
Business Process Extraction Using Static Analysis

Md Rofiqul Islam
Dept. of Computer Science

Baylor University
Waco, Texas, United States

rofiqul islam1@baylor.edu

Tomas Cerny
Dept. of Computer Science

Baylor University
Waco, Texas, United States

tomas cerny@baylor.edu

Abstract—Business process mining of a large-scale project
has many benefits such as finding vulnerabilities, improving
processes, collecting data for data science, generating more clear
and simple representation, etc. The general way of process mining
is to turn event data such as application logs into insights and
actions. Observing logs broad enough to depict the whole business
logic scenario of a large project can become very costly due to
difficult environment setup, unavailability of users, presence of
not reachable or hardly reachable log statements, etc. Using static
source code analysis to extract logs and arranging them perfect
runtime execution order is a potential way to solve the problem
and reduce the business process mining operation cost.

Index Terms—Static Code Analysis, Log analysis, Business
Process Mining, Distributed Systems, Cloud Computing

I. INTRODUCTION

Static source code analysis is a method of automatically

examining the source code against a set of coding rules which

generally addresses weaknesses and vulnerabilities [1]. On

the other hand, logs are automatically created to record all

events from a project that can reflect the whole business

process [2]. However, to get the log file, we need to run

the project. Sometimes running a project can be very costly,

which can require a difficult platform and database setup.

Moreover, we need to generate a large set of input to test

the code for all business logic rules. This problem can be

solved by constructing a special static Source Code Analyzer

(SCA), which can find out all log messages from a project

code and sort them in perfect order as they would print at

runtime. This brings the opportunity to understand the business

process directly from static code analysis. Such a process is

more economically beneficial than extracting business rules

from the application log. To obtain the log messages in the

expected order, we have implemented, extended, and improved

the existing proof of concept tool [3] for business process

extraction. To demonstrate our approach and assess its preci-

sion, we demonstrate a case study using a distributed system.

Our results indicate the suitability of the approach for quick

extraction of business processes, driven by static code analysis.

II. BACKGROUND AND RELATED WORK

Static code analysis can examine program source code and

try to generate all possible behaviors that might occur at

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049 and a grant from Red Hat Research,
https://research.redhat.com.

runtime execution [4]. There are many tools available for static

source code analysis for different programming languages

[5]. Most of those tools are mainly targeted to a generalized

representation of source code. For static log analysis, it is

necessary to modify the static source code analyzer. PROF

[3] is such a tool that is actually a non-intrusive request flow

profiler and has a special feature of log analysis. It’s mainly

focused on distributed infrastructure.

Business Process Mining (BPM) is a technique to extract

business logic from business events such as event logs [6].

BPM can discover much information such as process, data,

control, logic, organizational and social structures from these

event logs [7]. Different tools regarding BPM are available on

the market, and one of the most popular tools is PROM tool

[7], [8]. Prom tool provides a multidimensional representation

of extracted business logic after the mining process.

Generally, BPM reconstruction approaches work with appli-

cation logs, and thus, combining static log analysis with BPM

provides an alternative approach. Static code log analysis has

some limitations, and this work finds out how it affects the

BPM reconstruction.

III. DESIGN STRATEGY OF BPM SCA

SCA builds upon a library for parsing source code [9], in our

case Java. It searches through identified constructs, typically

class, to finds out variables, dependencies, method bodies, if-

else conditions, loops, annotations, etc. The steps of a design

are given below:

Creation of class tree: A class tree is a graph representation

of the relationship between multiple classes under the same

project. First, all classes are identified under the project direc-

tories and then parsed. In Java, each class’s import declarations

and annotation declarations enable the creation of a relation

graph tree between all classes.

Creation of method model tree: Method models are rep-

resentations of methods in a project which contains method
id, method name, class name, in method variable list, invoked
method list, parameter list, log list, etc.. Method model tree is a

graph representation of the relation between different methods

and can be traversed to generate the execution order of the

methods. Method model tree can be generated based on the

invoked method list of each method model class object because

this attribute is actually the manager of relations between

multiple methods.

1202

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-6654-0337-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ASE51524.2021.00135

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

85
88

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 22:57:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Single microservice business process graph (full size/SVG image available at https://bit.ly/ase21blind)

Merging and Sorting Invoked Methods and Log Printing
Statements: To arrange the logs in the order of execution at

runtime, only two possible events need to be considered. The

first incident is when a log printing statement is reached, and

the second incident is when a method invocation statement is

reached. When the first event happens, the log print statement

is added to the output, but when the second event is reached,

the called method needs to be traversed first and then go back

to the previous method to complete the process. The sequence

of these events depends on the line number where they occur.

Finding top-level method: Before starting the traverse on

the method model tree, the starting point (root nodes) needs

to be identified. The methods which are not called from any

other method are those nodes and are indicated as top-level

methods. They can be identified from the method tree by the

topological sort [10] through a DFS (Depth First Search) [11]

on the method tree with sorting based on the traverse complete

time of each node.

Graph Traverse and Arrange the logs in runtime order:
Before starting the traversing process, two important things

needs to be discussed – cases and events. A case is a traversing

of a branch in method tree from a specific top method and

returning to it again. Events are existing nodes in a branch of

a particular traverse. Traverse will be started from every top-

level method one by one with a newly generated case id. An

iteration starts through the combined list of logs and invoked

method of the top-level methods; if any log printing statement

is found, then a new event id is generated and written into

the output file with the case id and event id. If any method

invoking statements is found, then the processing of the current

method is paused and starts work with the new invoked method

by iterating through the combined list of this new invoked

method same as above.

Generating Business logic graph: Based on the cases and

events in the output file, there are two ways to generate the

business logic graph. In first way, and existing tool like PROM

[8] can be used and in second way, custom program can be

developed for this purpose.

IV. CASE STUDY EVALUATION

For performance evaluation, we have used a micro-service

project Teacher Management System (TMS) as testbed. It

is built with Java programming language using SpringBoot

framework [12] with log4j logging mechanism [13]. This

testbed follows the repository pattern and service layer pat-

tern, which consists of controllers, services, repositories, and

models. The service layer is the holder of all business logic

in this architecture.

First, we have generated a business process graph from our

testbed with our proposed SCA tool. Then we create a dis-

tributed system environment with Docker [14], and Kubernetes

[15] and deployed the testbed’s microservices on different

docker instances and run the system generating sufficient

application logs for our evaluation.

Number of Microservices 6
Number of cases found in application log 153

Number of cases generated from BPM graph 167
Number of cases match 131
Precision of BPM graph 79%

Recall of BPM graph 86%

We collected application logs from different docker instances

and sorted them according to the event triggering time. After

that, we have compared our log file with the business process

mining graph from each micro-service. In this comparing

process, we have collected information on many subjects, such

as which business processes are requested the most, which

business logic has vulnerabilities, our BPM accuracy using

static log analysis, cost of each user request, etc. Figure 1.

shows the BPM graph of a single microservice. Our testbed

consists of 6 microservices, and we obtained a different BPM

graph for each, then we connected all 6 graphs to generate

the full BPM graph for the whole system and collected the

necessary data for evaluation.

V. CONCLUSION AND FUTURE WORK

This paper demonstrates how static analysis can be used

to extract the log messages from a system code and cluster

the messages to derive business processes. It provides an

alternative to dynamic analysis. However, since some portion

of code manifests itself only at runtime, such as polymorphic

method override, inheritance, etc., there is a small impact on

the accuracy of the static analysis approach. Still, it provides a

great opportunity to understand the business logic embedded

in a system without running it. This provides a great trade-

off between a small impact on accuracy and running a large-

scale system to generate logs to depict the whole business

process set, which is costly. In future work, we target a better

prediction of the runtime system behavior to increase the

accuracy of business process mining.

Our tool is available at: https://github.com/Rofiqul-

Islam/logparser

1203

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 22:57:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Louridas, “Static code analysis,” IEEE Software, vol. 23, no. 4, pp.
58–61, 2006.

[2] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in 2009 Ninth
IEEE International Conference on Data Mining, 2009, pp. 149–158.

[3] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan,
and M. Stumm, “lprof: A non-intrusive request flow profiler for
distributed systems,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). Broomfield,
CO: USENIX Association, Oct. 2014, pp. 629–644. [On-
line]. Available: https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/zhao

[4] I. Gomes, P. Morgado, T. Gomes, and R. Moreira, “An overview on the
static code analysis approach in software development,” Faculdade de
Engenharia da Universidade do Porto, Portugal, 2009.

[5] J. Novak, A. Krajnc et al., “Taxonomy of static code analysis tools,” in
The 33rd international convention MIPRO. IEEE, 2010, pp. 418–422.

[6] W. Van Der Aalst, “Process mining,” Commun. ACM,
vol. 55, no. 8, p. 76–83, Aug. 2012. [Online]. Available:
https://doi.org/10.1145/2240236.2240257

[7] W. van der Aalst, H. Reijers, A. Weijters, B. van Dongen,
A. Alves de Medeiros, M. Song, and H. Verbeek, “Business
process mining: An industrial application,” Information Systems,
vol. 32, no. 5, pp. 713–732, 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437906000305

[8] B. F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and
W. M. van Der Aalst, “The prom framework: A new era in process
mining tool support,” in International conference on application and
theory of petri nets. Springer, 2005, pp. 444–454.

[9] “VoidVisitorAdapter - javaparser-core 3.3.1 javadoc.” [On-
line]. Available: https://javadoc.io/doc/com.github.javaparser/javaparser-
core/3.3.1/com/github/javaparser/ast/visitor/VoidVisitorAdapter.html

[10] C. Pang, J. Wang, Y. Cheng, H. Zhang, and T. Li, “Topological sorts
on dags,” Information Processing Letters, vol. 115, no. 2, pp. 298–301,
2015.

[11] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[12] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson,
M. Overdijk, C. Dupuis, and S. Deleuze, “Spring boot reference guide,”
Part IV. Spring Boot features, vol. 24, 2013.

[13] S. Gupta, “log4j and j2ee,” Pro Apache Log4j, pp. 157–161, 2005.
[14] C. Anderson, “Docker [software engineering],” Ieee Software, vol. 32,

no. 3, pp. 102–c3, 2015.
[15] D. Vohra, Kubernetes microservices with Docker. Apress, 2016.

1204

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 22:57:44 UTC from IEEE Xplore. Restrictions apply.

