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Abstract—Continual (incremental) learning approaches are
designed to address catastrophic forgetting in neural networks
by training on batches or streaming data over time. In many
real-world scenarios, the environments that generate streaming
data are exposed to untrusted sources. These untrusted sources
can be exposed to data poisoned by an adversary. The adver-
saries can manipulate and inject malicious samples into the
training data. Thus, the untrusted data sources and malicious
samples are meant to expose the vulnerabilities of neural net-
works that can lead to serious consequences in applications
that require reliable performance. However, recent works on
continual learning only focused on adversary agnostic scenarios
without considering the possibility of data poisoning attacks.
Further, recent work has demonstrated there are vulnerabilities
of continual learning approaches in the presence of backdoor
attacks with a relaxed constraint on manipulating data. In this
paper, we focus on a more general and practical poisoning
setting that artificially forces catastrophic forgetting by clean-
label data poisoning attacks. We proposed a task targeted data
poisoning attack that forces the neural network to forget the
previous-learned knowledge, while the attack samples remain
stealthy. The approach is benchmarked against three state-of-
the-art continual learning algorithms on both domain and task
incremental learning scenarios. The experiments demonstrate
that the accuracy on targeted tasks significantly drops when the
poisoned dataset is used in continual task learning.

Index Terms—continual learning, adversarial machine learn-
ing, data poisoning attack.

I. INTRODUCTION

Neural networks suffer catastrophic forgetting [1] when
they are tasked with learning from sequential or streaming
data [2]-[4]. As a result of catastrophic forgetting, a well-
trained neural network can partially or even entirely forget the
information about the previously-learned knowledge. Unlike
traditional offline learners trained on single task where the
entire dataset is sampled from an i.i.d. distribution, continual
learners are trained from tasks that typically change over time.
Continual (incremental) learning approaches are designed to
retain knowledge of historical tasks by protecting the model
parameters that are important for previous tasks from intensive
change when training models on new coming tasks. Hence,
a continual learning setting requires that a model maintain a
healthy balance between stability and plasticity [3]. Stability is
the property of a model to retain old knowledge and plasticity
is the property that allows the model to learn from new data.
Continual learning approaches enable intelligent systems to
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achieve life-long learning on massive data under the limitation
of finite storage and evolve on rapidly updating data sources
while preserving the capability to process the earlier tasks.

Continual learning focuses on learning from tasks — datasets
— over time. Tasks are presented to the model sequentially over
time for training and the model can be asked to predict tasks
that it has previously learned. Therefore, it is crucial to main-
tain a healthy balance between stability and plasticity. Further,
information learned about the different tasks can be transferred
to new tasks when they are presented to the model. Note
that the definition of continual learning is similar to transfer
and multi-task learning; however, there are differences worth
noting. The field of transfer learning focuses on techniques
that can effectively learn new tasks from older tasks and the
goal is to perform well on the new task. Transfer learning
has been successfully applied in many domains where limited
data are available from the target task [5]. Similarly, multi-
task learning focuses on maximizing the performance across
the tasks presented to the model. The concept of lifelong
learning has aspects of transfer and multi-task learning [6];
however, it differs in that it seeks to learn new tasks by
efficiently building on prior task learning while maximizing
the performance across all tasks.

Unfortunately, recent work has shown that neural networks
are vulnerable to adversarial attacks that cause deleterious
predictions and decrease the robustness of the model [7], [8].
Adversaries can inject small perturbations into the original
data that cause errors. These perturbations can be injected at
training or testing time, which are referred to as poisoning
or evasion attacks, respectively. In this work, we focus on
adversarial poisoning attacks where the adversary has access
to the training data (or some knowledge about the task). Their
goal is to craft examples that decrease the performance of the
neural network. Recent work has shown that many approaches
that generate poison sample are actually easy to detect (see
the strength vs. detectability dilemma [9]). Poisoning attacks
can be identified as one of three primary categories. Backdoor
attacks [10] inject the backdoor instances into the training data
that mislead the learning system make the incorrect predictions
on test data with backdoor patterns. Targeted data poisoning
attacks [11]-[13] achieve triggerless backdoor attacks without
adding the backdoor patterns to the target data to fool the
network. Finally, availability attacks [14] can cause more
damage to the model by directly degrading the performance
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without any modification on the data during testing. As a
result, the neural networks trained on the malicious data will
be less trustworthy.

While several data poisoning methods for offline learn-
ing models have been recently proposed, data poisoning in
continual learning scenarios has received significantly less
attention. There are two primary objectives of poisoning
attacks against continual learning. First, the attackers aim to
erase the knowledge about all tasks, which is identical to
attacking offline learning. Another goal is to attack the specific
tasks’ knowledge while not affecting others. Recently, back-
door attacks against continual learning have been proposed to
create a “false memory” about the targeted task [15], [16].
The samples from the tasks under attack with the backdoor
patterns can easily bypass the neural network. However, there
is still an issue with the existing approaches: can we make
catastrophic forgetting intentional by data poisoning while the
attack samples are stealthy (i.e., difficult to detect)?

This paper explores task-specific availability attacks against
continual learning. Specifically, this work develops a novel
data poisoning attack that significantly reduces the target task
performance over time and the adversarial samples are difficult
to detect. We demonstrate that injecting poison samples into
upcoming tasks could produce catastrophic forgetting to the
targeted task artificially while making minimal interference
on performance on non-targeted tasks. Compared with the
previous works [15], [16], the presented work considered a
new data poisoning setting. First, the samples from the historic
task will not show up in current training data. Second, a clean
label attack was adopted that the corresponding labels of the
training data are not corrupted. Further, unlike previous works,
we do not add backdoor patterns in the test data at inference
time. We benchmark our approach against three continual
learning algorithms on two datasets.

II. RELATED WORKS
A. Continual learning

In general, continual learning algorithms are categorized
into replay-based, architecture-based, and regularization-based
methods. Replay-based methods store the original samples
from previous tasks [17], [18] or use generative models
to generate the samples of previous tasks [19]. The stored
or generated examples from prior tasks are replayed and
concatenated with the training data of the current task dur-
ing the training phase to overcome catastrophic forgetting.
Architecture-based methods separate the neural network into
sub-networks for each task to ensure the parameters for each
task have minimal effect on the other sub-networks [20], [21].
Regularization-based approaches were proposed to address the
data storage and privacy problem in replay-based methods and
architectural complexity issues associated with architecture-
based methods [22]-[24]. These methods compute the im-
portance to the learned tasks of each parameters, and store
the importance into matrix. When the network is trained on
new tasks, the importance matrix is used as regularization
terms to prevent too large updates on the parameter associated
with old tasks [6] This work explores the vulnerability of

three common regularization-based algorithms, namely, Elastic
Weight Consolidation (EWC) [22], Online Elastic Weight
Consolidation (online EWC) [23], and Synaptic Intelligence
(SI) [24]. We choose these methods due to their popularity,
and they do not require previous data samples be retained.

In this paper, two critical and practical scenarios known
as domain and tasks incremental learning [25] are considered
for evaluating the vulnerability of continual learning models.
In domain incremental learning, the data are sampled from
distributions/domains between tasks with fixed numbers and
type of class. In contrast, incremental task learning is a more
challenging because the distributions/domains of both the data
and the classes differ between tasks, while only the number of
the classes remains fixed. Further, when the tasks are learned
sequentially, the labels are assigned to class IDs based on their
original categories. Thus, the inference phase can predict the
classes of the inputs without task IDs.

B. Adversarial Machine Learning

The reliability and robustness of neural networks has drawn
much attention with the broad application of neural networks
in recent years. Adversarial machine learning explores the
vulnerabilities of machine learning algorithms and performs
attacks to control the behavior of machine learning algorithms
in two major aspects. Evasion/adversarial attacks [8], [26]-
[29] exploit the blindspots of trained models where they
catastrophically misclassify the inputs with adversarial per-
turbations at the test time. Evasion attacks find adversarial
perturbations by maximizing the loss with respect to the inputs
under certain constraints. The input data with even imperceiv-
able perturbations in the direction would significantly change
the feature representations in a deep network and the logit
outputs. Poisoning attacks inject malicious data points into the
training data to enforce the model converging to the wanted
points of the attackers.

Poisoning attacks can broadly categorized into backdoor,
targeted data poisoning, and poison availability attacks. In the
backdoor attacks setting [10], the adversarial samples are gen-
erated with backdoor patterns that are inserted into the training
images to create an association between the backdoor pattern
and the incorrect labels. During testing, the neural network
can be fooled by inputs tagged with predefined backdoors —
or triggers — while having similar performance to the normal
model when the triggers do not activate the backdoor. Thus,
backdoor attacks are regarded as an intermediary between data
poisoning attacks and evasion attacks. Targeted data poisoning
attacks [11]-[13] insert triggerless backdoor with only access
to the training data, but cannot modify test data. Targeted data
poisoning aims to cause the target samples to be misclassified
to a specific class. Most work on poison availability attacks
focused on reducing the accuracy in general that makes the
model unusable [14], and producing gradient vanishing when
model learning on the modified data that make the data
unexploitable [30].

This paper proposes a new scenario for poison availabil-
ity attacks against continual learning models. The poisoned
samples are designed to produce an intentional catastrophic
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Algorithm 1 Regularization-based CL algorithms

Input Training data samples received for task 7:
{X;,Y;}; total number of tasks: T'; model parameter: 6,
regularization parameter: A

1: for r=1to T do

2 if 7 == 1 then

3: 0r = argming L(f(X+;6,),Y;)

4: else

5 0r :argminﬁ(f(XT;97)7YT)+)\H97—GiﬂH2
6 end if

7: end for

forgetting that degrades the neural network’s performance
on a specific historical task when training on current tasks.
Unlike conventional poison availability attacks, the presented
method forces the network to forget the previously learned
data instead of reducing the overall performance on all learned
data. Further, our method inserts false memory of the data
sampled from a targeted domain instead of being limited to
specific target samples compared to targeted data poisoning
attacks. Thus, we name the proposed method as task targeted
poisoning attack to distinguish it from poison availability
attacks and targeted data poisoning attacks.

III. TASK TARGETED POISONING

This section motivates the proposed poisoning attacks and
the continual learning settings for streaming data. We denote
the output of a neural network with model parameters 6 as
f(x;0), where f has a soft-max output. The goal of the neural
network is to minimize the empirical risk is the main objective
function L(f(x;60),y) for training the network, where (z,y)
refers single input-label pair. The risk, or loss, for the tasks
considered in this work is cross-entropy. In contrast, a dataset
or a data batch are defined as D = {X,Y} = {xi7yi}£\;1,
as well as the risks on a dataset or a data batch are defined
as Ly(D). In the data poisoning setting, we define the dataset
for a task 7 as D,, where the adversary seeks to target the
model to forget task 7. The adversary’s objective is to degrade
the performance on D, even when data from new tasks are
presented. Finally, we define tasks D,y,,,Vn=1,..., T — 1
as the non-target tasks where the poison samples are injected.

A. Regularization-based continual learning algorithms

In the continual learning setting, the model receives a new
training data from a task and the labels which are denoted by
X, and Y, at time 7 = 1,...,T, respectively. The goal of
the continual learner is to find the optimal parameters 6*. By
optimal, we assume that the goal is to minimize the empirical
risk across all tasks. More formally, this objective is given by

T
. _p* 2
melnTz::1 Ly (D;) +)\§i:-7771(97 1) (1

where the regularization term penalizes changes to those
parameters proportional to the importance matrix I,_; ;. The
importance matrix is calculated from the previous tasks D, _;.

The regularization coefficient A > 0 controls the forgetting
factor for previously learned tasks. The weight of the regular-
izer can be interpreted as follows: the larger A results in the
continual learner retaining more previous knowledge and less
learning on new tasks, and vice versa. The primary difference
between the regularization-based continual learning algorithms
is in the calculation of the importance matrix, I, _; ;. In our
setting, the regularization term can be regarded as a variant of
L2 regularization that performs knowledge preservation and
natural defense to poisoning perturbations. In our attacking
setting, we simply the learning procedure as Algorithm 1
without considering any data-dependent importance matrix.

B. Attack Strategy

In this work, we define the adversary and the defender
model as the two parties involved in the data poisoning setting.
The adversary’s goal is to generate adversarial samples with
some prior knowledge about the defender. The defender’s
knowledge plays a crucial role in how they generate the data.
The adversary can add data into defender’s training set that is
crafted to reduce the defender’s performance. The adversary
can inject these malicious data into all time steps during
continual learning.

We consider a white-box attack setting, where the adversary
has full knowledge about the defender’s model. Note that a
white-box adversarial setting is the worst case for the defender
since these settings allow the adversary access to the data and
the defender’s classifier. Thus, the adversary has access to the
defender’s model parameters 6,1, the dataset for the new task
D., and the dataset of target task D; where ¢t < 7. However,
due to the consideration for generality, the defender updates
their parameters using the cross-entropy loss, and the adver-
sary does not have access to the loss value and the importance
matrix. The adversary has limited control over the training data
other than the fact they can inject a limited number of samples.
The adversary can add ¢.,-norm e-bounded perturbations to a
fraction of the current training dataset. The adversary performs
only clean-label attacks, which means the adversary is not
permitted to change the original label of a poisoned image.
Meanwhile, samples from the target task is not allowed to be
injected into the current training data.

C. Task Targeted Poisoning Attacks

The task targeted poisoning attack scenario is where the
defender’s network is first trained on a clean target dataset then
updated over time on several poisoned datasets. In the threat
model of task targeted poisoning attacks, the attacker aims to
degrade the defender’s performance on the target task after
the model is trained on the non-target tasks. More formally,
let D, be the target dataset and D, ,,Vn = 1,...,T — 7
as the non-target datasets. The adversary modifies D,
by injecting poisoned samples which creates the adversarial
datasets denoted by Dﬁi”n. The adversary’s objective function
for generating malicious samples is given by:

T—1
max Lg«(D;),and §* € argmin Z LDy, (2)
n=1

T+n
d
Dady, 0
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Algorithm 2 Poisoning attack against continual learning

Input model parameters: 6; target dataset
batches: S, = {X,,Y;}; poisoning dataset batches:
Srin = {Xr4n, Yrin}; the size of perturbation: e; iterations:
T'; decay factor: p; numbers of class: C step size: «;

1: procedure START POISONING

2: initialize momentum gy = 0 and poison samples
Xt = Xo

3: flip target label Y24 =Y, + randint(1,C — 1)%C;

4: compute target gradients A} = Vo L(f(X,,0), Y,2%);

5: fort=0to 7T —1do

6: compute poison gradients A} =
V@‘C(f(Xgigu 0); YT"FTL);

7: compute cosine similarity H = {265

' [agllllasl”

8: update momentum g1 = 4 - g + ||XT||;

9: update X% = X2 + o - sign(gs+1);

10: end for

11:  return X%,

12: end procedure

where the D, and D.,, are not sampled from the same
underlying distribution. If we ignore the data-independent
regularization term in the simplified version of regularization-
based continual learning algorithms in Algorithm 1. The
minimization problem is typically optimized using stochastic
gradient descent (SGD).

Let us consider a single epoch in gradient descent on the
entire dataset for further simplifying the problem, the model
parameters after training on a task at task D, ; are updated
as:

Or41 =0 —nVoLy (Dry1) 3)
=0, — Ve L(f(Xr41;07),Yri1), €]

where 7 > 0 is the learning rate. In practice, the update term
might include momentum (e.g., momentumSGD [31]) or adap-
tive gradient methods (e.g., Adam [32] and AdaGrad [33]);
however, for brevity, we omit these terms from the update
equation.

The most intuitive way to forget the previous knowledge
using gradient descent is to inject samples from the target tasks
with incorrect labels on the new tasks. Let us define f)gd“ as
a subset of the target D, with flipped labels Y,%%. These data
are inserted to the new training data D, for the defender to
use for training their model. Then the gradient descent update
to minimize the loss during the training of current task is given
by:

Or41 =0, — VLo, (Dryq UDI) ®)
=0, — anﬁ(f(X‘H—l; 97’); YT+1)7 (6)
NV L(f(Xr30,),Y2™), @)

Note that this expression shows that the defender’s model
minimizes the loss on current task and the adversarial loss on
the target tasks. The adversarial gradient information about the

target task leads the defender’s model to have a poor perfor-
mance on the target task, while seemingly higher performance
on the new tasks.

We limit the behavior of the adversary such that it is not
permitted to insert the samples from the target task into the
non-target tasks nor change the label of those samples. The
goal of the proposed attack is to find an adversarial subset
f)fi”l of the current task D,,; with perturbed data points
Xfi”l and clean labels Y, ;. Then the gradient updates can
be expressed as:

0r41=0- —nVoLo, (Dry1 UDI) ®)
= er - ﬁVG»C(f(XTH; 97‘): Y‘r+1)_ (9)
UVGE(f(Xgiq§9r)’Yr+1), (10)

where we notice that difference between Equations 5 and 8 is
the malicious gradients. If the gradients on adversarial subset
25:5131 on the defender model are close to the gradients on the
label-flipped subset D24 then f)‘ji”l will have the same poison
effect as ﬁ:dv for making the model forget the knowledge on
the target set D,. Therefore, the adversary’s goal is to find the
poison data Xﬁf’l to meet the following condition:

VoL (f(X21:0,),Yr1) = VoL(f(Xr56,),Y2%). (1)

The min-max optimization problem in Equation 2 can be
transformed into a simple optimization task by minimizing
the distance between two gradients:

min d(VoL(f(X745:07), Y1), (12)
T+1
VoL(f(X;0-), Y, ")), (13)

where d refers to the distance between two vectors. The
cosine similarity is chosen as the distance function due to
its being bounded in the interval [—1,1] and its property of
magnitude irrelevant. Therefore, poison samples can be found
by minimizing:

(VoL(f(X2:0,),Yr11), VoL (f(Xs;0,), Vo))

min — .
Xy ||V0£(f(XgiUl’ 97)7 Y’r—l-l) || ’ ||V(9£(f(XT, 07)7 YTadv)”
(14

The minimization object aims to create an approximation of
the malicious gradients of the label-flipped subset @ﬁd” by
modifying the adversarial subset @21”1 It is noticeable that
we minimize the negative value of the cosine similarity since
the larger cosine similarity refers to the closer distance of two
vectors.

The malicious objective is optimized with the momentum
variant of iterative fast gradient method (MI-FGSM) [34] as
shown in Algorithm 2. The gradients of the defender model’s
parameter w.r.t to a batch of data sampled from the target task
are first computed as the reference gradients. Each optimiza-
tion step calculates the gradients of the defender’s model w.r.t
to the poisoned samples then calculated the gradients of the
poisoned samples based on the malicious objective.

IV. EXPERIMENTS

This section presents the experimental results for our
proposed attacks. We identified two datasets to benchmark
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EWC

Task Clean 5% poisoned | 10% poisoned | 15% poisoned | 20% poisoned | 10% label flipping
1 66.73+2.72 | 61.15+2.29 56.34+3.65 53.27+1.42 50.53+2.42 4.79+0.51
2 40.554+1.05 40.25+0.8 38.24+1.0 39.21+£0.68 40.15+0.73 38.94+0.81
3 82.114+0.47 82.574+0.3 82.894+0.49 83.264+0.33 82.774+0.55 82.2240.89
Online EWC
Task Clean 5% poisoned | 10% poisoned | 15% poisoned | 20% poisoned | 10% label flipping
1 69.43+2.35 | 62.95+1.23 59.24+1.97 55.07+2.08 50.53+2.42 2.57+0.35
2 40.88+1.18 39.534+1.0 40.3£0.29 40.65+0.95 40.15+0.73 43.37+1.19
3 81.164+0.52 | 82.86+0.37 82.234+0.26 82.464+0.51 82.774+0.55 81.56+0.41
SI
Task Clean 5% poisoned | 10% poisoned | 15% poisoned | 20% poisoned | 10% label flipping
1 65.97+1.14 | 63.32+1.15 60.76+1.5 54.62+1.95 53.65+2.81 3.79+0.36
2 42.7+0.94 40.98+0.91 40.53+0.56 40.79+0.64 39.674+0.94 47.51+091
3 76.84+0.31 77.24+0.1 77.75+0.38 77.56+0.25 77.854+0.19 75.374+0.21
TABLE T

TEST ACCURACY ON MNIST FELLOWSHIP. THE BOLD TEXT REFERS TO THE RESULTS OBTAINED BY THE PROPOSED METHOD.

TASK 1 TASK 2 TASK 3 TASK 4 TASK 5
clean 73.2+1.89 | 81.19+1.34 | 85.49+0.59 | 89.61+0.32 90.35+0.3
5% poisoned 69.07+1.33 | 78.71+1.52 | 84.01+0.75 88.87+0.3 | 90.714+0.19
EWC 10% poisoned 68.07+2.11 | 78.634+2.36 84.98+1.2 89.59+0.1 | 90.344+0.17
15% poisoned 66.52+0.89 | 78.284+1.03 85.65+0.7 | 89.754+0.35 | 90.51+0.26
20% poisoned 67.12+1.27 | 78.644+1.25 | 85.134+0.61 | 89.72+0.23 | 90.56+0.15
10% label flipping 34.0+£1.15 | 87.25+£0.27 | 88.144+0.29 | 88.72+0.23 88.0+£0.27
clean 67.5+1.01 | 77.67+1.03 | 86.56+0.28 | 91.03+0.06 | 90.09+0.24
5% poisoned 62.35+1.12 | 76.74+0.79 | 86.11+0.36 90.7+0.24 | 90.09+0.24
Online EWC 10% poisoned 59.1+0.91 | 75.68+0.74 | 86.25+0.48 | 91.41+£0.15 | 90.35+0.23
15% poisoned 59.144+0.36 | 75.31+0.44 | 86.65+0.35 | 90.67+0.14 | 89.26+0.25
20% poisoned 57.441+0.88 74.5+0.76 86.3+0.48 | 90.9440.26 89.84+0.47
10% label flipping 24.98+0.8 | 82.514+0.52 | 87.51+0.46 90.01+0.2 | 87.2740.31
clean 59.02+£1.9 69.6442.0 82.940.59 | 89.944+0.26 | 88.07+0.41
5% poisoned 55.974+0.74 | 68.02+0.99 | 82.81+0.86 | 90.12+0.13 | 88.44+0.21
SI 10% poisoned 48.94+0.9 62.164+0.7 | 79.97+0.53 | 89.71+£0.06 | 89.12+0.15
15% poisoned 48.56+0.75 | 64.21+0.87 | 81.59+0.56 90.22+0.1 | 88.62+0.24
20% poisoned 44.78+0.69 | 61.2340.49 | 81.15+0.76 | 89.97+0.37 | 88.01+0.16
10% label flipping | 27.034+0.82 | 71.72+0.35 | 85.05+0.36 | 89.84+0.19 86.8+0.22
ABLE 1T

TEST ACCURACY ON ROTATED MNIST. THE BOLD TEXT REFERS TO THE RESULTS OBTAINED BY THE PROPOSED METHOD.
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Fig. 1. MNIST fellowship dataset for task incremental learning. The first,
second and third tasks are the MNIST, Fashion MNIST, and KMNIST
datasets, respectively. Note that each task has the ten classes and the input
size is 28x28.

the continual learning scenario with a multi-layer perceptron
(MLP). Namely, we use the Rotation MNIST [17] for domain
incremental learning, and MNIST Fellowship [35] for task
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Fig. 2. Visualization of the Rotated MNIST dataset for domain incremental
learning. Each task is generated from the original MNIST dataset; however,
the tasks are rotated version of the original MNIST dataset.
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Clean Adv

Clean Adv

Fig. 3. Examples of adversarial samples generated using the proposed
approach. All the samples are generated with an adversarial budget of ¢ = 0.1.
The first and second row are the clean and adversarial samples generated from
the MNIST and Fashion-MNIST dataset, respectively.

incremental learning. The MLP for domain and task incre-
mental learning has two hidden layers with ReLU activations
and a soft-max output. The adversary and defender classifier
has the same architecture. There are 400 and 1000 neurons in
each hidden layer for domain and task incremental learning,
respectively. In addition, we choose a single head configuration
for the network, which means all tasks share the same clas-
sification layer [25]. All experiments are implemented using
PyTorch and run on an NVIDIA Tesla V100 GPU.

A. Dataset

Rotation MNIST [17]: The rotation MNIST dataset con-
sists of five different tasks, where each task is generated with a
different rotation of the the images from the original task. Each
task in Rotation MNIST is a 10-class classification problem
where their labels are the corresponding digits. Thus, each
subsequent task involves classification on the same ten digits.
Figure 2 shows an example of the five tasks Rotation MNIST.

MNIST Fellowship [35]: The MNIST Fellowship is a
combination of three variations of MNIST. The first task is the
original MNIST dataset, which is classification of digits. The
second task is Fashion MNIST dataset, which is classification
of fashion products. Finally, the third task is KMNIST, which
contains handwritten characters. Note that each of the tasks
have ten classes and the input images are 28 x 28. Figure 1
shows an example of the three tasks in MNIST fellowship.

B. Results

In our poisoning experiments, we chose the initial task
as the target task, and poison the remainder of the tasks
to degrade the performance on the target task. After the
defender’s network is train on each task, the adversary uses

the defender’s network to craft and inject the poisoned samples
into the next task.

We first evaluate the poisoning attack against the task
incremental learning. The three continual learning models are
trained using the Adam optimizer [32] with a learning rate
of 0.0001. Each task is trained for ten epochs with batch
size 128. The regularization factors are 5 for SI and 5000
for both online EWC and EWC. We evaluate the accuracy on
the clean validation sets for models trained on clean datasets,
and 5 — 20% poison samples of the training data of tasks two
and three as shown in Table I. The results are averaged over
five runs and we report the the standard errors with a 95%
confidence interval. The poison samples are generated using
Algorithm 2 for 7' = 240 iterations with momentum decay
factor 4 = 1.0. The adversarial perturbations are restricted
under {-norm for € = 25.5/255. The comparison on clean
images and poison images under € = 25.5/255 can be shown
in Figure 3. The step size is set as 4-¢/T for attacking SI and
online EWC and 2/255 for attacking EWC. We also include
the results obtained by inserting 10% data from the target task
with flipped labels into the rest tasks.

The results for domain incremental learning are reported in
Table II. The training configuration is the same as the task
incremental learning, while the regularization factors are set
as five for SI, 1000 for online EWC, and 750 for EWC. The
poisoning setting used for domain incremental learning is the
same as attacking against task incremental learning to ensure
the method’s generality. We also visualized the test errors on
validation data of the target task and the fraction of poison
samples in the non-target training data in more straightforward
error bars as shown in Figure 4. As the poisoning ratio
increases, the error rates of the models on the target task show
an upward trend.

The observations reveal the vulnerability of the continual
learning algorithms as the performance degrades as the ad-
versarial samples are injected into the training dataset of the
defender. The task incremental learning scenario shows the
same vulnerability to the poisoning samples; however, in the
domain incremental learning setting, we notice that the EWC
is more robust than SI and online EWC. We hypothesize that
the robustness of EWC in domain incremental learning arises
from the separate Fisher information matrix calculated for each
task that EWC can avoid the model parameters moving too far
away from the optimal parameters of the target tasks.

The results show that the samples crafted to target forgetting
are effective at reducing the performance; however, we need to
show that the samples are difficult to detect. We demonstrate
the stealthiness of the samples by visualizing the data using
t-distributed stochastic neighbor embeddings (t-SNE) [36].
The benign samples and poison samples are mapped into a
two-dimensional space, as shown in Figure 5. The poison
samples are close to the benign samples in the low dimensional
manifold, however, they are able to significantly force the
defender to forget the learned knowledge. In addition to the
adversarial samples being difficult to detect, we can also show
that generating the samples has very little overhead. During
the poisoning procedure, a batch poisoning strategy is adopted
that for each run of Algorithm 2, 500 images are sampled as
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Fig. 5. t-SNE visualization (a) benign and (b) adversarial samples generated from the MNIST dataset. For each sample in (a), we generate an adversarial
sample using the proposed algorithm and are shown in (b). One of the key findings is that the adversarial samples are extremely close the the benign samples
on the low dimensional manifold; however, these samples can significantly degrade the performance of the continual learning models. Thus, the performance
reduction is observed in the tables, and this figure shows that the adversarial samples are difficulty to detect.

a single batch from the training data to be poisoned. Based
on our experiments, one batch of 500 poison samples costs
around 1.8s on GPU. This low time complexity enables our
approach to be practical in continual learning settings where
the model is learning from steaming data.

V. ETHICAL CONSIDERATIONS

The experiments conducted in this work include the arti-
ficially produced catastrophic forgetting of continual learning
algorithms. It is worth noting that concept forgetting can be
valuable in many incremental learning tasks where the con-

cepts change over time; however, there are ethical implications
of the proposed approach because the adversarial data can
be used to target forgetting in a way that violates fairness in
machine learning [37]. This notion of fairness is particularly
important when we take into account the concepts or tasks
that are targeted for forgetting. Therefore, we urge that care be
taken when these models and techniques are used in practice,
and the experiments in this work are limited specific types of
concept forgetting.
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VI. CONCLUSION

In summary, this work proposed a task targeted poison-
ing attack against continual learning algorithms that aim to
degrade the performance of the neural network on specific
learned tasks. We demonstrate the vulnerability to data poi-
soning attacks of three commonly-used regularization-based
continual learning approaches. Further, we have shown the
continual learning approaches vulnerable to data poisoning
attacks in both task and domain incremental learning scenar-
ios. The presented method starts from naive label flipping
attacks and then derives less detectable clean label attacks
by approximation of flipped label gradients. The poison sam-
ples generated by the proposed method inject misinformation
into the neural network, making the network learn a false
memory about the target task. While data poisoning attacks
have been widely studied in offline learning paradigms under
i.i.d assumption, the data poisoning methodology in continual
learning among non-i.i.d data still needs to be focused on.
The primary purpose of this paper is to raise the community’s
awareness to focus on continual learning in adversarial and
malicious environments. Our future work includes defense
mechanisms to reduce the impact of adversarial attacks against
continual learning algorithms.
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