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ABSTRACT

Side-channel attacks (SCA) have been studied for several decades,

which resulted in many techniques that use statistical models to

extract system information from side channels. More recently, ma-

chine learning has shown significant promise to advance the abil-

ity for SCAs to expose vulnerabilities. Artificial neural networks

(ANN) can effectively learn nonlinear relationships between fea-

tures within a side channel. In this paper, we propose a multi-

architecture data aggregation technique to profile power traces for

a system with an embedded processor that is based on three types

of deep NNs, namely, multi-layer perceptrons (MLP), convolutional

neural networks (CNN), and recurrent neural networks (RNN). This

is one of the first works to explore the inter-architecture portability

of NNs and SCAs. We demonstrate the robustness of the ANNs per-

forming power-based SCAs on multiple architecture configurations

with different architectural features, such as L1/L2 caches’ size and

associativity, and system memory size. We provide a comprehen-

sive set of benchmarks to demonstrate that architecturally identical

devices are not essential for profile-based SCAs.

CCS CONCEPTS

• Security and privacy → Security in hardware; Embedded

systems security.

KEYWORDS

Side channel attack, Portability embedded security.

ACM Reference Format:

Manoj Gopale, Gregory Ditzler, Roman Lysecky, and Janet Roveda. 2022.

Inter-Architecture Portability of Artificial Neural Networks and Side Chan-

nel Attacks. In Proceedings of the Great Lakes Symposium on VLSI 2022

(GLSVLSI ’22), June 6–8, 2022, Irvine, CA, USA. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3526241.3530382

1 INTRODUCTION

A critical security requirement for embedded systems is protection

of sensitive information (e.g., cryptographic keys). Unfortunately,

many embedded systems have constrained resources that limit the

implementation of security measures. Side-channel attacks (SCAs)

are a significant threat to embedded devices. Embedded devices

can leak sensitive information when operations are performed on
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sensitive data. Many SCAs that can statistically infer cryptographic

keys from embedded devices by using power side, cache access

pattern, and electromagnetic side channels.

SCAs are categorized as profiled and non-profiled attacks. In a

non-profiled attack, an adversary creates a side-channel leakage

model based on knowledge of the target system. Once an adversary

has the model, they can retrieve the secret key by using correlation

between the side channel from the target and leakage models. A

non-profiled leakage model’s efficiency depends on multiple factors

such as device architecture, software implementation, and manufac-

turing technology characteristics. Profiled SCAs, such as template

attacks [3], use the complete side channel leakage for characterizing

the target device. For every possible key, an adversary can profile

and build a leakage template for the target device. Profiled SCAs

are more robust to system noise and countermeasures [3].

In this work, we explore the portability of neural networks

trained on one device and then evaluated on a different target

device. Inter-device portability is the ability of an ANN trained on

one device to attack a different instance of the device; however, the

internal architecture of the two devices is identical. For inter-device

portability, the differences between the training and attack devices

primarily come from manufacturing variations. Inter-architecture

portability is the ability for an ANN trained on a device with one in-

ternal architecture (i.e., processor, cache, etc.) to attack a device with

a different internal architecture. Internal variations make portabil-

ity analysis more challenging as they result in significant changes

in the power traces compared to identical internal devices as seen

in inter-device portability.

Recent work [5] explored the inter-device portability of ANNs

for SCAs across physical instances of the same device. They showed

that manufacturing variations and environmental conditions can

significantly impact the inter-device performance. They improved

the inter-device performance by merging the data from devices

prior to training. Notably, this portability addresses the physical dif-

ferences between devices with the same processor architecture, but

not the inter-architecture portability across devices with different

processor architecture configurations, which is explored herein.

Inter-architecture portability opens a new paradigm in profile-

based SCAs. Research has shown that each device is vulnerable if

an architecturally identical device is used for profiling SCAs. Specif-

ically, for a power-based SCA, an adversary collects power traces

from each architecturally different target devices then tunes an

ANN for each target device. If the ANNs have inter-architecture

portability, then an adversary only needs to collect and aggre-

gate power traces from a few target devices to tune a ANN. Inter-

architecture portability, thus, reduces the time complexity of attacks
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on architecturally different target devices. Subsequently, architec-

turally different devices are now vulnerable even if the adversary

does not have an architecturally identical device for profiling.

This paper presents an approach to develop an inter-architecture

portable ANN for a profiled power-based SCA by aggregating data

from multiple processor architecture configurations. In this paper,

we present: (1) the first work to comprehensively explore and pro-

vide empirical evidence for inter-architecture portability and ANN

for power-based SCAs; (2) an ANN-based approach that demon-

strates the need to aggregate data from multiple architecturally

different configurations to improve the inter-architecture perfor-

mance of ANNs; (3) MLPs, CNNs, and RNNs that generalize over

12 target processor configurations, considered herein, to give high

inter-architecture performance. Our methods are thoroughly bench-

marked on a large volume of data generated using the GEM5 and

McPAT software. We show that a thoughtful, multi-architecture ag-

gregate training dataset can significantly improve the performance

across many configurations without the need to train on all possible

configurations, which would be infeasible.

2 RELATED WORK

ANNs have shown considerable improvement over shallow ML

techniques for SCAs [1]. ANNs can learn nonlinear and complex

dependencies between input features and outputs in SCAs, which

improves the attack efficiency [10]. However, these previous studies

have only been applied to simple 8-bit microcontrollers. In contrast,

this work targets a more complex 32-bit ARM processor, including

multiple cache levels and main memory, which is more applicable

to real-world systems.

Research has shown that ML approaches outperform template

attacks for high dimensional data [7]. Principal component analysis

(PCA) has been used to represent features from the power trace

for single S-box operations to reduce the dimensionality of the

input layer [9]. These dimensionality reduction approaches seek to

ensure the reduced input features showmaximum variability. In [9],

the effectiveness of PCA and ANNs was evaluated using guessing

entropy, which indicated a potential adversary would need on an

average of four guesses to predict the correct key. In contrast, the

approach presented herein operates on the entire power trace of

a full AES encryption without reducing the dimensionality. Our

ANNs need one guess (on average) to predict the correct key if we

were to compare our results using guessing entropy.

Several recent works focused on analyzing SCAs and the inter-

device portability of NNs across devices [5], specifically analyzing

how a NN constructed from power traces of one device can be used

to attack a different manufactured device with identical architec-

tural parameters. These approaches show that device variability can

degrade efficiency of NNs, which can be overcome by aggregating

the power traces from multiple devices during training. However,

these approaches focused on devices that both have the same inter-

nal processor architecture configuration. Thus, the portability of

NNs studied in these previous efforts only addressed environmental

and manufacturing variations. In contrast, this paper analyzes SCAs

and inter-architectural portability of the NNs.Specifically, we seek

to understand the portability of an adversary’s NN to architecturally

different devices from which it was trained.

3 THREAT AND POWER MODELS

Our goal in this work is to demonstrate inter-architecture portabil-

ity of ANNs, where an adversary can attack architecturally different

devices. We assume an adversary has knowledge of the target sys-

tem, including the processor core and architecture configuration

for the caches and memory system. We assume the adversary has

knowledge of the specific software implementation used for cryp-

tographic operations. The adversary can train an ANN with simu-

lation data of the target system. The final attack requires physical

access to collect power traces from the target device. We focus on

SCAs that target a 128-bit AES cryptography using electronic code

book (ECB) mode executing on embedded devices incorporating

a 32-bit ARM processor, with varying L1, L2 caches and memory

configurations. An ANN is learned by the adversary to predict the

first byte of the 128-bit cryptographic key. As all components of the

cryptographic key are independent, we assume the same prediction

method can be applied to each key byte.

The power model in our approach includes the power consumed

by the processor, L1 and L2 caches, and memory when executing

an AES encryption. We use the ARM Mbed AES ECB for the AES

encryption and GEM5 to simulate processor states, cache and mem-

ory access traces for each given system [2]. The processor states are

used with an ARM processor power model to generate a cycle-by-

cycle power consumption trace of the target processor. The cache

and memory activity traces, along with typical physical character-

istics for embedded system caches and memories, are fed into the

memory organization power modeling tool McPAT to generate a

corresponding cycle-by-cycle power trace of the caches and mem-

ory [8]. The final power traces account for power dissipation by the

processor, L1 caches, L2 cache, and memory. As the simulation is

used to generate the power traces, only one power sample per clock

cycle is needed to reconstruct the power trace during simulation.

The power trace collection is different when one is collecting data

from a real device, where the sampling frequency should be at least

twice that of the maximum operating frequency of the target device

to accurately reconstruct the power trace.

4 METHODS

Figure 1a shows an overview of our ANN-based SCA approach

that has four phases: dataset creation, multi-architecture data ag-

gregation, training, and attack. Using the power model (Section

3), we calculate the power trace for the execution of a 128-bit se-

cret key and a random plaintext encrypted using the AES algo-

rithm. Power traces are collected for each processor by varying

the secret key and random plaintext. The first byte of the secret

key is controlled such that we generate 9,000 power traces for

each byte (9, 000𝑥256 = 2, 304, 000 total power traces). Next, the

dataset is split into a training set with 7,500 traces per key byte

(7500𝑥256 = 1, 920, 000 total power traces), a validation set with

1,000 power traces per byte and a testing set with 500 traces per

byte. The dataset for 12 processor architecture configuration is

generated in this manner. Datasets from two or more processor ar-

chitecture configurations can be combined into aggregated datasets

for training. Note that the training and validation set sizes in the

aggregated datasets remain constant at 7,500 and 1,000 power traces

per key byte, respectively. The ANNs are trained and tuned on the
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(a) Inter-architecture portability (b) ANN architectures

Figure 1: (a) Overview of the approach to explore inter-architecture portability for power-based SCAs. (b) Overview of the ANN

architecture for inter-architecture portability of power-based SCAs.

aggregated training and validation set. A combined testing set for

inter-architecture portability analysis is created by aggregating

testing sets from all the processor architecture configurations. The

trained ANNs then predict the first byte of the secret key from the

power traces in combined testing set. The performances of ANNs

are reported as the percentage of correct first key bytes predicted

from the combined testing set.

Figure 1b shows the ANNs used for inter-architecture portability

analysis. All ANNs for power-based SCAs have an input layer with

1,500 nodes, which correspond to the full cycle-accurate power

trace for AES execution along with power traces from a random

workload function. Power traces are standardized prior to training

the ANNs. This standardization ensures that there is less varia-

tions in power traces at each time-step. We also ran experiments

without standardization of the power traces; however, we found

that the model was unable to successfully converge during training.

Therefore, we have omitted the results for methods that do not

use standardization because they were ineffective. We heuristically

picked the hyper-parameters for ANN that performed well on the

inter-architecture portability task. For training, we use the ADAM

optimizer for calculating gradients in back-propagation, categorical

cross-entropy as the loss function, and early stopping to reduce

overfitting. The output layer of each ANN uses a softmax layer.

Multi-Layer Perceptrons (MLP). MLPs consist of an input layer,

a number of hidden layers, and an output layer. The MLP’s hid-

den layers learn relations between features to correctly predict

the outcome of a specific task. The hidden layers are crucial and

require tuning to determine the number of layers and node sizes

that maximize the MLPs performance. The resulting MLP tuned

for power-based SCAs has three hidden layers each having 64, 32,

and 256 nodes, respectively. The Rectified Linear Unit (ReLu) is the

activation function used for all hidden layers. A dropout layer is

added after activation layer to limit overfitting the MLP to training

data, thereby ensuring the MLP remains generalizable over a large

dataset. Dropout rates of 10% and 40% on first two hidden layers

worked well in practice. No dropout is added after the third hidden

layer. Finally, the last layer in the MLP is the output layer with 256

nodes, which corresponds to the 256 possible values for the first

key byte.

Convolutional Neural Networks (CNN). The proposed CNN con-

sists of three convolutional blocks followed by three fully connected

hidden layers. Each convolutional block consists of 1-D convolu-

tions with filter sizes of 8, 16 and 8, respectively. Each of these filters

are formed by convolving a kernel of size 3, 7, and 4, respectively.

To reduce overfitting, we use a batch normalization layer after the

third convolutional block. The output of last convolutional block is

flattened, then passed through three fully connected layers of size

32, 1024, and 1024, respectively. Dropout rates of 10%, 10%, and 40%

on the hidden layers worked well in practice.

Recurrent Neural Networks (RNN). RNNs perform well on time-

series data by using information from previous time. The nature

of the RNN can create exploding and vanishing gradients which

impacts network performance. LSTMs [6] and GRUs [4] are modi-

fied versions of RNNs that solve the gradient problem by including

memory blocks, which internally contain gating units that control

flow of information. A bidirectional RNN architecture has an added

benefit of training inputs in original and reverse sequence. We ex-

plored basic LSTM and GRU models and also bidirectional LSTM

and GRU models. We found that bidirectional GRU performed best

among the explored RNNs. The proposed RNN consists of three

bidirectional GRU’s each with 256, 512, and 512 memory units. This

is followed by a hidden layer with size 1024 with “selu” activation

and a dropout of 40%.
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Table 1: Target processors used for inter-architecture porta-

bility analysis. The legend for the table is: PAC-processor

architecture configuration, $-cache, A-associative

PAC
I-$ D-$ L2-$ Memory

A Size A Size A Size Size

3.1 2 32k 2 64k

N/A

N/A

3.2 8 32k 8 64k

3.3 2 64k 2 64k

3.4 8 64k 8 64k

4.1 2 32k 2 64k 8 2Mb

4.2 8 32k 8 64k 8 2Mb

4.3 2 32k 2 64k 16 4Mb

4.4 8 64k 8 64k 16 4Mb

5.1 2 32k 2 64k 8 2Mb 1024Mb

5.2 8 32k 8 64k 8 2Mb 1024Mb

5.3 2 64k 2 64k 16 4Mb 1024Mb

5.4 8 64k 8 64k 16 4Mb 1024Mb

5 EXPERIMENTAL RESULTS

For inter-architecture portability analysis, we simulated numerous

embedded devices representative of real-world processors with dif-

ferent and unique combinations of L1 caches, L2 cache, and memory.

Table 1 presents the processor architecture configurations for the 12

targeted embedded devices benchmarked in this work. The target

processor architecture configurations are labeled using the format

X.Y, where X indicates the number of components in the system,

and Y identifies each unique configuration. For example, configu-

ration 3.1 is the first target configuration with three components,

and configuration 5.3 is the third target configuration with five

components. Each target configuration consists of the same ARM

Cortex-A32 processor core with different cache and memory con-

figurations. We consider four L1 instruction cache configurations

varying in size (32K or 64K) and associativity (2-way or 8-way), two

L1 data cache configurations of size 64K with varying associativity

(2-way or 8-way), two L2 cache configurations varying in size (2MB

or 4MB) and associativity (8-way or 16-way), and an optional 1024

MB off-chip DRAM.

Results and Analysis. We conduct several experiments to ana-

lyze the performance of ANNs trained without multi-architecture

data aggregation. Prior to training data aggregation, we have 12

different datasets for configurations 3.1 to 5.4 (see Table 1). Using

the proposed MLP architecture, we train 12 models, one for each

dataset. The inter-architecture performance of each model is mea-

sured on the combined testing set (i.e., all possible configurations).

For comparison, the inter-device performance of the models are

evaluated on the testing set of each individual processor architec-

ture configuration. We repeat this evaluation procedure with the

CNNs and RNNs.

Figure 2, shows the first group of results in this work. Each

column in Figure 2 represents the inter-architecture performance

whereas the diagonal represents the inter-device performance of the

trained MLP. We observe a general trend that the inter-device per-

formances are high (greater than 99.9%), but the inter-architecture

performances are low (less than 12.1%). For example, the first col-

umn represents the performance of the MLP trained only on config-

uration 3.1 when attacking testing data of all configurations from

Figure 2: Inter-architecture portability for MLPs trained on

a target configuration. The diagonal is the inter-device per-

formance and each column shows the performance of the

MLP on test data of other processor configurations. Similar

heat-maps (not shown) for the CNN and RNN were observed.

3.1 to 5.4. The inter-device performance of the MLP trained on 3.1

is 100% when attacking testing dataset of 3.1. The inter-architecture

performance of the MLP trained on 3.1 is 11.2% when attacking

the combined testing set. This shows that the MLP trained on 3.1

is not able to generalize across other configurations. CNNs and

RNNs also show a similar trend, having high inter-device perfor-

mances (greater than 99.9% and 99.5%, respectively) but low inter-

architecture performances (less than 15.9% and 15.3%, respectively).

We extend the previous experiments on aggregated datasets (i.e.,

the datasets with multiple processor architecture configurations).

We aggregate power trace data from configurations 3.1 to 5.4 by

combining 2, 3, 4, and 6 different configuration datasets, of which

12 unique sets (S1 to S12) are selected for analysis. Note, that the

training and validation set size is fixed at 7,500 and 1,000 power

traces per key byte in all 12 sets. If 𝑛 is the number of selected

combinations to aggregate, each configuration contributes 7500/𝑛
traces per key to the aggregated training set and 1000/𝑛 traces per

key to the aggregated validation set. The MLP is trained on the

12 sets, giving us 12 MLPs. The training procedure is repeated for

CNNs and RNNs. Inter-architecture performance is evaluated on

the combined testing set as seen in Figure 3.

All ANNs trained on the 12 sets show better inter-architecture

performance as compared to ANNs trained on datasets without

aggregation. For example, consider set S1, which combines power

traces from the 3.2 and 5.4 processor architecture configurations.

The inter-architecture performance of the MLPs, CNNs, and RNNs

trained on S1 are 44.8%, 37.0%, and 45.6%, respectively. We also see

that there is a general increase in inter-architecture performance

as we increase the number of configurations in the aggregated sets.

Specifically, sets S11 and S12, which are aggregation of six different

configurations, show a high inter-architecture performance irre-

spective of the ANNs used. The inter-architecture performance of

MLP, CNN, and RNN for set S11 is 99.5%, 99.9%, and 98.1% and for

S12 model is 99.7%, 99.6%, and 98.2% ,respectively. Note that S11 and

S12 cover most of the possible combinations of L1 caches, L2 cache,
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Figure 3: Inter-architecture performance of ANNs trained on aggregated sets evaluated on combined testing set. The details of

each set are as follows (see Table 1): S1{3.2, 5.4}, S2{4.2, 4.4}, S3{3.2, 4.2}, S4{4.1, 5.1, 5.2}, S5{3.2, 5.1, 5.2}, S6{3.3, 4.1, 5.4}, S7{4.1, 5.1,

5.4}, S8{3.2, 4.2, 5.4}, S9{3.2, 3.3, 4.2}, S10{3.3, 4.4, 5.1, 5.3}, S11{3.2, 3.3, 4.2, 4.3, 5.2, 5.3}, S12{3.3, 3.4, 4.3, 4.4, 5.3, 5.4}.

and memory configuration from Table 1. The ANNs of S11 and S12

generalize better over others configurations as the coverage of their

training data over the combined testing set is high.

With a decrease in the number of aggregated configurations in

sets S1-S9, we observe variability in accuracy of trained ANNs for

inter-architecture performance. The variability in inter-architecture

performance can be attributed both to the coverage of training data

of S1-S9 being low over the combined testing set and to how the

MLP, CNN, and RNN capture different features while training us-

ing those sets. We note that ANNs trained using a lower number

of aggregated datasets can achieve high accuracy, such as S7 that

performs as well as the S11 and S12 ANNs. More analysis is needed

to formulate a general strategy that can be used to find configura-

tions that can be aggregated so that the ANNs generalize on the

combined testing set.

Intuitively, ANNs trained with aggregated data from all 12 con-

figurations will give high inter-architecture performance. But, it is

not feasible, nor practical, to include all possible processor architec-

ture configurations that are available in the market for creating a

global dataset to train and tune ANNs. Instead, a subset of processor

architecture configurations (e.g., S11 or S12) that share architec-

tural features can be used for training ANNs. Thus, maintaining

a reasonable balance between the classification performance and

time / data complexity.

6 CONCLUSIONS

SCAs are of growing concern and the vulnerabilities of embedded

systems has led to many different works. This is one of the first

studies to explore the inter-architecture portability and ANNs for

power-based SCAs. We present ANN based methodology to re-

trieve the first byte of the secret key by training ANNs (MLP, CNN,

and RNN) on the power traces generated by the processor during

the execution of 128-bit AES encryption. We demonstrate that the

inter-architecture performance of ANNs increase with the addition

of power traces from different processor architecture configura-

tions. Specifically, we present a subset of configurations whose

combination of power traces during training of ANNs shows high

inter-architecture performance while maintaining a healthy trade-

off between performance and time/data complexity. Additionally,

we conclude that power traces from identical architecture processor

is not required to profile ANNs for power-based SCAs.
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