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Eye Know You: Metric Learning for End-to-end
Biometric Authentication Using Eye Movements
from a Longitudinal Dataset
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Abstract—The permanence of eye movements as a biometric
modality remains largely unexplored in the literature. The
present study addresses this limitation by evaluating a novel
exponentially-dilated convolutional neural network for eye move-
ment authentication using a recently proposed longitudinal
dataset known as GazeBase. The network is trained using
multi-similarity loss, which directly enables the enrollment and
authentication of out-of-sample users. In addition, this study
includes an exhaustive analysis of the effects of evaluating on
various tasks and downsampling from 1000 Hz to several lower
sampling rates. Our results reveal that reasonable authentication
accuracy may be achieved even during both a low-cognitive-
load task and at low sampling rates. Moreover, we find that
eye movements are quite resilient against template aging after as
long as 3 years.

Index Terms—Eye movements, biometric authentication, met-
ric learning, template aging, dilated convolution

I. INTRODUCTION

YE movement biometrics have received considerable

attention in the literature over the past two decades [1].
This focus is motivated by the specificity and permanence of
human eye movements [2]. Eye movement biometric systems
offer notable advantages over alternative modalities, including
the ability to support liveness detection [3], [4] and spoof-
resistant continuous authentication [5]. Eye movements are
also well suited for integration within multimodal biometric
systems [6].

Despite the considerable literature within this domain, sev-
eral improvements are necessary to advance the large-scale
commercial viability of this technology. For example, most
existing literature formulates eye movement biometrics as a
closed-set classification problem [7]-[10]. This approach is
problematic for real-world scenarios in which new users must
be continuously enrolled and authenticated.

Moreover, the existing knowledge base is further limited
by the validation of the proposed models on a variety of
diverse datasets, many of which are characterized by short-
term test-retest intervals [8], [9], [11], [12]. This lack of a
suitable gold-standard validation set with sufficient temporal
duration limits both comparability between results and the
assessment of template aging effects. Finally, although eye
tracking sensors within emerging commercial devices often are
characterized by limited temporal precision and deployment
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in low resource environments, few studies have explored
performance variability versus signal sampling rate, nor the
capacity to reduce the number of model parameters to support
deployment in embedded environments.

The research described herein attempts to address many
of the aforementioned limitations. We train an exponentially-
dilated convolutional neural network (CNN) that learns mean-
ingful embeddings via multi-similarity (MS) loss [13]. Inputs
consist of fixed-length subsequences of eye movements dur-
ing various tasks, including reading, tracking jumping dots,
watching videos, and playing an interactive game. Similarity
scores are measured as the mean cosine similarity between
temporally-aligned subsequence embeddings. The proposed
technique is verified on several tasks from the GazeBase
dataset [14], which consists of 322 participants recorded up
to 18 times each over a 37-month period. We also compare
against a statistical baseline and the current state-of-the-art,
DeepEyedentificationLive (DEL) [4].

The main contributions of this study are:

o The development of an exponentially-dilated convolu-
tional neural network model offering state-of-the-art per-
formance with 440 times fewer learnable parameters.

¢ The initial demonstration of multi-similarity loss in a
metric learning framework for eye movement biometrics.

o The most thorough assessment of eye movement perma-
nence to date, with reasonable authentication performance
demonstrated for a 37-month test-retest interval.

o The most thorough assessment of task dependence
to date, with comparable authentication performance
achieved for a low-cognitive-load task (i.e., jump-
ing dot stimulus) versus traditionally recommended
high-cognitive-load tasks (e.g., reading [15] or visual
search [9]).

II. PRIOR WORK

Since the introduction of eye movements as a biometric in
2004 [8], significant research has focused on improving their
viability. A collective review of related work published prior to
2015 may be found in [20]. Moreover, comparative results for
studies analyzing common datasets are provided in [21], which
summarizes the results of the most recent BioEye competition.
As noted within these reviews, the majority of prior work uses
a common processing pipeline, with the recordings initially
partitioned into specific eye movement events using a classi-
fication algorithm, followed by the formation of the biometric
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TABLE I
A SUMMARY OF THE METHODOLOGICAL ASPECTS OF SELECTED WORKS. N IS THE NUMBER OF SUBJECTS EMPLOYED WHEN MEASURING
PERFORMANCE; THE FULL SIZE OF THE DATASET MAY HAVE BEEN LARGER. ST MEANS SHORT-TERM AND LT MEANS LONG-TERM.
*: DATASET WAS PREVIOUSLY PUBLIC BUT IS UNAVAILABLE AT THE TIME OF WRITING.
*%: A MODIFIED VERSION OR SUBSET OF THE DATASET IS PUBLICLY AVAILABLE.

Study Year  Open-set?  Tasks Sampling rates (Hz) N subjects Test-retest interval Public dataset?
[8] 2004 N Jumping dot 250 9 same day N
[7] 2015 N Reading; jumping dot 250 76-77 (ST); 30 min. (ST); N*
18-19 (LT) 1 year (LT)
[16] 2017 Y Reading 1000 149 (ST); med. 19 min. (ST); Y#* [14]
34 (LT) med. 11.1 months (LT)
[9] 2018 N Visual search 300, 150, 75, 30 58 same day (ST); N
avg. 18 days (LT)
[10] 2018 N Image viewing 500 32 < 30 min. N
[11] 2019 Y Video viewing 30 105 same day Y [17]
[18] 2020 Y Reading (ST); 1000 25 (ST); same day (ST); Y** [18]
jumping dot (LT) 10 (LT) 2-8 weeks (LT)
[4] 2020 Y Jumping dot 1000 25 > 1-4 weeks Y [4]
[19] 2020 Y Jumping dot 1000, 500, 250, 125, 62,31 25 > 1-4 weeks Y [4]
[12] 2020 Y Reading 1000 67-68 avg. 20 min. Y#* [14]
Present 2021 Y Reading; jumping dot; 1000 (all tasks); 14-59 20 min. to 37 months Y [14]

static dot; video viewing;

interactive game (reading only)

500, 250, 125, 50, 31.25

template as a vector of discrete features from each event. One
problem with such approaches is that event classification is a
difficult problem [22], so it adds another layer of complexity
that influences biometric performance. Only recently have
studies begun utilizing end-to-end deep learning workflows
[10], [11].

The winners of the BioEye 2015 competition, George &
Routray [7], used a radial basis function (RBF) network for
computing similarities between probe and gallery vectors.
Features describing the position, velocity, and acceleration
for fixations and saccades were extracted from the segmented
signal. The algorithm was validated using a dataset of 153 in-
dividuals recorded twice during both a reading task (TEX)
and a random saccades task (RAN) with 30 minutes between
recording sessions and recorded again after one year. They
achieved an equal error rate (EER) of 2.59% for RAN and
3.78% for TEX when the recording sessions were separated
by 30 minutes. When the recording sessions were separated by
one year, they achieved 10.96% EER for RAN and 9.36% for
TEX. As the proposed method requires retraining the network
upon the enrollment of each new user, it is not feasible for
large-scale practical deployment.

In addition to eye movement-specific features, other rep-
resentations of eye movement recordings have also been
explored in the literature. For example, Li et al. [9] used
a multi-channel Gabor wavelet transform (GWT) to extract
texture features from eye movement trajectories during a visual
search task. Support vector machine (SVM) classifiers were
used for biometric identification and verification. Results were
verified using a dataset consisting of 58 subjects recorded
across several trials, with a minimum EER of 0.89% reported.
Texture-based eye movement features were recently reinvesti-
gated in [23], where downsampling of the filtered images was

proposed for the feature extraction step in order to preserve
spatial structure. In addition to the aforementioned restriction
regarding new user enrollment, both of these studies utilized
recordings with only a small temporal separation.

Jia et al. [10] introduced deep learning techniques for
eye movement biometrics. A recurrent neural network (RNN)
was built using long short-term memory (LSTM) cells. The
output layer used softmax to produce class probabilities. Their
approach was validated using a dataset of 32 subjects recorded
across several trials of a high-cognitive-load task, with a
minimum EER of 0.85% reported. This study did not explore
its method’s long-term efficacy, as recordings for each subject
were collected during a single, 30-minute period.

Friedman et al. [16] employed a statistical approach for eye
movement biometrics. A novel event classification algorithm,
the modified Nystréom and Holmqvist (MNH) algorithm [24],
was used to classify several types of events. A set of over
1,000 features [25] was extracted from each recording. This
approach was validated using a subset of the dataset consid-
ered herein, consisting of 298 subjects recorded twice each
during a reading task. Using data separated by approximately
20 minutes, a best-case EER of 2.01% was reported. With
data separated by approximately 11 months from a set of
68 subjects, EER increased to 10.16%.

Jager et al. [18] utilized involuntary micro eye move-
ments for biometric authentication and identification. Raw
eye movement signals were initially transformed to isolate
desired micro eye movements according to their characteristic
velocities, with the resulting scaled values fed into a CNN
with two separate subnets. The approach was validated using
two datasets (75 subjects during a reading task recorded at
1000 Hz [26], and a newly recorded dataset consisting of
10 users). This approach was later extended into DeepEyeden-
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tificationLive (DEL) [4] to include liveness detection and was
evaluated on a different dataset of 150 subjects, the JuDo1000
dataset [4], which is publicly available. However, the EERs
presented in the later study were based on only 25 identities,
and the recordings were collected with a relatively short
temporal separation. DEL was also evaluated on temporally-
and spatially-degraded signals by Prasse et al. [19].

Abdelwahab & Landwehr [11] introduced metric learning
to the eye movement biometrics literature using deep distri-
butional embeddings. Namely, sequences of six-dimensional
vectors (binocular gaze and pupil data) at 30 Hz were fed
to a deep neural network which produced distributional em-
beddings using a Wasserstein distance metric. The approach
was validated on the publicly-available Dynamic Images and
Eye Movements (DIEM) dataset [17], which contains eye
movement data of 210 subjects viewing various video clips
(sports, movie trailers, etc.). The recordings in the DIEM
dataset were collected with only a small temporal separation.

Lohr et al. [12] also explored the use of metric learn-
ing for eye movement biometrics. Eye movement recordings
were segmented into fixations, saccades, and PSOs using
the MNH algorithm [24], and discrete feature vectors were
extracted from each event. Three separate multilayer per-
ceptrons (MLPs), one for each of the 3 event types, were
trained on these feature vectors with triplet loss [27] to create
meaningful embeddings. Distances were computed for each
event type separately and then fused with a weighted sum.
The approach was validated using a dataset of 269 subjects
recorded twice each during a reading task. An average EER
of 6.29% was reported for recordings separated by approxi-
mately 20 minutes. Like most prior studies, the permanence
of eye movements was not explored.

The technique described herein expands upon the work of
Lohr et al. [12] by feeding recordings directly into the model
(removing the additional complexity of event classification).
Additionally, the more sophisticated MS loss [13] is used,
a single exponentially-dilated CNN is trained rather than
multiple event-specific MLPs, and performance is evaluated on
a longitudinal dataset collected over a 37-month period. The
present study also explores the authentication performance of
additional tasks other than reading and of downsampled eye
movement signals.

III. METHODOLOGY
A. Dataset

We used the GazeBase [14] dataset available on
Figshare [28]. This dataset consists of 322 college-aged sub-
jects, each recorded monocularly (left eye only) at 1000 Hz
with an EyeLink 1000 eye tracker. Nine rounds of recordings
(R1-9) were captured over a period of 37 months, thereby
enabling the analysis of template aging. Each subsequent
round comprises a subset of subjects from the preceding round
(with one exception, subject 76, who was absent from R3 but
returned for R4-5), with only 14 of the initial 322 subjects
present across all 9 rounds. Each round consists of 2 record-
ing sessions separated by approximately 30 minutes, totaling
18 recording sessions. Recordings contain the horizontal and

vertical components of the left eye’s gaze position in terms
of degrees of the visual angle. In each recording session,
every subject performed a series of 7 eye movement tasks: a
horizontal saccades task (HSS), a video-viewing task (VD1), a
fixation task (FXS), a random saccades task (RAN), a reading
task (TEX), a ball-popping task (BLG), and another video-
viewing task (VD2). More details for each task can be found
in [14]. Since VD2 was similar to VD1, we only used VD1
in our experiments.

B. Training and testing splits

The subjects in the dataset were split in the following man-
ner. First, we created a held-out test set using all recordings
from the 59 subjects that were present in R6. The test set
contained nearly 50% of all recordings in GazeBase. The test
set was only used at the very end of our experiments to get a
final, unbiased measure of our models’ performance.

Next, we split the remaining subjects into 4 folds (which
we will label F1-4) for cross-validation. We had three goals
when balancing the folds, keeping in mind that some subjects
have more recordings than others: (1) each fold should have a
similar number of subjects, (2) each fold should have a similar
number of recordings, and (3) the method to create the folds
should be deterministic to facilitate reproducibility.

We accomplished these goals by using two priority queues
(heaps)—one for the folds and the other for the subjects—and
iteratively assigning subjects to folds. Each fold was weighted
first by the number of subjects assigned to it and second by
the total number of recordings present for those subjects, and
the fold with the lowest weight was given the highest priority.
Each subject was weighted by the total number of recordings
present for that subject, and the subject with the highest weight
was given the highest priority. In case of ties, an arbitrary-
but-deterministic element was given higher priority. At each
iteration, we extracted the highest priority element from both
heaps and assigned the chosen subject to the chosen fold.
The chosen fold was then placed back onto the heap with its
updated priority. This process was repeated until the subject
heap was empty. In the end, the largest fold had at most 1 more
subject than the smallest fold, and the number of recordings
present in each fold was as balanced as possible.

We ran three sets of experiments: (1) compare our metric
learning model against three baseline models, using data
from TEX and tuning hyperparameters based on the average
performance across the 4 folds; (2) use data from the other
individual tasks to assess our model’s performance on types
of eye movements other than reading; and (3) downsample the
TEX data to assess our model’s performance on signals with
lower sampling rates.

C. Signal pre-processing

We start with a sequence of T tuples (¢, 2() y(®)) i =
1,...,T, where t® is the time stamp (s) and (3" are
the horizontal and vertical components of the monocular (left



JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

eye) gaze position (°). Next, we compute per-channel velocity
(°/s) using the one-sample backward difference method:
; 2@ — gG=1
6;):775(1.)_“1,71),z:2,...,n (1)
50 — y(z.) — y(_z—l)
Y t(z) _ t(zfl)
Then, we replace any NaN velocities with 0 and clip both
50 and 6 within the range [—1000,1000] to minimize the
influence of outliers.

During some preliminary experiments, we found that the
slow and fast velocity transformations used in the DeepEye-
dentification line of work [4], [18], [19] indeed led to better
results on the validation set compared to z-score transforming
raw velocity values. Therefore, we extracted the following
4 values for each (61, 65") tuple:

Li=2,...,m. )

Tyjow = tanh(c5L) 3)
Yo = tanh(ed()) 4)
; O RV O Ok
:L‘t(‘as)t — Zq ((51; ), lf 51 —+ 6y Z v (5)
22(0), otherwise
. O RV O Ok
yt(as)t _ Zy (6’[; ), lf 61 =+ (Sy Z v , (6)
zy(0), otherwise

where ¢ = 0.02 and v = 40 are fixed hyperparameters taken
from [4], and 2, and z, are separate z-score transformations
for each velocity channel. The mean and standard deviation
for z, and z, were computed across all velocities in the train
set (5&') and 51(}), respectively).

D. Sampling rate degradation

The GazeBase dataset contains recordings of very high
signal quality [29] recorded with an EyeLink 1000 eye tracker.
Other eye trackers, such as Magic Leap One [30] or Vive Pro
Eye [31], have lower signal quality (e.g., 60 Hz sampling rate
for the Magic Leap One or 120 Hz for the Vive Pro Eye).
It is expected that in the future, eye tracking would become
ubiquitous in virtual- and augmented-reality head-mounted
displays due to the many benefits it could bring, including
foveated rendering, continuous authentication, and increased
immersion in video games. But since eye tracking signal
quality varies across devices, in this study, it was important
to consider how signal quality (specifically, sampling rate)
impacts authentication performance. To this end, we down-
sampled the eye movement signals using SciPy’s decimate
function [32]. We targeted degraded sampling rates of 500,
250, 125, 50, and 31.25 Hz. We chose 31.25 Hz instead of
30 Hz to simplify the downsampling process.

E. Network architecture

As input, we feed in a number of time steps equivalent
to 1.024 s (rounded down, if not a whole number) and, if
necessary, zero-pad the end of the sequence to length 1024. For
each time step, we use the 4 channels defined in Equations 3—
6. Our network performs a mapping f : R4x1024 _ R128,

Fig. 1. Visualization of exponentially-dilated convolutions with kernel size 3,
stride 1, and no padding. The convolutions in the ¢-th layer use a dilation of
d = 2¢~1_ With this configuration, if the input has length 29 and there are
q — 1 layers, then the final layer has a receptive field of 2¢ — 1 values from
the input (shown in red and blue, with overlap in purple).

The network consists of a series of exponentially-dilated
convolutional layers followed by a series of fully-connected
layers. Exponentially-dilated convolutions were first proposed
for semantic segmentation of images in [33] and have since
seen success in other domains like audio synthesis [34]
and time series classification [35], [36]. By exponentially
increasing the dilation for subsequent convolutional layers, we
achieve an exponential increase in the receptive field with only
a linear increase in the number of learnable parameters. See
Figure 1 for a visualization of exponentially-dilated convolu-
tions and Figure 2 for a diagram of our network architecture.

F. Multi-similarity loss

MS loss [13], like many other metric learning loss functions,
is embedding-based (in contrast to classification-based losses
like cross-entropy) [37] and pair-based. Minibatches are con-
structed from multiple samples each from a subset of subjects
so that both inter- and intra-class variations can be observed.
Pairs of samples are constructed within each minibatch. A pair
is positive if samples in the pair are from the same class or
negative if they are from different classes. The goal is to bring
positive pairs closer together in the embedding space and to
push negative pairs farther apart. In other words, we want
to construct a well-clustered embedding space. One challenge
with pair-based losses is selecting the most informative pairs
to accelerate learning. Using pairs that are too easy does not
help the model learn, and using pairs that are too hard may
lead to instability during training [38].

MS loss takes into account three different types of similar-
ities: self-similarity, positive relative similarity, and negative
relative similarity. This is a more sophisticated approach
than most other losses that focus on either self-similarity
(e.g., contrastive loss [39]) or relative similarity (e.g., triplet
loss [27]) but not both. The most informative pairs are selected
with an online pair mining technique and assigned similarity-
based weights that decay exponentially as the pairs become
less informative. A larger weight is given to positive pairs
with low similarity and to negative pairs with high similarity.
Together, these aspects help MS loss form a well-clustered
embedding space and overcome the challenge of selecting
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Fig. 2. Network architecture. Each convolution layer uses kernel size 3, stride 1, and no padding, and is followed by ReLU and batch normalization. The
first fully-connected layer is followed by ReLU. The output of the final fully-connected layer acts as the embedding of the input. The numbers at the bottom
reflect the shape of the data leaving each layer, ordered as minibatch size, channels, and time steps. The d above each convolution block is the dilation used in
that layer, and the n above each fully-connected block is the number of output nodes in that layer. This network has a total of 475,264 learnable parameters.

informative pairs. MS loss is formulated as

;i —log 1—1—260‘ ik

keP;

)

1
+ —log |1+ Z eB(Sik=2)
5 kEN;

where «, 3, are hyperparameters, m is the size of the
minibatch, P; and IN; are the sets of indices of the mined
positive and negative pairs for each anchor sample x;, and S;x
is the cosine similarity between the pair of samples {x;, Xy }.
For more technical details and descriptive figures, please refer
to the MS loss paper [13].

Although the latest metric learning loss functions (such as
MS loss) may not improve upon earlier loss functions as much
as the literature would suggest [37], many (including MS loss)
do appear to lead to marginal improvements over cross-entropy
or triplet loss after controlling for several factors including
network architecture, batch size, and optimizer.

G. Measuring similarity between two recordings

The similarity between two recordings is measured as the
mean cosine similarity across the first n temporally-aligned
subsequence embeddings. That is, given two recordings A, B
where a?) is the embedding of the i-th non-overlapping
subsequence from A (and b(® from B), we compute the
similarity between A and B, denoted S4 g, as

n

1 o
=y 2 > 8
Sap = 2 2 e ®

H. Training

For a given task and sampling rate, we trained 4 different
models, each one using a different held-out fold as the
validation set and the remaining 3 folds as the training set.

We used the AdamW [40] optimizer with learning rate
and weight decay determined via hyperparameter search (see
Section III-I). All other optimizer hyperparameters were left
at their default values. We used MS loss [13] with an online
miner as implemented in the PyTorch Metric Learning (PML)
library [41]. The hyperparameters for MS loss were also
determined via hyperparameter search.

When constructing a minibatch of size m, we observed
that simply selecting k samples each from 7+ classes/subjects
tended to oversample from R1. To sample from all recording
rounds equally and to guarantee that each minibatch contains
longitudinal similarities, we pick one subject present in all of
R1-5 (i.e., all rounds present in the training/validation sets),
along with another random subject from each of R1-5. Then,
for each of R1-5, we randomly sample k& subsequences each
from the two subjects chosen for that round, with half of those
samples taken from recording session 1 and the other half
from recording session 2. Since we have 2 subjects each from
5 rounds, our minibatch size is m = 10k. We set k£ = 8 for a
minibatch size of 80.

Rather than sampling from a fixed set of subsequences
(e.g., constructed with a rolling window approach), the sub-
sequences used during training were chosen from arbitrary
positions in each recording. That is, when sampling a subse-
quence of length w from a recording of length 7', we start
from a random time step ¢ € [1, T — w + 1] and use the next
w contiguous time steps {é, i+ 1, ..., 4+ w — 1}. In doing
so, we force the network to learn similarities (and differences)
between arbitrary subsequences of eye movements during the
task and across recording sessions, hopefully improving its
ability to generalize to new subjects. In our experiments,
subsequence length w was a number of time steps equivalent
to 1.024 s (rounded down, if not a whole number).

After every 100 training iterations (i.e., 100 minibatches),
the model’s performance was evaluated in the following
manner using data from the validation set. We first com-
puted the embeddings of the first 10 non-overlapping sub-
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sequences (10.240 s) of each recording in session 1 of RI.
These embeddings acted as the enrollment set. We did the
same for each recording in session 2 of R1 to construct the
authentication set. We then computed S4 g for all A in the
enrollment set and all B in the authentication set using Equa-
tion 8 with » = 10. A receiver operating characteristic (ROC)
curve was built from these similarities and was used to find the
equal error rate (EER)—the point where the false acceptance
rate (FAR) was equal to the false rejection rate (FRR). We
repeated this process with the same enrollment set but different
authentication sets built from session 2 of R2-5, resulting in
a total of 5 measures of EER. The mean of these 5 EERs was
used as the combined measure of the model’s performance.

The model trained for a maximum of 100,000 iterations,
but we also employed early stopping to help reduce training
time. Early stopping with a patience of 200 performance eval-
uations (20,000 iterations)—seeking to minimize the afore-
mentioned performance measure—was used to determine if
training should stop early. Whether training lasted the full
100,000 iterations or stopped early, we kept the version of
the model with the best performance evaluation and discarded
any other model checkpoints.

1. Hyperparameter tuning

We had 6 hyperparameters to tune: 2 for AdamW (learning
rate and weight decay), 3 for MS loss («, 3, and A), and 1 for
the online mining used within MS loss (¢). Bayesian optimiza-
tion [42] was employed to optimize these hyperparameters.

A total of 31 search iterations were performed. The first
iteration used a fixed hyperparameter configuration that we
empirically found to work well on the training and validation
sets during preliminary experiments. The next 5 iterations (2—
6) randomly explored the search space to help prevent the
optimizer from getting stuck in local optima (a fixed random
seed was used so that the same 5 random points were probed
for all models). The final 25 iterations (7-31) intelligently
balanced exploring and exploiting the search space using the
upper confidence bound (UCB) utility/acquisition function.

At each search iteration, a total of 4 models were trained
with the selected hyperparameters using the training procedure
described in Section III-H. The final valuation for that point
in the search space was mean(EER) + 1.96 x SD(EER), using
the combined measure of EER described in Section III-H and
aggregated across the 4 models. Bayesian optimization sought
to minimize this valuation. The set of hyperparameters with the
lowest valuation after all 31 search iterations was used during
our final analyses. Hyperparameters were tuned separately for
each task and sampling rate. The hyperparameter search space
and the hyperparameters used for each model are all provided
in the supplementary material.

J. Final evaluation on test set

There are two main scenarios for biometrics: authentication
and identification. In the authentication scenario, a user at-
tempts to access a system by claiming to be a specific enrolled
user and presenting their biometric sample (e.g., a fingerprint),
and a decision is made based on the sample’s similarity to

the biometric template of that specific enrolled user. In the
identification scenario, a user attempts to access a system by
claiming to be any enrolled user and presenting their biometric
sample, which is then compared against the biometric template
of every enrolled user to see if there is any match. As more
users are enrolled, it becomes increasingly difficult to detect
impostors in the identification scenario, as the impostor’s
presented biometric sample need only be similar to any one
enrolled user’s biometric template. This phenomenon has
been formally studied using synthetic and real datasets [43].
Therefore, we consider only the authentication scenario, for
which performance is expected to remain relatively consistent
regardless of the number of enrolled users [43].

An important consideration for any biometric modality is
how it compares to existing security methods. For example,
the 4-digit pin is one of the most common security methods
for smartphones and is often used as a backup authentication
method if biometrics fail. If a biometric modality is less secure
than a 4-digit pin, it would have little practical benefit on its
own. There are 10* possible ways to construct a 4-digit pin
with the numbers 0-9, so assuming each pin is equally likely
to be chosen, there is a 10~% chance that an impostor would
correctly guess a specific user’s pin. Therefore, we provide
measures of false rejection rate (FRR) when false acceptance
rate (FAR) is fixed at 10~%, abbreviated FRR @ FAR 10~*.
According to the FIDO Biometrics Requirements [44], a
biometric system should achieve a FRR @ FAR 10~* of no
more than 5%.

We formed genuine and impostor pairs within the held-out
test set for various test-retest intervals in a manner similar
to the performance evaluation described in Section III-H. The
enrollment set consists of the embeddings from the first n non-
overlapping subsequences of each recording in session 1 of
R1. Nine separate authentication sets were constructed using
the embeddings from the first n non-overlapping subsequences
of each recording in session 2 of R1-9. We then computed,
for each authentication set separately, S4 p for all A in
the enrollment set and all B in the authentication set using
Equation 8.

Using the above method, we have a maximum of 59 genuine
pairs and 3422 impostor pairs (e.g., when authenticating with
R1) and a minimum of 14 genuine pairs and 812 impostor
pairs (when authenticating with R9). This is fewer than the
10,000 impostor pairs needed to estimate FRR @ FAR 10~%.

To enable the estimation of FRR @ FAR 10~4, we per-
form the following resampling approach. We use the Pear-
sonDS [45] R package to fit a Pearson family distribution
to the empirical impostor similarity distribution for a given
authentication set. We sample 20,000 new impostor similarities
from this fitted distribution and discard the empirical impostor
similarities. This fitted distribution closely matches the mean,
variance, skewness, and kurtosis of our empirical distribution.
We do the same for the genuine similarity scores to balance
the classes. This provides us with enough data to be able
to estimate FRR @ FAR 10~%. By resampling from a fitted
Pearson family distribution instead of, say, bootstrapping, we
are able to sample values that are close to—but not exactly the
same as—our empirical distribution of similarity scores. See
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Fig. 3. A representative comparison between empirical and resampled
similarity distributions. EERs based on the resampled distributions tend to
be slightly pessimistic relative to EERs based on the empirical distributions.

Figure 3 for a representative comparison between empirical
and resampled distributions.

We then construct a ROC curve and estimate EER for
each authentication set separately, producing a total of 9 EER
measures based on test-retest intervals as short as 20 minutes
and as long as 37 months.

This entire process was repeated for each n € {1,5,10} to
assess how authentication performance varies with the amount
of data.

K. Baseline models

1) Statistical baseline (STAR): One of the baselines we
compare against is a statistical approach based on [16] that
we will refer to as STAR. The same 4 folds and test set were
used for STAR as were used for our metric learning approach.
Briefly, each recording was classified into fixations, saccades,
post-saccadic oscillations (PSOs), and noise using the modified
Nystrom and Holmqvist (MNH) classification algorithm [24].
A set of over 1,000 features [25] was extracted from the
classified events. Feature distributions were transformed to
like-normal using the Box-Cox transformation, and only suf-
ficiently normal features were kept. Redundant features were
removed next, either due to high correlations or due to multiple
features measuring similar aspects (e.g., both mean and median
of the same underlying feature). Lastly, principal component
analysis (PCA) was performed, and the optimal set of features
and principal components was determined through an iterative
process. We note that STAR was designed to use the full
duration of each recording, so results for STAR are based on
the full recording duration.

2) DeepEyedentificationLive baseline (DEL): Our other
baseline is the current state-of-the-art, DEL [4]. The code for
DEL is publicly available!, and we reimplemented the network
in PyTorch to keep all models under a single framework.
Excluding classification layers, our implementation of DEL
has 209,085,024 learnable parameters (69,052,160 in the slow
subnet, 139,933,408 in the fast subnet, and 99,456 in the final
set of layers after concatenation).

To enable a more fair comparison against our own model,
DEL underwent the same signal pre-processing, training,
hyperparameter tuning, and test set evaluation as our own
model, with only some minor differences. We used an input
length of 1024 time steps and the AdamW optimizer to match
our model, instead of the original implementation’s use of

Uhttps://ost.io/8esTz/

1000 time steps and the Adam optimizer. The input channels
to the slow subnet were from Equations 3-4, and the input
channels to the fast subnet were from Equations 5-6 (we did
not include stimulus position as an input, and we only had
monocular gaze signals). DEL was trained with PyTorch’s
CrossEntropyLoss instead of MS loss, and we trained
the subnets individually before freezing their weights and
training the final few fully-connected layers. After training,
we removed the classification layer but still applied batch
normalization and ReLU after the embedding layer, as is done
in the public implementation. We did our best to match the
weight initialization from Keras/Tensorflow (e.g., Keras uses a
truncated normal distribution while PyTorch does not). Due to
memory constraints, we used minibatches of 40 samples (with
k = 4 instead of 8) constructed in the manner described in
Section III-H. Only 2 hyperparameters needed tuned for DEL:
learning rate and weight decay.

L. Hardware & software

All models (except the STAR and DEL baselines) were
trained inside Docker containers on two Lambda Labs work-
stations. One workstation was equipped with dual NVIDIA
GeForce RTX 2080 Ti GPUs (11 GB VRAM), an Intel i9-
10920X CPU @ 3.50 GHz (12 cores), and 128 GB RAM. The
other workstation was equipped with dual NVIDIA GeForce
RTX 3080 GPUs (10 GB VRAM), an Intel i9-10900X CPU
@ 3.70 GHz (20 cores), and 64 GB RAM. The Docker con-
tainers ran Ubuntu 18.04 and were set up with Python 3.7.10,
PyTorch 1.9.0, and PML [41] version 0.9.99.

Due to memory constraints, we needed to train the DEL
baseline models on a different machine equipped with quad
NVIDIA GeForce RTX A5000 GPUs (24 GB VRAM), an
AMD Ryzen Threadripper PRO 3975WX CPU @ 3.5 GHz
(32 cores), and 256 GB RAM. The slow and fast subnets
were trained concurrently on separate GPUs to save time. DEL
was trained inside a Docker container running Ubuntu 18.04
and set up with Python 3.7.11, PyTorch 1.10.0, and PML
version 1.1.0.

Each of our models took up to 1 hour to train for each fold
on the RTX 3080 (24.0 training iterations per second), and up
to 2 hours on the RTX 2080 Ti (13.3 training iterations per
second). The DEL baseline took an average of 2.8 hours to
train for each fold on the RTX A5000, with the fast subnet
often requiring more time to train than the slow subnet.

STAR was run on a Windows 10 computer, equipped with
an Intel i7-6700K CPU @ 4.00 GHz (4 cores) and 16 GB
RAM. The code was written in MATLAB 2020a and ran
serially on the CPU.

Our full source code and trained models are available on the
Texas State Digital Collections Repository at https://dataverse.
tdl.org/dataverse/eky/.

IV. RESULTS & DISCUSSION

Due to prevalent usage of reading data in the eye move-
ment biometrics literature, we use TEX @ 1000 Hz as our
representative dataset. The average performance measures of
our approach on the held-out test set for TEX @ 1000 Hz are


https://osf.io/8es7z/
https://dataverse.tdl.org/dataverse/eky/
https://dataverse.tdl.org/dataverse/eky/
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given in Table II, using each n € {1,5,10} (for Equation 8)
and each of R1-9 as the authentication set. In Table III, we
present results for all tasks and sampling rates using n = 10
and using R1 or R6 as the authentication set. R1 has the
shortest test-retest interval (approx. 20 minutes) and should,
therefore, result in the best performance. R6 has a test-retest
interval of approx. 1 year, is exclusive to the test set, and
contains all 59 unique test-set subjects. Table IV shows results
for the baseline models with TEX @ 1000 Hz, using R1 and
R6 for authentication. We note that the full duration of each
recording was used for STAR, while only the first 10.240 s
were used for DEL and our approach.

For a more comprehensive view of each model’s perfor-
mance, refer to the tables in the supplementary materials.

In addition to the quantitative results in the aforementioned
tables, we also present some qualitative results. For these
figures, each model uses n = 10 (except STAR, which uses
the full recording duration) and R1 for authentication. Fig-
ure 4 shows a comparison between the genuine and impostor
similarity score distributions. An ROC curve for each model
is presented in Figure 5.

A. Comparison to baselines

1) STAR: Looking at Table IV, compared to STAR, our
approach results in lower EERs and is more stable across folds.

The genuine vs impostor distributions (Figure 4B) and
the ROC curve (Figure 5C) for STAR deserve additional
discussion. The genuine and impostor distributions are not
unimodal in the presented figure, but this is because the figure
includes 4 separate genuine/impostor distributions (one per
model). The mean ROC curve shows a sharp increase in
FRR when FAR is approximately 0.08, and another around
0.005 FAR. We believe these abnormalities are due to different
features and principal components being included for each
fold, resulting in vastly different performance between models.
Perhaps it would have been better to use a consistent set of
features and principal components across folds.

STAR requires event classification and manual feature ex-
traction, making it much harder to employ in different datasets
and for different tasks than our end-to-end approach. It was
also designed to use the full duration of each recording,
limiting its use in practice.

Regarding the discrepancy between our results with STAR
and the original results from [16] (where an EER of 10% was
achieved on data separated by approximately 1 year), there are
many contributing factors.

First, our EER estimates are based on different data than the
original study. We evaluated with as many as 59 subjects, did
not remove signal after the end of reading, and did not exclude
any subjects from the analysis regardless of data quality. In
contrast, the original study used either 149 subjects (SBA-
ST) or 34 subjects (SBA-LT), removed signal after the end of
reading, and screened subjects with “low recording quality”
or who had “excessively noisy recordings.”

Second, we made several changes to the original approach:
we simplified the normality transformations by always using
Box-Cox instead of trying several different standard transfor-
mation functions; we did not winsorize the distributions to
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Fig. 4. Plots of the similarity distributions for genuine and impostor pairs.
Each plot contains the similarities on the held-out test set computed separately
for each of the 4 models trained with 4-fold cross-validation, using n = 10
for Equation 8 and R1 for authentication. Since cosine similarity is bounded
from -1 to 1, we scaled the similarities to lie between 0 and 1 before plotting.
A bin width of 0.01 was used, and the area under each curve sums to 1.
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TABLE IT
RESULTS ON THE HELD-OUT TEST SET FOR TEX @ 1000 HZz, VARYING THE n USED FOR EQUATION 8 AND THE ROUND USED FOR THE AUTHENTICATION
SET. VALUES ARE PRESENTED AS MEAN (STANDARD DEVIATION) ACROSS THE 4 MODELS TRAINED WITH 4-FOLD CROSS-VALIDATION.

Round BER FRR @ FAR
" o 101 102 1073 104
1 0.2237 (0.0115) ~ 0.3866 (0.0256) ~ 0.7483 (0.0377)  0.9370 (0.0378) ~ 0.9870 (0.0168)
2 0.2903 (0.0214)  0.5415 (0.0402)  0.8584 (0.0295)  0.9673 (0.0183)  0.9947 (0.0044)
3 0.3045 (0.0214)  0.5582 (0.0339)  0.8684 (0.0121) ~ 0.9775 (0.0082)  0.9979 (0.0032)
4 0.3103 (0.0170) ~ 0.5754 (0.0334)  0.8697 (0.0241)  0.9714 (0.0128)  0.9959 (0.0028)
1 5 0.2760 (0.0143) ~ 0.4741 (0.0120) ~ 0.7965 (0.0224)  0.9738 (0.0159)  0.9977 (0.0040)
6 0.2783 (0.0249)  0.5134 (0.0288)  0.8434 (0.0303)  0.9640 (0.0204) ~ 0.9939 (0.0078)
7 0.3051 (0.0260) ~ 0.5349 (0.0521) ~ 0.8272 (0.0382) ~ 0.9549 (0.0218)  0.9904 (0.0068)
8 0.3036 (0.0253)  0.5502 (0.0529)  0.8765 (0.0317)  0.9942 (0.0101)  0.9995 (0.0009)
9 0.2841 (0.0361)  0.5623 (0.0427)  0.9027 (0.0617) ~ 0.9787 (0.0191)  0.9962 (0.0042)
1 0.1488 (0.0075) ~ 0.2206 (0.0193) ~ 0.6284 (0.0579)  0.8790 (0.0543) ~ 0.9619 (0.0240)
2 0.1952 (0.0100) ~ 0.3449 (0.0188)  0.7801 (0.0429)  0.9577 (0.0237) ~ 0.9955 (0.0039)
3 0.2260 (0.0154)  0.3981 (0.0290)  0.7709 (0.0284)  0.9318 (0.0292) ~ 0.9827 (0.0111)
4 0.2008 (0.0144)  0.3694 (0.0266) ~ 0.7831 (0.0211) ~ 0.9492 (0.0191)  0.9920 (0.0042)
5 5 0.2037 (0.0144) ~ 0.3638 (0.0335)  0.7451 (0.0089)  0.9162 (0.0238)  0.9679 (0.0213)
6 0.2178 (0.0105) ~ 0.4058 (0.0259) ~ 0.8030 (0.0389)  0.9608 (0.0233) ~ 0.9895 (0.0060)
7 0.2367 (0.0166) ~ 0.4440 (0.0276) ~ 0.8070 (0.0251)  0.9455 (0.0286)  0.9792 (0.0186)
8 0.2432 (0.0285)  0.4433 (0.0446)  0.8192 (0.0434)  0.9679 (0.0179)  0.9988 (0.0018)
9 0.1815 (0.0125)  0.3537 (0.0732) ~ 0.8955 (0.0762) ~ 0.9793 (0.0215) ~ 0.9939 (0.0070)

0.1420 (0.0032)
0.1924 (0.0103)
0.2110 (0.0147)
0.1952 (0.0133)
0.1889 (0.0112)
0.2110 (0.0148)
0.2277 (0.0140)
0.2156 (0.0169)

0.2038 (0.0084)
0.3426 (0.0184)
0.3847 (0.0392)
0.3397 (0.0342)
0.3354 (0.0368)
0.3915 (0.0364)
0.4263 (0.0286)
0.4217 (0.0340)

0.6272 (0.0646)
0.7782 (0.0437)
0.7735 (0.0425)
0.7530 (0.0142)
0.7073 (0.0205)
0.7900 (0.0438)
0.7834 (0.0335)
0.8586 (0.0399)

0.8758 (0.0524)
0.9464 (0.0263)
0.9371 (0.0295)
0.9254 (0.0213)
0.8899 (0.0301)
0.9451 (0.0294)
0.9315 (0.0271)
0.9803 (0.0102)

0.9665 (0.0200)
0.9865 (0.0080)
0.9829 (0.0158)
0.9802 (0.0167)
0.9490 (0.0336)
0.9845 (0.0111)
0.9829 (0.0133)
0.9983 (0.0019)

—_
(=)
O 00O W —

0.2017 (0.0035)  0.3798 (0.0391)  0.8766 (0.0866) 0.9716 (0.0280)  0.9922 (0.0077)

TABLE 111
RESULTS ON THE HELD-OUT TEST SET FOR EVERY TASK AND SAMPLING RATE. FOR BREVITY, RESULTS ARE ONLY SHOWN WHEN USING R1 AND R6 FOR
THE AUTHENTICATION SET, AND ONLY WHEN USING n = 10 IN EQUATION 8. VALUES ARE PRESENTED AS MEAN (STANDARD DEVIATION) ACROSS THE
4 MODELS TRAINED WITH 4-FOLD CROSS-VALIDATION. THE BEST RESULT FOR EACH ROUND IS BOLDED.
*: FOR BLG, 3 SUBJECTS (1, 120, AND 180) WERE EXCLUDED AT TEST TIME FOR HAVING A RECORDING WITH A DURATION LESS THAN 10.240 s.

FRR @ FAR
Task @ Rate Round EER
101 10—2 103 104

HSS @ 1000 Hz 1 0.1125 (0.0071)  0.1273 (0.0154)  0.4867 (0.0299) 0.8010 (0.0891)  0.9343 (0.0542)
6 0.2310 (0.0082)  0.4630 (0.0174)  0.8377 (0.0302)  0.9495 (0.0210)  0.9808 (0.0096)
VDI @ 1000 Hz 1 0.1694 (0.0112)  0.2770 (0.0276)  0.7343 (0.0460)  0.9288 (0.0498)  0.9789 (0.0298)
6 0.3151 (0.0179)  0.6099 (0.0297)  0.9125 (0.0016)  0.9901 (0.0080)  0.9979 (0.0030)
FXS @ 1000 Hz 1 0.2136 (0.0102)  0.4260 (0.0389)  0.8664 (0.0329) 0.9763 (0.0205)  0.9953 (0.0064)
6 0.3654 (0.0107)  0.7113 (0.0218)  0.9518 (0.0040)  0.9949 (0.0021)  0.9994 (0.0005)
RAN @ 1000 Hz 1 0.1459 (0.0079)  0.2293 (0.0210)  0.7602 (0.0619)  0.9481 (0.0445) 0.9836 (0.0175)
6 0.2626 (0.0194)  0.5294 (0.0385) 0.9188 (0.0160)  0.9927 (0.0081)  0.9987 (0.0017)
*BLG @ 1000 Hz 1 0.1404 (0.0112)  0.2140 (0.0273)  0.6835 (0.0125)  0.8902 (0.0355)  0.9488 (0.0272)
6 0.2833 (0.0132)  0.5578 (0.0313)  0.8490 (0.0181)  0.9315 (0.0282)  0.9528 (0.0330)
TEX @ 1000 Hz 1 0.1420 (0.0032)  0.2038 (0.0084)  0.6272 (0.0646)  0.8758 (0.0524)  0.9665 (0.0200)
6 0.2110 (0.0148)  0.3915 (0.0364) 0.7900 (0.0438)  0.9451 (0.0294)  0.9845 (0.0111)
TEX @ 500 Hz 1 0.1667 (0.0155)  0.3110 (0.0577)  0.8315 (0.0293)  0.9928 (0.0051) 1.0000 (0.0000)
6 0.2764 (0.0158)  0.5618 (0.0317)  0.9280 (0.0179)  0.9975 (0.0020)  0.9999 (0.0001)
TEX @ 250 Hz 1 0.1661 (0.0091)  0.2540 (0.0201)  0.6916 (0.0439)  0.9597 (0.0399)  0.9999 (0.0001)
6 0.2660 (0.0157)  0.4845 (0.0280)  0.8560 (0.0304)  0.9790 (0.0196)  0.9959 (0.0067)
TEX @ 125 Hz 1 0.1875 (0.0106)  0.3123 (0.0281)  0.6327 (0.0277)  0.7990 (0.0276)  0.8642 (0.0289)
6 0.2499 (0.0165)  0.4780 (0.0359)  0.7994 (0.0335) 0.9159 (0.0219)  0.9504 (0.0201)
TEX @ 50 Hz 1 0.2371 (0.0436)  0.4152 (0.1301)  0.5411 (0.1669)  0.5558 (0.1720) 0.5577 (0.1730)
6 0.2466 (0.0394)  0.4742 (0.1329) 0.7981 (0.1169)  0.8150 (0.1075) 0.8173 (0.1064)
TEX @ 31.25 Hz 1 0.2666 (0.0246)  0.5147 (0.0628)  0.7356 (0.0476)  0.7881 (0.0645)  0.8079 (0.0779)
: 6 0.3047 (0.0281)  0.5902 (0.0591)  0.7796 (0.0368) 0.8282 (0.0537)  0.8404 (0.0600)
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BASELINE PERFORMANCE MEASURES COMPUTED ON THE HELD-OUT TEST SET USING TEX @ 1000 Hz. FOR BREVITY, RESULTS ARE ONLY SHOWN
WHEN USING R1 AND R6 FOR THE AUTHENTICATION SET, AND ONLY WHEN USING nn = 10 IN EQUATION 8 (FULL RECORDING DURATION USED FOR

TABLE IV

STAR). VALUES ARE GIVEN AS MEAN (STANDARD DEVIATION), AGGREGATED ACROSS 4 MODELS TRAINED VIA 4-FOLD CROSS-VALIDATION. THE BEST
RESULT FOR EACH ROUND IS BOLDED.

FRR @ FAR
Model Round EER
10-1 10—2 10-3 10—4

STAR 1 0.1563 (0.0487) 0.2249 (0.1101)  0.6240 (0.2479)  0.8040 (0.1962) 0.9107 (0.0917)
6 0.2461 (0.0620) 0.4161 (0.1188)  0.8284 (0.1727)  0.9237 (0.0765)  0.9727 (0.0281)
DEL 1 0.4295 (0.0213)  0.8001 (0.0240)  0.9706 (0.0165)  0.9955 (0.0033)  0.9992 (0.0005)
6 0.4748 (0.0197)  0.8465 (0.0301)  0.9867 (0.0172)  0.9973 (0.0034)  0.9991 (0.0010)
DEL (slow) 1 0.1559 (0.0394)  0.2226 (0.0854)  0.5822 (0.1083) 0.8558 (0.1072)  0.9550 (0.0483)
: 6 0.2314 (0.0336)  0.4053 (0.0807)  0.7619 (0.0662)  0.9241 (0.0438)  0.9687 (0.0230)
DEL (fast) 1 0.2111 (0.0377)  0.3631 (0.0737)  0.6995 (0.0371)  0.8208 (0.0766)  0.8691 (0.0973)
6 0.2673 (0.0326)  0.5296 (0.0612)  0.8208 (0.0189)  0.8967 (0.0317) 0.9146 (0.0403)
Ours 1 0.1420 (0.0032)  0.2038 (0.0084) 0.6272 (0.0646)  0.8758 (0.0524)  0.9665 (0.0200)
6 0.2110 (0.0148)  0.3915 (0.0364) 0.7900 (0.0438)  0.9451 (0.0294)  0.9845 (0.0111)
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Fig. 5. ROC curves to provide a qualitative assessment of model performance
using » = 10 and R1 for authentication. The horizontal axis is log-scaled
false acceptance rate (FAR). The vertical axis is false rejection rate (FRR).
Each ROC curve represents the mean performance across 4 models trained
with 4-fold cross-validation, and each shaded region indicates 1 SD about
the mean. The point where the dashed line intersects each ROC curve indicates
the EER for that curve.

try to improve normality; we tested normality by checking
skewness and kurtosis instead of using the chi-square test; we
measured reliability on a set of data disjoint from our test
set; and we determined the best set of features and number of
principal components using mean EER across rounds rather
than rank-1 identification rate.

Third, we did not have access to several oculomotor plant
characteristic (OPC) features that were present in the original
study, some of which were found to be highly reliable in the
original study.

2) DEL: We were unable to get reasonable performance
with the full DEL model. Since the fast and slow subnets both
performed well on their own, we included their performance
in our results. Looking at Table IV, we see that the full
DEL model had near-random performance with 42.95% R1
EER. The slow and fast subnets individually performed better
than the full DEL model, achieving R1 EERs of 15.59% and
21.11%, respectively. Our proposed model outperforms the
DEL baseline, though the difference between the slow subnet
and our model may not be statistically significant.

As with STAR, the genuine and impostor distribu-
tions (Fig. 4C) are not unimodal, but this is because the figure
includes 4 separate genuine/impostor distributions (one per
model).

We note that our approach outperforms DEL, despite ours
having 440x fewer learnable parameters (145x fewer than the
slow subnet). This significant reduction in model complexity
may enable more power-efficient implementations in certain
target settings, such as embedded environments.

Regarding the discrepancy between our results with DEL
and the original results from [4] (where an EER @ 10 s of
5% was achieved on data separated by >1-4 weeks), we note
that we used a different data set and evaluated the model on
a held-out test set of as many as 59 subjects (compared to
25 subjects used in the original study). Additionally, we had
only 1 enrolled recording per subject in the test set, whereas
the original study had multiple. We also determined similarity
differently. The original DEL study [4] checks if any window
from any enrolled sequence is sufficiently similar to any
window from the presented sequence during authentication. In
contrast, we measured the mean similarity across each pair of
temporally-aligned windows from the enrolled sequence and
the presented sequence during authentication.

B. Authentication accuracy vs test-retest interval

Looking at Table II, we see that performance when au-
thenticating on R1 (test-retest interval of approx. 20 minutes)
is significantly better than later rounds. This matches our
expectation.
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We note that R1-6 all have 59 subjects, R7 has 35, R8
has 31, and R9 has 14. The reduction in subject count for
R7-9 may partially explain the reduction in EER despite the
increase in test-retest interval. We also note that data for other
subjects from R1-5 were present in the training and validation
set, while R6-9 were exclusive to the test set.

C. Authentication accuracy vs recording duration

Looking at Table II, we see that our model still performs
better than chance (50% EER) using just the first 1.024 s (n =
1) from each recording for both enrollment and authentication.
Performance drastically improves when the first 5.120 s (n =
5) are used but does not improve much further when using the
first 10.240 s (n = 10).

Although we focused on low data requirements, it may be
worth mentioning that in an additional analysis, we evaluated
the TEX @ 1000 Hz model using (roughly) the full recording
duration (n = 58, or 59.392 s) for both enrollment and authen-
tication. In this higher data setting, our model achieved a mean
R1 EER of 10.52%—an improvement of nearly 4 percentage
points compared to using n = 10.

D. Authentication accuracy vs sampling rate

Looking at the bottom half of Table III, we see that R1 EER
worsened as sampling rate was reduced, which aligns with
our expectations. However, R6 EER monotonically improved
(slightly) as sampling rate was degraded, starting from 500 Hz
down to as low as 50 Hz. Figure 4 shows that as sampling
rate is degraded and fewer time steps are present in the
input, the models gradually become less capable of producing
embeddings that are highly dissimilar.

Interestingly, R1 FRR @ FAR 10~ was its lowest at 50 Hz
(see Table III). Of course, a FRR of 56% is still unusable in
practice, and the variance across folds was largest for 50 Hz;
but this was an interesting result nonetheless.

E. Authentication accuracy vs task

Looking at the top half of Table III, we find that HSS, a low-
cognitive-load task, resulted in the best R1 performance across
tasks. TEX resulted in the best R6 performance across tasks,
but HSS was still competitive despite requiring significantly
less mental effort from the participants. Unsurprisingly, FXS
resulted in the worst performance of all the tasks, but still did
better than chance (50% EER) even on R6.

F. Explanation of high error rates

The results presented herein are nominally worse than those
of many prior works in the literature. We highlight, for the
following reasons, that this relatively poor performance is
due to our work attempting to solve a harder problem that
is more practically relevant and thus would be more indica-
tive of real-world performance with the selected architecture.
Within this more realistic scenario, our proposed architecture
outperformed all state-of-the-art models.

Low data setting. Our approach for authentication re-
quires very little data (up to 10.240 s collected during one

sitting), during both enrollment and verification. The majority
of prior works require significantly more data. For example,
DEL [4] uses 9 separate trials (totaling 26.250 s) collected
over a period of at least 3 weeks for enrollment. The statistical
method by Friedman et al. [16] uses 60 s of data during both
enrollment and verification. We believe that it is important for
future studies to focus on requiring less data to improve the
practical utility of eye movements as a biometric.

No data screening. We did not clean the data set at all
(beyond any prior screening employed for the GazeBase data
set itself). As a result, the data we used included noisy signals
littered with NaN values, and some windows of data used
during training and evaluation had a significant amount of
missing data.

Held-out test set. We used a separate held-out set of
data for the final evaluation of our model. This held-out set
contains nearly 50% of all recordings in GazeBase, resulting
in much less data available for training. It also contains data
from 59 subjects which is a larger population than many prior
studies consider. Most prior studies do not use a separate held-
out set of data, so their estimates of model performance may
be more biased (in their favor).

Pessimistic resampling. Our approach of resampling the
similarity scores with a Pearson family distribution tended to
produce pessimistic estimates of model performance that are
likely more indicative of real-world performance. While our
measures of FRR @ FAR 10~ are very high to the point of
limited practical use, we note that our study is the first in the
field to report measures of FRR @ FAR 10~

G. Limitations

There is an implicit assumption that the embeddings of
each subsequence within a recording come from the same
distribution. This assumption is necessary for the metric learn-
ing model to learn a well-clustered embedding space, as the
subsequence embeddings for a given subject should follow
some central tendency. However, during TEX, for instance,
this assumption is almost certainly violated for whichever
subsequence inevitably contains the large return saccade that
occurs when a participant finishes reading the text and starts
re-reading it. It may be advantageous to exclude such anoma-
lous subsequences during training.

We note that degrading sampling rate alone is not sufficient
to emulate other eye trackers with worse signal quality. There
would also be differences in other eye tracking signal quality
metrics including spatial accuracy, spatial precision, temporal
precision, linearity, and crosstalk.

The EERs presented in the present study (and virtually every
other study in the field) are based on a threshold determined
on the test set data. We note that doing so essentially leaks test
set data into the decision process. Of course, in a real-world
scenario, it would be necessary to determine the threshold
using the training and validation data and then later apply that
threshold to the similarity scores produced on unseen (test)
data.

Our method of scoring the “goodness” of a model using
mean(EER) + 1.96 x SD(EER) may have erroneously favored
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worse-performing models. It may be suggested for future
works to exclude the SD term.

V. CONCLUSION

We presented a metric learning approach for end-to-end bio-
metric authentication via eye movements. Our proposed model
employed exponentially-dilated convolutions to exponentially
increase the receptive field of subsequent layers while only
linearly increasing the number of parameters. Our approach
was validated on the publicly available GazeBase dataset [14]
using recordings collected as much as 37 months apart, and
we compared our approach against a statistical baseline and
the current state-of-the-art, DEL.

When authenticating on R1 with a test-retest interval of
approx. 20 minutes and using the first 10.240 s of each
recording, we achieved an EER as low as 11.25% on HSS @
1000 Hz and a FRR @ FAR 10~* as low as 55.77% on TEX
@ 50 Hz. Even on R9 with a 37-month test-retest interval, we
were able to achieve an EER as low as 18.15% using the first
5.120 s of each recording (on a reduced pool of 14 subjects),
but FRR @ FAR 10~ was consistently above 99%.

We have defined a testing scenario that is more realistic
than most prior works, and we outperform the current state-
of-the-art, DEL, under that testing scenario despite having
440x fewer learnable parameters and requiring a fraction of
the time to train. Our work rehighlights the applicability of
CNN architectures for eye movement biometrics and shows
that even efficient architectures can achieve good performance.
We believe that the scope and diversity (not only in terms
of tasks, but also participant characteristics) of the GazeBase
dataset gives it potential to serve as a unifying dataset for
future biometrics research. We also encourage future eye
movement biometrics studies to report FRR @ FAR 10~ in
a combined effort to eventually achieve the FIDO Alliance’s
recommendation of 5% FRR @ FAR 10~
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