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ABSTRACT

Iris-based biometric authentication is a wide-spread biometric modal-
ity due to its accuracy, among other benefits. Improving the resis-
tance of iris biometrics to spoofing attacks is an important research
topic. Eye tracking and iris recognition devices have similar hard-
ware that consists of a source of infra-red light and an image sensor.
This similarity potentially enables eye tracking algorithms to run
on iris-driven biometrics systems. The present work advances the
state-of-the-art of detecting iris print attacks, wherein an imposter
presents a printout of an authentic user’s iris to a biometrics sys-
tem. The detection of iris print attacks is accomplished via analysis
of the captured eye movement signal with a deep learning model.
Results indicate better performance of the selected approach than
the previous state-of-the-art.
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1 INTRODUCTION

Biometrics aim to differentiate a human from another according to
their physical, physiological and behavioral characteristics, espe-
cially as a means of verifying identity [Jain et al. 2007]. Biometrics-
based recognition systems are more convenient than typical meth-
ods such as password-based authentication. Contemporary research
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on common biometric modalities such as iris-, fingerprint- and
facial-recognition has indicated the ability of these modalities to
achieve high recognition accuracy with low computational re-
sources [Chatterjee et al. 2017; Gragnaniello et al. 2015a; Rigas
and Komogortsev 2014]. Eye movement biometrics is a relatively
new research direction that investigates opportunities for authenti-
cating people based on eye movements [Friedman et al. 2017; Jager
et al. 2019; Lohr et al. 2021; Rigas and Komogortsev 2015]. Eye
movement biometrics can also be paired with iris recognition in a
multimodal biometrics system to help defend against spoof attacks.

The texture of the iris is highly unique and temporally persistent,
making iris biometrics very accurate provided that the iris image
quality is high. However, iris biometrics is still a relative static
modality which presents an opportunity for circumvention via a
printout of an iris with a hole for a pupil [Komogortsev et al. 2015].
An intruder can use soft, colored and textured contact lenses as
presentation attack instruments (PAls) [Kaur et al. 2019]. Despite
having a few security advantages over other biometric modalities,
iris-based biometrics systems show vulnerability to spoofing attacks
such as presentation attacks [Czajka and Bowyer 2018; Sajjad et al.
2019; Tolosana et al. 2019].

This research paper proposes a deep learning methodology to de-
tect iris print attack based on eye movement signal (EMS) analysis.
Spoofing attacks in iris-based biometrics systems can be opposed
and prevented via the presented methodology. Although contem-
porary iris recognition devices have built-in anti-spoofing attack
systems, intruders have already developed a way to bypass these
defensive measures [Czajka and Bowyer 2018]. Thus, there is clear
need for anti-spoofing measures that are more robust in terms of
their ability to detect spoofs quickly and efficiently.

In this work, we propose and evaluate a deep learning archi-
tecture based on a residual network (ResNet) [He et al. 2016b] for
the detection of iris print attacks. We train a custom ResNet that
receives as input a relatively small sample of an EMS and outputs
whether that signal originates from a real eye or an iris printout.
The proposed deep learning method is evaluated on the Eye Tracker
Print-Attack Database (ETPAD v2) [Rigas and Komogortsev 2015]
dataset. Dataset contains data from two presentation attack scenar-
ios. The model learns to detect whether an EMS originates from real
eye movements or from an iris printout. We compare our model
against the state-of-the-art statistical baseline by Rigas & Komogort-
sev [Rigas and Komogortsev 2015].

In this paper, our contributions include:
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e Providing a strong baseline for learning-based evaluation of
iris print attack detection based on EMS.

e Using a very short time interval (1.5 s) for evaluation.

e Outperforming the previous state-of-the-art in this domain
which was based on a statistical method [Rigas and Ko-
mogortsev 2015].

2 PRIOR WORK

Various iris presentation attack detection (PAD) approaches have
been proposed over the last decade. Iris PAD approaches can be cat-
egorized as sensor- and feature-level approaches [Galbally and
Gomez-Barrero 2016], or as software- and hardware-based ap-
proaches [Pala and Bhanu 2017]. There is no firm rule in cate-
gorizing these approaches; it varies based on different conditions.
We categorize iris PAD approaches based on the format of the in-
put given to the detection system: 1) iris/eye imaged-based or 2)
EMS-based. Recent papers such as [Agarwal and Jalal 2021; Czajka
and Bowyer 2018] present a comprehensive review and analysis of
the state-of-the-art approaches for iris PAD. Here we will discuss
approaches related to our proposed method, i.e., approaches based
on machine learning and deep learning.

Among the image-based approaches, the general trend is to an-
alyze image texture as in [Zhang et al. 2011]. Basic steps of an
image-based approach include image segmentation, image normal-
ization, feature selection/extraction and classification [Agarwal
and Jalal 2021]. The procedure to execute those steps varies be-
tween research papers. For example, one study [Agarwal et al.
2020] employed Daugman’s integro-differential operator for image
segmentation, proposed the Local Binary Hexagonal Extrema Pat-
tern [Agarwal et al. 2021] for the description of texture features of
counterfeit irises, incorporated the extracted features into a clas-
sification scheme based on Support Vector Machines (SVMs), and
used Dempster-Shafer theory for decision-level fusion. Another
study [Dronky et al. 2021] proposed a liveness detection system
with Binarized Statistical Image Features (BSIF) [Kannala and Rahtu
2012] and also used SVMs for classification. Three different filters
were applied before BSIF computation to highlight the discrimina-
tive features of the iris. BSIF is based on Local Binary Patterns [Ojala
et al. 2002] which had been used as a descriptor in many prior iris
anti-spoofing studies such as [Fathy and Ali 2018; Gragnaniello
et al. 2015b; Hu et al. 2016].

Deep learning approaches which take images as input are also
notable to mention in iris PAD research. In [He et al. 2016a], the
authors came up with a multi-patch convolutional neural net-
work (CNN) architecture where the normalized images were first
split into multiple patches. Yan et al. [Yan et al. 2018] proposed
hierarchical multi-class classification for CNN-based iris liveness
detection. Kimura et al. [Kimura et al. 2020] tuned the hyperparam-
eters of the CASIA algorithm from the LivDet-Iris 2017 competi-
tion [Yambay et al. 2017], significantly reducing the attack presenta-
tion classification error rate (APCER) and the bona fide presentation
classification error rate (BPCER).

In image-based techniques, the images are directly used in the
system to extract distinctive iris characteristics. Any degradation of
the image quality due to noise, recording procedure fault, hardware
used, etc. has a high impact on the accuracy of such systems. By
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comparison, EMS-based approaches are relatively robust to iris
image quality. Distinctive features for resisting spoof attacks have
been found in eye movements [Komogortsev et al. 2015]. So, EMS-
based PAD approaches are worth mentioning as a competitive
alternative to iris image-based approaches.

Rigas and Komogortsev [Rigas and Komogortsev 2014] proposed
an algorithm based on gaze-related features that could determine
whether an EMS originated from a live eye or an iris printout. That
work was later extended with a statistical approach by [Rigas and
Komogortsev 2015] to incorporate a new set of features. In the
latter approach, an EMS was first decomposed into elementary
units, and then local features were extracted from each unit and
aggregated across all units in the signal. The latter approach is the
current state-of-the-art for EMS-based iris PAD. Understanding
that contemporary machine learning methods may outperform
statistics-based approaches on a variety of tasks, we have created
and evaluated a deep learning model that performs EMS-based iris
PAD.

3 METHODOLOGY

A simple block diagram showing the workflow of the proposed
deep learning method is shown in Fig. 1.

3.1 Dataset

We used the ETPAD v2 [Rigas and Komogortsev 2015] dataset which
is publicly available.! This dataset consists of 1200 eye movement
recordings and 400 iris images from 200 subjects. Among the 200
subjects (female — 101; male - 99), 96 had normal vision and the rest
had corrected-to-normal vision. Each subject was recorded twice to
produce 400 eye movement recordings. All eye movement data was
captured using an EyeLink 1000 eye tracker, which monocularly
tracked the left eye at 1000 Hz. The recordings of iris images were
captured using a CMITECH BMT-20 iris imager [cmi 2021], which
can capture iris images at a resolution of 640 X 480 pixels.

Visual stimulus for the experiment was a fixation point which
was placed carefully at a visual angle of 3.5° above the head straight
eye point. Subjects were given instruction to look on the stimulus
for 15 seconds in each session. Subject’s head was 550 millimeters
away from the center of the screen where the stimulus was posi-
tioned. In order to collect the data for attack scenarios printouts
was adjusted in front of participants head (fastened to an eye patch).
Other than placing the iris printouts in front of real eye, every other
experimental conditions were kept same.

Pupil Center Corneal Reflection (PCCR) technique was used in
gaze estimation in-case of both live and spoof data collection. More
detailed information about the experimental setup and dataset can
be found in [Rigas and Komogortsev 2015].

3.2 Data Preprocessing

We calculated the channel-wise (different for horizontal and verti-
cal positional values) sample-to-sample differences scaled by the
sampling rate (i.e., instantaneous velocity) to create velocity signals.
These velocity signals were fed into the network instead of raw
positional values. So, the velocity signal generated from the eyelink
gaze position value is the input to our proposed network.

Uhttps://userweb.cs.txstate.edu/~ok11/etpad_v2.html


https://userweb.cs.txstate.edu/~ok11/etpad_v2.html

Iris Print Attack Detection using Eye Movement Signals

Computation

b “\/\

Eye ” .
Raw positional

Velocity data Data

data augmentation

_.5_4_ .

ETRA 22, June 8-11, 2022, Seattle, WA, USA
il I

Horizontal A
channel

Window ’ ¥
method I I
sl C-ResNet 18
Vertical
channel

Figure 1: Block diagram of the proposed deep learning methodology.

Each eye movement recording of an individual participant is
15 seconds long. In the data augmentation step, we split each record-
ing into overlapping windows using a strided window approach
with window size = 1500 ms and stride = 125 ms. So, after this step
we feed the network windows = 1500 ms length each to the network.
After making windows, we replace NaN values with zeroes. Signals
in the train, test and validation sets were z-score scaled using the
channel-wise mean and standard deviation computed across all
recordings in the train set.

3.3 Network architecture

We employed a customized version of the ResNet 18 [He et al.
2016b] architecture and named it C-ResNet 18. In C-ResNet 18, we
made several changes compared to the basic ResNet 18. The main
reasons behind the change are making it compatible to our problem
statement, dataset and overall better performance in terms of eval-
uation metrics. We changed 2D convolutions to 1D, altered how
skip connections were used, and changed the number of input and
output channels in each convolutional block. In short, C-ResNet 18
has 17 convolutional blocks, followed by global average pooling, a
flatten layer and a linear (fully-connected) layer. After each convo-
lution, we apply batch normalization (BN) and the ReLU activation
function. The network architecture is shown in Fig. 2.

3.4 Training & Evaluation

Performance of the proposed model was assessed in terms of binary
classification accuracy, an assessment of whether a given EMS
originates from a live or fake eye. The proposed deep learning
model is trained on the ETPAD v2 dataset. The whole dataset is
partitioned into subject-disjoint train, test and validation sets. The
whole datset has been split into train, test, validation in a ratio
of 60-20-20. Among the 200 subjects (2 sessions per subject), 120
subjects are used to train the model, 40 subjects are used to test
the model and 40 subjects were kept untouched until the very end
as the validation set to evaluate the model without any kind of
information leak. The model makes liveness predictions based on
1500 ms (1.5 s) of eye movement velocity signal.

The model employs Kaiming initialization [He et al. 2015], as
we employed ReLU as the activation function in C-ResNet 18. The
model was optimized using the binary cross entropy (BCE) loss and
AdamW [Loshchilov and Hutter 2019] optimizer, with learning rate
=3 x 107* and weight decay = 1 X 107>, with all other optimizer

parameters set to default. Early stopping was used to reduce over-
fitting. Loss was tracked for early stopping and patience of 5 was
used for it. The model has stopped training after 13 epochs with
batch size of 64 because of early stopping.

We ran the experiments for two different spoofing attack sce-
narios: first scenario - where attack was carried both in calibration
and stimulus presentation phase and second scenario - where cal-
ibration phase was skipped as some eye trackers do not require
re-calibration. More detail about attack scenarios are in Section 3.6.
We compare our deep learning model against a statistical baseline
using the same dataset and similar subject-disjoint train, test and
validation splits.

3.5 Performance evaluation metrics

We simulate each of the presentation attacks on our model and
evaluate its performance using standard ISO/IEC 30107-3 assess-
ment metrics defined in Table 1. During our simulated attacks, we
treat recordings using printed iris images as “spoof” samples and
recordings by live irises as “live” samples.

3.6 Attack Scenarios

Live images from 200 different subjects are used to create the print-
outs for presentation attacks. Two different attack scenarios have
been considered in this paper, similar to those explored in [Rigas
and Komogortsev 2015].

3.6.1 Attack Scenario-1 (SAS-1):. The spoofing attack is carried out
in the first scenario both at the calibration and stimulus presenta-
tion phases. It should be noted that during the calibration stage,
the attacker must make small directional movement to carry the
more peripheral points into the field of view, simulating natural
eye movements. The distortions in SAS-I are caused by both the cal-
ibration stage and the inconsistency in pupil and corneal reflection
positioning during the stimulus presentation stage.

3.6.2 Spoofing Attack Scenario Il (SAS-11):. Spoofing attack is only
carried out during the stimulus presentation stage in the second
scenario. The calibration stage is carried out in this case with the
attacker’s own eye. This example simulates the situation where
calibration is not performed. Since some eye trackers may not need
re-calibration after the initial calibration, we wanted to test this
scenario. Only the inconsistent orientation of the pupil and corneal
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Figure 2: Network Architecture of C-ResNet 18 (Legend: ReLU-Rectified Linear Unit, BN-Batch Normalization)

Table 1: Performance metrics along with definition and computational formula (Legend: APCER-Attack Presentation Classi-
fication Error Rate, NPCER-Normal Presentation Classification Error Rate, ACR- Average Classification Rate, ACER-Average
Classification Error Rate, TP-True Positive, TN-True Negative, FP-False Positive, FN-False Negative)

Metric  Definition Formula
APCER The percentag'e of sp‘(‘)(.)f ”samples that are in- FP
correctly classified as “live TN + FP
NPCER The percenFage of “hve simples that are incor- FN
rectly classified as “spoof’ FN + TP
The average percentage of correctly classified APCER + NPCER
ACR . P » 100% - —————
test feature vectors (either “live” or “spoof™) 2
ACER The average percentage of misclassified test fea- 100% — ACR

ture vectors (either “live” or “spoof”)

reflection during the eye-tracking process causes signal disturbance
in this case.

4 RESULT

Results are shown in Table 2 for the proposed deep learning model,
C-ResNet 18. When trying to strike a balance between our model’s
performance and the amount of EMS required to make predictions,
we found that there was a tie between 1500 ms and 2000 ms. Con-
sidering the results from all the metrics in two attack scenarios,
we found that the proposed model achieved 5 of 10 best result at
1500 ms and rest at 2000 ms. To break the tie between input sizes of
1500 and 2000 ms, we chose 1500 ms in favor of the lower recording
duration.

For more visual comparison, the results are also plotted in Fig. 3.
In addition to the performance metrics defined in Table 1, we also
calculated equal error rate (EER), which is the point on a receiver op-
erating characteristic (ROC) curve where false acceptance rate (FAR)
and false rejection rate (FRR) are equal.

5 DISCUSSION

From Table 2, we can see our proposed deep learning model cor-
rectly classified 98.06% and 87.78% of all 1.5 s windows from the
SAS I and SAS 1I datasets, respectively. We also see that our model
tends to classify “spoof” samples accurately, which is reflected by
the relatively low APCER, but it has room for improvement when
classifying “live” samples, which is reflected by the relatively higher

NPCER. In other words, the model is quite selective when it comes
to classifying a sample as “live,” especially in SAS 1L

5.1 Comparison against statistical approach

Our proposed deep learning model has been compared to the state-
of-the-art statistical baseline [Rigas and Komogortsev 2015] across
the whole recording here in Table 3.

There is no other model/approach which deals with print attacks
using eye movement signal other than by [Rigas and Komogortsev
2015]. Their approach was statistical so apple-to-apple comparison
is not possible. However, their approach uses the same dataset and
makes classifications decision based on whole-recording we aggre-
gated liveness classifications across all non-overlapping windows
from a given recording for our model to make it fair comparison.

If more than 50% of the windows from a recording have been
correctly classified then we considered that particular recording has
been classified accurately. The >50% requirement employed in the
proposed work was done to account for the fact that the proposed
model operates on 1.5 seconds of data at a time, whereas [Rigas
and Komogortsev 2015] operated on entire recordings at a time.

Our deep learning model is capable of perfectly classifying the
live and fake EMS across the whole recording whereas ACR for
the statistical baseline was 95.4% and 96.5% for SAS I and SAS I,
respectively.
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Table 2: Results for C-ResNet 18 across different recording durations for both attack scenarios. Arrows indicate whether a
larger or smaller value is better. The recording duration that best balances performance and data requirements is highlighted

in yellow.
) ) ACR (%) T APCER (%) | NPCER (%) | ACER (%) | EER (%) |
Recording duration (ms)
SAST SASIT SASI SASII SASI SASII SASI SASII SASI SASI
250 96.55  85.17 1.86 4.26 5.04 25.40 3.45 14.83 4.89 20.96
500 97.24  86.55 0.69 3.06 4.83 23.84 2.76 13.45 4.64 19.74
750 97.47  87.40 0.46 2.24 4.61 22.96 2.53 12.60 4.42 19.02
1000 97.86  87.68 0.18 1.43 4.11 23.21 2.14 12.32 3.95 19.06
1500 98.06 87.78 0.14 1.25 3.75 23.19 1.94 12.22 3.62 19.02
2000 98.04 87.95 0.00 1.61 3.93 22.50 1.96 12.05 3.78 18.61
3000 97.66  87.03 0.00 1.88 4.69 24.06 2.34 12.97 4.48 19.69
4000 97.71  87.08 0.00 1.25 4.58 24.58 2.29 12.92 4.38 19.93
100
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Figure 3: Performance metrics distribution across all tested recording durations.

Table 3: Comparison of C-ResNet 18 against the statistical baseline when making recording-level predictions.

) C-ResNet 18 [Rigas and Komogortsev 2015]
Performance metrics
SAST(%) SASII(%) SASI(%) SASTI (%)

ACR 100 100 95.4 96.5

APCER 0 0 5.9 34

NPCER 0 0 34 3.5

EER 0 0 4.7 3.4
5.2 Limitations attacks, use of contact lenses, are not in our research scope, thus it
We only consider print-attacks with two different attack scenarios is unknown how our deep learning architecture performs on any

in our proposed method. Other spoofing attacks, such as replay other form of iris spoofing attack. The effect of head movement
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during attack scenarios is not investigated in the paper, so we are
unsure how the deep learning approach is affected with participants
head movement. What security issues may arise in the system while
using the deep learning approach is still an open research question
to work on. Possibility of being attacked in the layers of proposed
deep learning model is worth exploring in the future.

6 CONCLUSION

We presented a deep learning approach for detecting iris print at-
tacks using eye movement analysis. Our proposed deep learning
model has outperformed the previous state-of-the-art in this do-
main by [Rigas and Komogortsev 2015]. Our results were validated
on the ETPAD v2 dataset, containing 400 real eye movements from
200 subjects. The print attacks executed and recorded in this dataset
presented a case where relatively high-quality eye tracking signal
was captured during different forms of attack. This study investi-
gates the feasibility of distinguishing a genuine eye from a spoofed
one using EMS-based features. The proposed technique results in
an ACR of 98.06% and 87.78% in two different attack scenarios, re-
quiring just 1.5 seconds of eye movement data to make a decision
for spoof detection. The proposed model perfectly classifies the live
and fake EMS across the whole recording duration whereas the
ACR for the statistical baseline was 95.4% and 96.5% for SAS I and
SAS I, respectively. The proposed methodology indicates that deep
learning models can effectively use EMS and its derivatives for iris
PAD—something that was not demonstrated before.
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