
1

Targeted Data Poisoning Attacks Against

Continual Learning Neural Networks
Huayu Li and Gregory Ditzler

Department of Electrical & Computer Engineering, University of Arizona

Tucson, AZ 85721

hl459@email.arizona.edu, ditzler@arizona.edu

Abstract—Continual (incremental) learning approaches are
designed to address catastrophic forgetting in neural networks
by training on batches or streaming data over time. In many
real-world scenarios, the environments that generate streaming
data are exposed to untrusted sources. These untrusted sources
can be exposed to data poisoned by an adversary. The adver-
saries can manipulate and inject malicious samples into the
training data. Thus, the untrusted data sources and malicious
samples are meant to expose the vulnerabilities of neural net-
works that can lead to serious consequences in applications
that require reliable performance. However, recent works on
continual learning only focused on adversary agnostic scenarios
without considering the possibility of data poisoning attacks.
Further, recent work has demonstrated there are vulnerabilities
of continual learning approaches in the presence of backdoor
attacks with a relaxed constraint on manipulating data. In this
paper, we focus on a more general and practical poisoning
setting that artificially forces catastrophic forgetting by clean-
label data poisoning attacks. We proposed a task targeted data
poisoning attack that forces the neural network to forget the
previous-learned knowledge, while the attack samples remain
stealthy. The approach is benchmarked against three state-of-
the-art continual learning algorithms on both domain and task
incremental learning scenarios. The experiments demonstrate
that the accuracy on targeted tasks significantly drops when the
poisoned dataset is used in continual task learning.

Index Terms—continual learning, adversarial machine learn-
ing, data poisoning attack.

I. INTRODUCTION

Neural networks suffer catastrophic forgetting [1] when

they are tasked with learning from sequential or streaming

data [2]–[4]. As a result of catastrophic forgetting, a well-

trained neural network can partially or even entirely forget the

information about the previously-learned knowledge. Unlike

traditional offline learners trained on single task where the

entire dataset is sampled from an i.i.d. distribution, continual

learners are trained from tasks that typically change over time.

Continual (incremental) learning approaches are designed to

retain knowledge of historical tasks by protecting the model

parameters that are important for previous tasks from intensive

change when training models on new coming tasks. Hence,

a continual learning setting requires that a model maintain a

healthy balance between stability and plasticity [3]. Stability is

the property of a model to retain old knowledge and plasticity

is the property that allows the model to learn from new data.

Continual learning approaches enable intelligent systems to

achieve life-long learning on massive data under the limitation

of finite storage and evolve on rapidly updating data sources

while preserving the capability to process the earlier tasks.

Continual learning focuses on learning from tasks – datasets

– over time. Tasks are presented to the model sequentially over

time for training and the model can be asked to predict tasks

that it has previously learned. Therefore, it is crucial to main-

tain a healthy balance between stability and plasticity. Further,

information learned about the different tasks can be transferred

to new tasks when they are presented to the model. Note

that the definition of continual learning is similar to transfer

and multi-task learning; however, there are differences worth

noting. The field of transfer learning focuses on techniques

that can effectively learn new tasks from older tasks and the

goal is to perform well on the new task. Transfer learning

has been successfully applied in many domains where limited

data are available from the target task [5]. Similarly, multi-

task learning focuses on maximizing the performance across

the tasks presented to the model. The concept of lifelong

learning has aspects of transfer and multi-task learning [6];

however, it differs in that it seeks to learn new tasks by

efficiently building on prior task learning while maximizing

the performance across all tasks.

Unfortunately, recent work has shown that neural networks

are vulnerable to adversarial attacks that cause deleterious

predictions and decrease the robustness of the model [7], [8].

Adversaries can inject small perturbations into the original

data that cause errors. These perturbations can be injected at

training or testing time, which are referred to as poisoning

or evasion attacks, respectively. In this work, we focus on

adversarial poisoning attacks where the adversary has access

to the training data (or some knowledge about the task). Their

goal is to craft examples that decrease the performance of the

neural network. Recent work has shown that many approaches

that generate poison sample are actually easy to detect (see

the strength vs. detectability dilemma [9]). Poisoning attacks

can be identified as one of three primary categories. Backdoor

attacks [10] inject the backdoor instances into the training data

that mislead the learning system make the incorrect predictions

on test data with backdoor patterns. Targeted data poisoning

attacks [11]–[13] achieve triggerless backdoor attacks without

adding the backdoor patterns to the target data to fool the

network. Finally, availability attacks [14] can cause more

damage to the model by directly degrading the performance
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without any modification on the data during testing. As a

result, the neural networks trained on the malicious data will

be less trustworthy.

While several data poisoning methods for offline learn-

ing models have been recently proposed, data poisoning in

continual learning scenarios has received significantly less

attention. There are two primary objectives of poisoning

attacks against continual learning. First, the attackers aim to

erase the knowledge about all tasks, which is identical to

attacking offline learning. Another goal is to attack the specific

tasks’ knowledge while not affecting others. Recently, back-

door attacks against continual learning have been proposed to

create a ”false memory” about the targeted task [15], [16].

The samples from the tasks under attack with the backdoor

patterns can easily bypass the neural network. However, there

is still an issue with the existing approaches: can we make

catastrophic forgetting intentional by data poisoning while the

attack samples are stealthy (i.e., difficult to detect)?

This paper explores task-specific availability attacks against

continual learning. Specifically, this work develops a novel

data poisoning attack that significantly reduces the target task

performance over time and the adversarial samples are difficult

to detect. We demonstrate that injecting poison samples into

upcoming tasks could produce catastrophic forgetting to the

targeted task artificially while making minimal interference

on performance on non-targeted tasks. Compared with the

previous works [15], [16], the presented work considered a

new data poisoning setting. First, the samples from the historic

task will not show up in current training data. Second, a clean

label attack was adopted that the corresponding labels of the

training data are not corrupted. Further, unlike previous works,

we do not add backdoor patterns in the test data at inference

time. We benchmark our approach against three continual

learning algorithms on two datasets.

II. RELATED WORKS

A. Continual learning

In general, continual learning algorithms are categorized

into replay-based, architecture-based, and regularization-based

methods. Replay-based methods store the original samples

from previous tasks [17], [18] or use generative models

to generate the samples of previous tasks [19]. The stored

or generated examples from prior tasks are replayed and

concatenated with the training data of the current task dur-

ing the training phase to overcome catastrophic forgetting.

Architecture-based methods separate the neural network into

sub-networks for each task to ensure the parameters for each

task have minimal effect on the other sub-networks [20], [21].

Regularization-based approaches were proposed to address the

data storage and privacy problem in replay-based methods and

architectural complexity issues associated with architecture-

based methods [22]–[24]. These methods compute the im-

portance to the learned tasks of each parameters, and store

the importance into matrix. When the network is trained on

new tasks, the importance matrix is used as regularization

terms to prevent too large updates on the parameter associated

with old tasks [6] This work explores the vulnerability of

three common regularization-based algorithms, namely, Elastic

Weight Consolidation (EWC) [22], Online Elastic Weight

Consolidation (online EWC) [23], and Synaptic Intelligence

(SI) [24]. We choose these methods due to their popularity,

and they do not require previous data samples be retained.

In this paper, two critical and practical scenarios known

as domain and tasks incremental learning [25] are considered

for evaluating the vulnerability of continual learning models.

In domain incremental learning, the data are sampled from

distributions/domains between tasks with fixed numbers and

type of class. In contrast, incremental task learning is a more

challenging because the distributions/domains of both the data

and the classes differ between tasks, while only the number of

the classes remains fixed. Further, when the tasks are learned

sequentially, the labels are assigned to class IDs based on their

original categories. Thus, the inference phase can predict the

classes of the inputs without task IDs.

B. Adversarial Machine Learning

The reliability and robustness of neural networks has drawn

much attention with the broad application of neural networks

in recent years. Adversarial machine learning explores the

vulnerabilities of machine learning algorithms and performs

attacks to control the behavior of machine learning algorithms

in two major aspects. Evasion/adversarial attacks [8], [26]–

[29] exploit the blindspots of trained models where they

catastrophically misclassify the inputs with adversarial per-

turbations at the test time. Evasion attacks find adversarial

perturbations by maximizing the loss with respect to the inputs

under certain constraints. The input data with even imperceiv-

able perturbations in the direction would significantly change

the feature representations in a deep network and the logit

outputs. Poisoning attacks inject malicious data points into the

training data to enforce the model converging to the wanted

points of the attackers.

Poisoning attacks can broadly categorized into backdoor,

targeted data poisoning, and poison availability attacks. In the

backdoor attacks setting [10], the adversarial samples are gen-

erated with backdoor patterns that are inserted into the training

images to create an association between the backdoor pattern

and the incorrect labels. During testing, the neural network

can be fooled by inputs tagged with predefined backdoors –

or triggers – while having similar performance to the normal

model when the triggers do not activate the backdoor. Thus,

backdoor attacks are regarded as an intermediary between data

poisoning attacks and evasion attacks. Targeted data poisoning

attacks [11]–[13] insert triggerless backdoor with only access

to the training data, but cannot modify test data. Targeted data

poisoning aims to cause the target samples to be misclassified

to a specific class. Most work on poison availability attacks

focused on reducing the accuracy in general that makes the

model unusable [14], and producing gradient vanishing when

model learning on the modified data that make the data

unexploitable [30].

This paper proposes a new scenario for poison availabil-

ity attacks against continual learning models. The poisoned

samples are designed to produce an intentional catastrophic
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Algorithm 1 Regularization-based CL algorithms

Input Training data samples received for task τ :

{Xτ , Yτ}; total number of tasks: T ; model parameter: θ;

regularization parameter: λ

1: for τ = 1 to T do

2: if τ == 1 then

3: θ∗τ = argminθ L(f(Xτ ; θτ ), Yτ )
4: else

5: θ∗τ = argminL(f(Xτ ; θτ ), Yτ ) + λ
∥

∥θτ − θ∗τ−1

∥

∥

2

6: end if

7: end for

forgetting that degrades the neural network’s performance

on a specific historical task when training on current tasks.

Unlike conventional poison availability attacks, the presented

method forces the network to forget the previously learned

data instead of reducing the overall performance on all learned

data. Further, our method inserts false memory of the data

sampled from a targeted domain instead of being limited to

specific target samples compared to targeted data poisoning

attacks. Thus, we name the proposed method as task targeted

poisoning attack to distinguish it from poison availability

attacks and targeted data poisoning attacks.

III. TASK TARGETED POISONING

This section motivates the proposed poisoning attacks and

the continual learning settings for streaming data. We denote

the output of a neural network with model parameters θ as

f(x; θ), where f has a soft-max output. The goal of the neural

network is to minimize the empirical risk is the main objective

function L(f(x; θ), y) for training the network, where (x, y)
refers single input-label pair. The risk, or loss, for the tasks

considered in this work is cross-entropy. In contrast, a dataset

or a data batch are defined as D = {X,Y } = {xi, yi}
N

i=1
,

as well as the risks on a dataset or a data batch are defined

as Lθ(D). In the data poisoning setting, we define the dataset

for a task τ as Dτ , where the adversary seeks to target the

model to forget task τ . The adversary’s objective is to degrade

the performance on Dτ even when data from new tasks are

presented. Finally, we define tasks Dτ+n, ∀n = 1, . . . , T − τ
as the non-target tasks where the poison samples are injected.

A. Regularization-based continual learning algorithms

In the continual learning setting, the model receives a new

training data from a task and the labels which are denoted by

Xτ and Yτ at time τ = 1, . . . , T , respectively. The goal of

the continual learner is to find the optimal parameters θ∗. By

optimal, we assume that the goal is to minimize the empirical

risk across all tasks. More formally, this objective is given by

min
θ

T
∑

τ=1

[

Lθτ (Dτ ) + λ
∑

i

Iτ−1(θτ − θ∗τ−1)
2

]

(1)

where the regularization term penalizes changes to those

parameters proportional to the importance matrix Iτ−1,i. The

importance matrix is calculated from the previous tasks Dτ−1.

The regularization coefficient λ ≥ 0 controls the forgetting

factor for previously learned tasks. The weight of the regular-

izer can be interpreted as follows: the larger λ results in the

continual learner retaining more previous knowledge and less

learning on new tasks, and vice versa. The primary difference

between the regularization-based continual learning algorithms

is in the calculation of the importance matrix, Iτ−1,i. In our

setting, the regularization term can be regarded as a variant of

L2 regularization that performs knowledge preservation and

natural defense to poisoning perturbations. In our attacking

setting, we simply the learning procedure as Algorithm 1

without considering any data-dependent importance matrix.

B. Attack Strategy

In this work, we define the adversary and the defender

model as the two parties involved in the data poisoning setting.

The adversary’s goal is to generate adversarial samples with

some prior knowledge about the defender. The defender’s

knowledge plays a crucial role in how they generate the data.

The adversary can add data into defender’s training set that is

crafted to reduce the defender’s performance. The adversary

can inject these malicious data into all time steps during

continual learning.

We consider a white-box attack setting, where the adversary

has full knowledge about the defender’s model. Note that a

white-box adversarial setting is the worst case for the defender

since these settings allow the adversary access to the data and

the defender’s classifier. Thus, the adversary has access to the

defender’s model parameters θτ−1, the dataset for the new task

Dτ , and the dataset of target task Dt where t < τ . However,

due to the consideration for generality, the defender updates

their parameters using the cross-entropy loss, and the adver-

sary does not have access to the loss value and the importance

matrix. The adversary has limited control over the training data

other than the fact they can inject a limited number of samples.

The adversary can add ℓ∞-norm ǫ-bounded perturbations to a

fraction of the current training dataset. The adversary performs

only clean-label attacks, which means the adversary is not

permitted to change the original label of a poisoned image.

Meanwhile, samples from the target task is not allowed to be

injected into the current training data.

C. Task Targeted Poisoning Attacks

The task targeted poisoning attack scenario is where the

defender’s network is first trained on a clean target dataset then

updated over time on several poisoned datasets. In the threat

model of task targeted poisoning attacks, the attacker aims to

degrade the defender’s performance on the target task after

the model is trained on the non-target tasks. More formally,

let Dτ be the target dataset and Dτ+n, ∀n = 1, . . . , T − τ
as the non-target datasets. The adversary modifies Dτ+n

by injecting poisoned samples which creates the adversarial

datasets denoted by Dadv
τ+n. The adversary’s objective function

for generating malicious samples is given by:

max
Dadv

τ+n

Lθ∗(Dτ ), and θ∗ ∈ argmin
θ

T−τ
∑

n=1

L(Dadv
τ+n), (2)
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Algorithm 2 Poisoning attack against continual learning

Input model parameters: θ; target dataset

batches: Sτ = {Xτ , Yτ}; poisoning dataset batches:

Sτ+n = {Xτ+n, Yτ+n}; the size of perturbation: ǫ; iterations:

T ; decay factor: µ; numbers of class: C; step size: α;

1: procedure START POISONING

2: initialize momentum g0 = 0 and poison samples

Xadv
τ+n = Xτ+n;

3: flip target label Y adv
τ = Yτ + randint(1, C − 1)%C;

4: compute target gradients ∆t
θ = ∇θL(f(Xτ , θ), Y

adv
τ );

5: for t = 0 to T − 1 do

6: compute poison gradients ∆p
θ =

∇θL(f(X
adv
τ+n, θ), Yτ+n);

7: compute cosine similarity H =
〈∆t

θ,∆
p

θ〉
‖∆t

θ‖‖∆
p

θ‖
;

8: update momentum gt+1 = µ · gt +
∇XH
‖H‖ ;

9: update Xadv
τ+n = Xadv

τ+n + α · sign(gt+1);
10: end for

11: return Xadv
τ+n.

12: end procedure

where the Dτ and Dτ+n are not sampled from the same

underlying distribution. If we ignore the data-independent

regularization term in the simplified version of regularization-

based continual learning algorithms in Algorithm 1. The

minimization problem is typically optimized using stochastic

gradient descent (SGD).

Let us consider a single epoch in gradient descent on the

entire dataset for further simplifying the problem, the model

parameters after training on a task at task Dτ+1 are updated

as:

θτ+1 = θτ − η∇θLθτ (Dτ+1) (3)

= θτ − η∇θL(f(Xτ+1; θτ ), Yτ+1), (4)

where η ≥ 0 is the learning rate. In practice, the update term

might include momentum (e.g., momentumSGD [31]) or adap-

tive gradient methods (e.g., Adam [32] and AdaGrad [33]);

however, for brevity, we omit these terms from the update

equation.

The most intuitive way to forget the previous knowledge

using gradient descent is to inject samples from the target tasks

with incorrect labels on the new tasks. Let us define D̃adv
τ as

a subset of the target Dτ with flipped labels Y adv
τ . These data

are inserted to the new training data Dτ+1 for the defender to

use for training their model. Then the gradient descent update

to minimize the loss during the training of current task is given

by:

θτ+1 = θτ − η∇θLθτ (Dτ+1 ∪ D̃adv
τ ) (5)

= θτ − η∇θL(f(Xτ+1; θτ ), Yτ+1)− (6)

η∇θL(f(Xτ ; θτ ), Y
adv
τ ), (7)

Note that this expression shows that the defender’s model

minimizes the loss on current task and the adversarial loss on

the target tasks. The adversarial gradient information about the

target task leads the defender’s model to have a poor perfor-

mance on the target task, while seemingly higher performance

on the new tasks.

We limit the behavior of the adversary such that it is not

permitted to insert the samples from the target task into the

non-target tasks nor change the label of those samples. The

goal of the proposed attack is to find an adversarial subset

D̃adv
τ+1 of the current task Dτ+1 with perturbed data points

Xadv
τ+1 and clean labels Yτ+1. Then the gradient updates can

be expressed as:

θτ+1 = θτ − η∇θLθτ (Dτ+1 ∪ D̃adv
τ+1) (8)

= θτ − η∇θL(f(Xτ+1; θτ ), Yτ+1)− (9)

η∇θL(f(X
adv
τ+1; θτ ), Yτ+1), (10)

where we notice that difference between Equations 5 and 8 is

the malicious gradients. If the gradients on adversarial subset

D̃adv
τ+1 on the defender model are close to the gradients on the

label-flipped subset D̃adv
τ then D̃adv

τ+1 will have the same poison

effect as D̃adv
τ for making the model forget the knowledge on

the target set Dτ . Therefore, the adversary’s goal is to find the

poison data Xadv
τ+1 to meet the following condition:

∇θL(f(X
adv
τ+1; θτ ), Yτ+1) ≈ ∇θL(f(Xτ ; θτ ), Y

adv
τ ). (11)

The min-max optimization problem in Equation 2 can be

transformed into a simple optimization task by minimizing

the distance between two gradients:

min
Xadv

τ+1

d(∇θL(f(X
adv
τ+1; θτ ), Yτ+1), (12)

∇θL(f(Xτ ; θτ ), Y
adv
τ )), (13)

where d refers to the distance between two vectors. The

cosine similarity is chosen as the distance function due to

its being bounded in the interval [−1, 1] and its property of

magnitude irrelevant. Therefore, poison samples can be found

by minimizing:

min
Xadv

τ+1

−

〈

∇θL(f(X
adv
τ+1; θτ ), Yτ+1),∇θL(f(Xτ ; θτ ), Y

adv
τ )

〉

∥

∥∇θL(f(Xadv
τ+1; θτ ), Yτ+1)

∥

∥ · ‖∇θL(f(Xτ ; θτ ), Y adv
τ )‖

.

(14)

The minimization object aims to create an approximation of

the malicious gradients of the label-flipped subset D̃adv
τ by

modifying the adversarial subset D̃adv
τ+1. It is noticeable that

we minimize the negative value of the cosine similarity since

the larger cosine similarity refers to the closer distance of two

vectors.

The malicious objective is optimized with the momentum

variant of iterative fast gradient method (MI-FGSM) [34] as

shown in Algorithm 2. The gradients of the defender model’s

parameter w.r.t to a batch of data sampled from the target task

are first computed as the reference gradients. Each optimiza-

tion step calculates the gradients of the defender’s model w.r.t

to the poisoned samples then calculated the gradients of the

poisoned samples based on the malicious objective.

IV. EXPERIMENTS

This section presents the experimental results for our

proposed attacks. We identified two datasets to benchmark
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EWC

Task Clean 5% poisoned 10% poisoned 15% poisoned 20% poisoned 10% label flipping

1 66.73±2.72 61.15±2.29 56.34±3.65 53.27±1.42 50.53±2.42 4.79±0.51

2 40.55±1.05 40.25±0.8 38.2±1.0 39.21±0.68 40.15±0.73 38.9±0.81

3 82.11±0.47 82.57±0.3 82.89±0.49 83.26±0.33 82.77±0.55 82.22±0.89

Online EWC

Task Clean 5% poisoned 10% poisoned 15% poisoned 20% poisoned 10% label flipping

1 69.43±2.35 62.95±1.23 59.24±1.97 55.07±2.08 50.53±2.42 2.57±0.35

2 40.88±1.18 39.53±1.0 40.3±0.29 40.65±0.95 40.15±0.73 43.37±1.19

3 81.16±0.52 82.86±0.37 82.23±0.26 82.46±0.51 82.77±0.55 81.56±0.41

SI

Task Clean 5% poisoned 10% poisoned 15% poisoned 20% poisoned 10% label flipping

1 65.97±1.14 63.32±1.15 60.76±1.5 54.62±1.95 53.65±2.81 3.79±0.36

2 42.7±0.94 40.98±0.91 40.53±0.56 40.79±0.64 39.67±0.94 47.51±0.91

3 76.84±0.31 77.24±0.1 77.75±0.38 77.56±0.25 77.85±0.19 75.37±0.21
TABLE I

TEST ACCURACY ON MNIST FELLOWSHIP. THE BOLD TEXT REFERS TO THE RESULTS OBTAINED BY THE PROPOSED METHOD.

TASK 1 TASK 2 TASK 3 TASK 4 TASK 5

EWC

clean 73.2±1.89 81.19±1.34 85.49±0.59 89.61±0.32 90.35±0.3

5% poisoned 69.07±1.33 78.71±1.52 84.01±0.75 88.87±0.3 90.71±0.19

10% poisoned 68.07±2.11 78.63±2.36 84.98±1.2 89.59±0.1 90.34±0.17

15% poisoned 66.52±0.89 78.28±1.03 85.65±0.7 89.75±0.35 90.51±0.26

20% poisoned 67.12±1.27 78.64±1.25 85.13±0.61 89.72±0.23 90.56±0.15

10% label flipping 34.0±1.15 87.25±0.27 88.14±0.29 88.72±0.23 88.0±0.27

Online EWC

clean 67.5±1.01 77.67±1.03 86.56±0.28 91.03±0.06 90.09±0.24

5% poisoned 62.35±1.12 76.74±0.79 86.11±0.36 90.7±0.24 90.09±0.24

10% poisoned 59.1±0.91 75.68±0.74 86.25±0.48 91.41±0.15 90.35±0.23

15% poisoned 59.14±0.36 75.31±0.44 86.65±0.35 90.67±0.14 89.26±0.25

20% poisoned 57.44±0.88 74.5±0.76 86.3±0.48 90.94±0.26 89.8±0.47

10% label flipping 24.98±0.8 82.51±0.52 87.51±0.46 90.01±0.2 87.27±0.31

SI

clean 59.02±1.9 69.64±2.0 82.9±0.59 89.94±0.26 88.07±0.41

5% poisoned 55.97±0.74 68.02±0.99 82.81±0.86 90.12±0.13 88.44±0.21

10% poisoned 48.94±0.9 62.16±0.7 79.97±0.53 89.71±0.06 89.12±0.15

15% poisoned 48.56±0.75 64.21±0.87 81.59±0.56 90.22±0.1 88.62±0.24

20% poisoned 44.78±0.69 61.23±0.49 81.15±0.76 89.97±0.37 88.01±0.16

10% label flipping 27.03±0.82 71.72±0.35 85.05±0.36 89.84±0.19 86.8±0.22
TABLE II

TEST ACCURACY ON ROTATED MNIST. THE BOLD TEXT REFERS TO THE RESULTS OBTAINED BY THE PROPOSED METHOD.

Task 1

Task 2

Task 3

Fig. 1. MNIST fellowship dataset for task incremental learning. The first,
second and third tasks are the MNIST, Fashion MNIST, and KMNIST
datasets, respectively. Note that each task has the ten classes and the input
size is 28x28.

the continual learning scenario with a multi-layer perceptron

(MLP). Namely, we use the Rotation MNIST [17] for domain

incremental learning, and MNIST Fellowship [35] for task

Task 1

Task 2

Task 3

Task 4

Task 5

Fig. 2. Visualization of the Rotated MNIST dataset for domain incremental
learning. Each task is generated from the original MNIST dataset; however,
the tasks are rotated version of the original MNIST dataset.
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Clean

Clean

Adv

Adv

Fig. 3. Examples of adversarial samples generated using the proposed
approach. All the samples are generated with an adversarial budget of ǫ = 0.1.
The first and second row are the clean and adversarial samples generated from
the MNIST and Fashion-MNIST dataset, respectively.

incremental learning. The MLP for domain and task incre-

mental learning has two hidden layers with ReLU activations

and a soft-max output. The adversary and defender classifier

has the same architecture. There are 400 and 1000 neurons in

each hidden layer for domain and task incremental learning,

respectively. In addition, we choose a single head configuration

for the network, which means all tasks share the same clas-

sification layer [25]. All experiments are implemented using

PyTorch and run on an NVIDIA Tesla V100 GPU.

A. Dataset

Rotation MNIST [17]: The rotation MNIST dataset con-

sists of five different tasks, where each task is generated with a

different rotation of the the images from the original task. Each

task in Rotation MNIST is a 10-class classification problem

where their labels are the corresponding digits. Thus, each

subsequent task involves classification on the same ten digits.

Figure 2 shows an example of the five tasks Rotation MNIST.

MNIST Fellowship [35]: The MNIST Fellowship is a

combination of three variations of MNIST. The first task is the

original MNIST dataset, which is classification of digits. The

second task is Fashion MNIST dataset, which is classification

of fashion products. Finally, the third task is KMNIST, which

contains handwritten characters. Note that each of the tasks

have ten classes and the input images are 28 × 28. Figure 1

shows an example of the three tasks in MNIST fellowship.

B. Results

In our poisoning experiments, we chose the initial task

as the target task, and poison the remainder of the tasks

to degrade the performance on the target task. After the

defender’s network is train on each task, the adversary uses

the defender’s network to craft and inject the poisoned samples

into the next task.

We first evaluate the poisoning attack against the task

incremental learning. The three continual learning models are

trained using the Adam optimizer [32] with a learning rate

of 0.0001. Each task is trained for ten epochs with batch

size 128. The regularization factors are 5 for SI and 5000

for both online EWC and EWC. We evaluate the accuracy on

the clean validation sets for models trained on clean datasets,

and 5− 20% poison samples of the training data of tasks two

and three as shown in Table I. The results are averaged over

five runs and we report the the standard errors with a 95%

confidence interval. The poison samples are generated using

Algorithm 2 for T = 240 iterations with momentum decay

factor µ = 1.0. The adversarial perturbations are restricted

under ℓ∞-norm for ǫ = 25.5/255. The comparison on clean

images and poison images under ǫ = 25.5/255 can be shown

in Figure 3. The step size is set as 4 · ǫ/T for attacking SI and

online EWC and 2/255 for attacking EWC. We also include

the results obtained by inserting 10% data from the target task

with flipped labels into the rest tasks.

The results for domain incremental learning are reported in

Table II. The training configuration is the same as the task

incremental learning, while the regularization factors are set

as five for SI, 1000 for online EWC, and 750 for EWC. The

poisoning setting used for domain incremental learning is the

same as attacking against task incremental learning to ensure

the method’s generality. We also visualized the test errors on

validation data of the target task and the fraction of poison

samples in the non-target training data in more straightforward

error bars as shown in Figure 4. As the poisoning ratio

increases, the error rates of the models on the target task show

an upward trend.

The observations reveal the vulnerability of the continual

learning algorithms as the performance degrades as the ad-

versarial samples are injected into the training dataset of the

defender. The task incremental learning scenario shows the

same vulnerability to the poisoning samples; however, in the

domain incremental learning setting, we notice that the EWC

is more robust than SI and online EWC. We hypothesize that

the robustness of EWC in domain incremental learning arises

from the separate Fisher information matrix calculated for each

task that EWC can avoid the model parameters moving too far

away from the optimal parameters of the target tasks.

The results show that the samples crafted to target forgetting

are effective at reducing the performance; however, we need to

show that the samples are difficult to detect. We demonstrate

the stealthiness of the samples by visualizing the data using

t-distributed stochastic neighbor embeddings (t-SNE) [36].

The benign samples and poison samples are mapped into a

two-dimensional space, as shown in Figure 5. The poison

samples are close to the benign samples in the low dimensional

manifold, however, they are able to significantly force the

defender to forget the learned knowledge. In addition to the

adversarial samples being difficult to detect, we can also show

that generating the samples has very little overhead. During

the poisoning procedure, a batch poisoning strategy is adopted

that for each run of Algorithm 2, 500 images are sampled as
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(a) MNIST Fellowship (b) Rotated MNIST

Fig. 4. Performance of EWC, EWC (Online) and SI on the MNIST Fellowship and Rotated MNIST dataset with different levels of poisoning data added into
the training set. The results are reported as the error and the error bars represent a 95% confidence interval. Note that the key finding here is not to determine
if one algorithm is performing better or worse than another, rather, we show that the proposed targeted forgetting increases the error on the targeted task.

(a) Benign Samples (b) Adversarial Samples

Fig. 5. t-SNE visualization (a) benign and (b) adversarial samples generated from the MNIST dataset. For each sample in (a), we generate an adversarial
sample using the proposed algorithm and are shown in (b). One of the key findings is that the adversarial samples are extremely close the the benign samples
on the low dimensional manifold; however, these samples can significantly degrade the performance of the continual learning models. Thus, the performance
reduction is observed in the tables, and this figure shows that the adversarial samples are difficulty to detect.

a single batch from the training data to be poisoned. Based

on our experiments, one batch of 500 poison samples costs

around 1.8s on GPU. This low time complexity enables our

approach to be practical in continual learning settings where

the model is learning from steaming data.

V. ETHICAL CONSIDERATIONS

The experiments conducted in this work include the arti-

ficially produced catastrophic forgetting of continual learning

algorithms. It is worth noting that concept forgetting can be

valuable in many incremental learning tasks where the con-

cepts change over time; however, there are ethical implications

of the proposed approach because the adversarial data can

be used to target forgetting in a way that violates fairness in

machine learning [37]. This notion of fairness is particularly

important when we take into account the concepts or tasks

that are targeted for forgetting. Therefore, we urge that care be

taken when these models and techniques are used in practice,

and the experiments in this work are limited specific types of

concept forgetting.
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VI. CONCLUSION

In summary, this work proposed a task targeted poison-

ing attack against continual learning algorithms that aim to

degrade the performance of the neural network on specific

learned tasks. We demonstrate the vulnerability to data poi-

soning attacks of three commonly-used regularization-based

continual learning approaches. Further, we have shown the

continual learning approaches vulnerable to data poisoning

attacks in both task and domain incremental learning scenar-

ios. The presented method starts from naïve label flipping

attacks and then derives less detectable clean label attacks

by approximation of flipped label gradients. The poison sam-

ples generated by the proposed method inject misinformation

into the neural network, making the network learn a false

memory about the target task. While data poisoning attacks

have been widely studied in offline learning paradigms under

i.i.d assumption, the data poisoning methodology in continual

learning among non-i.i.d data still needs to be focused on.

The primary purpose of this paper is to raise the community’s

awareness to focus on continual learning in adversarial and

malicious environments. Our future work includes defense

mechanisms to reduce the impact of adversarial attacks against

continual learning algorithms.
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