.944
and 0.950. These were higher than the sample-level κ for
the Lund dataset (median = 0.925), and also substantially
higher than the 12 raters from Hooge et al. (2018) (ranged
from 0.605 to 0.819). The median κ across all recordings
within a dataset are in Table 6. There were statistically
significant differences across datasets (Table 6). Post-hoc
comparisons revealed that the raters from either the Lund or
GazeBaseR datasets outperformed the raters in the Hooge
dataset (Table 6). The GazeBaseR raters outperformed the
raters for the Lund dataset (Table 6).

The median sample-level κ for saccades for the present
dataset and the Lund dataset are illustrated in Fig. 3. For the
raters from the present dataset, the median sample-level κ

ranged from 0.969 to 0.972. They were all higher than the
sample-level κ for the Lund dataset (median = 0.941). The
medians across recordings within a dataset are in Table 6.
There were statistically significant differences. Raters from
the GazeBaseR datasets outperformed the raters in the Lund
dataset (Table 6).

The median sample-level κ for PSEs for the present
dataset and the Lund dataset are illustrated in Fig. 4. The κ

for the raters in this dataset range from 0.800 to 0.813. The
medians across recordings within a dataset are in Table 6.
These medians were not statistically different (Table 6)
across datasets.

Event level agreement statistics

Event-level results for fixation are illustrated in Fig. 5. For
the present dataset, the range of median F1-scores was
from 0.993 to 0.995. These were very similar to the F1-
score for the Lund dataset (median = 1.00). They were in
every case higher than the F1-scores of the 12 raters from
Hooge et al. (2018) (range = 0.849 to 0.951). The medians
across recordings within a dataset are in Table 6. There were
statistically significant differences across datasets (Table 6).
Post-hoc comparisons revealed that the raters from either the
Lund or GazeBaseR datasets outperformed the raters in the
Hooge dataset (Table 6). The GazeBaseR and Lund raters
were not statistically different (Table 6).

Event-level F1-scores for saccades are illustrated in
Fig. 6. For the present dataset, the range of median F1-
scores were from 0.991 to 0.995. These were slightly lower
than the median F1-score for the Lund dataset (1.00). The
medians across recordings within a dataset are in Table 6.
There were no statistically significant differences.

Table 6 Median κ and F1-scores across datasets for All Event Types

Event Metric GazeBaseR Lund Hooge Omnibus K-L K-H L-H

Type Dataset Dataset DataSet p-value Post-hoc Post-hoc Post-hoc

p-value p-value p-value

FIX κ 0.947 0.925 0.764 < 0.001 < 0.002 < 0.001 < 0.001

SAC κ 0.970 0.941 < 0.005

PSE κ 0.807 0.768 ns

FIX F1-score 1.000 1.000 0.930 < 0.001 ns < 0.001 < 0.001

SAC F1-score 0.994 1.000 ns

PSE F1-score 0.792 0.804 ns

K=GazeBaseR, L=Lund, H=Hooge. FIX = fixation, SAC = saccade, ns = not statistically significant. Omnibus test was a Kruskal Wallis test. For
fixation, with 3 datasets compared, df = 2. For saccades and PSEs, df = 1. Post-hoc tests were Mann-Whitney tests. These p-values would pass
any form of correction for multiple comparisons. Since our focus was on the initially-naive raters, rater 4 was excluded from these analyses
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Fig. 3 Sample-level κ for the classification of saccades. See caption
for Fig. 1 for details. Raters in Hooge et al. (2018) did not classify
saccades

Event-level F1-scores for PSEs are illustrated in Fig. 7.
For the present dataset, the range of median F1-scores were
from 0.777 to 0.804. These were slightly lower than the
F1-score for the Lund dataset (0.804). The medians across
recordings within a dataset are in Table 6. There were no
statistically significant differences.

Discussion

We wanted to compare our agreement performance with
that from other raters on other datasets. We want to make
it perfectly clear that we are fully aware that these other
datasets recorded eye movements with different devices,

PSEs - Sample Level Kappa Values
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Fig. 4 Sample-level κ for the classification of PSEs. See caption for
Fig. 1 for details. Raters in Hooge et al. (2018) did not classify PSEs
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Fig. 5 Event-level F1 scores for the classification of fixations. See
caption for Fig. 1 for details

were collected while subjects viewed different stimuli, used
recordings from different subjects and employed different
raters. Nonetheless, we believe these comparisons have
some general value and provide some insight.

The main finding of the present report was that inter-rater
agreement was lowest for the dataset based on low-quality
data and expert but untrained raters (Hooge), was much
better in a dataset based on high-quality data and two
exceptionally qualified raters (LUND), but was the best
in our dataset based on high quality data, and employing
initially naive raters who were extensively trained. For
fixation, both the GazeBaseR dataset and the LUND
dataset had statistically higher inter-rater agreement than

Saccades - Event-level F1 Scores
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Fig. 6 Event level F1 scores for the classification of saccades. See
caption for Fig. 1 for details. Raters in Hooge et al. (2018) did not
classify saccades
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Fig. 7 Event level F1 scores for the classification of PSEs. See caption
for Fig. 1 for details. Raters in Hooge et al. (2018) did not classify
PSEs

the Hooge dataset at both the sample and the event level.
Note that the agreement statistics for the Hooge et al.
(2018) study would have, in all likelihood, been even lower
if we had included their infant data. Our classification
of the GazeBaseR dataset statistically outperformed the
expert classification from the LUND dataset for sample-
level agreement for fixation and saccades. Since our
classifications outperformed the LUND dataset for fixation
and saccade sample-level agreement but not event-level
agreement, it is reasonable to hypothesize that our initially
naive raters were more consistent (after training) with the
timing (onset and offset) of events, and not more consistent
with identifying the presence of an event.

We cannot state, based on scientific evidence, which of
the dataset characteristics (quality of eye-tracking signal,
presence /absence of head restraint, subject type, rater
training present or absent) had the greatest effect. Separate
evaluations of each factor would be required to determine
that. For example, studies where data of different eye-
tracking signal quality was classified by the same set
raters would address the role of eye tracking signal
quality. Studies comparing a set of expert untrained raters
to initially naive and trained raters on the same data
would address the issue of rater type. However, given
the very large time and personnel resources required for
such studies, these issues may not be resolved for some
time.

High inter-rater agreement does not directly address the
issue of classification accuracy. Raters may agree but all
be inaccurate. We are not sure how to test classification
accuracy. However, in the present dataset, unlike prior
reports, we provide detailed scoring rules which others can

use to judge accuracy and compare our definitions to those
employed in other laboratories.

Of course, not every study can use a high quality eye-
tracker, head restraint and healthy adult subjects. The Hooge
et al. (2018) paper, and the data presented here give some
sense of what is lost in terms of inter-rater classification
agreement when different approaches for rater training and
different eye tracking signal quality levels are considered.

When manually classifying basic eye movements, we
consider high inter-rater reliability an important indication
of a meaningful standardized classification that can be
subsequently employed as comparisons to results from new
automatic classification methods and also to train machine
learning techniques to provide accurate classification
results.

We were able to achieve high inter-rater reliability by
employing a detailed iterative approach for rater training.
We understand that such an approach might be very time
consuming, especially in cases of captured eye tracking
signal of various quality levels and a variety of underlying
eye movement types. However, we strongly believe that
such an approach to manual ground truth labeling of basic
eye movement types will provide the most accurate and thus
useful classification results.
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