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ABSTRACT

Side-channel attacks (SCA) have been studied for several decades,
which resulted in many techniques that use statistical models to
extract system information from side channels. More recently, ma-
chine learning has shown significant promise to advance the abil-
ity for SCAs to expose vulnerabilities. Artificial neural networks
(ANN) can effectively learn nonlinear relationships between fea-
tures within a side channel. In this paper, we propose a multi-
architecture data aggregation technique to profile power traces for
a system with an embedded processor that is based on three types
of deep NNs, namely, multi-layer perceptrons (MLP), convolutional
neural networks (CNN), and recurrent neural networks (RNN). This
is one of the first works to explore the inter-architecture portability
of NNs and SCAs. We demonstrate the robustness of the ANNs per-
forming power-based SCAs on multiple architecture configurations
with different architectural features, such as L1/L2 caches’ size and
associativity, and system memory size. We provide a comprehen-
sive set of benchmarks to demonstrate that architecturally identical
devices are not essential for profile-based SCAs.
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1 INTRODUCTION

A critical security requirement for embedded systems is protection
of sensitive information (e.g., cryptographic keys). Unfortunately,
many embedded systems have constrained resources that limit the
implementation of security measures. Side-channel attacks (SCAs)
are a significant threat to embedded devices. Embedded devices
can leak sensitive information when operations are performed on
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sensitive data. Many SCAs that can statistically infer cryptographic
keys from embedded devices by using power side, cache access
pattern, and electromagnetic side channels.

SCAs are categorized as profiled and non-profiled attacks. In a
non-profiled attack, an adversary creates a side-channel leakage
model based on knowledge of the target system. Once an adversary
has the model, they can retrieve the secret key by using correlation
between the side channel from the target and leakage models. A
non-profiled leakage model’s efficiency depends on multiple factors
such as device architecture, software implementation, and manufac-
turing technology characteristics. Profiled SCAs, such as template
attacks [3], use the complete side channel leakage for characterizing
the target device. For every possible key, an adversary can profile
and build a leakage template for the target device. Profiled SCAs
are more robust to system noise and countermeasures [3].

In this work, we explore the portability of neural networks
trained on one device and then evaluated on a different target
device. Inter-device portability is the ability of an ANN trained on
one device to attack a different instance of the device; however, the
internal architecture of the two devices is identical. For inter-device
portability, the differences between the training and attack devices
primarily come from manufacturing variations. Inter-architecture
portability is the ability for an ANN trained on a device with one in-
ternal architecture (i.e., processor, cache, etc.) to attack a device with
a different internal architecture. Internal variations make portabil-
ity analysis more challenging as they result in significant changes
in the power traces compared to identical internal devices as seen
in inter-device portability.

Recent work [5] explored the inter-device portability of ANNs
for SCAs across physical instances of the same device. They showed
that manufacturing variations and environmental conditions can
significantly impact the inter-device performance. They improved
the inter-device performance by merging the data from devices
prior to training. Notably, this portability addresses the physical dif-
ferences between devices with the same processor architecture, but
not the inter-architecture portability across devices with different
processor architecture configurations, which is explored herein.

Inter-architecture portability opens a new paradigm in profile-
based SCAs. Research has shown that each device is vulnerable if
an architecturally identical device is used for profiling SCAs. Specif-
ically, for a power-based SCA, an adversary collects power traces
from each architecturally different target devices then tunes an
ANN for each target device. If the ANNs have inter-architecture
portability, then an adversary only needs to collect and aggre-
gate power traces from a few target devices to tune a ANN. Inter-
architecture portability, thus, reduces the time complexity of attacks
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on architecturally different target devices. Subsequently, architec-
turally different devices are now vulnerable even if the adversary
does not have an architecturally identical device for profiling.

This paper presents an approach to develop an inter-architecture
portable ANN for a profiled power-based SCA by aggregating data
from multiple processor architecture configurations. In this paper,
we present: (1) the first work to comprehensively explore and pro-
vide empirical evidence for inter-architecture portability and ANN
for power-based SCAs; (2) an ANN-based approach that demon-
strates the need to aggregate data from multiple architecturally
different configurations to improve the inter-architecture perfor-
mance of ANNs; (3) MLPs, CNNs, and RNNs that generalize over
12 target processor configurations, considered herein, to give high
inter-architecture performance. Our methods are thoroughly bench-
marked on a large volume of data generated using the GEM5 and
MCcPAT software. We show that a thoughtful, multi-architecture ag-
gregate training dataset can significantly improve the performance
across many configurations without the need to train on all possible
configurations, which would be infeasible.

2 RELATED WORK

ANNs have shown considerable improvement over shallow ML
techniques for SCAs [1]. ANNSs can learn nonlinear and complex
dependencies between input features and outputs in SCAs, which
improves the attack efficiency [10]. However, these previous studies
have only been applied to simple 8-bit microcontrollers. In contrast,
this work targets a more complex 32-bit ARM processor, including
multiple cache levels and main memory, which is more applicable
to real-world systems.

Research has shown that ML approaches outperform template
attacks for high dimensional data [7]. Principal component analysis
(PCA) has been used to represent features from the power trace
for single S-box operations to reduce the dimensionality of the
input layer [9]. These dimensionality reduction approaches seek to
ensure the reduced input features show maximum variability. In [9],
the effectiveness of PCA and ANNs was evaluated using guessing
entropy, which indicated a potential adversary would need on an
average of four guesses to predict the correct key. In contrast, the
approach presented herein operates on the entire power trace of
a full AES encryption without reducing the dimensionality. Our
ANNSs need one guess (on average) to predict the correct key if we
were to compare our results using guessing entropy.

Several recent works focused on analyzing SCAs and the inter-
device portability of NNs across devices [5], specifically analyzing
how a NN constructed from power traces of one device can be used
to attack a different manufactured device with identical architec-
tural parameters. These approaches show that device variability can
degrade efficiency of NNs, which can be overcome by aggregating
the power traces from multiple devices during training. However,
these approaches focused on devices that both have the same inter-
nal processor architecture configuration. Thus, the portability of
NN studied in these previous efforts only addressed environmental
and manufacturing variations. In contrast, this paper analyzes SCAs
and inter-architectural portability of the NNs.Specifically, we seek
to understand the portability of an adversary’s NN to architecturally
different devices from which it was trained.
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3 THREAT AND POWER MODELS

Our goal in this work is to demonstrate inter-architecture portabil-
ity of ANNs, where an adversary can attack architecturally different
devices. We assume an adversary has knowledge of the target sys-
tem, including the processor core and architecture configuration
for the caches and memory system. We assume the adversary has
knowledge of the specific software implementation used for cryp-
tographic operations. The adversary can train an ANN with simu-
lation data of the target system. The final attack requires physical
access to collect power traces from the target device. We focus on
SCAs that target a 128-bit AES cryptography using electronic code
book (ECB) mode executing on embedded devices incorporating
a 32-bit ARM processor, with varying L1, L2 caches and memory
configurations. An ANN is learned by the adversary to predict the
first byte of the 128-bit cryptographic key. As all components of the
cryptographic key are independent, we assume the same prediction
method can be applied to each key byte.

The power model in our approach includes the power consumed
by the processor, L1 and L2 caches, and memory when executing
an AES encryption. We use the ARM Mbed AES ECB for the AES
encryption and GEM5 to simulate processor states, cache and mem-
ory access traces for each given system [2]. The processor states are
used with an ARM processor power model to generate a cycle-by-
cycle power consumption trace of the target processor. The cache
and memory activity traces, along with typical physical character-
istics for embedded system caches and memories, are fed into the
memory organization power modeling tool McPAT to generate a
corresponding cycle-by-cycle power trace of the caches and mem-
ory [8]. The final power traces account for power dissipation by the
processor, L1 caches, L2 cache, and memory. As the simulation is
used to generate the power traces, only one power sample per clock
cycle is needed to reconstruct the power trace during simulation.
The power trace collection is different when one is collecting data
from a real device, where the sampling frequency should be at least
twice that of the maximum operating frequency of the target device
to accurately reconstruct the power trace.

4 METHODS

Figure 1a shows an overview of our ANN-based SCA approach
that has four phases: dataset creation, multi-architecture data ag-
gregation, training, and attack. Using the power model (Section
3), we calculate the power trace for the execution of a 128-bit se-
cret key and a random plaintext encrypted using the AES algo-
rithm. Power traces are collected for each processor by varying
the secret key and random plaintext. The first byte of the secret
key is controlled such that we generate 9,000 power traces for
each byte (9,000x256 = 2,304,000 total power traces). Next, the
dataset is split into a training set with 7,500 traces per key byte
(7500x256 = 1,920,000 total power traces), a validation set with
1,000 power traces per byte and a testing set with 500 traces per
byte. The dataset for 12 processor architecture configuration is
generated in this manner. Datasets from two or more processor ar-
chitecture configurations can be combined into aggregated datasets
for training. Note that the training and validation set sizes in the
aggregated datasets remain constant at 7,500 and 1,000 power traces
per key byte, respectively. The ANNSs are trained and tuned on the
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Figure 1: (a) Overview of the approach to explore inter-architecture portability for power-based SCAs. (b) Overview of the ANN
architecture for inter-architecture portability of power-based SCAs.

aggregated training and validation set. A combined testing set for
inter-architecture portability analysis is created by aggregating
testing sets from all the processor architecture configurations. The
trained ANNSs then predict the first byte of the secret key from the
power traces in combined testing set. The performances of ANNs
are reported as the percentage of correct first key bytes predicted
from the combined testing set.

Figure 1b shows the ANNSs used for inter-architecture portability
analysis. All ANNs for power-based SCAs have an input layer with
1,500 nodes, which correspond to the full cycle-accurate power
trace for AES execution along with power traces from a random
workload function. Power traces are standardized prior to training
the ANNSs. This standardization ensures that there is less varia-
tions in power traces at each time-step. We also ran experiments
without standardization of the power traces; however, we found
that the model was unable to successfully converge during training.
Therefore, we have omitted the results for methods that do not
use standardization because they were ineffective. We heuristically
picked the hyper-parameters for ANN that performed well on the
inter-architecture portability task. For training, we use the ADAM
optimizer for calculating gradients in back-propagation, categorical
cross-entropy as the loss function, and early stopping to reduce
overfitting. The output layer of each ANN uses a softmax layer.

Multi-Layer Perceptrons (MLP). MLPs consist of an input layer,
a number of hidden layers, and an output layer. The MLP’s hid-
den layers learn relations between features to correctly predict
the outcome of a specific task. The hidden layers are crucial and
require tuning to determine the number of layers and node sizes
that maximize the MLPs performance. The resulting MLP tuned
for power-based SCAs has three hidden layers each having 64, 32,
and 256 nodes, respectively. The Rectified Linear Unit (ReLu) is the
activation function used for all hidden layers. A dropout layer is
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added after activation layer to limit overfitting the MLP to training
data, thereby ensuring the MLP remains generalizable over a large
dataset. Dropout rates of 10% and 40% on first two hidden layers
worked well in practice. No dropout is added after the third hidden
layer. Finally, the last layer in the MLP is the output layer with 256
nodes, which corresponds to the 256 possible values for the first
key byte.

Convolutional Neural Networks (CNN). The proposed CNN con-
sists of three convolutional blocks followed by three fully connected
hidden layers. Each convolutional block consists of 1-D convolu-
tions with filter sizes of 8, 16 and 8, respectively. Each of these filters
are formed by convolving a kernel of size 3, 7, and 4, respectively.
To reduce overfitting, we use a batch normalization layer after the
third convolutional block. The output of last convolutional block is
flattened, then passed through three fully connected layers of size
32, 1024, and 1024, respectively. Dropout rates of 10%, 10%, and 40%
on the hidden layers worked well in practice.

Recurrent Neural Networks (RNN). RNNs perform well on time-
series data by using information from previous time. The nature
of the RNN can create exploding and vanishing gradients which
impacts network performance. LSTMs [6] and GRUs [4] are modi-
fied versions of RNNs that solve the gradient problem by including
memory blocks, which internally contain gating units that control
flow of information. A bidirectional RNN architecture has an added
benefit of training inputs in original and reverse sequence. We ex-
plored basic LSTM and GRU models and also bidirectional LSTM
and GRU models. We found that bidirectional GRU performed best
among the explored RNNs. The proposed RNN consists of three
bidirectional GRU’s each with 256, 512, and 512 memory units. This
is followed by a hidden layer with size 1024 with “selu” activation
and a dropout of 40%.
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Table 1: Target processors used for inter-architecture porta-
bility analysis. The legend for the table is: PAC-processor
architecture configuration, $-cache, A-associative

I-$ D-$ L2-$ Memory
PAC A T Size [A [ Size | 4 | Size [ Size
31 [ 2] 32k | 2 64k
32 | 8] 32k | 8] 64k
33 [ 2 [ 64k | 2 [ 64k NIA
34 | 8 o4k | 8 | 64k
a1 |2 | %k [ 2| 6k |8 [amb| A
4.2 8 | 32k | 8 | 64k | 8 | 2Mb
43 [ 2 [ 32k | 2 [ 64k [ 16 | 4Mb
4.4 8 | 64k | 8 | 64k | 16 | 4Mb
51 [ 2] 32k | 2 [ 64k [ 8 | 2Mb | 1024Mb
52 [ 8] 32k | 8 [ 64k [ 8 | 2Mb | 1024Mb
5.3 2 | 64k | 2 | 64k | 16 | 4Mb 1024Mb
5.4 8 | 64k | 8 | 64k | 16 | 4Mb | 1024Mb

5 EXPERIMENTAL RESULTS

For inter-architecture portability analysis, we simulated numerous
embedded devices representative of real-world processors with dif-
ferent and unique combinations of L1 caches, L2 cache, and memory.
Table 1 presents the processor architecture configurations for the 12
targeted embedded devices benchmarked in this work. The target
processor architecture configurations are labeled using the format
XY, where X indicates the number of components in the system,
and Y identifies each unique configuration. For example, configu-
ration 3.1 is the first target configuration with three components,
and configuration 5.3 is the third target configuration with five
components. Each target configuration consists of the same ARM
Cortex-A32 processor core with different cache and memory con-
figurations. We consider four L1 instruction cache configurations
varying in size (32K or 64K) and associativity (2-way or 8-way), two
L1 data cache configurations of size 64K with varying associativity
(2-way or 8-way), two L2 cache configurations varying in size (2MB
or 4MB) and associativity (8-way or 16-way), and an optional 1024
MB off-chip DRAM.

Results and Analysis. We conduct several experiments to ana-
lyze the performance of ANNs trained without multi-architecture
data aggregation. Prior to training data aggregation, we have 12
different datasets for configurations 3.1 to 5.4 (see Table 1). Using
the proposed MLP architecture, we train 12 models, one for each
dataset. The inter-architecture performance of each model is mea-
sured on the combined testing set (i.e., all possible configurations).
For comparison, the inter-device performance of the models are
evaluated on the testing set of each individual processor architec-
ture configuration. We repeat this evaluation procedure with the
CNNs and RNNG.

Figure 2, shows the first group of results in this work. Each
column in Figure 2 represents the inter-architecture performance
whereas the diagonal represents the inter-device performance of the
trained MLP. We observe a general trend that the inter-device per-
formances are high (greater than 99.9%), but the inter-architecture
performances are low (less than 12.1%). For example, the first col-
umn represents the performance of the MLP trained only on config-
uration 3.1 when attacking testing data of all configurations from
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Figure 2: Inter-architecture portability for MLPs trained on
a target configuration. The diagonal is the inter-device per-
formance and each column shows the performance of the
MLP on test data of other processor configurations. Similar
heat-maps (not shown) for the CNN and RNN were observed.

3.1 to 5.4. The inter-device performance of the MLP trained on 3.1
is 100% when attacking testing dataset of 3.1. The inter-architecture
performance of the MLP trained on 3.1 is 11.2% when attacking
the combined testing set. This shows that the MLP trained on 3.1
is not able to generalize across other configurations. CNNs and
RNN s also show a similar trend, having high inter-device perfor-
mances (greater than 99.9% and 99.5%, respectively) but low inter-
architecture performances (less than 15.9% and 15.3%, respectively).

We extend the previous experiments on aggregated datasets (i.e.,
the datasets with multiple processor architecture configurations).
We aggregate power trace data from configurations 3.1 to 5.4 by
combining 2, 3, 4, and 6 different configuration datasets, of which
12 unique sets (S1 to S12) are selected for analysis. Note, that the
training and validation set size is fixed at 7,500 and 1,000 power
traces per key byte in all 12 sets. If n is the number of selected
combinations to aggregate, each configuration contributes 7500/n
traces per key to the aggregated training set and 1000/n traces per
key to the aggregated validation set. The MLP is trained on the
12 sets, giving us 12 MLPs. The training procedure is repeated for
CNNs and RNNGs. Inter-architecture performance is evaluated on
the combined testing set as seen in Figure 3.

All ANNSs trained on the 12 sets show better inter-architecture
performance as compared to ANNs trained on datasets without
aggregation. For example, consider set S1, which combines power
traces from the 3.2 and 5.4 processor architecture configurations.
The inter-architecture performance of the MLPs, CNNs, and RNNs
trained on S1 are 44.8%, 37.0%, and 45.6%, respectively. We also see
that there is a general increase in inter-architecture performance
as we increase the number of configurations in the aggregated sets.
Specifically, sets S11 and S12, which are aggregation of six different
configurations, show a high inter-architecture performance irre-
spective of the ANNs used. The inter-architecture performance of
MLP, CNN, and RNN for set S11 is 99.5%, 99.9%, and 98.1% and for
S12 model is 99.7%, 99.6%, and 98.2% ,respectively. Note that S11 and
S12 cover most of the possible combinations of L1 caches, L2 cache,
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Figure 3: Inter-architecture performance of ANNs trained on aggregated sets evaluated on combined testing set. The details of
each set are as follows (see Table 1): S1{3.2, 5.4}, S2{4.2, 4.4}, $3{3.2, 4.2}, S4{4.1, 5.1, 5.2}, S5{3.2, 5.1, 5.2}, S6{3.3, 4.1, 5.4}, S7{4.1, 5.1,
5.4}, S8{3.2, 4.2, 5.4}, $9{3.2, 3.3, 4.2}, $10{3.3, 4.4, 5.1, 5.3}, S11{3.2, 3.3, 4.2, 4.3, 5.2, 5.3}, $12{3.3, 3.4, 4.3, 4.4, 5.3, 5.4}.

and memory configuration from Table 1. The ANNs of S11 and S12
generalize better over others configurations as the coverage of their
training data over the combined testing set is high.

With a decrease in the number of aggregated configurations in
sets S1-S9, we observe variability in accuracy of trained ANNs for
inter-architecture performance. The variability in inter-architecture
performance can be attributed both to the coverage of training data
of S1-S9 being low over the combined testing set and to how the
MLP, CNN, and RNN capture different features while training us-
ing those sets. We note that ANNs trained using a lower number
of aggregated datasets can achieve high accuracy, such as S7 that
performs as well as the S11 and S12 ANNs. More analysis is needed
to formulate a general strategy that can be used to find configura-
tions that can be aggregated so that the ANNs generalize on the
combined testing set.

Intuitively, ANNSs trained with aggregated data from all 12 con-
figurations will give high inter-architecture performance. But, it is
not feasible, nor practical, to include all possible processor architec-
ture configurations that are available in the market for creating a
global dataset to train and tune ANNS. Instead, a subset of processor
architecture configurations (e.g., S11 or S12) that share architec-
tural features can be used for training ANNs. Thus, maintaining
a reasonable balance between the classification performance and
time / data complexity.

6 CONCLUSIONS

SCAs are of growing concern and the vulnerabilities of embedded
systems has led to many different works. This is one of the first
studies to explore the inter-architecture portability and ANNs for
power-based SCAs. We present ANN based methodology to re-
trieve the first byte of the secret key by training ANNs (MLP, CNN,
and RNN) on the power traces generated by the processor during
the execution of 128-bit AES encryption. We demonstrate that the
inter-architecture performance of ANNs increase with the addition
of power traces from different processor architecture configura-
tions. Specifically, we present a subset of configurations whose
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combination of power traces during training of ANNs shows high
inter-architecture performance while maintaining a healthy trade-
off between performance and time/data complexity. Additionally,
we conclude that power traces from identical architecture processor
is not required to profile ANNs for power-based SCAs.
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