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Abstract: Many developers of biometric systems start with modest samples before general deploy-
ment. However, they are interested in how their systems will work with much larger samples. To
assist them, we evaluated the effect of gallery size on biometric performance. Identification rates
describe the performance of biometric identification, whereas ROC-based measures describe the
performance of biometric authentication (verification). Therefore, we examined how increases in
gallery size affected identification rates (i.e., Rank-1 Identification Rate, or Rank-1 IR) and ROC-based
measures such as equal error rate (EER). We studied these phenomena with synthetic data as well as
real data from a face recognition study. It is well known that the Rank-1 IR declines with increasing
gallery size, and that the relationship is linear against log(gallery size). We have confirmed this with
synthetic and real data. We have shown that this decline can be counteracted with the inclusion of
additional information (features) for larger gallery sizes. We have also described the curves which
can be used to predict how much additional information would be required to stabilize the Rank-1 IR
as a function of gallery size. These equations are also linear in log(gallery size). We have also shown
that the entire ROC-curve was not systematically affected by gallery size, and so ROC-based scalar
performance metrics such as EER are also stable across gallery size. Unsurprisingly, as additional
uncorrelated features are added to the model, EER decreases. We were interested in determining the
impact of adding more features on the median, spread and shape of similarity score distributions. We
present evidence that these decreases in EER are driven primarily by decreases in the spread of the
impostor similarity score distribution.

Keywords: biometrics; gallery size; synthetic data; rank-1 identification rate; equal error rate (EER)

1. Introduction

Many developers of biometric systems start with modest samples before general
deployment. However, they are interested in how their systems will work with much larger
samples. To assist them, we evaluated the effect of gallery size on biometric performance.

We start with the hypothesis that as gallery size increases, more information is required
to achieve any particular level of performance. We will be addressing performance in
terms of identification rate, specifically Rank-1 Identification Rate (Rank-1 IR), and also
in terms of ROC-based measures such as EER. (All error rates rates are expressed as
percent in the present study). It is well known from empirical studies that the Rank-1 IR
declines with increasing gallery size and that this relationship is linear in log(gallery size)
(see Figure 1) [1–3] We will attempt to further describe this relationship, and also show that
the decrease in Rank-1 IR can be reversed with the addition of new information.

Baveja et al. 2010 [2] conducted a theoretical analysis of this issue using extreme-value
theory. They develop large sample approximations to illustrate how Rank-1 IR should
change with gallery size. Their basic result (assuming independence of the probe scores
against different imposters) gives a linear relationship in log(gallery size) to the first order.
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The authors show that their theoretical result does not match up well with empirical results.
However, they indicate that this was likely due to dependence among the probe-imposter
scores due to image quality; a modification using a categorization of image quality provides
a much better fit to the empirical results. The end of their paper talks about the “open”-set
case where ROC-curves tend to be utilized. They indicate that asymptotic theory suggests
ROC metrics should depend on the tail of the imposter score distribution; no empirical
comparisons are provided.

Our work complements that of Baveja et al. (2010) [2] in that we provide extensive
empirical evidence regarding the effect of gallery size. Our results support their theoretical
suggestion of a log-linear relationship. We also probe the importance of feature reliability
(i.e., temporal persistence) among the features used to define the score. We also perform
an extensive empirical analysis of the effect of gallery size on ROC-curves. Although
Baveja et al. (2010) [2] emphasize the important role of the tails of the similarity score
distributions, in the present study we emphasize the role of the spread (i.e., inter-quartile
range (IQR)) of the similarity score distributions.

Figure 1. Probability of detection at Rank-1 IR as a function of more than 600,000 plain index fingers [1]
(See Figure 19). Note the log scale for the x-axis. Probe set size was 1000 subjects. Fingerprint source:
Department of Homeland Security, US Federal Government.

There is little published research on the impact of increasing gallery size on ROC-based
measures such as EER, aside from the work of Baveja et al. 2010 [2], noted above. Although
it is well established that increasing the number of subjects will decrease the confidence
limits on any ROC-curves produced [4,5], this evidence does not imply anything about the
central tendency of any estimated error rate.

We were interested in evaluating the influence of changes in gallery size on a large
scale (up to 100,000 subjects). For reasons of convenience, availability and control, we
employed synthetic data sets. However, at each step in the analysis, we provide comparison
analyses for a real face-recognition data set (MORPH-II) [6] with N = 13,930 subjects. The
real face recognition data allowed us to evaluate if the substantive findings with synthetic
data were replicated in real biometric data.

In Section 2 of the manuscript, we present a method for creating synthetic data sets with
a number of properties that are helpful for studying biometric performance. Because the
data are synthetic, we are able to control the degree of temporal persistence of the features
while also ensuring that features are approximately independent of each other and thus
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provide unique pieces of information for biometric verification. (The concept of “temporal
persistence” and the method for its measurement are covered in [7]. In other contexts, this
measure is used to assess the inter-rater reliability of a feature). We think that having unique
pieces of information will allow us to address several theoretical notions relevant to biometric
analysis in this and subsequent studies. Additionally, in Section 2, we present our methods
for biometric performance assessment of the synthetic data. In Section 3 we describe the
MORPH-II face recognition data set and our face recognition analyses, including biometric
performance assessment. In Section 4, we discuss our results for Rank-1 IR. In Section 5 we
describe our results for ROC-based metrics. We end with a discussion (Section 6).

2. Creation and Analysis of Synthetic Data Sets
2.1. Creation of Synthetic Data

Recall that the intraclass correlation coefficient (ICC) is a measure of the correlation
expected for repeated measurements of the same feature on different occasions. Unlike
the Pearson r correlation coefficient, which is typically applied as an interclass measure
of relative agreement (i.e., two series can be correlated even if they differ substantially in
level and spread), the ICC is an intraclass measure of absolute agreement [7]. Measures
from the same set of subjects at two different times are intraclass measurements (same
metric and variance). ICC ranges from 0.0 to 1.0 with the latter corresponding to perfect
temporal persistence. Our goal is to create synthetic features with a specified target
ICC (denoted ICCTarget). Let Xijs denote the measurement of feature j (j = 1, . . . , K) on
session (occasion) s (s = 1, . . . , S) for individual i (i = 1, . . . , N). Although the ICC can be
calculated based on many sessions, in our experience, biometric assessment is typically
performed comparing only two points in time. Therefore, henceforth we will set S = 2.
We generate normally distributed features such that the theoretical intraclass correlation
of repeated measurements of the same feature on the same subject is ICCTarget while the
theoretical correlation of measurements of different features on the same individual and
the theoretical correlation of measurements from different individuals are zero. In practice
when data are simulated there are small variations in the empirical ICCs and there are
small intercorrelations between features (and individuals) due to chance.

The R code to create our datasets is included in [8]. Here we describe the method
briefly. A more formal presentation is spelled out in Algorithm 1. The starting point is to
populate the full set of session one measurements Xij1 with random draws from a standard
normal distribution (mean zero and variance one). Then the measurements for the second
session are set equal to the value of the given feature from the first session, Xij2 = Xij1 for
(i = 1, . . . , N, j = 1, . . . , K ). At this point both sessions have the same data and each feature
has ICC equal to 1.0 (perfect persistence). We obtain the desired ICC by adding a draw from
a normal distribution with mean = 0 and variance = (1 − ICCTarget)/ICCTarget to each of
the measurements. At the end we apply a z-score transform to each feature (with all sessions
concatenated together) so that they all have mean 0 and standard deviation one. It can be
shown that the resulting measurements have the desired ICC (up to simulation noise).

Using this method, we can create features which are normally distributed, that have
specified ICCs, with as many subjects and sessions as we desire. These features all have
mean = 0 and SD = 1. These features are generally independent, but there are some small
intercorrelations between features due to chance. To illustrate the approach, we generated
data for 10,000 subjects, 1000 features and 2 occasions with ICCTarget = 0.7. Figure 2A
shows a histogram of the resulting empirical ICCs. Figure 2B shows a histogram of the
resulting inter-feature correlations.
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Algorithm 1: Creating Synthetic Features
Input : N (subjects), K (features), ICCTarget
Output :3-dimensional (N × K × 2) feature matrix Xijs with desired correlation

structure
for j = 1, . . . K

for i = 1, . . . N
Set Xij1 = Z where Z is a random standard normal deviate.
Set Xij2 = Xij1

for j = 1, . . . K
for i = 1, . . . N

for s = 1, 2
Set Xijs = Xijs + W; where W is a random normal deviate with mean = 0

and standard deviation =
√
(1 − ICCTarget)/ICCTarget

For each feature j, treat Xj as a single vector of length N · S and apply a z-score
transform to ensure mean = 0 and standard deviation = 1

Figure 2. (A) Frequency histogram of ICCs for 1000 features with an ICCTarget = 0.7. This was from a
synthetic data set with 10,000 subjects. (B) Frequency histogram of correlations between 1000 features
for 10,000 subjects, two sessions, with an ICCTarget = 0.7. Note that the median and maximum are of
the absolute value of the correlations.

2.2. Creation of Sets of Features with Varying Degrees of Persistence

To match what was found in our face recognition data set (see below), we generated a
synthetic data set with varying ICCs in the range of 0.8 to 0.9 (0.8 < ICC ≤ 0.9). We refer
to this data set as the Band 8 data set. Within the ICC band, the ICCs are evenly distributed
across the 0.8 to 0.9 range.

2.3. Biometric Performance Assessment for Synthetic Features

All of the synthetic analyses for this report are based on Band 8 (0.8 < ICCs ≤ 0.9).
This was chosen because in our face recognition data set, described below, all of the features
had ICCs in this range as well. A synthetic dataset with 50 features, and 100,000 subjects
studied on 2 sessions with ICC in Band 8 was constructed.

Biometric performance was evaluated using various numbers of features. Given very
low or non-existent inter-correlations between features, the number of features is a proxy
for biometric performance. Higher numbers of features always produce better biometric
performance. The number of features ranged from 2 to 20 for both synthetic and FaceNet
data, depending on the goal of the analysis. The precise number is always provided for
each analysis. These features were randomly selected from the full set of 50 features.

For one analysis of the synthetic data, we employed gallery sizes of of 1000, 2000, 4000,
8000, 16,000, 32,000 or 64,000 subjects. For other types of analysis, gallery sizes were 1000,
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10,000 or 100,000 subjects. We employed the cosine distance metric, since we have shown in
an earlier (unpublished) report that the best biometric performance was produced with this
choice (Link to unpublished report: https://www.doi.org/10.13140/RG.2.2.17510.06727,
(accessed on 20 October 2022)). The resulting distance measures were scaled to go from
0 to 1 and then they were reflected (1 − distance) to compute similarity scores. The Rank-1
IR for a data set represents how often (what percent of the time) the greatest similarity
score for a probe subject was for the same subject in the gallery. A “genuine” distribution
of similarity scores was constructed from the similarity scores for each subject and their
self. All other similarity scores were considered impostors. Applying different decision
thresholds to the genuine and impostor similarity scores yields false acceptance and false
rejection rates. These can be plotted as a receiver operating characteristic (ROC) curve.
The EER is the point on this curve at which the false acceptance rate (FAR) and the false
rejection rate (FRR) are equal.

The number of similarity scores is equal to (gallery size)2. However, we can only
do exact ROC analyses in computer memory for up to 20,000 subjects. Therefore we
created software which estimates ROC-based measures for much larger sample sizes, and
which does not hold all of the similarity scores in memory. We will call the large scale
procedure for estimating ROC-based measures BIG_ROC. Python code is available at
https://digital.library.txstate.edu/handle/10877/16141, (accessed on 20 October 2022).
Download big_roc-master_12_04_2019.zip.

The core of this analysis is the computation of the genuine and impostor distribution
frequency histograms. All the ROC-based statistics are computed from these two histograms.
First, both frequency histograms are initialized to zero. We use 1000,000 bins of equal size.
Cosine similarity scores can assume values from 0 to 1, so each bin has a width of 1/1000,000.
Then both histograms are computed from genuine and impostor similarity scores of subjects
from session 1 and session 2. The similarity scores are calculated iteratively, in batches of
1000 subjects from each session per batch (1000,000 similarity scores at a time).

False rejection rate (FRR) and false acceptance rate (FAR) values are computed based on
the genuine and impostor distributions frequency histograms: one FRR and FAR value per
histogram bin. Let FRR(Similarity score) and FAR(Similarity score) functions be piecewise
linear functions based on these FRR and FAR values. EER was computed as a value at the
intersection of FAR(Similarity score) and FRR(Similarity score) functions.

The statistics of genuine and impostor distributions are calculated based on a random
sample from the respective PDFs, approximated by the relative frequency histograms
(calculated from the aforementioned frequency histograms)

3. Face Recognition Data and Methods
3.1. Data Set and Image Preparation

We would have preferred to find a publicly available data set with 100,000 or more
subjects. We were not successful. However, we did find the MORPH Craniofacial Longitu-
dinal Morphological Face Database (MORPH-II) [6] https://uncw.edu/oic/tech/morph_
academic.html (accessed October 30, 2022)). The MORPH-II data set contains mug shots for
13,930 subjects. Since biometric performance assessment requires at least 2 images per sub-
ject, subjects with only one image were excluded (N = 857). The images are colored (RGB),
have various dimensions, include more than just the face, and are not spatially registered.
We employed the Viola-Jones algorithm for face detection. The Viola-Jones algorithm failed
in 836 of 53,404 total images. Viola-Jones algorithm failures accounted for 69 subjects being
lost. This left 13,004 subjects with 2 or more images for further analysis. Prior to processing
these images for facial recognition, the steps in Algorithm 2 were applied.

https://www.doi.org/10.13140/RG.2.2.17510.06727
https://digital.library.txstate.edu/handle/10877/16141
https://uncw.edu/oic/tech/morph_academic.html
https://uncw.edu/oic/tech/morph_academic.html
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Algorithm 2: Steps in the preparation of images for facial recognition.

1. Detect faces in the images using the Viola-Jones algorithm and save the
face-only images.

2. Register the face-only images using an affine transformation (translation,
rotation, scale, and shear).

3. Save registered images as 120 × 100 pixels.
4. For each subject, correlate each image (as gray scale) with each other image.
5. For each subject, choose the 2 most highly correlated images, and discard

all other images.

Note that our goal was not to provide a fair assessment of our face recognition ap-
proach to the MORPH-II data set. Rather, it was to perform a reasonable face recognition
analysis which could then be used to evaluate gallery size effects. For this purpose, we
wanted a full range of performance, and our choice to use only the most highly correlated
pairs of images was designed to obtain excellent performance under optimal conditions.

3.2. Face Recognition Approach—FaceNet

For face recognition, we employed the set of features supplied by the FaceNet
algorithm [9]. FaceNet is a deep convolutional network designed by Google, trained to
solve face verification, recognition and clustering problems with efficiency at scale. It is
highly accurate and robust to occlusion, blur, illumination, and steering. It directly maps
face images to a compact Euclidean space, where distances directly correspond to a measure
of face similarity. Once this space has been produced, tasks such as face recognition can
be easily implemented using standard techniques. It achieved accuracy of 99.63% on the
Labeled Faces in the Wild (LFW) data set, and 95.12% on the YouTube Faces Database.

To create the FaceNet features, we applied the python Keras implementation (Avail-
able at: https://github.com/nyoki-mtl/keras-facenet, (accessed 30 October 2022)). We
employed the pretrained Keras model (trained using the Microsoft-Celeb-1M data set,
which as of 6 June 2019 is no longer available). For this, the images needed to be resized
to 160 × 160 pixels and globally rescaled (compute the mean and SD across all intensities
from each color channel and, for each channel, subtract the mean intensity and divide by
the SD intensity). The algorithm produced 128 numerical features per subject.

3.3. Checking Distributions for Normality of FaceNet Features

To assess the normality of the FaceNet features, we computed the skewness and
kurtosis of each feature. The normal distribution has a skewness of 0 and a kurtosis of
3.0. The 128 FaceNet features had a skewness range of −0.23 to 0.34 and a kurtosis range
of 2.76 to 3.33. On the basis of these ranges, we considered it reasonable to treat all of
the FaceNet features as normal. For comparison, the skewness of a random uniform
distribution (k = 10,000) was −0.015 and the kurtosis was 1.82. A log-normal distribution
with mean(log(x)) = 0 and sd(log(x)) = 1 had a skewness of 5.35 and a kurtosis of 59.16.

3.4. Obtaining the ICC and the Feature Intercorrelation for the FaceNet Features

To further characterize the FaceNet features, we were interested in determining the
temporal persistence of the features. For this we computed the ICC of each feature and
present a frequency histogram of these ICCs in Figure 3A. All of the features fall between
ICC = 0.8 and 0.9. This means that the features are all highly reliable and are very similar
to our synthetic features for Band 8.

https://github.com/nyoki-mtl/keras-facenet
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Figure 3. Characteristics of the FaceNet features. (A) This is a frequency histogram of the ICCs for
the 128 FaceNet features. All of the features are between 0.8 and 0.9, which corresponds exactly with
our synthetic Band 8 features. This indicates that these features are very reliable over time. (B) This is
a frequency histogram of the intercorrelations of the 128 FaceNet features.

The FaceNet features were substantially inter-correlated (Figure 3B) For this reason,
we decided to perform a PCA on these features.

3.5. PCA Analysis of FaceNet Features

In order to create a set of uncorrelated features and to reduce the dimensionality of the
data set, we performed a PCA analysis on the FaceNet features. This analysis included the
data for all subjects. However, during biometric assessment of subsets of the entire dataset
(see below), PCA was independently performed on each subset. As is clear from Figure 4,
only approximately 60 uncorrelated features were required to explain 100% of the variance
in the 128 FaceNet features.
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Figure 4. After PCA of the 128 FaceNet Features, we plot the variance explained by each PCA com-
ponent against component number. Essentially all of the variance is accounted for by approximately
60 completely uncorrelated PCA components.
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3.6. Biometric Performance Assessment for PCA Components from FaceNet Features

Biometric performance was evaluated for various numbers of PCA components. The
number of PCA components is a proxy for biometric performance. Higher numbers of
components always produce better biometric performance. The number of components
ranged from 4 to 20, but the precise number was chosen to illustrate each particular
analysis. Gallery sizes ranged from 1000 to 9000 in steps of 1000. After a subset of the
13,004 subjects was selected as a data set, PCA was computed on all the first images of
each pair. The PCA coefficients computed from the first images were then used to calculate
the PCA components for the second images. Biometric performance was evaluated in
memory (i.e., the BIG_ROC was not needed). Cosine distances were computed, converted
to similarity scores, and subjected to a conventional ROC analysis.

4. Results: Rank-1 IR

The Rank-1 IR performance for synthetic Band 8, for 10 features, evaluated at various
gallery sizes (1000, 2000, 4000, 8000, 16,000, 32,000, 64,000) is presented in Figure 5A. Every
dot in this figure represents the mean across 30 random repetitions (random subset of
features and subjects). The Rank-1 IR for 1000 subjects was approximately 58%. This rate
declines steadily as the gallery size increases. At a gallery size of 64000 the Rank-1 IR has
dropped below 15%. The decrease is described by a linear function of log(Gallery Size)
(Figure 5B).

Figure 5. (A) Rank-1 IR as a function of gallery size for synthetic Band 8 features. Each dot represents
the mean of 30 repetitions. The black dots are the Rank-1 IR for 10 features for the following gallery
sizes: 1000, 2000, 4000, 8000, 16,000, 32,000, 64,000 subjects. The red dots represent the Rank-1 IR for
feature numbers greater than 10 which are chosen to produce a Rank-1 IR most similar to that for
10 features and 1000 subjects. (B) Same data as (A) plotted on a log(Gallery size) scale. Note the fit
of the decline to a linear function of log(Gallery Size). (C) Plot of the number of features required
for gallery sizes greater than 1000 to match the Rank-1 IR for 10 features, 1000 subjects. (D) Same
data as (C) plotted on a log(Gallery size) scale. Note the fit of the increase to a linear function of
log(Gallery Size). In this case a linear equation in log(Gallery Size) was able to match the results
perfectly (r-squared = 1.0).

This drop can be prevented if additional information is added in the form of additional
features. We understand that, in any real world application, investigators would likely use
all of the information available in the first instance. Nonetheless, we believe this additional
analysis provides some insight and guidance for improving Rank-1 IR performance. The
red dots in Figure 5A represent the Rank-1 IR that can be achieved by adding additional
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features. The number of features needed to achieve this performance was also indicated.
Note that this analysis is limited in accuracy by the discrete nature features.

In Figure 5C, we plot the number of features required to stabilize the Rank-1 IR as
gallery size increases. In this case, the best fitting function for these feature numbers was
also a linear function in terms of log(Gallery Size) (Figure 5D).

In Figure 6, we present a comparable analysis for our face recognition data set. In this
case the Rank-1 IR was calculated for the first 10 PCA components, as a function of gallery
size from 1000 to 9000 in steps of 1000 (Figure 6A). Once again, we see a decrease in Rank-1
IR as gallery size increases. The decrease was linear in log(gallery size) (Figure 6B). The
number of PCA components required to stabilize the Rank-1 IR performance was also a
linear function of log(gallery size) (Figure 6D).

Figure 6. (A) Rank-1 IR as a function of gallery size for FaceNet features. Each dot represents the
mean of 30 repetitions. The black dots are the Rank-1 IR for 10 features for gallery sizes from 1000
to 9000 in 1000 size steps. The red dots represent the Rank-1 IR for feature numbers greater than
10 which are chosen to produce a Rank-1 IR most similar to that for 10 features and 1000 subjects.
(B) Same data as (A) plotted on a log(Gallery size) scale. Note the fit of the decline to a linear function
of log(Gallery Size), with an r2 = 0.997. (C) Plot of the number of features required for gallery sizes
greater than 1000 to match the Rank-1 IR for 10 features, 1000 subjects. (D) Same data as (C) plotted
on a log(Gallery size) scale. Note the fit of the increase to a linear function of log(Gallery Size). In this
case a linear equation in log(Gallery Size) was able to match the results quite well (r2 = 0.94).

5. Results: ROC-Based Measures
5.1. Equal Error Rater (EER)

Figure 7 (Top) illustrates the EER across gallery size for synthetic data evaluated at 5,
10, 15 and 20 features. Each point is the mean of 30 repetitions (random subset of features
and subjects). Mean EER was apparently very stable across gallery size. Figure 7 (Bottom)
illustrates the EER across gallery size for our face recognition data evaluated at the first 5,
10, 15 and 20 PCA components. Each point is the mean of 30 repetitions (over randomly
chosen subjects). Note the stability across gallery size here.
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Figure 7. (Top): Relationship between mean EER (30 repetitions) and gallery size for synthetic data
(Band 8). Data shown for 5, 10, 15 and 20 features. The average EERs (shown to the right of the last
dot) across gallery size are illustrated with dotted lines. Mean EER was highly stable with increases
in gallery size. (Bottom): Relationship between mean EER (30 repetitions) and gallery size (1000 to
10,000 subjects in 1000 subject steps) for FaceNet PCA components. Data shown for the first 5, 10, 15
and 20 PCA components. The average EERs (shown to the right of the last dot) across gallery size are
illustrated with dotted lines. Mean EER does not change as a function of gallery size.

5.2. Other Points on the ROC-curve

Since the EER was so stable across gallery size, we thought it important to check other
points on the ROC-curve. In Figure 8, (Top), for synthetic data, we present the false rejection
rater (FRR) when the false acceptance rate (FAR) = 0.01% for 5, 10, 15 and 20 features. Note
the stability across gallery size.

In Figure 8, (Bottom), for face recognition data, we present similar results for
FRR@FAR = 0.001% for our face recognition data set. We analyzed 5, 10, 15, and 20 PCA
components. This error rate was quite stable across levels of gallery size.

Neither EER or FRR@FAR = x% metrics appear to change systematically with gallery
size. Therefore, we hypothesized that the entire ROC-curve was also not changing with
gallery size. This was tested below.
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Figure 8. (Top): In addition to mean EER, we also evaluated the mean false rejection rate (FRR) at a
false positive rate of 0.01%. Here we plot these error rates (mean of 30 repetitions) versus gallery size
(1000, 2000, 4000, 8000, 16,000, 32,000, 64,000 subjects) for synthetic data (Band 8). Data shown for
5, 10, 15 and 20 features. The average error rates (shown to the right of the last dot) across gallery
size are illustrated with dotted lines. There was some instability at small gallery sizes, but otherwise,
the mean error rate did not change as a function of gallery size. (Bottom): FRR at FAR = 0.0001%.
Here we plot these error rates (mean of 30 repetitions) versus gallery size (1000 to 10,000 in steps of
1000 subjects) for FaceNet PCA components. Data shown for 5, 10, 15 and 20 PCA components. The
average error rates (shown to the right of the last dot) across gallery size are illustrated with dotted
lines. The mean error rate did not change as a function of gallery size.

5.3. ROC-curves

Here we calculate and plot entire ROC-curves for several numbers of features and
gallery sizes. In Figure 9 we plot the ROC-curves for the synthetic data. In Figure 10 we
plot the ROC-curves for the FaceNet data. These ROC-curves facilitate the comparison
between entire curves as a function of gallery size.

As a general matter, entire ROC-curves do not appear to change as a function of
gallery size. Since the ROC-curves are based on the characteristics of the genuine and
similarity score distributions, it makes sense that the ROC-curves do not change. With
increases in gallery size, the distributions will become more well defined, and the median
and inter-quartile range (IQR) should become increasingly stable. However, there is no
basis for predicting a change in the central tendency or spread of these distributions as
gallery size increases.
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Figure 9. ROC-curves for synthetic data (Band 8). Curves for 3, 8, 15 and 20 features. Each curve
was evaluated at gallery sizes of 2000, 10,000 and 100,000 subjects. Each curve is the average over
30 repetitions. (A) illustrates the entire 3 ROC-curves for 3 features. (B) illustrates the same data in
(A) zoomed in on the lower error rates for enhanced visibility. (C) illustrates the entire 3 ROC-curves
for 8 features. (D) illustrates the same data in (C) zoomed in on the lower error rates for enhanced
visibility. (E) illustrates the entire 3 ROC-curves for 15 features. (F) illustrates the same data in (E)
zoomed in on the lower error rates for enhanced visibility. (G) illustrates the entire 3 ROC-curves
for 20 features. (H) illustrates the same data in (G) zoomed in on the lower error rates for enhanced
visibility. Note that the ROC-curves are essentially overlapping across gallery size.
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Figure 10. ROC-curves for FaceNet PCA components. Plots for 2, 5, 12 and 30 PCA components are
displayed. Each curve was evaluated at 1000 and 10,000 subjects. Each curve is the average over
30 repetitions. (A) illustrates the entire 2 ROC-curves for 2 features. (B) illustrates the same data in
(A) zoomed in on the lower error rates for enhanced visibility. (C) illustrates the entire 2 ROC-curves
for 5 features. (D) illustrates the same data in (C) zoomed in on the lower error rates for enhanced
visibility. (E) illustrates the entire 2 ROC-curves for 12 features. (F) illustrates the same data in (E)
zoomed in on the lower error rates for enhanced visibility. (G) illustrates the entire 2 ROC-curves
for 30 features. (H) illustrates the same data in (G) zoomed in on the lower error rates for enhanced
visibility. Note that the ROC-curves are essentially overlapping across gallery size.
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5.4. Similarity Score Distribution Metrics

ROC-curves are based on genuine and impostor similarity score distributions. We
were interested in evaluating changes in similarity score distributions as a function of
gallery size. To this end, we evaluated the median and IQR of both genuine and impostor
distributions as a function of number of features and gallery size. The results for synthetic
data are presented in Figure 11 and for FaceNet data in Figure 12. All dots are means and
each mean is associated with an SD error bar. Often, the SD was so small that it was not
visible. For synthetic data, this was especially the case for the impostor IQR (Figure 11D.
The effect of number of features was extremely strong with no overlap. Of these 4 plots,
this statement was only true for Figure 11D. In Figure 11A, note the very narrow range,
and the large degree of overlap of medians from the genuine distributions. In Figure 11C,
again note the very narrow range, and the large degree of overlap of medians from the
impostor distributions. The pattern in Figure 11B resembles that in Figure 11D, but the
effect was relatively weak. From this analysis we conclude that, as features are added and
biometric performance improves, it was mostly the change in the spread of the impostor
distribution that was driving the biometric results, at least for synthetic data.

Figure 11. (A) Median of the genuine similarity score distributions for synthetic data. Data are for
the Band 8 data set with 4, 8, 15 and 20 features. Each dot is based on 30 repetitions. The error bars
are at ±1 SD. The numbers at the top of each plot are the average EERs across the gallery sizes
represented. (B) IQR of the genuine similarity score distributions for the same data in (A). (C) Median
of the impostor similarity score distributions. (D) IQR of the impostor similarity score distributions.

The results for the FaceNet data are presented in Figure 12. For each plot, the dot
represents the mean and the SD error bars are also plotted. Often, the SD was so small that
it was not visible. There are many more invisible error bars in Figure 12 than in Figure 11.
Although there was very little overlap in all the plots, notice the range in Figure 11D and
compare it to the other ranges. Clearly the effect of number of features on the impostor IQR
was remarkable compared to all the other metrics. From this analysis we conclude that, as
features are added and biometric performance improves, it was mostly the change in the
spread of the impostor distribution that is driving the biometric results for the FaceNet data.
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Figure 12. (A) Median of the genuine similarity score distributions for the FaceNet PCA Components.
Results for 4, 8, 15 and 20 PCA components. Each dot is based on 30 repetitions. The error bars
are at ±1 SD. The numbers in the middle of each plot are the average EERs across the gallery sizes
represented. (B) IQR of the genuine similarity score distributions for the same data in (A). (C) Median
of the impostor similarity score distributions. (D) IQR of the impostor similarity score distributions.

To compare the contribution of each distribution metric (median and IQR) to EER,
we performed a stepwise linear regression. The dependent variable was the mean EER
for all features sets. The independent variables were the medians and IQRs of the two
distributions. We did this analysis for both synthetic and face recognition data sets. For
both data sets, the first independent variable entered into the model was for the impostor
IQR (synthetic: p = 2 ∗ 10−15, r2 = 0.998; real: p = 1.8 ∗ 10−6, r2 = 0.979). This is consistent
with the idea that the decrease in impostor IQR with increasing features was the driving
force behind the lower EERs obtained.

Note that the particular patterns we see in Figures 11 and 12 may be related to the
distance metric (cosine) that we have employed. In the future, we hope to evaluate the
role of distance metric and other design elements on the pattern of these similarity score
medians and IQRs as performance improves.

5.5. Similarity Score Distributions

In Figure 13 (synthetic) and Figure 14, (FaceNet) we present histograms of both the
impostor and genuine distributions based on synthetic data with either 4, 8, 15 or 20 features
and 10,000 subjects. Focusing on the spread of the impostor distributions in both figures
one can clearly notice a marked decrease in the spread of the impostor distributions as
more features are added and biometric performance improves. As features were added,
the spread of the genuine distributions also decreased somewhat for synthetic data, but
changed very slightly for the FaceNet data. The medians of the two distributions vary only
slightly. This is consistent with our conclusion from the previous section that the spread
of the similarity score distributions was the driving factor leading to improved biometric
performance, especially for the spread of the impostor distribution.
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Figure 13. (A) Histogram of the impostor similarity score distribution for synthetic data (4 features, Band 8
(all histograms), 10,000 subjects (all histograms)). Note the median and IQR value just above the histogram.
(B) Histogram of the genuine similarity score distribution for 4 features. (C) Histogram of the impostor
similarity score distribution for 8 features. (D) Histogram of the genuine similarity score distribution for
8 features. (E) Histogram of the impostor similarity score distribution for 15 features. (F) Histogram of
the genuine similarity score distribution for 15 features. (G) Histogram of the impostor similarity score
distribution for 20 features. (H) Histogram of the genuine similarity score distribution for 20 features.

Figure 14. (A) Histogram of the impostor similarity score distribution for FaceNet PCA components
(4 PCA components, 10,000 subjects (all histograms)). Note the median and IQR value just above
the histogram. (B) Histogram of the genuine similarity score distribution for 4 PCA components.
(C) Histogram of the impostor similarity score distribution for 8 PCA components. (D) Histogram of the
genuine similarity score distribution for 8 PCA components. (E) Histogram of the impostor similarity
score distribution for 15 PCA components. (F) Histogram of the genuine similarity score distribution for
15 PCA components. (G) Histogram of the impostor similarity score distribution for 20 PCA components.
(H) Histogram of the genuine similarity score distribution for 20 PCA components.
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5.6. Summary of Results

See Table 1.

Table 1. Summary of Major Results.

Rank-1 IR decreases in a log-linear fashion with increasing gallery sizes

EER was stable across gallery sizes.

The false rejection rate at several false positive rates was also stable
across gallery sizes.

The shape of the ROC-curves was not affected by the gallery size.

The largest change among the 4 metrics (median genuine, IQR genuine,
median impostor and IQR impostor), as biometric performance improves,
was for the IQR of the impostor similarity score distribution.

6. Discussion

In this report, we have replicated and extended findings regarding the effects of
gallery size on biometric performance. We have confirmed the finding that Rank-1 IR
declines as a function of gallery size. We have also confirmed that this relationship was
linear in log(Gallery Size). We have also shown that this decline can be counteracted with
the inclusion of additional information (features) for larger gallery sizes. We have also
described the curves which can be used to predict how much additional information is
required to stabilize the Rank-1 IR as a function of gallery size. These equations are also
linear in log(gallery size).

It is important to note that our findings are based on datasets with certain character-
istics. In particular we are using either features or PCA components that are reasonably
normally distributed. Furthermore, we are using features or PCA components that are
either completely uncorrelated or nearly completely uncorrelated. Any data set with ap-
proximately normal features that are more strongly intercorrelated can be transformed
into a completely uncorrelated data set using the inverse Cholesky transformation [10]
(See “Decorrelation of n random variables” at https://en.wikipedia.org/wiki/Pearson_
correlation_coefficient (accessed on 20 October 2022)).

We have also shown that ROC-curves are not systematically affected by gallery size,
and so ROC-based scalar performance metrics such as EER are also stable across gallery size.
We have illustrated how changes in similarity score distribution characteristics (median and
IQR) change as additional features are added to the analysis. The most important predictor
of change in EER as additional features are added was in the spread of the impostor
similarity score distribution, which becomes narrower as additional features are added.
This particular pattern of changes may be related to the distance metric chosen (cosine)
or other aspects of the design. The topic of changes in similarity score distributions that
accompany changes in biometric performance, for different approaches, will be addressed
in future work. These findings should be of interest in the abstract theoretical sense, and
should be of real practical value to the biometric community, when planning biometric
studies with various gallery sizes.

The ROC-based measures are based on the central tendency and spread of the genuine
and similarity score distributions. Although measures of central tendency and spread will
become more stable with increasing gallery size, there is no basis for predicting a systematic
change in the central tendency or spread of these distributions with increasing gallery size.

7. Conclusions

Gallery size strongly impacts the Rank-1 IR. The decline in Rank-1 IR is linear in
log(gallery size). Biometric performance characteristics based on a ROC analysis (EER,
FRR @ FPR = 0.01, ROC shape) are not affected by gallery size. Increases in gallery size
compress the confidence limits around an ROC-curve but do not alter its shape. For a given

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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analysis, as gallery size increases, the imposter and genuine similarity score distributions
become smoother. However, there is no theoretical reason to expect, or empirical evidence
to demonstrate, that their central tendency changes with increasing gallery size.
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