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Abstract— Predictive maintenance plays a crucial role in the
field of intelligent machinery fault diagnosis, which improves the
efficiency of maintenance. This article focuses on the extraction
of real-time damage feature and the prediction of remaining
useful life (RUL) in predictive maintenance of rolling bearings.
Some RUL prediction approaches lack dynamic foundations
and require large amounts of data and prior knowledge. This
article proposes the algorithm of segmented relative phase space
warping (SRPSW) and a strategy combining double exponential
model (DEM) and particle filter (PF) to predict the RUL.
SRPSW provides a dynamic basis for real-time RUL prediction
in different stages. The DEM-based PF reduces the need for
prior knowledge and improves the accuracy. The analysis results
from normal and accelerated degradation experiments show that
the proposed SRPSW overcomes the failure of the original PSW
in depicting the later operating stage of bearings. Further, the
relative damage indicators (RDIs) extracted by SRPSW are more
accurate than commonly used indicators. The predicted results
show that the DEM-based PF does not require professional and
prior information while ensuring the accuracy of RUL prediction.
The proposed approach in this article provides a new avenue for
predictive maintenance of bearings.

Index Terms— Particle filter (PF), remaining useful life (RUL)
prediction, rolling bearing degradation, segmented relative phase
space warping (SRPSW).
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I. INTRODUCTION

N THE field of mechanical engineering, signal processing-

based maintenance and prognostics have drawn extensive
attentions. The maintenance strategies have been developed
from periodic maintenance to predictive maintenance [1], [2].
As key components in modern machinery, bearings often
operate at high speed with heavy loads and are exposed to
harsh working conditions. These adverse factors may lead to
bearing failures, resulting in economic loss and even casualty
accident [3], [4], [5]. Therefore, the predictive maintenance
of the bearings is of great importance. The features of the
bearings can be extracted by traditional signal decomposition
algorithms [6], [7], [8], [9], [10]. However, some of these
methods cannot be effectively applied to predictive mainte-
nance of the bearings.

Health monitoring is the key part in predictive maintenance
of the bearings [11], [12]. The health degradation of bearings
can be tracked from the analysis of the vibration signals,
which are collected by acceleration sensors. The extracted
degradation trends can be used to predict the remaining useful
life (RUL) of the bearings. As a result, the failures are detected
in advance and the machinery is maintained in a planned
way. The health monitoring process consists of four steps:
signal acquisition, construction of damage indicators (DIs),
classification of damage stages, and RUL prediction [13].
As for the signal acquisition, vibration signal [14], acoustic
emission signal [15], temperature signal [16], wear debris [17],
and current signal [18] have been used to monitor bearing
status, and vibration signals are most commonly used.

It should be noted that these bearing damages are hard
to observe directly [19]; thus, DIs are usually extracted to
show the damage process. Two types of DIs were specified by
prior researches: virtual damage indicators (VDIs) and physics
damage indicators (PDIs) [20]. VDIs usually have no physical
meaning. The damage degradation trend is described virtually
by the VDIs. In contrast, PDIs are related to the physical
property of the damage. PDIs are usually extracted from
the signals by statistical methods or signal processing meth-
ods, such as root-mean-square value [21] and spectral kurto-
sis [22]. Deep-learning-based approaches are widely applied
in VDIs construction. Que et al. [23] employed an attention
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mechanism to construct VDIs. The accuracy of VDIs is
improved by combining the attention mechanism with dynamic
time warping. Peng et al. [24] employed a deep belief network
to extract hidden VDIs. Pan et al. [25] employed the relative
root mean square as PDIs while improving extreme learning
machines to achieve RUL prediction. This strategy improves
the adaptability of DIs to different bearings and various
working conditions. Wang et al. [26] employed relevance
vector machine to extract DIs, and Pan et al. [27] defined
the DIs as the obedience of the data to the normal working
stage. Since the mechanism of bearing damage is complex
and the existing VDIs lack of theoretical dynamical basis,
it is difficult to interpret the relationship between DIs and
the damage. Chelidze and Liu [28] proposed the algorithm of
phase space warping (PSW), where the hierarchical dynamical
system is constructed in a high-dimensional phase space. The
curvatures of the trajectory in the phase space represent the
dynamic property of the nonlinear system [29]; thus, the PDIs
extracted by PSW are utilized in RUL prediction of faulty
component. Luo et al. [30] further proposed an improved PSW
algorithm by optimizing the selection of parameters to track
the degradation of bearing. Qian et al. [31] optimized the
algorithm of PSW by multidimensional auto-regression and
employed a modified Paris model for RUL prediction. During
the bearing degradation process, the amplitude of vibration
signal increases along with the increase of degradation status
correspondingly. This phenomenon causes a drastic change in
the damage-phase-space trajectory.

As the last step in bearing prognostics, RUL prediction can
be divided into three types: model-based methods, data-based
methods, and hybrid methods [20]. Model-based methods
mainly use mathematical models to describe the degradation
process in RUL prediction [32]. Data-based methods mainly
use empirical knowledge and statistical models to describe the
degradation process [33]. Further, the statistical and physical
models can be combined to form the hybrid model to con-
duct RUL prediction [34]. Deep-learning-based methods are
well-applied for RUL prediction. Yan et al. [35] enhanced the
long short-term memory network to improve the prediction
accuracy and convergence speed. Wang et al. [36] proposed
a deep separable convolutional network to make better use of
the data collected by different sensors. Several model-based
and hybrid methods also attract the interest of researchers.
Wang and Xiang [37] employed an exponential model to
simulate the bearing damage degradation process. In addition,
Wang and Gao [38] combined the Paris model and Newman
model to improve the accuracy of RUL prediction. These
fatigue crack growth model-based methods require extensive
knowledge of material parameters and fatigue mechanisms,
thus making it difficult to achieve ideal RUL prediction with
high efficiency.

In this article, a novel real-time segmented relative phase
space warping (SRPSW) algorithm for rolling bearing RUL
prediction is proposed. The indicators extracted by SRPSW
are related to the dynamic characteristics of damage; hence,
relative damage indicators (RDIs) are PDIs. The double expo-
nential model (DEM) is combined with the particle filter
(PF) algorithm to improve the accuracy of RUL prediction

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

- —» RDV,
» % |[>RDV
R
o
— _;;5 —* RDV,
- =R .
: o
: < :
I | o

-

Y

—* RDV{—»

-

M: >
]

Real-time RUL prediction process.

Y

—» RDV;—»

—* RDVy—+

(degradation stage)
SRPSW
Particle Filtering
Remaining Useful Life

(double exponential model)

> RDV—»

Fig. 1.

in SRPSW. PF adopts the SRPSW extracted RDIs as the
prior information to predict the RUL. The use of DEM
avoids the need for extensive prior knowledge of the dam-
age itself. The rest of this article is organized as follows.
Section II introduces the PSW algorithm and the proposed
real-time SRPSW. Section III describes the establishment of
the PF based on DEM. Section IV utilizes the laboratory
datasets from run-to-failure test to verify the validity of
the proposed approach. Section V concludes this article by
drawing main conclusions and giving necessary discussions.

II. SEGMENTED RELATIVE PHASE SPACE WARPING

This article proposes a novel RUL prediction approach to
rolling bearings based on the SRPSW and PF. SRPSW is
proposed to extract RDIs, while damage stages are also divided
specifically to improve the accuracy of damage tracking. The
graphical illustration of the proposed approach in this article is
shown in Fig. 1. First, the vibration signal of the bearing is col-
lected. SRPSW is employed to extract RDIs, and the relative
damage vectors (RDVs) are constructed by the extracted RDIs.
Second, the determination about whether the extracted RDIs in
RDV exceeds the threshold of the healthy stage is conducted.
If RDIs exceed the threshold, the bearings degradation stage
can be identified. Correspondingly, the parameters of SRPSW
are reselected to avoid errors. Finally, the RDVs are adopted
as the input to PF to achieve accurate and efficient RUL
prediction of rolling bearing.

A. Theory of Phase Space Warping

As the basis of SRPSW, PSW extracts the slow-time vari-
able in the dynamic system [39]. A hierarchical dynamical
system is proposed. Luo et al. [30] clarifies that the damage
and vibration of the bearing conform to the characteristics of
a hierarchical dynamical system. The system is simplified to
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a coupled state of fast-time variables (vibration signals) and
slow-time variables (damage signals), defined as

=[x, u(@),1) ey
¢ =eg(x,9,1) )
s = h(x) 3)

where x € R" is the fast-time variable; ¢ € R™ is the slow-
time variable in damage evolution; f(-) and g(-) are the fast
and slow dynamics functions; g € R’ is the function of ¢ as
a kind of parameter vector; ¢ is the time; and ¢ € (0, 1] is
a small ratio constant that distinguishes the time scale of fast
and slow variables. s is the discrete time series collected by
the sensor, and A () is the measure function for linking discrete
time series and fast variables.

To track damages from vibration signals, a hierarchical
dynamics system should be decoupled. The slow-time vari-
ables (e.g., damage variable) can be identified with the known
fast-time vibration signals. Considering a single damage vari-
able, the damage state is obtained after a short time interval
tp from the initial time fp and is described as

x(to + tp, &) = F(xo, to, ty, u(9)) (4)

where F(-) is the function of u(¢) € R". Every different
damage ¢ in fast subsystems with the same initial points is
evaluated by F(u(¢)). The damage process can be tracked
through g = F7'(x) : R" - R® or ¢ = F~!(x) : R" — R™.

The reference state (healthy stage) obtained after the same
time is x(fo + 1y, £). After Taylor series expansion at x = Xxg
and ¢ = ¢g, (4) is written as

x(fo +tp, &) = F(xo, to, Iy, 1())

= F(XOJ fo, tp: Ju(%)) + 0(8)

ox ¢
= F(xo, fo, tp, Jut(q:ik)) + iﬁ(% —¢r)

+o(llgo — #rll*) + o(e) Q)

where ¢y represents the initial damage, ¢g is the reference
damage, and o(-) represents the higher order infinitesimals.

The error between the damage state and the reference state,
eg, is used to track damage degradation

€R = F(I{}, lo, rP! Ju(¢)) - F(xﬂ:! fo, IP: #(¢R))
ox o
= ==L — ) + oo — $rl®) +0().  (6)
1 og
Ignoring the high-order infinitesimals, the approximate error
is as follows:

er ~ C(xo, 10, tp, ¢r )¢ + ¢ (X0, fo, tp, $r) @]

where C = (8x/8u)(8u/8¢) and ¢ = —C¢r. Equation (7) is
applicable to any damage variable, and the subscript of damage
variable ¢y is removed. ||¢y —¢r||> and & are small; hence, ex
and ¢ are approximately linear. Then, fast-time variables are
applied to track the evolution of damage.

To quantify this error, SRPSW is divided into five steps,
which are illustrated in Fig. 2.

Step 1: Vibration signals are collected in real time. The
red dashed rectangles in Fig. 2(a) represent data segments
collected at different times.
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Fig. 2.  Flowchart of SRPSW. (a) Time-domain signal. (b) Phase space
reconstruction. (c) Local phase space. (d) Damage tracking.

Step 2: The signal of the bearing is embedded in the
reconstructed phase space. Fig. 2(b) shows the trajectory of the
signal being reconstructed into high-dimensional phase space.
§; refers to the axes of the phase space. The red dashed cube
refers to a subspace in the phase space, and the warping of
the phase trajectory is analyzed in this subspace.

Step 3: In Fig. 2(c), the blue solid line is the phase space
trajectory in a short time interval #p. y(i) is the phase point
at the current moment. The healthy reference phase space
trajectory is the red solid line, and y®(i + k) is the point
on the curve at the next instant. y(i + k) is the phase point at
the next moment, and y™ (i +k) is the phase point at the next
moment predicted by SRPSW. Damage causes the warping of
phase space.

Step 4: RDIs were extracted from the RDV.

Step 5: The phase space is reconstructed if the RDI exceeds
the threshold. If the RDI does not exceed the threshold, the
signal continues to be collected.

Based on the Takens theorem [40], the time-delay approach
is adopted to reconstruct the phase space of the vibration signal
{s;}), to generate a d-dimensional state vector

®)

where {s;}" | represents the time series of vibration signals,
and y(i) is the point in the reconstructed phase space. The
embedding dimension d is determined by the false-nearest-
neighbors method [41], and the time delay r is estimated
by the mutual information method [42]. The reconstructed
reference phase space y(i; ¢r) is constructed in the same
way. The map P describes the reconstructed state vector
y(@ +1) = P(y(i); ¢). After a short-time interval ¢, from

. T
V@) = [8i, Sises - Sizia—ye |
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time fy, state point y(i + k) is expressed as follows:
Y +k) =Py ) ©

where k is the number of mapping interactions in f,.
A short-term linear prediction model is applied to construct
the reference phase space, predicting the state of i + k with
the state point y(7)

y(i +k) = Afy (i) + b} (10)

where A% and b¥ are the parameters of the linear prediction
model at the ith point.

Since the prediction reference model is not perfect, the
points yy (i + k) after k steps are considered. The true error
is Ef (i), the estimated error is Ei (i), and the modeling error

is EM(i)

S’

E{(i) =y +k) —y G +k) (11)
Ei(i) =y + k) — yM( + k) (12)
EM(Gi+k)=yMi+k) —yRG +k). (13)
The tracking matrix is expressed as
er(¥(@); ¢) = P(y(i): ) — P(y(i); ¢»)
~ y(i +1) — A;y(@) + bi. (14)

The collected bearing vibration signal is divided into
nr segments for phase space reconstruction, and nb indepen-
dent subspaces {JB,-}:.E1 are segmented. The accuracy of the
results is improved by calculating the average error of the
damage from the reference in each subspace. Therefore,
the damage tracking function of the data segment is

N
1 .
ci@) = 3 2 ler(y@); I (15)
i=1
where N is the number of damage space points in the subspace
{B‘-}:.‘zl, and the damage of all subspace is collected into an
nb-dimensional vector

¢/ =T[ei(@), ca(@), - - ., can (P

The damage vectors of all nr data segments are computed
and then arranged to form a damage matrix in chronological
order

(16)

a7

B. Extraction of DIs With SRPSW

It should be noted that the trajectories exceed the bounds
of the space where the warping is measured, resulting in nulls
and invalidating the algorithm. Thus, the original algorithm of
PSW is not entirely suitable for vibration signals of rolling
bearings. The constructed reference phase space must meet
the following conditions [43].

1) The effective dimension does not increase.

2) The future system phase space trajectory cannot exceed

the reference phase space trajectory.
In the process of bearing degradation, the dynamic system
changes greatly. Thus, the reference phase space may not
contain all phase space trajectories, and the reference phase
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space may fail in the later working stage of bearing. In addi-
tion, the original PSW algorithm cannot track damage by
stages. The result of PSW is a damage tracking matrix,
which contains a lot of nonprimary damage information.
This article uses the smooth orthogonal decomposition algo-
rithm for reference [28]. To realize the real-time tracking
of damage and extract the main damage information, the
eigenvector with the largest smoothness is extracted as the
main damage trend [44]. PSW uses different reconstructed
phase spaces and reference phase spaces during the staged
damage tracking; thus, the original algorithm cannot avoid the
fluctuation of the indices extracted from damage in different
stages.

To resolve the problems of damage matrix error and seg-
mental tracking indicator fluctuation, a real-time segmented
relative vector tracking algorithm is proposed in SRPSW. The
degradation threshold and failure threshold are determined by
the condition of segmentation (3¢ principle), and the degra-
dation process of the bearing is divided into healthy stage,
degradation stage, and failure stage. Since damage tracking
metrics are converted to relative values, damage metrics is
tracked in segments.

Fig. 3 illustrates the calculation process of the proposed
SRPSW algorithm. The initial part of the signal is used to
determine the parameters of the PSW. The damage matrix is
extracted from the vibration signal, and the main RDV in the
damage matrix is extracted by SRPSW. RDIs in RDV correlate
to bearing damage. When RDI exceeds the segmentation
conditions (SCs), the bearing enters the degradation stage, and
new parameters are determined. Then, the same process is
performed until the bearing enters the failure stage from the
degradation stage.

The collected real-time bearing vibration signal is processed
by PSW, and the damage tracking matrix ¥ is obtained.
Conversion of the extraction of DIs into the extraction of
eigenvalues leads to

[YTY]q = 2[(DY)"DY]q (18)
where D is the discrete differential operator of the forward
difference, g is the eigenvector, and A is the correspond-
ing eigenvalue. The eigenvector corresponding to the largest

eigenvalue maximizes the smoothness of the mapping of the
damage tracking matrix Y. The generalized singular value
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decomposition is applied to solve (17)

Yy =vUcCx"’
DY = VSXT
CTC+S8'™Ss=1 (19)
where I is the identity matrix, U and V are the unitary
matrices, X is a square matrix, and C, S are the nonnegative
diagonal matrices. The eigenvalue is 4; = (CG,i)/S8(, i),
and the transformed tracking matrix is ¥ = UC, whose
column vectors are arranged in the descending order of eigen-
values; thus, the main damage feature is the first column of Y.
Due to different phase space states in different damage stages,
the segmented RDI is expressed as

DI(i) — DI,

RDI() = ——
-m

(20)
where DI(i) is the damage feature, DI,, is the initial damage
of the bearing at each stage, and the RDI at different stages
are extracted by benchmark DI,,.

The bearing from the healthy stage to the degradation stage
is classified using the 3¢ interval. The 3o principle was
used to determine thresholds for RDIs during normal working
stages [5]. The vibration signal for the normal operation of
the bearing is disturbed, which causes fluctuations in the
RDIs extracted from the signal. The mean value p and
standard deviation ¢ of the RDIs are computed. Mean and
standard deviation are used to limit the range of RDIs, i.e.,
[# — 30, u + 3c0]. To ensure the robustness of the method,
the bearing is considered to enter the degradation stage only
when three consecutive RDIs exceed the interval. The failure
threshold is artificially set at the later stage of the bearing
degradation. When RDIs surpass the threshold, the bearing is
deemed to have entered the failure stage. Currently, the bearing
is still operational, but it was already defective.

C. Evaluation Criteria of DIs

To better understand the impact of the DIs proposed in
this article, monotonicity is introduced as evaluation crite-
rion [45], [46]. The damage evolution process of the bearing
is one way. Thus, the monotonicity of the index reflects the
effect of tracking damage. Monotonicity is calculated as [47]

1
n—1

M=

n—1

> [sen(xis —x1)] @1)
i=1

where M is the monotonicity value, n is the total number of

the DIs of the bearing, x; is the ith DI of the bearing, and
sgn(-) is the signum function expressed as

1 x>0
sgn(x) =130 x=0 (22)
—1 x <0.

The experimental part will discuss the monotonicity of the
proposed DI compared with the traditional PDIs. The DIs used
for comparison are shown in Table L.
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TABLE I
PDIS FOR COMPARISON

Definition

lN
v

1 & 2
"EZ:M —4]

PDIs

2

Root mean square X;

Standard deviation
1 & (x 4
Kurtosis —Z ( ‘:“)
NS o)
1 (x,—p)
Skewness —Z ( L :tx )
N i=1 a,
Permutation Entropy H, (m)= _ZP log(P)
Peak to Peak Maximum-to-minimum difference
particle
O mean
e~ 0  actual

Fig. 4. Schematic of the PF.

III. PF AND RUL PREDICTION
A. Theory of DEM-Based PF

PF is an approximation algorithm based on Monte Carlo
simulation [48]. As shown in Fig. 4, the PF algorithm approx-
imates the model parameters by computing the mean of the
particle set. The heart of the algorithm is to approximate
the probability density function of the model variables. The
integral operation with the sample mean is then replaced, and
the parameters are estimated by minimizing the variance.

In this article, a DEM is applied to simulate the bearing
degradation process. PF algorithm estimates the model para-
meters and predicts the RUL. The system is described in the
form of state and observation equations as

[ X (k) = p(X (k — 1), W(k))

(23)
Z(k) = h(X(k), V (k)

where X (k) and X (k — 1), respectively, represent the state of
the system at k and k — 1. Z(k) represents the measurement
data at time k. W (k) is the process noise of the system, and
V (k) is the measurement noise of the sensors. The mapping
function p(-) reflects the relationship between the current
state and the previous state, and /(-) is the mapping function
between the measurement result and the state.

Gebraeel et al. [49] verified that the exponential model
can effectively fit bearing damage. The DEM has better
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Fig. 5. Schematic of RUL prediction.

adaptability than the exponential model. At the same time,
Peng et al. [24] applied the DEM to the fitting of engine
degradation. To improve the applicability of the model, a DEM
is used to predict the damage evolution of the bearing. The
DEM is applied in the proposed algorithm to simulate the

bearing degradation process. The expression is
y=axe” +cxel” (24)

where y is the RDIs of the bearing, x is the time, and
a, b, c, g are the parameters of DEM. DEM is transformed
into the following equation by using (22):

a(k +1) =a(k) + N(0, 04)
bk + 1) = b(k) + N(0, o)

ck+1)=c(k)+ N(0,a.) (25)
qk +1)=qk)+ N(0, aq).
The observation equation is also written as
y(k) = a(k) - e?®* 1 c(k) - 40k, (26)

The PF first generates initialized particles for tracking damage
according to the prior distribution p(xp), and the particles
weight wo‘) = 1/N. Then, the posterior distribution p(xi|yi.x)
and the particle weight cug) at time k are obtained from the
Monte Carlo simulation. The particles and weights are updated
by the sequential importance sampling (SIS) algorithm. The
particles with small weights are discarded using the resampling
method, and the number of particles with large weights is
increased. After predicting, updating, calculating weights, and
resampling, the particle iteration is completed. The model
parameters are then estimated from the expectations of the
output particles.

The data collected at the current time (#;) is taken as input.
DEM-based PF algorithm predicts the evolution of subsequent
RDIs. The time when the predicted RDIs exceed the threshold
is fr. The RUL of the bearing is then calculated as: fryL =
tr — I;. Fig. 5 is a schematic of the RUL prediction process.

B. Evaluation of RUL Prediction

To evaluate the effect of prediction, this article compares the
prediction results of DEM-based PF, modified Paris model,
and Gaussian process regression (GPR). In 1963, Paris and
Erdogan [50] proposed a formula to describe the law of
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crack propagation and established the relationship between the
fatigue crack growth rate and the stress intensity factor of the
crack
da =C(AK)"
dN
where a is the crack length, N is the load cycle period,
AK is the stress intensity factor, and C, m reflects the mate-
rial parameters related to the mechanical properties of the
material, which can be measured by experiments. In 2017,
Qian et al. [31] modified the Paris model. When the Paris
model is applied to the RUL prediction of bearings, it can be
written in the following form:

(27)

s da

; C(AK)"
where Npyp is the remaining life of the bearing, Ny, is the
time to reach the threshold, and N; is the current working time.
Rewrite (28) into integral form, the upper limit of integration
Iy represents the crack length when the threshold is reached,
and the lower limit /;represents the crack length in the current
state. For ball bearings, AK = Ao (za)'/2. Ao is the stress
range. Meanwhile, the indicator proposed in this article has a
linear relationship with the damage of the bearing, which is
proven in Section II, DI = ¢; = kl. Equation (28) can then be
rewritten as

Nrur. = Np — N; = (28)

N /Cu. kzd{i‘;
UL o CAoam/2km/2M?
For rolling bearings, m is usually taken as 2 and k, C, Ag are

all constants; hence, the RUL of the bearing can be computed
by

(29)

N, /cm k dCr Al Cth + B
= —_— = n—
RUL e CAom ¢ C;

where A = k/(CAox), and B is the integral constant. The
RUL can be computed by (30) with known material parameters
or empirical parameters.

GPR was successfully applied to RUL prediction of bear-
ings [51]. GPR is a nonparametric model for data regression
analysis. The definition of a Gaussian process consists of the
following three steps:

(30)

f(x) ~ GP(m(x), k(x,x")) 31)
m(x) = E[f(x)] (32)
k(x,x') = E[(f(x) —m@x)(f(x') —m(x'))] (33)

where x is the collected data, m(x) is the mean function, and
k(x,x") represents the covariance function. Equation (31) is
used to determine the sampling points of the Gaussian process,
(32) is used to calculate the mean function, and (33) is used
to calculate the covariance function. Then, the expression of
the prediction point is determined according to the posterior
probability, the hyperparameter is solved by maximum likeli-
hood estimation, and finally, the data are substituted into the
prediction.

The relative error is used to describe the accuracy of the
prediction, which is denoted as

[RUL* — RUL|
— X

A=1-
RUL

100% (34)

Authonzed licensed use limited to: UNIV OF HAWAII LIBRARY . Downloaded on January 29,2023 at 21:14:50 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: RUL PREDICTION OF ROLLING BEARINGS BASED ON SRPSW AND PF

Honzontal accelerometer

3527415
TABLE II
PARAMETERS USED IN PSW OF CASE 1
Parameters m d nm nb nn rl
Healthy stage 11 6 216 5 25 21
Degradation stage 13 6 216 10 25 21
RMS 55 B /
.2 :
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.
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Fig. 7. (a) Healthy bearing. (b) Outer race wear.

where A is the prediction accuracy, RUL represents the true
life of bearings, and RUL* is the predicted life.

IV. EXPERIMENTAL DEMONSTRATION

A. Case 1: Accelerated Degradation Test From XYTU-SY
Bearing Datasets

To illustrate the effectiveness of the RUL prediction
approach proposed in this article, a public dataset of run-to-
failure signals from XJTU-SY bearing datasets is analyzed.
The experimental platform is shown in Fig. 6 [26].

The bearing used in the test is LDK UER204. The rotation
speed is 2400 r/min. The bearing is loaded at 10 kN, and the
bearing has an outer race defect at the end of the test. The
comparison between health and damaged bearings is shown
in Fig. 7.

During the experiment, the vibration signals of the bearing
were collected by acceleration sensors in both vertical and
horizontal directions. The experimental platform was sampled
every 1 min, the sampling frequency was 25.6 kHz, and the
sampling time was 1.28 s. The data of bearing 3_1 is used
in this experiment. The rotating frequency of the bearing
is 40 Hz, and the load is 10 kN.

In the test, the bearing damage stage is tracked by SRPSW.
The bearing runs smoothly in the early stage; hence, the
sampling interval is increased. The sampling interval in the
early stage was changed from 1 to 2 min. The sampling
interval is restored to 1 min after reaching the normal stage

b os MWMWWMMMﬁ

1800

1400 1600
Time /min

Fig. 8. Degradation curve of various indicators in Case 1.
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Fig. 9. Monotonicity criterion for different indicators in Case 1.

threshold to improve the RUL prediction accuracy. The col-
lected vibration signal is processed by a low-pass filter and
then embedded in the SRPSW. The parameters obtained by
the mutual information method and false-nearest-neighbors
method are shown in the first row of Table II.

In Table II, m is the time delay of the reconstructed phase
space, d denotes the embedding dimension, nm represents the
number of data points used in the construction of the reference
phase space, nb is the number of subspaces, nn represents the
number of nearest neighbors, and rl denotes the number of
data points monitored in real time.

To demonstrate the advantages of the indicator proposed in
this article, the PDIs in Table I are used for comparison. The
same data length as the SRPSW is used to calculate the PDI
value. All DIs are normalized, and the results are shown in
Fig. 8. The monotonicity of the indicators is plotted in Fig. 9.
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Fig. 11. RDIs of degradation stage in Case 1.

It can be seen from Fig. 8 that the RDI extracted by
the SRPSW has less interference than other commonly used
indicators. The monotonicity of the indicator quantitatively
describes its ability to track damage, with greater monotonicity
indicating a more consistent tracking effect. The results in
Fig. 9 show that the proposed algorithm is better in tracking
bearing damage.

To continue to analyze the results of SRPSW, the RDIs in
the healthy stage obtained by SRPSW are shown in Fig. 10.

The harsh working conditions in Case 1 accelerate the
degeneration and shorten the healthy stage of bearings. The
sampling time interval in the experiment is adjusted to 2 min.
To ensure the effectiveness of the 3¢ interval and avoid
wasting data, the first 15 data points (15 x 2 min =
30 min) are used to compute x and o. The RDI for the first
30 min was used to estimate a bearing health threshold range
[—0.9336,0.9336] (the green dotted line marks in Fig. 10).
It can be seen from Fig. 10 that several outliers (red points)
appeared in the healthy stage; however, these outliers do not
meet the requirements and are excluded. The stage division
requires three consecutive RDIs to exceed the threshold.
Starting from the 2348th min, three consecutive points meet
the requirements. Thus, the bearing enters the degradation
stage after the 2350th min.

The parameters of the bearing in the degradation stage
are recomputed and shown in the second row of Table II.
Fig. 11 plots the RDIs in the degradation stage. Fig. 11 demon-
strates that the RDIs fluctuate slightly at the beginning of the
bearing degradation stage (2348-2390 min), which indicates
that the RDIs are sensitive to the early damage. In the middle
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TABLE III
INITIAL PARAMETERS OF THE PF IN CASE 1

a b c q
-0.6847 0.054 0.6919 -0.1546

part of the bearing degradation stage (2390-2464 min), RDIs
begins to rise, which indicates that the bearing has been
slightly damaged.

RDIs are used for real-time prediction after the bearing
has run into the degradation stage. At the beginning of the
degradation stage, minor faults do not affect the normal
working of the bearing. However, the evolution of damage
gradually jeopardizes the normal operation of the machine.
Different machines have different tolerances for the degree of
failure. As a result, a threshold needs to be set artificially.
The range of RDIs for the healthy stage is [—0.9336, 0.9336],
which is used to compute the threshold for the degenerate
stage. The upper limit of the range for the health stage is
Ty = 0.9336. About three or four times, Ty, is taken as the
threshold for the failure stage. The failure threshold of RDIs
is set as Tf = 3 in Case 1, and the degradation stage ends
when the RDIs exceed T, after which, the bearings can be
repaired or replaced to keep the machine running safely.

While extracting bearing RDIs, PF is used to predict
future RDIs. A nonlinear function fitting method is applied to
estimate the initial prior information of the DEM. The RDIs of
the first 15 min are used to fit the initial state, and the updated
initial parameters (a, b, c¢, g) of DEM are shown in Table III.

The moment of entering the degradation stage is set to zero,
and the RUL prediction starts from the zero point. Since the
life prediction is computed in real time, only the results of
three moments (20th min, 60th min, and 100th min) are shown
in Figs. 12-14. Fig. 12 shows the results at the 20th min,
Fig. 13 plots the results at the 60th min, and Fig. 14 illustrates
the results at the 100th min. The blue and red solid lines in the
left subgraph of the Figs. 12—14 show the actual and estimated
results of RDIs from the beginning to the current, and the
green solid line is the predicted damage evolution curve.
The four subgraphs on the right side of the figure represent
the real-time prediction results of the parameters of the DEM.

Figs. 12-14 demonstrate that the estimated points obtained
by the PF fit the actual RDIs and track the degradation process
of the bearing. The right four subgraphs in each figure plot the
four parameters (a, b, ¢, q) in the DEM. The right subgraph
of Fig. 12 plots the variation of model parameters. The most
suitable model parameters at each moment are given. The right
subgraph of Fig. 13 shows small fluctuations of the estimated
model parameters before the 43rd min, which indicates that
the model is suitable. At the 43rd min, the four parameters
of the model suddenly changed, indicating that the working
state of the bearing has changed. The previous model was no
longer suitable for the current RDI. Fig. 14 is the later stage of
the bearing degradation. RDIs are tracked in the left subgraph,
and the estimation of model parameter is tracked in the right
subfigure. The RUL is predicted by iteratively updating the
DEM parameters.

The results of RUL prediction are shown in Fig. 15(a),
and RDIs of the degradation stage are added to Fig. 15(b)
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Fig. 14. PF result at 100 min.

for reference. Since the data of the first 15 min are used to
estimate the initial state of the PF, the RUL of the first 15 min
is removed from Fig. 15. From the start to the 19th min
(point A), the predicted RUL drops from the 159th min to
the 123rd min in that the data before point A is affected by
initial conditions. RUL increased from 20 to 46 min (point B)
and fluctuated between 220 and 334 min in virtue of the
stable of RDIs during this time. The predicted RUL at the
46th min drops significantly, indicating abrupt degradation

3527415

of the bearing. SRPSW predicts that the bearing enters the
failure period at the 92nd min (point C), and RUL = 0.
This result is consistent with the extracted RDIs, indicating
that the proposed algorithm conforms to the law of bearing
degradation.

The Paris model is used to compute the RUL on the
same data, and the results of the Paris model are used as
the comparison of the proposed algorithm. The Paris model
requires a large number of material parameters. It is difficult
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Fig. 15. Damage tracking and RUL prediction of Case 1. (a) RDIs. (b) RUL
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Fig. 16. Comparison of damage tracking results in Case 1.

to obtain an accurate value for the RUL of the bearing, and it
is assumed in this article that the RUL decreases linearly. The
RUL of the bearing at the start of prediction is 115 min, and
the RUL is reduced to zero at the end of the prediction.

The damage tracking comparison of the three methods is
shown in Fig. 16. In the later degradation stage, Paris model
is ineffective in tracking the evolution of damage, and the
accuracy of the GPR method is also insufficient. The proposed
method tracks damage well both in the early and late stages.

The errors of the prediction results of the proposed approach
after smoothing are shown in Fig. 17. It can be seen from
Fig. 17 that the error of the predicted results decreases as the
bearing damage evolves.

Equation (34) is used to compute the prediction accuracy
of both methods. The prediction accuracy of the algorithms is
shown in Table IV. The proposed algorithm is demonstrated
to outperform the comparison method.

The XJTU-SY dataset is fully utilized to illustrate the
effectiveness and superiority of the method. Three more exper-
imental data were analyzed here. The computed accuracies
from other degradation processes are displayed in Table V.
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TABLE IV

PREDICTION ACCURACY IN CASE 1

Algorithm DEM-based PF Paris model GPR
Accuracy 90.16% 27.69% 89.27%
TABLE V
PREDICTION ACCURACY FOR DIFFERENT SAMPLES
Parameters

Number Accuracy - 7 ™ B P 7
32 91.27% 6 5 218 10 29 32768
33 90.56% 9 7 216 10 23 32768
34 90.63% 11 7 216 10 23 32768

It can be seen from Table V that the proposed approach has
perfect generalization and accurately predicts the RUL for
different degradation data.

In summary, SRPSW tracks the damage in the acceler-
ated bearing degradation test in real time and predicts the
RUL of the bearing. Comparison of the SRPSW with the
commonly used statistical methods shows the accuracy and
anti-interference of RDIs. Different parameters are used for the
extraction of damage signals at different stages. The moment
when the bearing enters the stage of damage degradation can
be clearly identified. By comparison with the modified Paris
model and GPR, DEM-based PF shows its advantages in RUL
prediction. Since no material parameters are required, the prior
information required by PF can be extracted from the ear-
lier RDIs. The results of damage tracking and RUL prediction
demonstrate the effectiveness of the proposed algorithm.

B. Case 2: Normal Degradation Test From Intelligent
Maintenance Systems (IMS) Bearing Dataset

To further verify the effectiveness of the proposed algo-
rithm, the data of NSF I/UCR Center are utilized for analy-
sis [52], and the experimental platform is shown in Fig. 18.
Four Rexnord ZA-2115 double row bearings were used in the
test. The rotation speed is 2000 r/min. The load on the bearing
is 6000 Ibs. Accelerometers are used to collect the vibration
signal of the bearing, the sampling frequency is 20 kHz, the
sampling time is 1 s, and the sampling time interval is 20 min.
The difference between Case 2 and Case 1 is that Case 2 is
a run-to-failure test under normal conditions rather than an
accelerated degradation test, which can better illustrate the
performance of the proposed approach under actual conditions.
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Fig. 19. Degradation curve of various indicators in Case 2.
TABLE VI
PARAMETERS USED IN PSW OF CASE 2
Parameters m d nm nb nn rl
Healthy stage 6 6 218 10 25 20480
Degradation stage 6 8 213 5 2% 20480

The experiment started on February 12, 2004 and ended on
December 19, 2004. Bearing 1 had an outer race defect.

The bearing vibration signal is first processed by a low-
pass filter to remove the interference of high-frequency com-
ponents, and then used for RDIs extraction. The parameters
used in the healthy stage are shown in the first row of Table VI.

Similar to the process of Case 1, the RDIs are extracted
from the damage matrix in the healthy stage: RDI, rms, Std,
Kurtosis, Skew, and Peak—Peak. The normalized metrics are
plotted in Fig. 19. Fig. 20 illustrates the monotonicity of these
indicators. The analysis results show that the monotonicity of
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RDI is better. The obvious degradation curve can be extracted
in the normal degradation test.

A more detailed RDI is presented in Fig. 21. The sampling
time interval in Case 2 is 20 min, and the bearing runs
under normal conditions. Since the time interval is long,
the data length is appropriately reduced. The first ten points
(10 x 20 min = 200 min) are used to compute the threshold
range for the healthy stage. RDI of the first 200 min is used to
compute the threshold for the bearing to enter the degradation
stage. According to the 3¢ principle, the range of the threshold
for the healthy stage is [—2.2447, 2.0562]. The proposed
algorithm considers that when more than three consecutive
RDIs exceed the threshold, the bearing enters the degradation
stage. It can be seen from Fig. 21 that there are a small number
of outliers in the late healthy stage, but these outliers do not
meet the judgment conditions. The point beyond the threshold
is marked in Fig. 21, indicating that the bearing entered the
degradation stage at the 140 60th min.
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PREDICTION ACCURACY IN CASE 2
The parameters used in the degradation stage are shown in Algorithm DEM-based PF Paris model GPR
the second row of Table VI. The extracted RDIs are shown in Accuracy 90.78% 65.30% 85.37%

Fig. 22. The upper limit of the range of the healthy stage
is Ty = 2.0562. The threshold for the degradation stage
is four times Ty;. The bearing failure threshold Tz = 8.
The indicator shows that the bearing entered the degradation
stage from the 14060th min and reached the failure threshold
at the 19400th min. RDI is relative value, and the RDIs in the
degradation stage are not affected by the healthy stage. Thus,
RDIs are smooth in the early stage of the degradation, which
can improve the accuracy of damage tracking.

The RDIs of the degradation stage are extracted. PF is used
to predict the RUL of the bearing. The first ten RDIs of the
degradation stage are used for the fitting of the initial state.
The initial parameters of the DEM are shown in Table VIL

The sampling interval of the experiment is 20 min. There-
fore, 20 min was taken in a cycle. The following three figures
show the RUL prediction, and model parameter estimation
results at the 800th min, 3000th min, and 5200th min in the
degradation stage. The four subplots to the right of each figure
plot the variation of the four parameters (a, b, c, gq) in the
DEM with cycles.

Fig. 23 shows the results of the 40th cycles in the degra-
dation stage. It can be seen from the left subgraph that the
estimated RDIs are consistent with the actual RDIs. The model
parameters displayed in the right subgraph do not fluctuate
greatly. At the 150th cycle (Fig. 24), the estimated RDIs
show an increasing trend, and the predicted RDIs gradually
approached the real RDIs. The model parameters on the right
subgraph changes abruptly around the 50th and 100th cycles.

At the 260th cycle (Fig. 25), the prediction of the RDIs in the
left subgraph is close to the threshold. The model parame-
ters in the right subgraph have a suddenly change around
200 cycles, indicating that the bearing state has changed.
At the same time as RDIs tracking, RUL prediction is moni-
tored in real time.

Fig. 26 plots the results of RDIs and RUL. It can be seen
from Fig. 26 that the RUL fluctuates in the range of 200 cycles
(4000 min) to 400 cycles (8000 min) in the early and middle
of the degradation stage. The RUL began to drop at the 3560th
min (point A), indicating that the bearing is about to enter the
failure stage. After the 4120th min (point B), the prediction of
RUL begins to decrease continuously until the bearing fails.

The damage tracking curves of the three methods are plotted
in Fig. 27. It can be seen from Fig. 27 that DEM-based PF has
a better effect on damage tracking.

The relative error after smoothing is plotted in Fig. 28. The
curve in Fig. 28 reflects the change of the relative error value
at different times under general working conditions. Although
the error is larger at some points, most of the prediction points
of the proposed algorithm ensure the prediction accuracy.

Same as Case 1, (34) is used to analyze the prediction
accuracy of RUL of the proposed approach. The prediction
accuracy of the algorithms is shown in Table VIII. Obviously,
the proposed algorithm is more accurate.

The run-to-failure test under normal conditions in this
section is used to verify the effectiveness of the proposed
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approach. Under normal working conditions, the RDI extracted
by SRPSW is more accurate. Thus, SRPSW extracts the RDIs
of the bearing and divides the working stage reasonably. The
proposed approach avoids the failure of the reference phase
space in the original PSW. The results compared with the
Paris model and GPR demonstrate that DEM-based PF is
more accurate, and it does not require material parameters,
which improves the practicality. The RUL prediction results
illustrate that the proposed method is promising in mechanical
maintenance.

V. CONCLUSION

In this article, an SRPSW algorithm is proposed to track
damage. Based on nonlinear dynamics, SRPSW algorithm

RUL PREDICTION OF ROLLING BEARINGS BASED ON SRPSW AND PF
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extracts bearing damage segmentally. SRPSW eliminates the
shortage of the original PSW when the predicted faults exceed
the reference phase space in the bearing prognostic. During the
RUL prediction, the PF based on DEM avoids the requirement
of material parameters in the physical model. The reliability
of the proposed approach has been verified by accelerated
degradation test and normal degradation test. RDIs extracted
from SRPSW are compared with widely used indicators.
RDIs outperform other indicators in tracking bearing damage.
Further, the prediction accuracy of DEM-based PF is compared
with the improved Paris model and GPR. The experimental
results show that the prediction accuracy of the proposed
approach is outstanding. For unknown machinery, the sub-
jectively chosen threshold influences the prediction accuracy.
Adaptive thresholds will be addressed in future research.

REFERENCES

[1] A. Heng, S. Zhang, A. C. C. Tan, and J. Mathew, “Rotating machinery
prognostics: State of the art, challenges and opportunities,” Mech. Syst.
Signal Process., vol. 23, no. 3, pp. 724-739, 2009.

[2] H. Zhao, H. Liu, J. Xu, and W. Deng, “Performance prediction using
high-order differential mathematical morphology gradient spectrum
entropy and extreme learning machine,” IEEE Trans. Instrum. Meas.,
vol. 69, no. 7, pp. 4165-4172, Jul. 2020.

[3] B. Chen et al., “Integrated early fault diagnosis method based on direct
fast iterative filtering decomposition and effective weighted sparseness
kurtosis to rolling bearings,” Mech. Syst. Signal Process., vol. 171,
May 2022, Art. no. 108897.

[4] S. Lv, Y. Lv, R. Yuan, and H. Li, “High-order synchroextracting
transform for characterizing signals with strong AM-FM features and its
application in mechanical fault diagnosis,” Mech. Syst. Signal Process.,
vol. 172, Jun. 2022, Art. no. 108959.

[5] Y. Wang, Y. Peng, Y. Zi, X. Jin, and K. L. Tsui, “A two-stage
data-driven-based prognostic approach for bearing degradation prob-
lem;” IEEE Trans. Ind. Informat., vol. 12, no. 3, pp. 924932,
Jun. 2016.

[6] Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode
decomposition in fault diagnosis of rotating machinery,” Mech. Syst.
Signal Process., vol. 35, nos. 1-2, pp. 108-126, Feb. 2013.

[71 Y. Lv, R. Yuan, and G. Song, “Multivariate empirical mode decompo-
sition and its application to fault diagnosis of rolling bearing,” Mech.
Syst. Signal Process., vol. 81, pp. 219-234, Dec. 2016.

[8] L. Song, P. Chen, and H. Wang, “Vibration-based intelligent fault
diagnosis for roller bearings in low-speed rotating machinery,” IEEE
Trans. Instrum. Meas., vol. 67, no. 8, pp. 1887-1899, Aug. 2018.

[9] B. Chen et al., “Fault diagnosis method based on integration of RSSD

and wavelet transform to rolling bearing,” Measurement, vol. 131,

pp. 400411, Jan. 2019.

Y. Ma, Y. Lv, R. Yuan, and G. Song, “Matching synchroextracting trans-

form for mechanical fault diagnosis under variable-speed conditions,”

IEEE Trans. Instrum. Meas., vol. 71, pp. 1-12, 2022.

[11] E. El-Thalji and E. Jantunen, “A summary of fault modelling and
predictive health monitoring of rolling element bearings,” Mech. Syst.
Signal Process., vols. 60-61, pp. 252-272, Aug. 2015.

[12] M. S. Kan, A. C. C. Tan, and J. Mathew, “A review on prognostic

techniques for non-stationary and non-linear rotating systems.” Mech.

Syst. Signal Process., vols. 62-63, pp. 1-20, Oct. 2015.

Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prog-

nostics: A systematic review from data acquisition to RUL prediction,”

Mech. Syst. Signal Process., vol. 104, pp. 799-834, May 2018.

R. Yuan, Y. Lv, Q. Kong, and G. Song, “Percussion-based bolt looseness

monitoring using intrinsic multiscale entropy analysis and BP neural net-

work,” Smart Mater. Struct., vol. 28, no. 12, Oct. 2019, Art. no. 125001.

[15] D. Mba and R. B. K. N. Rao, “Development of acoustic emission

technology for condition monitoring and diagnosis of rotating machines:

Bearings, pumps, gearboxes, engines, and rotating structures,” Shock Vib.

Dig., vol. 38, no. 1, pp. 3-16, 2006.

P. Guo, D. Infield, and X. Yang, “Wind turbine generator condition-

monitoring using temperature trend analysis,” IEEE Trans. Sustain.

Energy, vol. 3, no. 1, pp. 124-133, Jan. 2012.

[10]

[13]

[14]

[16]

Authonzed licensed use limited to: UNIV OF HAWAII LIBRARY . Downloaded on January 29,2023 at 21:14:50 UTC from IEEE Xplore. Restrictions apply.



3527415

(7

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

K. Manoj, M. ParbotiShankar, and M. N. Mohan, “Advancement and
current status of wear debris analysis for machine condition monitoring:
A review,” Ind. Lubrication Tribol., vol. 65, no. 1, pp. 3-11, Feb. 2013.
D. Han, J. Yu, M. Gong, Y. Song, and L. Tian, “A remaining useful life
prediction approach based on low-frequency current data for bearings
in spacecraft,” IEEE Sensors J., vol. 21, no. 17, pp. 18978-18989,
Sep. 2021.

E. Jantunen, J. Hooghoudt, Y. Yang, and M. McKay, “Predicting the
remaining useful life of rolling element bearings,” presented at the IEEE
Int. Conf. Ind. Tech., Lyon, France, Feb. 2018.

N. Li Y. Lei, J. Lin, and S. X. Ding, “An improved exponential model
for predicting remaining useful life of rolling element bearings,” IEEE
Trans. Ind. Electron., vol. 62, no. 12, pp. 7762-7773, Dec. 2015.

S. Zhang, Y. Zhang, L. Li, S. Wang, and Y. Xiao, “An effective health
indicator for rolling elements bearing based on data space occupancy,”
Struct. Health Monitor., vol. 17, no. 1, pp. 3-14, Jan. 2018.

L. Saidi, J. B. Ali, E. Bechhoefer, and M. Benbouzid, *Wind turbine
high-speed shaft bearings health prognosis through a spectral Kurtosis-
derived indices and SVR.” Appl. Acoust., vol. 120, pp. 1-8, May 2017.
Z. Que, X. Jin, and Z. Xu, “Remaining useful life prediction for bearings
based on a gated recurrent unit,” JEEE Trans. Instrum. Meas., vol. 70,
2021, Art. no. 3511411.

K. Peng, R. Jiao, J. Dong, and Y. Pi, “A deep belief network
based health indicator construction and remaining useful life prediction
using improved particle filter,” Neurocomputing, vol. 361, pp. 19-28,
Oct. 2019.

Z. Pan, Z. Meng, Z. Chen, W. Gao, and Y. Shi, “A two-stage method
based on extreme learning machine for predicting the remaining useful
life of rolling-element bearings,” Mech. Syst. Signal Process., vol. 144,
Oct. 2020, Art. no. 106899.

B. Wang, Y. G. Lei, and N. Li, “A hybrid prognostics approach for
estimating remaining useful life of rolling element bearings,” IEEE
Trans. Rel., vol. 69, no. 1, pp. 401412, Mar. 2018.

Y. Pan, J. Chen, and X. Li, “Bearing performance degradation assess-
ment based on lifting wavelet packet decomposition and fuzzy C-means,”
Mech. Syst. Signal Process., vol. 24, no. 2, pp. 559-566, 2010.

D. Chelidze and M. Liu, “Dynamical systems approach to fatigue
damage identification,” J. Sound Vib., vol. 281, nos. 3-5, pp. 887-904,
Mar. 2005.

D. Chelidze and J. P. Cusumano, “Phase space warping: Nonlinear time-
series analysis for slowly drifting systems,” Philos. Trans. Roy. Soc. A,
Math., Phys. Eng. Sci., vol. 364, no. 1846, pp. 2495-2513, Sep. 2006.
P. Luo, N. Hu, L. Zhang, J. Shen, and Z. Cheng, “Improved phase space
warping method for degradation tracking of rotating machinery under
variable working conditions,” Mech. Syst. Signal Process., vol. 157,
Aug. 2021, Art. no. 107696.

Y. Qian, R. Yan, and R. X. Gao, “A multi-time scale approach to
remaining useful life prediction in rolling bearing,” Mech. Syst. Signal
Process., vol. 83, pp. 549-567, Jan. 2017.

D. An, J.-H. Choi, and N. H. Kim, “Prognostics 101: A tutorial for
particle filter-based prognostics algorithm using MATLAB.” Rel. Eng.
Syst. Saf., vol. 115, pp. 161-169, Jul. 2013.

H. Zhao, H. Liu, Y. Jin, X. Dang, and W. Deng, “Feature extraction for
data-driven remaining useful life prediction of rolling bearings,” IEEE
Trans. Instrum. Meas., vol. 70, pp. 1-10, 2021.

C. Chen, B. Zhang, G. Vachtsevanos, and M. Orchard, “Machine con-
dition prediction based on adaptive neuro—fuzzy and high-order particle
filtering,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 43534364,
Sep. 2011.

H. Yan, Y. Qin, S. Xiang, Y. Wang, and H. Chen, “Long-term gear
life prediction based on ordered neurons LSTM neural networks,”
Measurement, vol. 165, Dec. 2020, Art. no. 108205.

B. Wang, Y. Lei, N. Li, and T. Yan, “Deep separable convolutional
network for remaining useful life prediction of machinery,” Mech. Syst.
Signal Process., vol. 134, Dec. 2019, Art. no. 106330.

G. Wang and J. Xiang, “Remain useful life prediction of rolling
bearings based on exponential model optimized by gradient method.”
Measurement, vol. 176, May 2021, Art. no. 109161.

J. Wang and R. X. Gao, “Multiple model particle filtering for bearing
life prognosis,” in Proc. IEEE Conf. Prognostics Health Manage. (PHM),
Gaithersburg, MD, USA, Jun. 2013, pp. 1-6.

H.-W.-X. Li, G. Lyngdoh, S. Doner, R. Yuan, and D. Chelidze, “Exper-
imental monitoring and modeling of fatigue damage for 3D-printed
polymeric beams under irregular loading,” Int. J. Mech. Sci., vol. 233,
Nov. 2022, Art. no. 107626.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick 19580. Berlin, Germany: Springer,
1981, pp. 366-381.

M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embed-
ding dimension for phase-space reconstruction using a geometrical
construction,” Phys. Rev. A, Gen. Phys., vol. 45, no. 6, pp. 3403-3411,
Mar. 1992.

A. M. Fraser and H. L. Swinney, “Independent coordinates for strange
attractors from mutual information,” Phys. Rev. A, Gen. Phys., vol. 33,
no. 2, pp. 1134-1140, Feb. 1986.

I. P. Cusumano and A. Chatterjee, “A dynamical systems approach
to damage evolution tracking, Part 1: Description and experimental
application,” J. Vib. Acoust., vol. 124, no. 2, pp. 250-257, 2002.

S. H. Nguyen and D. Chelidze, “New invariant measures to track slow
parameter drifts in fast dynamical systems.” Nonlinear Dyn., vol. 79,
no. 2, pp. 1207-1216, Oct. 2014.

1. Coble and J. Hines, “Identifying optimal prognostic parameters from
data: A genetic algorithms approach,” in Proc. Annu. Conf. PHM Soc.,
San Diego, CA, USA, Sep. 2009, pp. 1-11.

F. Yang, M. S. Habibullah, T. Zhang, Z. Xu, P. Lim, and S. Nadarajan,
“Health index-based prognostics for remaining useful life predictions
in electrical machines,” IEEE Trans. Ind. Electron., vol. 63, no. 4,
Pp. 2633-2644, Apr. 2016.

S. Gao, X. Xiong, Y. Zhou, and J. Zhang, “Bearing remaining useful
life prediction based on a scaled health indicator and a LSTM model
with attention mechanism,” Machines, vol. 9, no. 10, p. 238, Oct. 2021.
1. Lin, W. Wang, F. Ma, Y. B. Yang, and C. S. Yang, “A data-model-
fusion prognostic framework for dynamic system state forecasting,” Eng.
Appl. Artif. Intell., vol. 25, pp. 814-823, Jun. 2012.

N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran, “Residual life
predictions from vibration-based degradation signals: A neural network
approach,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 694-700,
Jun. 2004.

P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,”
ASME J. Basic Eng., vol. 85, no. 4, pp. 528-533, 1963.

P. 8. Kumar, L. A. Kumaraswamidhas, and S. K. Laha, “Selection of
efficient degradation features for rolling element bearing prognosis using
Gaussian process regression method,” ISA Trans., vol. 112, pp. 386-401,
Jun. 2021.

H. Qiu, I. Lee, J. Lin, and G. Yu, “Wavelet filter-based weak signature
detection method and its application on rolling element bearing prog-
nostics,” J. Sound Vib., vol. 289, nos. 4-5, pp. 1066-1090, 2006.

Hengyu Liu received the B.S. degree in mechan-
ical engineering from the Department of Mechani-
cal Engineering, Wuhan University of Science and
Technology, Wuhan, China, in 2020, where he is
currently pursuing the Ph.D. degree in mechanical
engineering.

His research interests include prognostics and
health management, fault detection and isolation,
structure health monitoring, and nonlinear signal
processing.

Rui Yuan (Member, IEEE) received the B.S. and
Ph.D. degrees in mechanical engineering from the
Department of Mechanical Engineering, Wuhan Uni-
versity of Science and Technology, Wuhan, China, in
2014 and 2019, respectively, under the supervision
of Prof. Yong Lv.

From 2016 to 2017, he was a Visiting Scholar
with the Nonlinear Dynamics Laboratory, University
of Rhode Island, Kingston, RI, USA, under the
supervision of Prof. David Chelidze. He is cur-
rently a Lecturer with the School of Machinery and

T

Automation, Wuhan University of Science and Technology. He has authored
over 30 peer-reviewed journal articles, including in Mechanical Systems and
Signal Processing (MSSP), Structural Health Monitoring (SHM), and IEEE
TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT (TIM). His
research interests include fault detection and isolation, prognostics and health
management, structural health monitoring, and nonlinear dynamics.

Authonzed licensed use limited to: UNIV OF HAWAII LIBRARY . Downloaded on January 29,2023 at 21:14:50 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: RUL PREDICTION OF ROLLING BEARINGS BASED ON SRPSW AND PF

Yong Lv received the B.S. and M.S. degrees from
the Department of Mechanical Engineering, Wuhan
University of Science and Technology, Wuhan,
China, in 1998 and 2000, respectively, and the
Ph.D. degree from the University of Science and
Technology Beijing, Beijing, China, in 2004.

He is currently a Full Professor with the School
of Machinery and Automation, Wuhan University
of Science and Technology. He has authored over
100 peer-reviewed journal articles, including in
Mechanical Systems and Signal Processing (MSSP),
Structural Health Monitoring (SHM), IEEE TRANSACTIONS ON INSTRU-
MENTATION AND MEASUREMENT (TIM), and Measurement. He has hosted
three National Natural Science Foundations of China and over 30 projects
in the fields of machinery dynamics and condition monitoring. His research
interests include fault detection and isolation, prognostics and health manage-
ment, structural health monitoring, and nonlinear dynamics.

Hewenxuan Li received the Ph.D. degree in
mechanical engineering and applied mechanics from
the University of Rhode Island, Kingston, RI, USA,
in 2022.

His research dedicates to the sensing, awareness,
modeling, and prognosis of faults and damages in
nonlinear systems. His research interests include
but are not limited to fatigue damage identification,
monitoring, and life estimation for nonlinear struc-
tures; multilength-scale and multitemporal-scale
simulations and machine learning-based predic-
tive modeling; and modal analysis of spatiotemporal fields and complex
phenomena.

3527415

Ersegun Deniz Gedikli received the B.S. degree
from the Department of Naval Architecture and
Marine Engineering, Yildiz Technical University,
Istanbul, Turkey, in 2010, and the M.S. and Ph.D.
degrees from the Department of Ocean Engineering,
University of Rhode Island, Kingston, RI, USA, in
2014 and 2017, respectively.

From 2017 to 2020, he was a Post-Doctoral Fellow
at the Norwegian University of Science and Tech-
nology, Trondheim, Norway, where he worked on
various offshore renewable energy and Arctic engi-
neering projects. He is currently the Director of the Fluid-Structure Interac-
tions and Nonlinear Dynamics Laboratory and an Assistant Professor with
the Department of Ocean and Resources Engineering, University of Hawaii
at Manoa, Honolulu, HI, USA. His research interests include experimental
fluid-ice structure interactions, nonlinear dynamics, data science, flow-induced
vibrations, Arctic offshore structures and marine operations, and offshore
renewable energy systems.

Gangbing Song (Member, IEEE) received the B.S.
degree from Zhejiang University, Hangzhou, China,
in 1989, and the M.S. and Ph.D. degrees from the
Department of Mechanical Engineering, Columbia
University, New York, NY, USA, in 1991 and 1995,
respectively.

He is currently the Founding Director of the Smart
Materials and Structures Laboratory and a Professor
of Mechanical Engineering, Civil and Environmental
Engineering, and Electrical and Computer Engineer-
ing with the University of Houston, Houston, TX,
USA. He has developed two new courses in smart materials and authored
over 400 articles, including over 200 peer-reviewed journal articles. He has
expertise in smart materials and structures, structural vibration control, piezo-
ceramics, ultrasonic transducers, structural health monitoring, and damage
detection.

Dr. Song was a recipient of the NSF CAREER Award in 2001.

Authonzed licensed use limited to: UNIV OF HAWAII LIBRARY . Downloaded on January 29,2023 at 21:14:50 UTC from IEEE Xplore. Restrictions apply.



