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ABSTRACT
An optimal electric machine design task can be posed as a constrained multi-
objective optimization problem. While the objectives require time-consuming finite
element analysis, constraints, such as geometric constraints, can often be based on
mathematical expressions. This article investigates this mixed computationally ex-
pensive optimization problem and proposes a computationally efficient optimization
method based on evolutionary algorithms. The proposed method generates feasi-
ble solutions only by using a generalizable repair operator and also addresses the
time-consuming objective functions by incorporating surrogate models for their pre-
diction. The article successfully establishes the superiority of the proposed method
over a conventional optimization approach. This study demonstrates how a com-
plex engineering design task can be optimized efficiently for multiple objectives and
constraints requiring heterogeneous evaluation times. It also shows how optimal so-
lutions can be analyzed to select a single preferred solution and harnessed to reveal
vital design features common to optimal solutions as design principles.

KEYWORDS
Electric Machine Design, Multi-objective Optimization, Surrogate-Assisted
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1. Introduction

Electric machines are essential components within a multitude of industries today,
and their range of application varies from refrigeration and industrial pumps to power
generation and automobiles. Consequently, design optimization of electric machines is
a complex multi-objective optimization problem (MOOP), often involving a combined
electromagnetic, thermal, and structural performance analysis. Analysis of electric
machines is a time-consuming process, and therefore, much effort has been focused on
improving the optimization tools and efficiency in the past two decades.

From investigating pattern search and sequential unconstrained minimization tech-
niques (Ramarathnam, Desai, and Rao 1973; Singh et al. 1983) to employing evolu-
tionary algorithms (EAs) for optimization of electric machines (Bianchi and Bolognani
1998), electric machine community has continually adopted the improvements in op-
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timization algorithms. As EAs perform better than classical direct search methods in
finding global optimum, their utilization in electric machine optimization has gained
further popularity (Duan, Harley, and Habetler 2009; Duan and Ionel 2013; Mirzaeian
et al. 2002; Sudhoff et al. 2005; Žarko, Ban, and Lipo 2005; Zhang et al. 2013). It
is also worth mentioning that electric machines require finite element analysis (FEA)
for performance evaluation with high accuracy. Naturally, the application of EAs in
combination with FEA can also be found in the literature (Pellegrino and Cupertino
2010a,b). Although using EAs with FEA ensures finding optimal solutions with high
quality, it also increases the overall computational cost of optimization. In this re-
gard, exploration of computationally inexpensive methods, such as surrogate models,
to predict the performance of electric machines has led to a reduction in overall com-
putational effort (Ionel and Popescu 2009; Jolly, Jabbar, and Qinghua 2005; Sizov,
Ionel, and Demerdash 2012; Song et al. 2018; Taran, Ionel, and Dorrell 2018).

A comprehensive literature review shows that while efforts have been made to im-
prove the optimization tools and efficiency, constraints handling, specifically inexpen-
sive constraints (such as geometric), in electrical machine optimization deserves more
attention. More commonly, the geometric feasibility of a candidate solution during
optimization relies on random sampling. For instance, in each optimization cycle (gen-
eration), geometrically infeasible solutions are discarded, and a random initialization
may be repeated until the desired number of feasible solutions has been found (Stipetic,
Miebach, and Zarko 2015). However, this random sampling may be inefficient when
the number of geometric variables and constraints increases. Khoshoo et al. (2021) pre-
sented a preliminary study showing that the information from inexpensive constraints
can be used to repair geometrically infeasible solutions and improve the Pareto-optimal
front. However, this preliminary study did not address the computational expense of
the objective functions vital for electric machine design optimization. Thus, this article
extends the algorithm repairing infeasible designs by incorporating surrogate models
to address the time-consuming objective functions. The main contributions of this
work are as follows.

• Proposal of a general repair operator that improves the quality of the Pareto-
optimal front by ensuring geometrically feasible solutions in each optimization
cycle by exploiting the inexpensiveness of geometric constraints while respecting
the manufacturing accuracy limitations.
• Performance validation of the proposed repair operator in combination with
surrogates to predict the computationally expensive objective functions and their
impact on the convergence of the optimization algorithm.
• Insights gained from Pareto-optimal electric machine designs and recommenda-
tions for selecting preferred solutions based on two different approaches: (1) a
domain-specific a posteriori multi-criteria decision-making (MCDM) approach
involving machine expertise, and (2) a systematic trade-off analysis of the ob-
tained Pareto-optimal set.

The rest of this article is structured as follows. Section 2 discusses related work and
reviews optimization methods proposed to optimize electric machine design. Section 3
discusses the formulation of the optimization problem used in this article. Section 4
presents the proposed optimization method, which exploits the computationally inex-
pensive constraints using a general repair operator and addresses the computationally
expensive objectives by incorporating surrogate models. Following this, the impact of
the algorithm’s components on the algorithm’s convergence, the generalizability of the
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proposed repair operator, a detailed discussion about Pareto-optimal solutions, and
the selection of preferred electric machine designs are presented in Section 5. Finally,
conclusions are presented in Section 6.

2. Related Work

Different user applications may require electric machines with different and unique de-
signs (Aggarwal, Strangas, and Karlis 2020; Khoshoo et al. 2022). Moreover, prolonged
usage of electric machines may develop faults due to variation in machine parameters,
such as vibrations (Aggarwal, Strangas, and Agapiou 2019a), current (Huang et al.
2021, 2019), and flux linkage (Aggarwal et al. 2021; Aggarwal, Strangas, and Agapiou
2019b). These faults pose a threat to user safety, and therefore, it is essential to con-
sider multiple objectives and constraints to find optimal solutions of desired quality.
In this regard, the advancements in optimization algorithms and objective function
evaluation tools have facilitated the design optimization of electric machines.

Ramarathnam, Desai, and Rao (1973) presented an early case study involving an
induction machine’s design by solving a single objective optimization problem. The
authors compared the performance of a direct, indirect, and random search method in
conjunction with the sequential unconstrained minimization technique. Results showed
that a direct search method performs better for complicated multi-variable functions
commonly occurring in electric machines. However, optimization methods considered
in the study suffered from getting stuck in local optima and required several restarts
to reach the global optimum.

Metaheuristics, particularly Genetic Algorithms (GAs), are widely used and known
for their global search behavior. Bianchi and Bolognani (1998) used a GA to optimize
the design of a surface-mounted permanent magnet (SPM) machine. Results from two
independent single objective optimization problems indicated that an evolutionary
method outperforms the direct search method when comparing the convergence to the
global optimum.

Since the design of an electric machine typically includes comparing the performance
of multiple metrics, multi-objective optimization using EAs is predominantly employed
nowadays. For instance, Pellegrino and Cupertino (2010b) employed an EA combined
with FEA to solve a three-objective optimization problem. The authors compared
two partial optimization strategies with a comprehensive three-objective optimization
method. Results showed that domain knowledge could be utilized to modify the op-
timization problem creatively to reduce the computation time without significantly
affecting the quality of results.

Several other strategies have been proposed for the reduction of optimization run-
time. For example, Pellegrino, Cupertino, and Gerada (2015) proposed a local re-
finement strategy to improve a Pareto-optimal design further after the optimization
terminated. After selecting a design in the region of interest, a local optimization
method was employed in the design’s vicinity. Results showed that an a posteriori
local search, even with fewer function evaluations, produced similar results to those
by an approach solely relying on global optimization. Similarly, Degano et al. (2016)
split the optimization procedure into two phases, where authors optimized torque den-
sity and losses in the first stage and the quality of torque profile in the second stage.
Although average torque and ripple are conflicting objectives, the optimal solutions af-
ter the second stage showed improved torque ripple without compromising the average
torque.
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Another research direction to address computationally expensive functions during
optimization is the usage of surrogate models. For example, Taran, Ionel, and Dorrell
(2018) presented a two-level surrogate-assisted optimization approach using differen-
tial evolution (DE) to find optimal designs for Axial Flux PM (AFPM) machines by
minimizing active material mass and total losses at rated operation. Results showed
that the surrogate-assisted algorithm outperforms the conventional multi-objective DE
in terms of computation time. More recently, Hayslett and Strangas (2021) presented
a new analytical winding function model; it was successfully integrated with a genetic
algorithm to optimize an IPM machine (Hayslett, Pham, and Strangas 2022).

The review of related work shows that while surrogate modeling has been explored
extensively, constraint handling in an electric machine design optimization problem
requires more attention, especially when the constraints are inexpensive. This article
addresses this gap in research by proposing a computationally efficient method to
handle an electric machine design optimization problem of mixed computationally
expensive nature.

3. Electric Machine Design And Optimization Problem Formulation

In addition to a selection of objective functions (fm, m = 1, . . . ,M), design variables

(xi, i = 1, . . . , N), variable ranges (xi ∈ [x
(L)
i , x

(U)
i ] for all i), and constraints (gj ,

j = 1, . . . , J) like in every other MOOP, an electric machine design optimization
problem also requires the selection of a machine template that is primarily application
dependant. In this article, a 3-phase, 48-slot/8-pole IPM machine with a single layer
of V-shaped magnet, used in the 2010 Toyota Prius, is chosen for analysis. In this
study, two of the most common machine performance measures, Average torque and
Torque pulsations, are chosen as the objective functions, which are calculated after
solving a 2D transient magnetic simulation using FEA in Altair Flux software (Flux
2019). 2D model of the machine is shown in Figure 1(a) (FluxMotor 2019). Only
1/8th of the model is simulated by taking advantage of the symmetry in the model to
reduce the simulation run time, as shown in Figure 1(b). Both objective functions are
conflicting, and optimization’s goal is to maximize Average torque while minimizing
Torque pulsations, where the definition of Torque pulsations is highlighted in
Figure 2.

(a) 2d model of selected IPM ma-

chine (FluxMotor 2019).

Stator yoke

Stator slots and

copper windings

Permanent magnets

Rotor yoke

Shaft

(b) Reduced model used in FEA.

Figure 1. IPM machine used for optimization
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Table 1. Values of geometric variables used for optimization.

xi Variable Description Unit x
(ref)
i x

(L)
i x

(U)
i

x1 Height of rotor pole cap mm 9.56 7.65 11.47
x2 Magnet thickness mm 7.16 5.73 8.59
x3 Magnet width mm 17.88 14.30 21.46
x4 Angle between magnets degree 145.35 116.28 174.42
x5 Bridge height mm 1.99 1.59 2.39
x6 Q-axis width mm 13.9 11.12 16.68
x7 Slot height mm 30.9 24.72 37.08
x8 Slot width mm 6.69 5.35 8.03
x9 Height of slot opening mm 1.22 0.98 1.46
x10 Width of slot opening mm 1.88 1.50 2.26
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Figure 3. Geometric variables used for optimiza-

tion.

After the selection of objective functions, a sensitivity analysis study has provided
the ten most significant geometric variables, as shown in Figure 3. Variable ranges are
defined based on the machine designer’s experience with a ±20% variation from the
reference design. Additionally, manufacturing accuracy limitations are applied to all
variables by limiting them to have only two decimal places. Details of lower (x(L))
and upper (x(U)) bound vectors along with reference (x(ref)) values of the ten (N =
10) variables are given in Table 1. Ten geometric constraints ensure the geometric
feasibility of candidate designs. All cases are analyzed at rated load and speed of the
reference design. Details on the formulation of geometric constraints and the selection
of the operating point for optimization are provided in the supplementary document.

Based on the above discussion of electric machine design, a bi-objective optimization
problem with ten variables and ten geometric constraints is formulated in this work.
Ultimately, the MOOP is defined as

Maximize f1(x) = Average torque(x),

Minimize f2(x) = Torque pulsations(x),

subject to gj(x) ≤ 0, ∀j ∈ 1, . . . , J(= 10),

x
(L)
i ≤ xi ≤ x

(U)
i , ∀i ∈ 1, . . . , N(= 10),

where x ∈ RN ,

(1)

where x represent the design variables to optimize, gj(x) are the geometric constraints,

and the lower and upper bounds of the variables are denoted by x
(L)
i and x

(U)
i , respec-

tively. Due to manufacturing accuracy limitations, all variables are restricted to have
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only two decimal places. Additionally, while the geometric constraints are inexpensive
to evaluate, objective functions require time consuming FEA.

4. Proposed Multi-Objective Optimization Algorithm

Based on the discussion presented in the previous section, it can be concluded that
the formulated electric machine optimization problem is of mixed computationally ex-
pensive nature with two expensive objective functions and ten inexpensive geometric
constraints. In a preliminary study, Khoshoo et al. (2021) showed that the compu-
tational inexpensiveness of constraint evaluations could be exploited to convert an
infeasible solution to a feasible one through a repair operator. However, the design
optimization of electric machines is an expensive problem to solve, and some effort
must be made to reduce the computational cost. Therefore, in addition to the repair
operator, the proposed method incorporates surrogates for predicting expensive ob-
jectives. Implementation of repair operator and surrogates in optimization algorithm
is explained below.

4.1. Implementation of Repair Operator

Implementation of repair operator focuses on two goals: (1) converting an infeasible
solution to a feasible one and (2) satisfying the manufacturing accuracy limitations.
The two goals are achieved in two different phases, which makes the repair operator
more customizable. In this work, the repair operator is combined with the evolutionary
multi-objective optimization (EMO) algorithm NSGA-II (Deb et al. 2002). Although
this article uses NSGA-II as the base optimization algorithm, other EMO methods
can also be tried as long as the constraints used in optimization problem formulation
are inexpensive to calculate.

NSGA-II is a modular, parameter-less optimization algorithm used extensively to
solve bi-objective optimization problems, including electric machine design. The algo-
rithm begins with a random sampling of solutions called the parent population. Once
the parent population is evaluated, non-dominated solutions are selected (Deb 2001).
The selected solutions undergo the recombination and mutation processes to create an
offspring population of the same size as the parent population. Once these offspring
solutions are evaluated, they are combined with the parent solutions, and the non-
dominated solutions from the top half are selected as the parent population of the
next generation. The process is continued till a termination criterion is reached.

4.1.1. Geometric Constraint Repair

As the name suggests, this phase converts an infeasible solution x to a feasible solution
x′ by solving an embedded optimization problem defined in (2). The feasibility of
the ensuing solution x′ is ensured with the help of geometric and box constraints.
Additionally, the objective ∥x− x′∥2 is designed to find x′ with the smallest Euclidean
distance (in ℓ2-norm) to the original infeasible solution x.
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Minimize
x′

∥∥x− x′∥∥2 ,
subject to gj(x

′) ≤ 0, ∀j ∈ 1, . . . , J(= 10),

x
(L)
i ≤ x′i ≤ x

(U)
i , ∀i ∈ 1, . . . , N(= 10),

where x′ ∈ RN .

(2)

This article uses the gradient-free simplex optimization algorithm proposed by
Nelder and Mead (Nelder and Mead 1965) to solve the above optimization problem.
The required initial solution is set to x which makes the search focused and quick.

4.1.2. Precision Repair

The output of the first phase gives a feasible solution x′. As the name suggests, the
second phase modifies each variable x′i to a floating-point number with a precision of
two. To achieve this, each variable x′i (1 ≤ i ≤ N) is rounded to its floor or ceil value.
This article proposes an efficient rounding scheme to choose from the 2N neighboring
possibilities.

The method first generates the sequence for rounding the variables through a ran-
dom permutation P of the first N consecutive natural numbers (|P | = N). Following
this, a feasible solution with two-decimal precision in all variables is found using a lo-
cal search method inspired by Hooke-Jeeves pattern moves (Hooke and Jeeves 1961).
For each variable under consideration, the solution’s feasibility is checked by rounding
that variable to its floor and ceil value. Keeping the rounding that leads to feasibility,
the process is repeated for the next variable in P . If the process does not result in
a feasible solution after all variables are explored, a new random permutation is at-
tempted. A solution x is discarded if it cannot be repaired in a maximum of ρ (= 100
used here) attempts.

The two phases of the repair operator are illustrated in Figure 4, which shows
the feasible (∀j : gj(x) ≤ 0) and the infeasible (∃j : gj(x) > 0) part of the two
dimensional search space. As explained earlier, the proposed operator attempts to
repair an infeasible solution x in two phases. The first phase finds a feasible solution
x′ while minimizing its Euclidean distance to x. In the second phase, a new feasible
solution x′′ is found by rounding x′ to a float of precision two. In the two dimensional
search space (N = 2), the rounding can result in 2N = 22 = 4 different solutions, where
50% turn out to be feasible. In all possible cases, the above two phases can produce
feasible solutions with two-decimal places of rounding, given that the constraints are
inexpensive to evaluate.

4.2. Surrogate Incorporation in Optimization Cycle

Commonly, surrogates – approximation or interpolation models – are utilized during
optimization to improve the convergence behavior. First, one shall distinguish between
two different types of evaluations: exact solution evaluations (ESEs) that require run-
ning the computationally expensive evaluation for computing two objectives Average
torque(x) and Torque pulsations(x); and approximate solution evaluations (ASEs),
which is a computationally inexpensive approximation by the surrogates. Where the
overall optimization run is limited by ESEmax function evaluation, function calls of

7



Figure 4. Illustration of the repair operator in

a 2-D search space.
Figure 5. Ranking selection of solutions ob-

tained by optimizing the surrogate-based opti-
mization problem.

ASEs are only considered as algorithmic overhead. In order to improve the convergence
of the algorithm, the surrogates provide ASEs and let the algorithm look several iter-
ations into the future without any evaluation of ESEs. The surrogate models are used
to create a set of infill solutions (Sasena 2002) as follows: First, NSGA-II is run for K
more iterations (starting from the best solutions found so far), returning the solution
set X(cand). The number of solutions in X(cand) corresponds to the population size
of the algorithm fixed to 100 solutions in this study. After eliminating duplicates in
X(cand), the number of solutions NESE desired to run using ESEs needs to be selected.
The selection first obtains NESE clusters by running the k-means algorithm and then
uses a roulette wheel selection based on the predicted crowding distances. Note that
this will introduce some selection bias towards the boundary points as they have been
depicted with an infinite crowding distance. Altogether, this results in NESE solutions
to be evaluated using ESEs in the current optimization cycle.

Since the electric machine design is formulated with two objectives, two different
models are built. Separately fitting a model for each objective corresponds to the
M1 method proposed in the surrogate usage taxonomy (Deb et al. 2019). For each
objective, the best model type is found by iterating over different model realizations
of RBF (Hardy 1971) and Kriging (Krige 1951) varying normalization, regression,
and kernel type. Finally, the best model type is chosen based on the validation set’s
performance.

4.3. NSGA-II-WR-SA

Algorithm 1 shows how the repair operator and surrogate models are incorporated
into the optimization cycle. The algorithm’s parameters are the expensive objective
functions F(X) and the inexpensive constraint functions G(X); the maximum number
of exact solution evaluations ESEmax serves as an overall termination criterion; the
number of the initial design of experiments NDOE describes how many designs are
evaluated before optimization starts; the number of solutions NESE evaluated in each
optimization cycle; and the number of surrogate optimization generations K, or in
other words, how many generations the surrogates are used to look into the future.

First, the algorithm starts by sampling NDOE solutions in the feasible space using
the constrained sampling strategy (Line 1) (Blank and Deb 2021) and evaluates the
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Algorithm 1: NSGA-II-WR-SA: A customized version of NSGA-II with a
repair of infeasible solutions (WR) and surrogate assistance (SA).

Input: Expensive Objective Functions F(X), Inexpensive Constraint Function G(X),
Maximum Number of Exact Solution Evaluations ESEmax, Number of Initial
Design of Experiments NDOE, Number of ESEs in Each Optimization Cycle
NESE, Number of Surrogate Optimization Generations K.

/* initialize feas. solutions using the inexpensive function G */

1 X← constrained sampling(NDOE,G)
2 F← F(X)

3 while |X| < ESE max do

/* exploitation using the surrogate */

4 F̂← fit surrogate(X,F)

5

(
X(cand),F(cand)

)
← optimize(’NSGA-II-WR’, F̂,G,X,F,K)

6

(
X(cand),F(cand)

)
← eliminate duplicates(X,X(cand),F(cand))

7 C ← cluster(’k means’, N (exploit),F(cand))

8 X(infill) ← ranking selection(X(cand), C, crowding(F(cand)))

/* evaluate and merge to the archive */

9 F(infill) ← F(X(infill));

10 X← X ∪X(infill)

11 F← F ∪ F(infill)

12 end

solution set (Line 2). Then, while the overall evaluation budget ESEmax has not been

used yet, surrogates F̂ are built for the objectives (Line 4). By applying NSGA-II for K

surrogate optimization generations starting from X, using the surrogate models F̂(X)
and the inexpensive objective functions G(X), a candidate set of solutions X(cand)

and F(cand) is retrieved (Line 5). Depending on the surrogate problem, some solutions
in X(cand) can be identical to the ones already evaluated in X; thus, duplicate elim-
ination is necessary to ensure these solutions are filtered out (Line 6). Since the size
of X(cand) exceeds NESE, a subset solution based on the predicted crowding distances
takes place (Line 7 and 8). Finally, the resulting solution set X(infill) of size NESE

is evaluated using ESEs and is appended to the archive of solutions. Interested users
can find more details about the implementation of surrogates by accessing pysamoo
framework (Blank and Deb 2022).

5. Results and Discussion

In this section, the performance of the proposed optimization method is investigated
and following key questions are answered.

• How does the repair operator help the optimization cycle and what is its impact
on the Pareto-optimal front?
• Can the proposed repair operator be used with any EMO algorithm?
• Does the usage of surrogates improve the convergence behavior of the proposed
optimization method?
• What can be learned from the Pareto-optimal solutions, each representing an
electric machine design?
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Table 2. Optimization Setup and Results for all five runs combined for NSGA-II and NSGA-II-

WR. HV is calculated after normalization of objective functions. Set coverage metric (C(A, B))

denotes the percentage of non-dominated solutions obtained with algorithm B that are weakly
dominated by non-dominated solutions obtained with algorithm A.

Algorithm Description Evals Feasible Non-dominated HV C(A, B)

NSGA-II Conventional 7,500 5,446 27 0.7206 0.7037
NSGA-II-WR With Repair 7,500 7,500 59 0.7382 0.2034
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(a) NSGA-II (7,500 evals).
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(b) NSGA-II-WR (7,500 evals).

Figure 6. Objective space illustrating dominated and non-dominated (Pareto-optimal) solutions obtained
with all runs combined of NSGA-II and NSGA-II-WR algorithms in (a) and (b), respectively.

5.1. Impact of Repair Operator

It is helpful first to analyze the constraints formulated in this article to understand
the impact of the repair operator. A preliminary study with 10,000 randomly sampled
solutions shows that only 30.3% of samples are feasible without violating any of the ten
geometric constraints. Further details about the analysis of constraints are included
in the supplementary document. This article investigates the impact of the repair
operator by comparing two optimization methods: (1) the conventional NSGA-II and
(2) NSGA-II combined with the repair operator, called NSGA-II-WR, in the rest of
the article. Both methods use the simulated binary crossover (SBX) operator with a
probability of 0.9 and polynomial mutation along with binary tournament selection.
The distribution indices used in this study are set to ηc = 15 and ηm = 20 for
crossover and mutation operators respectively. For each method, five optimization
runs with different seeds are completed. However, the seeds are kept the same for
the two methods for a fair comparison. Each optimization run consists of 1,500 total
evaluations (ESEmax = 1, 500), with a population size of 100 and 20 offsprings. Thus,
five runs make up for a total of 7,500 evaluations. The two optimization methods are
compared based on the combined results of the five runs, and the overall setup and
details are shown in Table 2 and Figure 6. It is clear that the use of the repair operator
yields more non-dominated solutions and also results in a Pareto-optimal front with
larger hypervolume (HV) (Zitzler, Brockhoff, and Thiele 2007) than the conventional
method. For the calculation of HV, the worst and the best points are found from the
combined set of the two Pareto-optimal fronts. After that, the objective functions are
normalized to obtain the normalized HV. Additionally, analysis of set coverage metric
(Zitzler 1999) shows that 70% of the non-dominated solutions obtained with NSGA-II
are weakly dominated by the non-dominated solutions obtained with NSGA-II-WR.

Since both methods are compared based on data from only five runs, some statis-
tical tests can help gain more confidence in the results. For this purpose, a left-sided
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(a) NSGA-II.
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(b) NSGA-II-WR.

Figure 7. Objective space illustrating the best, median and worst attainment surfaces for the non-dominated

(Pareto) solutions obtained from 5 runs finished with NSGA-II and NSGA-II-WR algorithms in (a) and (b),

respectively.

Wilcoxon Rank sum test is performed for testing the equality of medians of the HV

obtained with the two methods. The tested hypothesis is defined in (3), where H̃V1 and

H̃V2 represent the median of the HV obtained from 5 runs of NSGA-II and NSGA-II-
WR, respectively. At a significance level α = 0.05, the test calculates the P -value to be
0.0476, which rejects the null hypothesis H0 and verifies that NSGA-II-WR improves
the HV of the Pareto-optimal front compared to NSGA-II.

H0 : H̃V1 = H̃V2

H1 : H̃V1 < H̃V2

(3)

Comparing the best, median and worst attainment surfaces obtained from the non-
dominated solution sets of the five runs with each method shows that NSGA-II-WR
produces more consistent Pareto-optimal fronts with fewer variations (see Figure 7).
Additionally, comparisons of individual runs from the two methods (included in the
supplementary document) show that the Pareto-optimal fronts obtained with NSGA-
II are discontinuous and mostly dominated by those obtained with NSGA-II-WR.
Ultimately, the proposed repair operator is well suited for the design optimization of
electric machines.

5.2. Generalizability of Repair Operator

This article investigates the generalizability of the repair operator by incorporating it
into SMS-EMOA (Beume, Naujoks, and Emmerich 2007), another EMO algorithm,
apart from NSGA-II. Once again, the impact of the repair operator is demonstrated by
comparing the performance of (1) the conventional SMS-EMOA and (2) SMS-EMOA
combined with the repair operator, called SMS-EMOA-WR, in the rest of the article.
For this purpose, five optimization runs with each method are completed. Details
about the optimization setup are included in the supplementary document.

The two optimization methods are compared based on the combined results of the
five runs. The overall setup and results are shown in Table 3 and Figure 8. It is seen
that the Pareto-optimal front obtained with SMS-EMOA has a larger HV than that
with SMS-EMOA-WR (the HV calculation approach is similar to the one explained
in Section 5.1). However, comparing the set coverage metric (C(A, B)) for the two
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Table 3. Optimization Setup and Results for all five runs combined for SMS-EMOA and SMS-

EMOA-WR. HV is calculated after normalization of objective functions. Set coverage metric (C(A,

B)) denotes the percentage of non-dominated solutions obtained with algorithm B that are weakly
dominated by non-dominated solutions obtained with algorithm A.

Algorithm Description Evals Feasible Non-dominated HV C(A, B)

SMS-EMOA Conventional 7,500 6,573 39 0.7783 0.8158
SMS-EMOA-WR With Repair 7,500 7,500 38 0.7615 0.3478
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Figure 8. Objective space showing the Pareto-optimal fronts obtained by SMS-EMOA and SMS-EMOA-WR.

Pareto-optimal fronts shows that 81% of the non-dominated solutions obtained with
SMS-EMOA are weakly dominated by the non-domination solutions obtained with
SMS-EMOA-WR. The increased HV with SMS-EMOA can be explained by the two
non-dominated solutions, S1 and S2, lying in the torque region below 200 Nm, as
shown in Figure 8. However, a simple trade-off analysis between the two objectives
will reveal to the user that the presence of S1 and S2, and all other non-dominated
solutions lying in the region with Average torque below 200 Nm, have hardly any
impact on the selection of preferred solutions. Comparing the best, median and worst
attainment surfaces obtained with the two algorithms (included in the supplementary
document) also verifies the superiority of the SMS-EMOA-WR. Finally, SMS-EMOA-
WR outperforms the conventional SMS-EMOA and establishes the generalizability of
the proposed repair operator.

5.3. Convergence Analysis With and Without Surrogates

Although surrogate-assisted optimization is known to find the Pareto-optimal front
quicker than other methods, it is also sensitive to (model and optimization-related)
hyperparameters. In this article, the following three hyperparameters are varied to
analyze the performance of the proposed optimization method with surrogates.

• NESE: Number of ESEs in each iteration
• K: Number of surrogate optimization generations for exploitation
• NDOE: Number of initial design of experiments

This parametric study’s complete setup and results and some important observa-
tions are included in the supplementary document for reference. Based on this study,
NESE = 10, K = 35, and NDOE = 60, is identified as the best parameter setting out
of the analyzed configurations. For the remainder of this article, the corresponding
surrogate-assisted optimization configuration is referred to as NSGA-II-WR-SA, and
its results are compared with those obtained with NSGA-II-WR. A comparison of the
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Figure 9. Comparison of objective space with Pareto-optimal fronts and normalized design space of Pareto

optimal sets in (a) and (b) respectively. Pareto-optimal sets are obtained by combining all runs completed with

the optimization methods, NSGA-II-WR and NSGA-II-WR-SA, respectively.

two Pareto-optimal fronts clearly shows that NSGA-II-WR-SA outperforms NSGA-II-
WR, as shown in Figure 9(a). It should be noted that the compared Pareto-optimal
fronts are obtained by combining all five runs for both algorithms, NSGA-II-WR and
NSGA-II-WR-SA, respectively. To understand the convergence of each optimization
method, the design space of the two Pareto-optimal sets is visualized by a parallel
coordinates plot (PCP) (see Figure 9(b)). Each vertical axis in the PCP represents
the normalized variable xi with its lower and upper bounds as 0 and 1, respectively,
and each horizontal line represents a solution.

The design space of the two Pareto-optimal sets shows that the most of the variables
have converged to an optimal value with NSGA-II-WR-SA, whereas, with NSGA-II-
WR, some of the variables still have significant variations with further scope for im-
provement. These observations validate the effectiveness of incorporating surrogates
by demonstrating the improved convergence of the Pareto-optimal front. Moreover,
it should be noted that while NSGA-II-WR has used 7,500 evaluations in this exper-
iment, NSGA-II-WR-SA has converged to a better set of solutions with a solution
evaluation budget of only 1,000. As explained in the previous section, surrogates are
utilized to look K generations (here K = 35) into the future to generate NESE number
of infill solutions in each optimization cycle, which leads to better convergence. A com-
parison of individual runs included in the supplementary document further verifies the
superiority of NSGA-II-WR-SA over NSGA-II-WR. Additionally, a discussion on the
performance of surrogates and exploration of search space included in the supplemen-
tary document shows that convergence with surrogates depends on the complexity of
the objective functions under consideration.

5.4. Analysis of Pareto-Optimal Solutions

The design space of the Pareto-optimal set obtained with NSGA-II-WR-SA is inves-
tigated to gain insights into the electric machine design (see Figure 9(b)). In general,
while machine flux linkages affect the average torque, magnet pole arc and material
saturation control the torque pulsations. Some critical observations are listed below.

• Most of the Pareto-optimal solutions have larger values of magnet width (x3),
which results in more magnet flux linkage and Average torque. Larger magnet
width also results in smaller q-axis width (x6).
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• Most solutions also have larger values of slot height (x7) and slot width (x8)
and, therefore, larger slot cross-section. A larger slot cross-section area results
in more winding space, which translates to higher allowable excitation current
and an increase in Average torque.

• Reduction in bridge height (x5) directly increases the air-gap flux density, which
increases Average torque.
• Magnet pole arc is directly proportional to magnet width (x3) and angle between
the magnets (x4), and an increase in magnet pole arc seems to decrease Torque

pulsations.
• Material saturation is a nonlinear behavior observed in magnetic materials, such
as electrical steel, introducing saturation harmonics in magnetic flux density.
While a larger slot cross-section increases Average torque through more exci-
tation current, it also increases magnetic material saturation, leading to more
Torque pulsations.
• Lastly, the height and width of slot opening, x9 and x10, which are responsible
for slot harmonics, have converged to the lower end of the variable ranges.

5.5. Selection of Preferred Solutions

The selection of an electric machine design is primarily application-dependent. One
approach could be to use a scalarized function yielding a single optimal solution (Is-
lam, Bonthu, and Choi 2015). However, proper scalarization of objectives is a difficult
task. Scalarization also does not offer the possibility of analyzing trade-offs observed
for multiple objectives. Moreover, optimizing all objectives likely produces a Pareto-
optimal front which is harder to interpret and gain insights into the electric machine
design. This article uses two approaches to select the preferred solutions: (1) a domain-
specific a posteriori MCDMmethod that involves machine expertise and (2) a trade-off
analysis of the Pareto-optimal set to identify and choose the solutions with the highest
trade-off. Both approaches use the Pareto-optimal solutions obtained from combined
runs of NSGA-II-WR and NSGA-II-WR-SA algorithms.

5.5.1. Domain Specific A Posteriori MCDM Method

For a domain-specific a posteriori MCDM method, three performance measures, in
addition to the two objective functions defined in (1), are used to select preferred
solutions from the Pareto-optimal set.

• Total harmonic distortion of noload back emf (THDV )
• Peak of fundamental of back emf (F-BEMF )
• Magnet utilization factor (MUF )

Since THDV is directly proportional to noise, vibration, and harshness (NVH) dur-
ing the operation of an electric machine, a solution with low THDV is desirable. Con-
versely, F-BEMF instead introduces a trade-off as a high F-BEMF increases Average
torque, but it also leads to a reduced speed range. Lastly, a design with high MUF
is desirable, where MUF is defined as the ratio of Average torque to PM volume.
A primary screening based on THDV of Pareto-optimal solutions shows that the so-
lutions lying in the bottom region of the Pareto-front must be avoided as they have
more than 30% THDV, as shown in Figure 10(a). Since the remaining Pareto-optimal
solutions have similar THDV (10-14%), it is easier to select solutions based on the
remaining performance measures. Consequently, three preferred solutions, 1, 2, and
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Figure 10. Objective space highlighting the selected solutions using the a posteriori MCDM method and

trade-off analysis in (a) and (b), respectively.

Table 4. Performance comparison of the preferred solutions found using domain specific a posteriori MCDM
method and trade-off analysis. Preferred values are highlighted in bold for the three solutions.

Solution
Average torque Torque pulsations THDV MUF F-BEMF

(Nm) (Nm) (%) (Nm/mm3) (V)

1 263.0374 47.4060 14.1263 0.0290 248.2401
2 235.5986 14.2488 11.2982 0.0308 236.7291
3 231.3853 9.9186 11.5016 0.0304 234.4451

Reference 214.7760 36.1846 14.4093 0.0330 209.2622

3, highlighted in Figure 10(a), are selected after further evaluation. The basis of the
selection of the solutions is as follows.

• Solution 1: maximum Average torque

• Solution 2: maximum MUF
• Solution 3: minimum Torque pulsations and F-BEMF

5.5.2. Trade-Off Calculation Using Objective Functions

A trade-off analysis of the Pareto-optimal front is an effective method for selecting
preferred solutions without domain expertise. For trade-off calculation, only two ob-
jective functions defined in (1) are used, and solutions with high trade-off values are
desired. The methodology for trade-off calculation is included in the supplementary
document.

After performing the trade-off calculation, three solutions with the highest trade-
offs, Solution 3, 4, and 5, are identified from the combined Pareto-optimal set, as
shown in Figure 10(b). Interestingly, Solution 3 is picked again with the highest trade-
off value (114.99). Additionally, since Solutions 4 and 5 offer a smaller trade-off value
compared to Solution 3, 50.79 and 35.07, respectively, they are not considered in the
rest of the discussion.

5.5.3. Performance comparison of selected solutions

Performance details of the selected solutions and the reference design are given in
Table 4. Further insights into the performance of these solutions can be gained by
analyzing the design space, as shown in Figure 11(a). Some essential observations
highlighting the trade-off among selected solutions are as follows.
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Figure 11. Selected Pareto-optimal solutions are highlighted in normalized design space in (a). Torque-speed
curve of reference design and solutions 1 and 3 is shown in (b).

• Although Solution 1 provides maximum Average torque; it also has the maxi-
mum amplitude of Torque pulsations and F-BEMF. Both these characteristics
can be explained by larger magnet thickness (x2), slot height (x7), slot width
(x8), and slot opening height and width (x9 and x10).

• Solutions 2 and 3 perform quite similarly in all aspects, with slight variations
observed in Average torque and Torque pulsations. This variation is caused
by the different angles between magnets (x4) observed for the two solutions.

• All selected solutions have a larger F-BEMF value compared to the reference
design. In other words, they have a lower speed range. The relation between F-
BEMF and the maximum achievable speed is illustrated in Figure 11(b). With
further increase in speeds, one would observe that torque produced by Solution 1
drops to zero more quickly compared to Solution 3. Since Solutions 2 and 3 have
similar F-BEMF, their torque/speed profiles are also expected to be similar.

• A comparison of the magnetic flux density plots of Solutions 1, 2, and 3 at
corresponding rated operating conditions reveals that Solution 1 suffers from
higher saturation in stator teeth, back iron, and rotor steel close to magnet
edges (see Figure 12).

Based on this in-depth discussion, one should select Solution 1 for an application
with a high Average torque requirement. If the focus is more on a smooth operation
with a high-speed range, Solution 2 or 3 should be chosen. It is also worth mentioning
that while the trade-off analysis can pick Solution 3, it does not pick Solution 2 with the
highest MUF, but can be selected by utilizing domain expertise. Ultimately, selecting a
single solution out of a Pareto-optimal set is a difficult task that can often be alleviated
using the machine designer’s experience.

6. Conclusion

This article has investigated a bi-objective electric machine design optimization prob-
lem with geometric constraints. While the geometric constraints are evaluated using
analytical expressions, the objective functions require costly finite element analysis,
leading to a mixed computationally expensive optimization problem. The proposed

16



(a) Solution 1. (b) Solution 2.

(c) Solution 3. (d) Reference design.

Figure 12. Magnetic flux density plots of Solutions 1, 2, 3 and reference design at rated operation.

method has used a repair operator to handle inexpensive constraints and surrogate
models to predict expensive objectives. Both concepts have been integrated into a
well-known evolutionary multi-objective optimization (EMO) algorithm: NSGA-II. In-
feasible solutions have been replaced with repaired feasible solutions, thereby ensuring
feasibility during optimization. This article has also verified the generalizability of
the proposed repair operator by incorporating it into another EMO algorithm: SMS-
EMOA. Moreover, the surrogate incorporation has been analyzed in-depth and shown
to be critical for improving efficiency. First, surrogate-related parameters have been
investigated by performing a sequential parametric study, examining the number of
infill solutions in each generation (NESE), the number of generations for exploiting the
surrogate model (K), and the number of the initial design of experiments (NDOE). The
parametric study has provided a suitable configuration for solving this electric machine
design problem. Results have validated the superiority of incorporating surrogates by
improving the algorithm’s convergence even with fewer expensive evaluations.

The ultimate goal of an optimization task is to reach an optimal solution that can
be implemented successfully. Unlike many other applied multi-objective optimization
studies, this article has presented a domain-specific a posteriori MCDM approach fo-
cusing on the machine cost, noise, vibration, and harshness (NVH) issues, and speed
range of the electric machine to choose a single preferred solution. The presented a
posteriori selection approach has identified the trade-off offered by different Pareto-
optimal solutions and facilitated the selection of a handful of optimized electric ma-
chine designs. Additionally, a trade-off analysis based on objective vectors has been
performed to select preferred solutions, helping the user to systematically identify a
few critical designs from a large search space.

Future research should now be conducted on an approach to perform parameter tun-
ing automatically. Integrating a repair operator and surrogate models into an EMO
algorithm has shown promising results for optimizing electric machine designs. How-
ever, more application problems having a computationally mixed expensive nature
need to be investigated. Nevertheless, this study has shown the advantage of using a
flexible EMO algorithm with efficient handling of constraints and using surrogates for
expensive evaluation procedures to discover a diverse set of high-performing designs.
The study has also revealed a set of key design principles common to multiple high-
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performing designs for enhancing knowledge about the problem and demonstrated the
use of MCDM approaches to choose one or a few preferred solutions for implemen-
tation. The complete optimization-cum-decision-making on a complex electric motor
design problem demonstrated in this study should pave the way for applying similar
procedures in other engineering design optimization tasks.

7. Data Availability Statement

The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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