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Eye Know You Too: Toward Viable End-to-End
Eye Movement Biometrics for User Authentication

Dillon Lohr, Oleg V Komogortsev

Abstract—Eye movement biometrics (EMB) is a relatively
recent behavioral biometric modality that may have the potential
to become the primary authentication method in virtual- and
augmented-reality (VR/AR) devices due to their emerging use
of eye-tracking sensors to enable foveated rendering techniques.
However, existing EMB models have yet to demonstrate levels
of performance that would be acceptable for real-world use.
The present study proposes an improved methodology for EMB
with the goal of satisfying the FIDO Biometrics Requirements’
recommendation of 5% false rejection rate at 1-in-10,000 false
acceptance rate. A DenseNet-based convolutional neural network
is proposed that is memory-efficient, relatively quick to train,
and has only ∼123K learnable parameters. The model is trained
over an array of different eye-tracking tasks to improve the
generalizability of learned features. Authentication performance
is evaluated on a held-out set of up to 59 individuals across differ-
ent eye-tracking tasks, test-retest intervals, and with increasing
amounts of data available for enrollment and authentication.
The impact of degraded sampling rates and spatial precision
on authentication performance is also briefly explored to set the
stage for future research targeting modern VR/AR devices. The
proposed technique not only outperforms the previous state of
the art but is also the first to approach a level of authentication
performance that would be acceptable for real-world use.

Index Terms—Eye tracking, user authentication, metric learn-
ing, template aging, permanence, signal quality.

I. INTRODUCTION

B IOMETRICS have become a part of everyday life due
to the ubiquity of fingerprint and face recognition in

smartphones. Most biometric modalities can be separated into
two categories: physical and behavioral. Physical biometrics
reflect the physical traits of a person, including face, finger-
print, iris, and retina. Behavioral biometrics reflect a person’s
patterns of behavior, with some of the most commonly studied
modalities being gait, signature, and voice. Physical biometrics
tend to be more distinctive and exhibit greater permanence,
whereas behavioral biometrics tend to be less intrusive and
more applicable for continuous authentication. An overview
of these common biometric modalities is given in [1].

A more recent behavioral biometric modality is eye move-
ment biometrics (EMB) [2]. Eye movements may be par-
ticularly spoof-resistant because the oculomotor system is
controlled by a complex combination of neurological and
physiological mechanisms, both voluntary and involuntary.
Eye movements also enable liveness detection [3], [4] and
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continuous authentication [5], [6] and could easily be paired
with other modalities such as mouse dynamics [7] or ocular
recognition [8] in a multimodal biometrics system. Because
eye movements have been shown to carry distinguishable
information, studies have even begun to explore methods of
deidentifying eye movement signals in an effort to preserve
both the users’ privacy and the utility of eye tracking as an
input method [9]–[13].

There is an emerging use of eye-tracking sensors in both
virtual-reality (VR) and augmented-reality (AR) devices (e.g.,
Vive Pro Eye [14], Magic Leap 1 [15], HoloLens 2 [16]) in
part to enable foveated rendering [17] techniques which offer
a significant reduction in overall power consumption without
a noticeable impact to visual quality. In addition to foveated
rendering, eye tracking also enables various applications in
these devices including user interactions, analytics, and novel
display technologies [18]. Because the hardware required for
EMB is already included with these devices, and because
EMB offers continuous authentication capabilities, EMB has
the potential to become the primary security method for these
devices [19]. However, existing EMB models have yet to
demonstrate levels of authentication performance that would
be acceptable for real-world use, even when using eye-tracking
signals with higher levels of signal quality than are available
in current VR/AR devices. Deep learning models for EMB [4],
[20]–[23] have largely been limited to plain convolutional
neural networks (CNNs) which, despite being capable of out-
performing more traditional statistical approaches, do not take
advantage of milestone developments over the years in the area
of convolutional architectures, including residual networks
(ResNets) [24] and—the basis for the network employed in
the present study—densely connected convolutional networks
(DenseNets) [25].

We propose a novel DenseNet-based architecture for end-to-
end EMB. The model is trained and evaluated on the Gaze-
Base [26] dataset which contains eye movement data from
322 subjects each recorded up to 18 times over a 37-month
period. Although the eye-tracking signals in GazeBase reflect
a higher level of signal quality than is available in current
VR/AR devices, it is important to first establish whether EMB
is capable, even with high-quality data, of achieving a level of
authentication performance that is acceptable for real-world
use. We primarily evaluate our model in the authentication
scenario (also commonly called verification) using equal error
rate (EER), both because authentication performance has been
shown to remain relatively stable regardless of population

0000–0000/00$00.00 © 2021 IEEE



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Fig. 1. Overview of the process for embedding an eye-tracking signal at inference time using the proposed methodology. We primarily focus on the case
where only the first 5-second window is embedded, but we explore aggregating embeddings across windows in § V-C. During training, there is no exclusion
criteria (i.e., we do not exclude subsequences with more than 50% NaNs) and subsequences are treated individually (i.e., the model is not trained on centroid
embeddings).

size [27] and because behavioral biometric traits are generally
not distinctive enough for large-scale identification [28]. We
also perform additional analyses that we have seen only a
small portion of works do (e.g., [23]), including assessing the
permanence of the learned features, reporting the decidability
index (d′) [29], and estimating the false rejection rate (FRR) at
a false acceptance rate (FAR) of 1-in-10000 (abbreviated FRR
@ FAR 10−4). An overview of our proposed methodology for
embedding an eye-tracking signal at inference time is given
in Fig. 1.

The main contributions of the present study are:
• A novel, highly parameter- and memory-efficient,

DenseNet-based architecture that achieves state-of-the-
art EMB performance in the authentication scenario on
high-quality data, namely 3.66% EER when enrolling
and authenticating with just 5 seconds of eye movements
during a reading task. For perspective, 5 seconds is
somewhat comparable to the time it takes to enter a 4-
digit pin or to calibrate an eye-tracking device.

• The first EMB study to achieve an estimated 5% FRR
@ FAR 10−4 using as little as 30 seconds of eye
movements during a reading task, approaching a level
of authentication performance that would be acceptable
for real-world use.

• The first to report significantly better-than-chance FRR
@ FAR 10−4 with 60 seconds of eye movements at
artificially degraded sampling rates as low as 50 Hz,
suggesting that EMB has the potential to become suitable
for deployment at the sampling rates present in existing
VR/AR devices.

• The first application of a more modern convolutional
architecture for EMB.

II. PRIOR WORK

A. Convolutional neural networks (CNNs)

Since the seminal works of AlexNet [30] and VGGNet [31],
CNNs have quickly become some of the most popular types of
neural networks for image processing tasks. Such architectures
also started being employed in time series domains such as eye
movement event classification [32] and audio synthesis [33]. In
time series domains such as these, varieties of recurrent neural
networks (RNNs) [34], [35] were once the most common, but
CNNs have empirically shown to be capable of similar-or-
better performance while also being much faster to train [36].

Several pivotal architectural improvements have been made
to CNNs since their infancy. We focus on two such im-
provements: ResNets [24] and DenseNets [25]. ResNets [24]
introduce so-called “skip connections” that combine the output
of each convolutional block with its input via summation.
These skip connections improve gradient flow through the
network, enabling the training of significantly deeper networks
than was previously possible. DenseNets [25] include similar
skip connections between each convolutional block and all
subsequent blocks, using channel-wise concatenation instead
of summation to facilitate even better information flow than
ResNets. One study visualizing loss landscapes [37] showed
that DenseNets have much smoother loss landscapes than
ResNets which may lead to increased ease of convergence
during training.

Beyond DenseNets, there have been more recent convolu-
tional architectures that claim better performance on image
processing tasks (e.g., ResNeXT [38], DSNet [39], Efficient-
Net [40], EfficientNetV2 [41]), not to mention the various
Transformer [42], [43] architectures that have seen widespread
success in several domains including natural language process-
ing (NLP) and image classification. Rather than using one of
these more cutting-edge architectures, though, we base our
architecture on DenseNet because of its parameter efficiency
and relative simplicity. We find that this architecture is able
to achieve state-of-the-art performance in the EMB domain
while remaining highly efficient.

While Transformer models have been shown to outperform
CNNs in many domains, one may still prefer a convolutional
architecture over a Transformer in low-data settings. This is
because Transformers tend to require larger datasets to over-
come their reduced inductive bias compared to convolutional
networks [44]. Although this may not be a limiting factor in
domains such as NLP and image classification where massive
datasets containing hundreds of millions of samples exist,
the eye-tracking field currently lacks suitably large datasets.
The performance currently achievable with a Transformer may
therefore be limited in the EMB domain.

Transformers also tend to scale poorly in terms of speed
and memory usage [45], especially with longer input se-
quences such as the 5000-length sequences employed in the
present study. There are linear-scaling variants, but they tend
to come with accuracy trade-offs compared to the vanilla
Transformer [46]. Moreover, our proposed model is highly
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parameter- and memory-efficient and trains in only a few hours
on an NVIDIA GeForce RTX A5000 GPU. As such, our model
may be more suitable for researchers (such as ourselves) with
more modest computational resources.

B. Eye movement biometrics (EMB)

EMB has been studied extensively since the introduction of
the modality in 2004 [2]. Most earlier works in the field [47]–
[51] require explicit classification of eye movement signals
into physiologically-grounded events, from which hand-crafted
features are extracted and fed into statistical or machine learn-
ing models. The state-of-the-art statistical model is the STAR
approach by Friedman et al. [49] which centers around the
use of principal component analysis (PCA) and the intraclass
correlation coefficient (ICC).

Since the recent introduction of deep learning to the field
of EMB [20], [21], end-to-end deep learning approaches have
become more common [4], [20]–[23]. The current state-of-
the-art model is DeepEyedentificationLive (DEL) [4] which
utilizes two convolutional subnets that separately focus on
“fast” (e.g., saccadic) and “slow” (e.g., fixational) eye move-
ments. Another recent model, Eye Know You (EKY) [23],
uses exponentially dilated convolutions to achieve reasonable
biometric authentication performance with a relatively small
(∼475K learnable parameters) network architecture.

Both DEL and EKY employ plain CNN architectures that
do not take advantage of the improvements made to CNNs
over the years. The present study improves upon the previous
state of the art in part by using a more modern DenseNet-
based architecture to simultaneously increase expressive power
and reduce parameter count. Combined with our improved
methodology, our model significantly outperforms the previous
state of the art.

III. NETWORK ARCHITECTURE

The proposed network architecture, which we call Eye Know
You Too (EKYT), is visualized in Fig. 2. The network
performs a mapping f : RC×T → R128, where C is the
number of input channels, T is the input sequence length, and
the output is a 128-dimensional embedding. It begins with a
single dense block of 8 one-dimensional convolution layers,
where the feature maps produced by each convolution layer are
concatenated with all previous feature maps before being fed
into the next convolution layer. The final set of concatenated
feature maps is then sent through a global average pooling
layer, flattened, and then fed into a fully-connected layer to
produce a 128-dimensional embedding of the input sequence.
When classification is required (e.g., for cross-entropy loss),
an additional fully-connected layer is appended after the
embedding layer that outputs class logits.

All convolution layers (except the first), the global average
pooling layer, and the optional classification layer are all pre-
ceded by batch normalization (BN) [52] and the rectified linear
unit (ReLU) [53] activation function (called a “pre-activation”
architecture). We use a “growth rate” of 32, meaning each
convolution layer outputs 32 feature maps to be concatenated

with the previous feature maps. Because we use BN, there is
no need for the convolution layers to learn an additive bias.

The convolution layers (labeled n = 1, . . . , 8) use constant
kernel size k = 3 and stride s = 1, an exponentially increasing
dilation rate dn = 2(n−1) mod 7, and enough zero padding
pn = dn on both sides of the input to preserve the length
along the feature dimension. The use of exponentially dilated
convolutions produces an exponential growth of the receptive
field of the network with only a linear increase in the number
of learnable parameters. In general, assuming s = 1, the
receptive field of layer n, denoted rn, is given by

rn = 1 +
n∑

i=1

dn(kn − 1). (1)

The final convolution layer of our network has a (maximum)
receptive field of r8 = 257 time steps from the input.

Excluding the optional classification layer, our proposed
architecture has ∼123K learnable parameters for C = 2 and
any T . Weights are initialized in the following manner. Each
convolutional layer uses He initialization [54] with a normal
distribution and learns no additive bias. Each BN layer is
initialized with a weight of 1 and a bias of 0. Each fully-
connected layer is initialized with a bias of 0, and weights are
initialized using the default method of PyTorch 1.10.0.

In preliminary experiments, we experienced overfitting on
the train set relative to the validation set when increasing the
depth of the network and/or adding additional dense blocks
(each separated by a transition block to optionally reduce the
size of the channel dimension). Specialized dropout techniques
have been proposed for DenseNet architectures to resolve such
overfitting problems [55]; but in the interest of keeping our
network small, we did not pursue such techniques. We also
experienced worse performance when using global max pool-
ing instead of global average pooling. We found no noticeable
difference in performance when swapping the order of BN and
ReLU, nor when using a “post-activation” architecture (i.e.,
applying BN and ReLU after each convolution before channel-
wise concatenation). Though, we note that pre-activation
DenseNet (and ResNet) architectures generally produce lower
errors than their post-activation counterparts [56].

IV. METHODOLOGY

A. Hardware & software

All models are trained inside Docker containers on a Lambda
Labs workstation. The workstation is equipped with quad
NVIDIA GeForce RTX A5000 GPUs (24 GB VRAM), an
AMD Ryzen Threadripper PRO 3975WX CPU @ 3.5 GHz
(32 cores), and 256 GB RAM. Each Docker container
runs Ubuntu 18.04 with the most notable packages being
Python 3.7.11, PyTorch [57] 1.10.0, and PyTorch Metric
Learning (PML) [58] 0.9.99. PyTorch Lightning [59] 1.5.0 is
used to accelerate development. Experiments are logged using
Weights & Biases [60] 0.12.1. For visualizing the embedding
space, we employ umap-learn [61] 0.5.1.

Our full source code and trained models are available on the
Texas State Digital Collections Repository at https://dataverse.
tdl.org/dataverse/ekyt/.

https://dataverse.tdl.org/dataverse/ekyt/
https://dataverse.tdl.org/dataverse/ekyt/
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Fig. 2. The proposed pre-activation DenseNet-based network architecture, including the optional classification layer. Each convolution layer has kernel size
k = 3, stride s = 1, and dilation rate d that varies by layer. Each convolution layer outputs 32 feature maps that are concatenated with the previous feature
maps before being fed into the next convolution layer.

TABLE I
THE NUMBER OF PARTICIPANTS PRESENT IN EACH RECORDING ROUND

FOR EACH DATA SPLIT. EACH PARTICIPANT IS ASSOCIATED WITH
2 SESSIONS PER ROUND AND 7 TASKS PER SESSION, SO THE NUMBER OF

RECORDINGS IS 14-TIMES THE NUMBER OF PARTICIPANTS.

Round F0 F1 F2 F3 Test Sum

R1 66 66 66 65 59 322
R2 19 19 19 20 59 136
R3 12 11 12 11 59 105
R4 10 10 11 11 59 101
R5 5 6 4 4 59 78
R6 0 0 0 0 59 59
R7 0 0 0 0 35 35
R8 0 0 0 0 31 31
R9 0 0 0 0 14 14

Sum 112 112 112 111 434 881

B. Dataset

We use the GazeBase [26] dataset consisting of 322 college-
aged participants, each recorded monocularly (left eye only) at
1000 Hz using an EyeLink 1000 eye tracker. Nine rounds of
recordings (R1–9) were captured over a period of 37 months.
Each subsequent round comprises a subset of participants from
the preceding round (with one exception, participant 76, who
was not present in R3 but returned for R4–5), with only 14 of
the initial 322 participants present across all 9 rounds. Each
round consists of 2 recording sessions separated by approxi-
mately 30 minutes. During each recording session, participants
performed a battery of 7 tasks: random saccades (RAN),
horizontal saccades (HSS), fixation (FXS), an interactive ball-
popping game (BLG), reading (TEX), and two video-viewing
tasks (VD1 and VD2). More details about each task can be
found in the dataset’s paper [26].

We create class-disjoint train and test sets by assigning
the 59 participants present during R6 to the test set and the
remaining 263 participants to the train set. The numbers of
participants in each data split are shown in Table I. In this way,
the test set—which comprises nearly 50% of all recordings in
GazeBase—can be used to assess the generalizability of our
model both to out-of-sample participants and to longer test-
retest intervals than are present during training. The train set
is further partitioned into 4 class-disjoint folds (F0–3) in a
way that balances the number of participants and recordings
between folds as well as possible (the fold assignment algo-
rithm we use is described in [23]). These 4 folds are used for

4-fold cross-validation, where 1 fold acts as the validation set
and the remaining folds act as the train set. We exclude the
BLG task from the train and validation sets due to the large
variability in its duration relative to the other tasks, but we
include it in the test set to enable an assessment of our model
on an out-of-sample task.

We used 4-fold cross-validation to manually tweak our net-
work architecture and determine the final training parameters.
Only at the very end of our experiments did we use the test set
to get a final, unbiased estimate of our model’s performance.

C. Data preprocessing

We start with a sequence of Trecord tuples
(
t(i), x(i), y(i)

)
, i =

1, . . . , Trecord, where t(i) is the time stamp (s) and x(i), y(i) are
the horizontal and vertical components of the monocular (left
eye) gaze position (◦). Next, we estimate the first derivative
(i.e., velocity in ◦/s) of the horizontal and vertical channels
using a Savitzky-Golay [62] differentiation filter with order 2
and window size 7, inspired by [49].

Each recording is then split into non-overlapping windows
of 5 seconds (T = 5000 time steps) using a rolling window.
Excess time steps at the end of a recording that would form
only a partial window are discarded. Although previous studies
such as DEL [4] and EKY [23] use input sizes of around 1 s,
we found in our experiments that our model performs better
when using a larger input size of 5 s than when it has to learn
from isolated samples of 1 s. We believe this is because the
model can take advantage of longer-term patterns when given
longer sequences. We note that 5 s is somewhat comparable to
the amount of time it takes to enter a 4-digit pin or to calibrate
an eye-tracking device.

Velocities are clamped between ±1000◦/s to limit the in-
fluence of noise. They are then z-score transformed using a
single mean and standard deviation determined across both
channels in the train set. Finally, any NaN values are replaced
with 0 after z-scoring. This method of handling NaNs can
be viewed as imputation with the global mean prior to z-
score standardization, which is perhaps the most common
method for handling missing data [63]. The nature of missing
data could be due to several different factors, such as blinks
or failure to identify the pupil and corneal reflection in the
captured eye image. We felt it was better to let the model
decide how to handle missing data rather than to impose some
(possibly incorrect) assumptions through interpolation.
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We observed during our experiments that estimating ve-
locity with a Savitzky-Golay differentiation filter and scaling
with a z-score transformation led to marginal improvements in
performance metrics compared to the approach of [4], wherein
velocity is computed with the two-point central difference
method and velocities are transformed using the “fast” and
“slow” transformations proposed in [22].

D. Training

Input samples consist of windows of T = 5000 time steps
and C = 2 channels: horizontal and vertical velocity. Follow-
ing [23], we primarily use multi-similarity (MS) [64] loss to
train our model. MS loss encourages the learned embedding
space to be well-clustered, meaning a sample from one class
is closer to other samples from the same class than to samples
from different classes. However, we observed during our ex-
periments that a weighted sum of MS loss (using the output of
the embedding layer) and categorical cross-entropy (CE) loss
(using the output of the classification layer) led to marginal
improvements in performance metrics compared to using MS
loss alone.

Therefore, our loss function L is given by the following
equations:

LMS =
1

m

m∑
i=1

(
1

α
log

(
1 +

∑
k∈Pi

exp (−α (Sik − λ))

)

+
1

β
log

(
1 +

∑
k∈Ni

exp (β (Sik − λ))

))
,

(2)

LCE =
1

m

m∑
i=1

− log

(
exp (xi,yi)∑N
j=1 exp (xi,j)

)
, (3)

L = wMSLMS + wCELCE , (4)

where wMS = 1.0 and wCE = 0.1 are the weights for the
respective loss functions; m = 256 is the size of each mini-
batch; α = 2.0, β = 50.0, and λ = 0.5 are hyperparameters
for MS loss; Pi and Ni are the sets of indices of the mined
positive and negative pairs for each anchor sample xi; Sik is
the cosine similarity between the pair of samples {xi, xk}; N
is the number of classes (either 197 or 198) in the train set;
xi,j is the predicted logit for sample i and class label j; and
yi is the target class label for sample i. The above formulation
for MS loss implicitly includes an online pair miner with an
additional hyperparameter ε = 0.1. More details about MS
loss can be found in [64].

Each minibatch consists of 256 samples constructed in the
following manner. First, 16 unique subjects are selected at
random from the train set. Next, 16 windows are randomly
selected without replacement for each of the selected subjects.
These windows could be selected from any of the rounds,
sessions, and tasks that each subject was present for in the
train set. This results in 256 windows per minibatch. Each
training “epoch” iterates over as many minibatches as needed
until a number of windows, equivalent to the total number of
unique windows in the train set, has been sampled. Note that

(A) (B)
Fig. 3. (A) A visualization of the learning rate schedule used during training.
(B) Progression of MAP@R (measured on TEX only) throughout training.

because of the nature of this minibatch construction method,
windows from earlier rounds may be over-represented [23],
and not every window from the train set may be included in
any given epoch.

One downside of using input windows of 5 s is that it greatly
reduces the number of samples available for training compared
to when using a smaller (e.g., 1 s) input window. This is
a problem because deep learning methodologies generally
perform better when trained on larger datasets. We are able
to mitigate this issue by training on all tasks (except BLG)
simultaneously instead of training on a single task. Addition-
ally, the use of varied tasks encourages learned features to
be informative for all types of eye movements (particularly
fixations, saccades, and smooth pursuits) and enables a single
model to be applied on multiple tasks, instead of necessitating
a separate model for different tasks as most prior works do.

We employ the Adam [65] optimizer with a one-cycle cosine
annealing learning rate scheduler [66] (visualized in Fig. 3A)
as implemented by PyTorch’s OneCycleLR. The learning
rate starts at 10−4, gradually increases to a maximum of 10−2

over the first 30 epochs, and then gradually decreases to a
minimum of 10−7 over the next 70 epochs. We found that,
compared to using a fixed learning rate throughout training,
this learning rate schedule both accelerated the training process
and led to higher levels of performance. Training lasts for a
fixed duration of 100 epochs (approximately 3 hours on our
hardware using 1000 Hz data), and the final weights of the
model are saved.

In contrast to our employed learning rate schedule, it is
common in the literature to start with a higher learning rate and
only decrease—never increase—it over time. Our employed
learning rate schedule follows the idea of “super-convergence”
by Smith and Topin [66]. The intention behind increasing the
learning rate is that the higher learning rate acts as a regularizer
and encourages the model to find large, flat minima. The
higher learning rate also helps traverse large, flat regions of
the loss landscape where gradients are small. The authors of
super-convergence argue that the learning rate must start small
so that training may progress in the correct direction [66]. We
then reduce the learning rate over time, as is commonly done
in the literature, to settle into a local optima that may be more
likely to generalize well since it resides within a larger, flat
minima. More details can be found in [66], especially the first
section of the appendix.

We note that there is no feedback from the validation set
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when training in this way (in contrast to when early stopping
is employed, for example). However, the validation set was
used while manually tweaking the proposed architecture and
training paradigm. The final architecture was chosen as the one
that maximized Mean Average Precision at R (MAP@R) [67]
on the validation set (using embeddings from TEX only).
MAP@R is a clustering metric that we believe is more
informative than EER for model selection. We visualize the
progression of MAP@R throughout training in Fig. 3B to
provide some insight into the values we achieve; but because
it is not directly related to biometric authentication, MAP@R
is not included in our results.

E. Evaluation

Although the model is trained on samples from all tasks
(except BLG), we primarily evaluate the model on TEX due
to the prevalent usage of reading data in the EMB literature.

Following the majority of the literature, we primarily evalu-
ate the model using equal error rate (EER), which is the point
where false rejection rate (FRR) is equal to false acceptance
rate (FAR). Measuring EER requires a set of data used for
enrollment and a separate set of data for authentication (also
commonly called verification). The enrollment set is formed
using the first window (5 s) of the session 1 TEX task from
R1 for each subject in the test set. The authentication set is
formed using the first window (5 s) of the session 2 TEX task
from R1 for each subject in the test set.

To ensure a minimal level of sample fidelity at evaluation
time, we discard windows with more than 50% NaNs. Subjects
are effectively excluded from the enrollment or authentication
sets if they have no valid windows in the respective set.

For each window in the enrollment and authentication sets,
we compute the 128-dimensional embeddings with each of the
4 models trained with 4-fold cross-validation. We then con-
catenate these embeddings to form a single, 512-dimensional
embedding for each window, effectively treating the 4 models
as a single ensemble model. We compute all pairwise cosine
similarities between the embeddings in the enrollment set and
those in the authentication set. The resulting similarity scores
are fed into a receiver operating characteristic (ROC) curve to
measure EER.

Given the resolution of a particular ROC curve, there may
not be a similarity threshold where FRR and FAR are exactly
equal. In such cases, the EER needs to be estimated, and there
are several ways this estimation can be done. The method we
use is to linearly interpolate between the points on the ROC
curve to estimate the point where FRR and FAR would be
equal.

Complementary to EER, we also report the decidability
index (d′) [29] to measure the degree of separation between
the genuine and impostor similarity score distributions:

d′ =
|µ1 − µ2|√
1
2 (σ

2
1 + σ2

2)
, (5)

where µ1, µ2 are the means of the two distributions and
σ1, σ2 are their standard deviations. A higher value of d′

indicates greater separation between the genuine and impostor

distributions which should, in general, be correlated with
a lower EER. d′ has the benefit of being a threshold-free
measure, though a threshold would still be necessary to make
accept/reject decisions in a biometrics system. One downside
to d′, though, is that it becomes less informative as the
distributions deviate from normality and unimodality.

In addition to the primary evaluation setting described
above, we can also change different parameters to evaluate
our model under various conditions. We will explore our
model’s performance on different tasks, across longer test-
retest intervals, and using increasing amounts of data for
enrollment and authentication. We will also examine how
well our network adapts to data with lower sampling rates,
with degraded spatial precision, and on a completely different
dataset than it was trained on. These additional analyses will
be described later.

V. RESULTS

Unless otherwise specified, presented results are measured
on the held-out test set using an ensemble model evaluated
under the primary evaluation setting, meaning we enroll and
authenticate with 5 s of 1000 Hz data from R1 TEX. We
train one ensemble of models per sampling rate. As a result,
the same ensemble of models is used for the evaluations
presented in §§ V-A, V-B, V-C, V-E (1000 Hz), V-F, and
V-H (1000 Hz and JuDo1000). Another 5 ensembles—one
per degraded sampling rate—are trained for the evaluations
presented in §§ V-D, V-E, and V-H (125 Hz). One more
ensemble is trained on data with degraded spatial precision for
§ V-G. Lastly, 19 more ensembles are trained with different
loss weighting schemes for § V-I.

Results on the test set for our primary evaluation setting
are presented in the first row of Table II. The other results in
that table are described in the upcoming subsections. Fig. 4
shows the similarity score distributions and ROC curve under
the primary evaluation setting.

To visualize the embedding space, DensMAP [68] is used
to create a low-dimensional representation of the embedding
space in a way that attempts to globally and locally preserve
structure and density. A subset of the embedding space is
visualized in Fig. 5.

Although we focus on the authentication scenario, it is worth
briefly mentioning for completeness how the model performs
in the identification scenario. We employ the rank-1 identi-
fication rate which measures how often the correct identities
have the highest similarity score between the enrollment and
authentication sets. Under the primary evaluation setting, after
removing any authentication subjects who are not present in
the enrollment set, rank-1 identification rate is 91.38% (53 of
58 subjects are correctly identified).

A. Effect of task on authentication accuracy

For this analysis, we replace TEX with one of the other
tasks during evaluation and repeat for each task. Note that
we evaluate the same ensemble model across all tasks; we do
not train a separate model for each task. Results are presented
in Table II in the “Task” effect group. To assess our model’s
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TABLE II
BIOMETRIC AUTHENTICATION RESULTS FOR VARIOUS EVALUATION

SETTINGS USING A SINGLE ENSEMBLE OF MODELS TRAINED WITH 4-FOLD
CROSS-VALIDATION. DURATION IS GIVEN AS T × n, WHERE T IS THE

LENGTH OF EACH SAMPLE AND n IS THE NUMBER OF SAMPLES. P AND N
ARE THE NUMBERS OF POSITIVE AND NEGATIVE PAIRS, RESPECTIVELY.

Effect Duration Round Task EER d′ P N
(s) (%)

- 5× 1 R1 TEX 3.66 3.71 58 3364

Ta
sk

(§
V

-A
)

5× 1 R1

HSS 5.08 3.58 59 3422
RAN 5.08 3.40 59 3422
FXS 9.38 2.68 59 3422
VD1 5.45 3.28 55 3135
VD2 3.39 3.71 59 3422
BLG* 5.49 3.31 59 3422

Te
st

-r
et

es
t

in
te

rv
al

(§
V

-B
)

5× 1

R2

TEX

8.62 2.89 58 3364
R3 7.43 2.94 58 3364
R4 8.71 2.96 58 3364
R5 7.14 2.92 58 3306
R6 6.09 3.05 58 3364
R7 8.52 3.02 34 1996
R8 8.89 2.77 30 1710
R9 7.69 2.59 13 799

D
ur

at
io

n
(§

V
-C

)

5× 2

R1 TEX

2.23 4.32 58 3364
5× 3 0.76 4.63 59 3422
5× 4 0.38 4.77 59 3422
5× 5 0.58 4.84 59 3422
5× 6 0.56 4.89 59 3422
5× 7 0.58 4.91 59 3422
5× 8 0.56 4.98 59 3422
5× 9 0.56 4.97 59 3422
5× 10 0.50 4.96 59 3422
5× 11 0.41 4.97 59 3422
5× 12 0.58 4.98 59 3422

* BLG was not included in the train or validation sets.

(A) Similarity distributions (B) ROC curve
Fig. 4. Qualitative results for the primary evaluation setting: 5 s of R1 TEX.
(A) Genuine and impostor similarity score distributions. (B) ROC curve for
bootstrapped similarity score distributions (see § V-E for an explanation of
how the bootstrapped distributions are made). The dashed black line shows
where FRR and FAR are equal. The blue line is the mean ROC curve across
1000 bootstrapped distributions, and the shaded region represents ±1 standard
deviation around the mean.

performance on an out-of-sample task, we also include results
for BLG.

B. Effect of test-retest interval on authentication accuracy

For this analysis, we continue using the first session of R1
for the enrollment set, but for the authentication set we use
the second session of one of the later rounds (R2–9) to assess
how robust our model is to template aging after as many as
37 months. Results are presented in Table II in the “Test-retest
interval” effect group.

(A) TEX only (B) All tasks + BLG
Fig. 5. DensMAP [68] visualizations of the embedding space for 10 subjects
present across all rounds. All embeddings of valid (≤50% NaNs) windows
across all rounds R1–9 and both sessions are plotted together. A different
mapping is fit for each plot. (A) Embeddings from only the TEX task.
(B) Embeddings from all tasks (including BLG). We use umap-learn [61]
parameters metric=cosine, n neighbors=30, min dist=0.1, and densmap=True.

C. Effect of recording duration on authentication accuracy

For this analysis, instead of limiting ourselves to the first 5-
second window of a recording at inference time, we aggregate
embeddings across the first n windows to form a new, centroid
embedding. To be clear, the model has not been directly trained
on these centroid embeddings. Rather, the model has been
trained in a way that encourages a well-clustered embedding
space, meaning the individual subsequence embeddings for
each class are clustered together and separated from other
class clusters. Therefore, by averaging multiple subsequence
embeddings together to form a centroid embedding, we can
better approximate the central tendency of a given class in
the embedding space which should, in turn, form a greater
separation between genuine and impostor matches. Results are
presented in Table II in the “Duration” effect group.

D. Effect of sampling rate on authentication accuracy

For this analysis, instead of using 1000 Hz data, we downsam-
ple each recording to different target sampling rates using an
anti-aliasing filter (SciPy’s [69] decimate function) to assess
how robust our network architecture is to lower sampling
rates. The targeted sampling rates are the same as those
in [23]: 500, 250, 125, 50, and 31.25 Hz. Input size is reduced
by the same integer factor as the sampling rate and then
truncated to remove any fractional components. For example,
at 31.25 Hz (a downsample factor of 32), the input size
becomes ⌊ 5000

32 ⌋ = 156 time steps.
Since our network architecture contains a global pooling

layer prior to the fully-connected layer(s), the network can be
applied to time series of any length without any modifications.
But, because features learned at one sampling rate would not
likely translate well to different sampling rates, we opted to
train a new ensemble of 4-fold cross-validated models for each
degraded sampling rate to have the best chance at extracting
meaningful information at each sampling rate. Results are
presented in Table III.

We do not adjust the Savitzky-Golay differentiation filter
parameters for the lower sampling rates. It is also worth noting
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TABLE III
BIOMETRIC AUTHENTICATION RESULTS AT DEGRADED SAMPLING RATES.
A DIFFERENT ENSEMBLE OF MODELS IS TRAINED FOR EACH SAMPLING

RATE.

Sampling rate EER d′ P N
(Hz) (%)

500 5.66 3.79 53 3079
250 6.20 3.43 53 3079
125 8.77 2.86 57 3306
50 15.52 1.92 58 3364
31.25 23.37 1.34 58 3364

that the (maximum) receptive field of our network, 257 time
steps, is larger than the input sizes at 50 and 31.25 Hz.

E. Estimating FRR @ FAR 10−4

The ultimate goal of EMB is to enable the use of eye move-
ments for biometric authentication in real-world settings. It is
important to consider how EMB compares to existing security
methods, because if it cannot outperform such methods then
wide adoption would be unlikely. Like [23], we use the 4-
digit (10-key) pin as a representative for existing security
methods, because it is one of the most common security
methods in everyday life as both a primary and secondary
security measure. The 4-digit pin effectively has a FAR of 1-
in-10000, assuming each of the 104 combinations of 4-digit
10-key pins is equally likely to be chosen by enrolled users.

For this analysis, to mimic the level of security afforded by
a 4-digit pin, we provide estimates of FRR when FAR is fixed
at 10−4 (abbreviated FRR @ FAR 10−4). Directly measuring
FRR @ FAR 10−4 requires at least N = 10000 impostor
similarity scores, but we are limited to a maximum of 3422.
Therefore, to enable the estimation of FRR @ FAR 10−4,
we use bootstrapping (i.e., repeated random sampling with
replacement) to resample our empirical genuine and impostor
similarity score distributions to form new distributions with
P = 20000 and N = 20000 scores. We repeat bootstrapping
1000 times and report the mean and standard deviation of
the performance across those 1000 bootstrapped distributions
in Table IV. The FIDO Biometrics Requirements [70] suggest
that a biometric system should have no higher than 3–5% FRR
@ FAR 10−4, though we note that our bootstrapping technique
differs from theirs and our test set population of 59 does not
meet their minimum population requirements of 123–245.

We note that EKY [23] employs a different method to
estimate FRR @ FAR 10−4 involving the Pearson family of
distributions. We propose the use of bootstrapping because
it is simpler, makes fewer assumptions about the empirical
distribution, and is more commonly used as a resampling tool.
Bootstrapping largely preserves the shape of the empirical
distribution, whereas the Pearson-based approach by [23] pro-
duces a new distribution that may not preserve characteristics
of the region of interest where the genuine and impostor
distributions overlap. A “failure case” of the Pearson-based
approach is shown in Fig. 6. We believe the main source of
this failure is that the empirical distribution of genuine scores
is not unimodal (there appears to be a smaller second mode

Fig. 6. Comparison of genuine vs impostor similarity score distributions
for (left) the empirical distributions, (center) resampled distributions using
the Pearson-based method from [23], and (right) resampled distributions
using bootstrapping. We note that bootstrapping more closely preserves
the shape of the empirical distributions, particularly the overlapping region
between the genuine and impostor distributions. In contrast, the Pearson-
based method produces significantly less overlap between the genuine and
impostor distributions, leading to a significant reduction in FRR @ FAR
10−4 compared to the bootstrapped distributions. Plotted scores are from
evaluating our model on 31.25 Hz R1 TEX with 5 × 12 inputs. In this
example, the Pearson-based method results in 6.26% FRR @ FAR 10−4

which is significantly different from the bootstrapped result of 51.28%.

around 0.8 similarity), so we violate the assumptions of the
Pearson distribution.

F. Determining accept/reject threshold on validation set

As mentioned in [23], it is problematic to compute EER on
the test set, because doing so leaks information from the
test set into the decision of which accept/reject threshold to
use. A more principled approach is to use the validation set
to determine the accept/reject threshold and then apply that
threshold to the test set.

For this analysis, we do exactly that. For each individual
model from the ensemble, we build a ROC curve using
similarity scores computed on that model’s validation set and
determine the threshold that yields the EER. Then, separately
for each model, we apply the chosen threshold on the simi-
larity scores from the test set.

Note that for this analysis, unlike the previous analyses, we
are no longer treating the 4 models as a single ensemble model,
because each model’s validation set is present in the train set
for the other 3 models. So, to provide a better understanding
of performance without ensembling the individual models, we
also measure EER and d′ for each individual model.

Results for this analysis are presented in Table V. We label
the folds F0, F1, F2, and F3 and match each model to the fold
that was used as its validation set.

G. Degrading spatial precision to mimic the Vive Pro Eye

Although we explored artificially downsampling the high-
quality data from GazeBase in § V-D to mimic the lower
sampling rates of modern VR/AR devices, this alone is not
a sufficient proxy for the lower signal quality present in
such devices. Another, arguably more impactful signal quality
measure to consider is spatial precision, which measures the
ability of an eye-tracking device to reliably reproduce a gaze
position measurement (intuitively, how noisy is the signal).
There are several common methods for measuring spatial
precision [71], but we will measure it as the standard deviation
of gaze position samples as is done by Prasse et al. [72].

In an effort to match the level of spatial precision present
in modern VR/AR devices, we select the Vive Pro Eye [14]
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TABLE IV
BIOMETRIC AUTHENTICATION RESULTS USING BOOTSTRAPPED SIMILARITY SCORE DISTRIBUTIONS. RESULTS ARE REPORTED AS MEAN±SD ACROSS

1000 BOOTSTRAPPED DISTRIBUTIONS. EACH BOOTSTRAPPED DISTRIBUTION CONTAINS P = 20000 POSITIVES AND N = 20000 NEGATIVES.

Sampling rate (Hz) Duration (s) EER (%) d′
FRR @ FAR (%)

10−1 10−2 10−3 10−4

1000

5× 1 3.67±0.12 3.71±0.02 3.45±0.13 10.34±0.22 14.27±1.04 30.19±2.87

5× 2 2.22±0.11 4.32±0.02 0.00±0.00 5.16±0.19 13.60±1.78 17.13±0.50

5× 4 0.38±0.05 4.77±0.02 0.00±0.00 0.00±0.00 8.33±0.73 8.48±0.20

5× 6 0.56±0.05 4.89±0.02 0.00±0.00 0.00±0.00 5.08±0.16 5.08±0.16

5× 12 0.59±0.05 4.98±0.02 0.00±0.00 0.00±0.00 5.09±0.16 5.09±0.16

500

5× 12

0.32±0.04 4.97±0.02 0.00±0.00 0.00±0.00 3.82±0.31 7.46±0.43

250 0.81±0.06 4.90±0.02 0.00±0.00 0.00±0.00 3.78±0.13 5.58±0.44

125 3.49±0.12 4.19±0.02 0.00±0.00 7.02±0.18 10.47±0.36 10.52±0.21

50 3.38±0.13 2.60±0.01 0.00±0.00 10.40±0.63 16.06±1.47 20.21±0.52

31.25 5.09±0.16 1.86±0.02 5.09±0.16 14.47±1.12 29.36±2.12 51.28±4.26

TABLE V
BIOMETRIC AUTHENTICATION RESULTS ON THE TEST SET FOR EACH

INDIVIDUAL MODEL FROM THE ENSEMBLE WHEN THE ACCEPT/REJECT
THRESHOLD IS DETERMINED ON EITHER THE TEST SET OR A GIVEN

MODEL’S VALIDATION SET.

Fold d′
Fit on test set Fit on validation set

threshold EER (%) threshold FRR (%) FAR (%)

F0 3.59 0.4231 5.71 0.5405 12.07 1.28
F1 3.31 0.3970 8.62 0.5850 15.52 0.65
F2 3.50 0.4505 5.17 0.5575 10.34 1.25
F3 3.35 0.4277 6.90 0.5024 8.62 2.82

TABLE VI
RESULTS ON R1 TEX AT 125 HZ WITH DEGRADED SPATIAL PRECISION.
RESULTS ARE REPORTED AS MEAN±SD ACROSS 1000 BOOTSTRAPPED

SIMILARITY SCORE DISTRIBUTIONS. EACH BOOTSTRAPPED DISTRIBUTION
CONTAINS P = 20000 POSITIVES AND N = 20000 NEGATIVES.

Duration (s) EER (%) d′ FRR @ FAR (%)

10−2 10−4

5× 1 24.57±0.30 1.27±0.01 80.45±1.00 96.50±0.13

5× 2 19.29±0.28 1.65±0.01 61.71±0.80 90.98±1.15

5× 12 12.30±0.23 1.88±0.01 17.81±0.66 69.54±2.52

as a representative device. Prasse et al. [72] achieved artificial
degradation of spatial precision using additive white (Gaus-
sian) noise with a mean of 0 and a standard deviation as
high as 0.5◦. The resulting spatial precision of 0.5◦ is slightly
above our own rough measures of the Vive Pro Eye’s spatial
precision, so we felt it would be a reasonable magnitude of
noise to add in our pursuit of trying to mimic the signal
quality of the Vive Pro Eye. Therefore, in this analysis, we
generate white noise with a mean of 0 and a standard deviation
of 0.5◦. We sample separate noise vectors for the horizontal
and vertical channels. These noise vectors are added to the
gaze position signals after downsampling to 125 Hz (close to
the Vive Pro Eye’s 120 Hz sampling rate). We train a new
ensemble of models on these degraded signals and report the
results on the held-out test set in Table VI.

Based on the results in Table VI, it is clear that degrading
spatial precision has a significant impact on authentication
accuracy. While we had achieved 8.77% EER with 5 seconds
of 125 Hz data without degrading spatial precision (see

Table III), performance drops significantly to 24.57% EER
after degrading spatial precision by 0.5◦. Additionally, using
60 seconds of data, performance drops from 3.49% EER (see
Table IV) to 12.30% EER after degrading spatial precision.

We note that this is a somewhat naı̈ve approach to spatial
precision degradation, and a more involved method would
be needed to better mimic a lower quality eye-tracking sig-
nal. Some limitations include that spatial precision typically
worsens with increasing eccentricity (so the magnitude of the
additive noise should be a function of gaze position) and
that pink noise may be a better choice for modeling noise
in eye-tracking signals [73]. We leave it to future studies
to design a more proper method for artificially degrading
a higher quality eye-tracking signal to mimic the various
properties of a lower quality signal. Alternatively, once large
eye-tracking datasets collected with modern VR/AR devices
become publicly available, biometric performance could be
measured on those datasets without the need for artificial
signal quality degradation.

H. Comparison to previous state of the art
We present a comparison against published results from the
most relevant prior works in Table VII. There are several
methodological differences between each study, complicating
a direct comparison across studies. But we decided to report
only published results rather than reimplement each method
ourselves to prevent the introduction of errors and to make
sure we do not bias the results in our favor.

The STAR model by Friedman et al. [49] operates on
summarized feature distributions across an entire recording,
so there are no published results of STAR being applied to
subsequences of, say, 5 seconds. For enrollment, DEL [4]
uses a fixed amount of data (24 seconds) collected over an
approximately 3-week period. In contrast, we scale the amount
of data used for enrollment to match the amount used for
authentication, and we enroll with only the first session of R1
(or, for JuDo1000, the first of the 4 recording sessions). DEL
also employs a different method than ours to aggregate across
samples.

The last few sets of results in Table VII include evaluations
of our pre-trained model on the JuDo1000 [74] dataset.
JuDo1000 is recorded with an eye-tracking device similar to
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TABLE VII
COMPARISON AGAINST PUBLISHED RESULTS FROM THE MOST RELEVANT PRIOR WORKS UNDER VARIOUS CONDITIONS. WE COMPARE THE CLOSEST

MATCHING CONDITIONS ACROSS STUDIES. THE BEST RESULTS PER CONDITION ARE BOLDED WHEN THERE ARE AT LEAST TWO VALUES TO COMPARE.
WHERE APPLICABLE, DURATION IS GIVEN AS T × n, WHERE T IS THE LENGTH OF EACH SAMPLE PROCESSED BY THE MODEL AND n IS THE NUMBER OF

SAMPLES AGGREGATED TOGETHER TO PRODUCE THE RESULT. P AND N ARE THE NUMBERS OF POSITIVE AND NEGATIVE PAIRS, RESPECTIVELY.

Dataset Sampling rate Test-retest interval Model Duration EER d′ FRR @ FAR (%) P N

(Hz) (approx.) (s) (%) 10−2 10−4

GazeBase (TEX) [26] 1000 30 min. (R1) STAR [49] ∼ 60 2.01 - - - 149 22 052
DEL [4] 1× 60 4.7 - - - 81 6480
EKY [23] 1.024× 58 10.52 - - - 59 3422
EKYT (ours) 5× 12 0.58 4.98 0.00 5.09 59 3422

GazeBase (TEX) [26] 1000 7–14 mo. (R5) STAR [49] ∼ 60 10 - - - 34 1122
1–7 mo. (R3–4) DEL [4] 1× 5 10.0 - - - 25 600
7–14 mo. (R5) EKY [23] 1.024× 5 20.37 - 74.51 96.79 59 3422
7–14 mo. (R5) EKYT (ours) 5× 1 7.14 2.92 34.58 75.65 58 3306

JuDo1000 [74] 125 1–4 wk. DEL [72] 1× 5 9 - - - 25 600
GazeBase (TEX) [26] 30 min. (R1) EKY [23] 1.024× 5 20.38 - 68.18 88.79 59 3422
GazeBase (RAN) [26] 30 min. (R1) EKYT (ours) 5× 1 7.57 2.83 29.46 67.29 59 3422

JuDo1000 [74] 250** 1–4 wk. DEL [72] 1× 5 39.9 - - - 25 600
GazeBase (RAN) [26] 125** 30 min. (R1) EKYT (ours) 5× 1 25.98 1.41 77.97 99.89 59 3422

JuDo1000 [74] 1000 1–4 wk. DEL [4] 1× 5 3.97 - 25.67 - 25 600
* 1 wk. EKYT (ours) 5× 1 12.00 2.33 44.00 92.00 150 22 350

JuDo1000 [74] 1000 1–4 wk. DEL [4] 1× 10 3.01 - 22.01 - 25 600
* 1 wk. EKYT (ours) 5× 2 7.33 2.67 28.67 68.67 150 22 350

JuDo1000 [74] 1000 1–4 wk. DEL [74] 1× 60 3.84 - 27.74 - 25 600
* 1 wk. EKYT (ours) 5× 12 2.67 3.20 5.33 24.00 150 22 350

* Our model was trained on GazeBase and directly applied to JuDo1000 without any further training or fine-tuning.
** With spatial precision degraded by 0.5◦.

the one used in GazeBase and uses an eye-tracking task similar
to the RAN task from GazeBase. JuDo1000 contains binocular
recordings of 150 subjects across 4 sessions, each separated by
at least 1 week. Each session contains 12 repetitions each of
9 different trial configurations. More details about the dataset
can be found in [74].

From each recording in JuDo1000, the 12 trials with the
largest display area (grid = 0.25) and longest duration (dur
= 1000) are selected, providing us with 12 windows of 5 s
each. JuDo1000 is a binocular dataset but our model was
trained on monocular data, so we combine the left and right
eye gaze positions by averaging them. Gaze positions in each
window are converted from pixels to degrees and then from
position to velocity using the same Savitzky-Golay differen-
tiation filter we used for GazeBase. Using the same trained
model that produced the results shown in Table II and without
any fine-tuning, we directly compute embeddings of these
windows from JuDo1000. We enroll the embeddings from the
first recording session and authenticate with the embeddings
from the second recording session (a test-retest interval of
approximately 1 week), excluding windows with more than
50% NaNs. Since there are more than 10000 negative pairs,
FRR @ FAR is directly measured without any resampling.

I. Effect of different loss weighting schemes
All of our prior results have been achieved with models trained
using wMS = 1.0 and wCE = 0.1 in Equation 4. As we
briefly mentioned before, we found during our experiments
that this weighting scheme performed marginally better on the
validation set than when using MS loss alone (i.e., wMS = 1.0

and wCE = 0.0). In this analysis, we explore the effect of
different weighting schemes on authentication performance on
the held-out test set.

We keep one weight fixed at 1.0 and vary the other between
0.0 and 1.0 in steps of 0.1. A new ensemble of models is
trained for each weighting scheme. Results are visualized in
Fig. 7. Changing the weights in this way does not cover
configurations where both weights differ from 1.0, such as
wMS = 0.8 and wCE = 0.4. But for any arbitrary (pos-
itive) weighting scheme, we note that such a configuration
is effectively equivalent to multiplying the learning rate by
max(wMS , wCE) and dividing both wMS and wCE by the
same factor. The larger of the resulting scaled weights will
be 1.0, just like the weighting schemes we explore; the only
difference would be a larger/smaller learning rate.

We observe that performance generally degrades as wCE

increases and as wMS decreases. MS loss alone (wMS = 1.0,
wCE = 0.0) achieves the highest d′ by a small margin, but
our employed weighting scheme (wMS = 1.0, wCE = 0.1)
achieves the lowest EER by a large margin. CE loss alone
performs the worst by far. From this analysis, it appears that
MS loss encourages better generalization to out-of-sample
classes than CE loss. However, it should be noted that the
same learning rate schedule (i.e., the one tuned for wMS = 1.0
and wCE = 0.1) was used for each weighting scheme. And
perhaps centroid embeddings and cosine similarity are not as
applicable for embeddings trained using CE loss.
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Fig. 7. Effect of different loss weighting schemes on authentication perfor-
mance. A lower EER and higher d′ indicates better performance. We observe
that performance generally degrades as wCE increases and as wMS decreases
(i.e., reading this plot from left to right).

VI. DISCUSSION

The primary result that we present is 3.66% EER on a reading
task with 5-second-long enrollment and authentication periods
and with an approximately 30-minute test-retest interval. Our
model consistently outperforms the previous state of the art
under various conditions (see first four sets of results in
Table VII). When applied to a completely different dataset
than it was trained on, our model is still able to perform
significantly better than chance (see bottom three sets of results
in Table VII), showcasing the robustness of our model to
completely out-of-sample data.

Authentication accuracy is generally better for TEX than the
other tasks, as is expected given the literature’s predominant
use of reading data for EMB. The EER for VD2 is slightly
lower than for TEX, but this difference may not be statistically
significant and the trend may not continue for longer durations.
Unsurprisingly, authentication accuracy is the worst for FXS;
but it is impressive that we manage to achieve below 10% EER
given just 5 seconds of pure fixational data. We note that the
FXS task was not well represented in the training set, because
the task has a maximum duration of approx. 15 seconds
(compared to 60–100 seconds for the other tasks) and all
other tasks are likely to elicit several saccadic movements in
any given 5-second period. What is quite surprising, however,
is that our model achieves 5.49% EER on BLG despite that
task not being present during training. BLG presumably elicits
very different eye movement responses than the other tasks
because it is an interactive game with many objects moving
on the screen at once, but our model is still able to create
meaningful embeddings of the eye movement signals. We also
draw attention to the fact that the embedding space (Fig. 5B)
appears to be fairly well-clustered across tasks, suggesting that
it may be viable to enroll with one task and authenticate with
another.

Our model exhibits high robustness to template aging, even

with just 5 seconds of eye movement data. When authenti-
cating on R6, which is approx. 1 year after R1 and is not
represented in the train or validation sets, we still achieve
6.09% EER. In fact, EER remains consistently between 6–9%
for all test-retest intervals from approx. 1 to 37 months.

It is still an open question as to how much eye movement
data is necessary to adequately perform user authentication
and whether there is a point beyond which additional data
provides no new information. For our model, EER improves
as the duration of enrollment and authentication increases
from 5 to 20 seconds, after which it starts to saturate around
0.4–0.6%. Estimates of FRR @ FAR 10−4 improve with
increasing duration up to 30 seconds before saturating around
5%. Our results suggest that there may not be much additional
information to be gained beyond 30 seconds of eye movements
during a reading task. Though, it must be noted that this claim
is based on the TEX task from GazeBase wherein each subject
read through each passage at different speeds. Perhaps the
reason we do not see much improvement beyond 30 seconds is
that most subjects may have finished reading after 30 seconds
and did not have consistent behavior afterward.

Authentication accuracy remains relatively stable as the
sampling rate is degraded from 1000 Hz down to 250 Hz, starts
to noticeably worsen at 125 Hz, and then drops significantly
starting at 50 Hz. It is unclear how much of this performance
degradation is due to the use of an untuned differentiation
filter. These results may reflect findings in the literature that
saccade characteristics (e.g., peak velocity and duration) can
be measured accurately at a sampling rate of 250 Hz [75] and
begin to become less accurate at lower sampling rates [76],
[77]. At 125 Hz, which is close to the 120 Hz sampling
rate of the Vive Pro Eye [14], our model is still able to
achieve 8.77% EER with just 5 seconds of data and an
estimated 10.52% FRR @ FAR 10−4 with 60 seconds of
data. Depending on the degree of security necessary, these
results suggest the present applicability of EMB at sampling
rates present in current VR/AR devices. Another interesting
observation is that we are able to achieve around 5.09%
EER with 60 seconds of 31.25 Hz data, suggesting that
there is still meaningful biometric information that can be
extracted at such low sampling rates. While we acknowledge
that simply degrading the sampling rate of high-quality data is
not a sufficient proxy for other eye-tracking devices, we note
that gaze estimation pipelines could always be improved to
produce higher levels of signal quality at a particular sampling
rate, whereas it may not always be possible for a device to
increase the sampling rate of its eye-tracking sensor(s) due
to power constraints (though some efforts are being made to
enable eye tracking at high sampling rates with lower power
requirements [18]).

Most EMB studies, including the present study, report
measures of EER directly on the test set, leaking information
from the test set into the accept/reject decisions. When tak-
ing a more principled approach and fitting the accept/reject
threshold on the validation set instead, we find that the
thresholds become more strict, resulting in a lower FAR and
a higher FRR. As such, these thresholds would be better for
settings requiring a higher degree of security but may be more
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frustrating for users.

VII. CONCLUSION

We presented a novel, highly parameter-efficient, DenseNet-
based architecture for end-to-end EMB that achieves state-of-
the-art biometric authentication performance. When enrolling
and authenticating with just 5 seconds of eye movements
during a reading task—a duration somewhat comparable to
the time it takes to enter a 4-digit pin or to calibrate an eye-
tracking device—we achieved 3.66% EER. With 30 seconds
of data, we achieved an estimated 5.08% FRR @ FAR 10−4

which approaches a level of authentication performance that
would be acceptable for real-world use. At 125 Hz, which is
close to the 120 Hz sampling rate of the Vive Pro Eye [14],
we achieved 8.77% EER with just 5 seconds of data and an
estimated 10.52% FRR @ FAR 10−4 with 60 seconds of data.

Our embedding space visualizations suggest that it may be
feasible to enroll with one (or several) tasks and authenticate
with a different task. We are not aware of any study that has
attempted this. It would also be interesting to see how well
privacy-preserving models (e.g., [12]) can defend against more
powerful EMB models like the one presented herein.

Since eye tracking is seeing increasing use in VR/AR
devices due in part to the power-saving potential of foveated
rendering, EMB may be an ideal biometric modality for such
devices. EMB models would need to have low resource re-
quirements when performing (continuous) user authentication
on such consumer-grade devices. Our architecture (excluding
the classification layer) has only 123K learnable parameters
which is around 4x smaller than EKY (approx. 475K learnable
parameters) and around 1700x smaller than DEL (approx.
209M learnable parameters according to [23]). Models with
lower complexity such as ours may enable more power-
efficient implementations that would make them a better fit
for deployment on consumer-grade devices. Following works
like [19], we encourage future studies to explore EMB directly
on eye-tracking-enabled VR/AR devices.
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