2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE) | 978-1-6654-0337-5/21/$31.00 ©2021 IEEE | DOI: 10.1109/ASE51524.2021.9678588

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Business Process Extraction Using Static Analysis

Md Rofiqul Islam
Dept. of Computer Science
Baylor University
Waco, Texas, United States
rofiqul_islam1 @baylor.edu

Abstract—Business process mining of a large-scale project
has many benefits such as finding vulnerabilities, improving
processes, collecting data for data science, generating more clear
and simple representation, etc. The general way of process mining
is to turn event data such as application logs into insights and
actions. Observing logs broad enough to depict the whole business
logic scenario of a large project can become very costly due to
difficult environment setup, unavailability of users, presence of
not reachable or hardly reachable log statements, etc. Using static
source code analysis to extract logs and arranging them perfect
runtime execution order is a potential way to solve the problem
and reduce the business process mining operation cost.

Index Terms—Static Code Analysis, Log analysis, Business
Process Mining, Distributed Systems, Cloud Computing

[. INTRODUCTION

Static source code analysis is a method of automatically
examining the source code against a set of coding rules which
generally addresses weaknesses and vulnerabilities [1]. On
the other hand, logs are automatically created to record all
events from a project that can reflect the whole business
process [2]. However, to get the log file, we need to run
the project. Sometimes running a project can be very costly,
which can require a difficult platform and database setup.
Moreover, we need to generate a large set of input to test
the code for all business logic rules. This problem can be
solved by constructing a special static Source Code Analyzer
(SCA), which can find out all log messages from a project
code and sort them in perfect order as they would print at
runtime. This brings the opportunity to understand the business
process directly from static code analysis. Such a process is
more economically beneficial than extracting business rules
from the application log. To obtain the log messages in the
expected order, we have implemented, extended, and improved
the existing proof of concept tool [3] for business process
extraction. To demonstrate our approach and assess its preci-
sion, we demonstrate a case study using a distributed system.
Our results indicate the suitability of the approach for quick
extraction of business processes, driven by static code analysis.

II. BACKGROUND AND RELATED WORK
Static code analysis can examine program source code and

try to generate all possible behaviors that might occur at

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049 and a grant from Red Hat Research,
https://research.redhat.com.

Tomas Cerny
Dept. of Computer Science
Baylor University
Waco, Texas, United States
tomas_cerny @baylor.edu

runtime execution [4]. There are many tools available for static
source code analysis for different programming languages
[5]. Most of those tools are mainly targeted to a generalized
representation of source code. For static log analysis, it is
necessary to modify the static source code analyzer. PROF
[3] is such a tool that is actually a non-intrusive request flow
profiler and has a special feature of log analysis. It’s mainly
focused on distributed infrastructure.

Business Process Mining (BPM) is a technique to extract
business logic from business events such as event logs [6].
BPM can discover much information such as process, data,
control, logic, organizational and social structures from these
event logs [7]. Different tools regarding BPM are available on
the market, and one of the most popular tools is PROM tool
[7], [8]. Prom tool provides a multidimensional representation
of extracted business logic after the mining process.

Generally, BPM reconstruction approaches work with appli-
cation logs, and thus, combining static log analysis with BPM
provides an alternative approach. Static code log analysis has
some limitations, and this work finds out how it affects the
BPM reconstruction.

III. DESIGN STRATEGY OF BPM SCA

SCA builds upon a library for parsing source code [9], in our
case Java. It searches through identified constructs, typically
class, to finds out variables, dependencies, method bodies, if-
else conditions, loops, annotations, etc. The steps of a design
are given below:

Creation of class tree: A class tree is a graph representation
of the relationship between multiple classes under the same
project. First, all classes are identified under the project direc-
tories and then parsed. In Java, each class’s import declarations
and annotation declarations enable the creation of a relation
graph tree between all classes.

Creation of method model tree: Method models are rep-
resentations of methods in a project which contains method
id, method name, class name, in method variable list, invoked
method list, parameter list, log list, etc.. Method model tree is a
graph representation of the relation between different methods
and can be traversed to generate the execution order of the
methods. Method model tree can be generated based on the
invoked method list of each method model class object because
this attribute is actually the manager of relations between
multiple methods.

978-1-6654-0337-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ASE51524.2021.00135

1202

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 22:57:44 UTC from IEEE Xplore. Restrictions apply.



Fig. 1. Single microservice business proc;ssé;ei)h (full size/SVG image available at https://bit.ly/ase21blind)

Merging and Sorting Invoked Methods and Log Printing
Statements: To arrange the logs in the order of execution at
runtime, only two possible events need to be considered. The
first incident is when a log printing statement is reached, and
the second incident is when a method invocation statement is
reached. When the first event happens, the log print statement
is added to the output, but when the second event is reached,
the called method needs to be traversed first and then go back
to the previous method to complete the process. The sequence
of these events depends on the line number where they occur.
Finding top-level method: Before starting the traverse on
the method model tree, the starting point (root nodes) needs
to be identified. The methods which are not called from any
other method are those nodes and are indicated as top-level
methods. They can be identified from the method tree by the
topological sort [10] through a DFS (Depth First Search) [11]
on the method tree with sorting based on the traverse complete
time of each node.

Graph Traverse and Arrange the logs in runtime order:
Before starting the traversing process, two important things
needs to be discussed — cases and events. A case is a traversing
of a branch in method tree from a specific top method and
returning to it again. Events are existing nodes in a branch of
a particular traverse. Traverse will be started from every top-
level method one by one with a newly generated case id. An
iteration starts through the combined list of logs and invoked
method of the top-level methods; if any log printing statement
is found, then a new event id is generated and written into
the output file with the case id and event id. If any method
invoking statements is found, then the processing of the current
method is paused and starts work with the new invoked method
by iterating through the combined list of this new invoked
method same as above.

Generating Business logic graph: Based on the cases and
events in the output file, there are two ways to generate the
business logic graph. In first way, and existing tool like PROM
[8] can be used and in second way, custom program can be
developed for this purpose.

IV. CASE STUDY EVALUATION

For performance evaluation, we have used a micro-service
project Teacher Management System (TMS) as testbed. It
is built with Java programming language using SpringBoot
framework [12] with log4j logging mechanism [13]. This
testbed follows the repository pattern and service layer pat-

1203

tern, which consists of controllers, services, repositories, and
models. The service layer is the holder of all business logic
in this architecture.

First, we have generated a business process graph from our
testbed with our proposed SCA tool. Then we create a dis-
tributed system environment with Docker [14], and Kubernetes
[15] and deployed the testbed’s microservices on different
docker instances and run the system generating sufficient
application logs for our evaluation.

Number of Microservices 6
Number of cases found in application log 153
Number of cases generated from BPM graph 167
Number of cases match 131
Precision of BPM graph 79%
Recall of BPM graph 86%

We collected application logs from different docker instances
and sorted them according to the event triggering time. After
that, we have compared our log file with the business process
mining graph from each micro-service. In this comparing
process, we have collected information on many subjects, such
as which business processes are requested the most, which
business logic has vulnerabilities, our BPM accuracy using
static log analysis, cost of each user request, etc. Figure 1.
shows the BPM graph of a single microservice. Our testbed
consists of 6 microservices, and we obtained a different BPM
graph for each, then we connected all 6 graphs to generate
the full BPM graph for the whole system and collected the
necessary data for evaluation.

V. CONCLUSION AND FUTURE WORK

This paper demonstrates how static analysis can be used
to extract the log messages from a system code and cluster
the messages to derive business processes. It provides an
alternative to dynamic analysis. However, since some portion
of code manifests itself only at runtime, such as polymorphic
method override, inheritance, etc., there is a small impact on
the accuracy of the static analysis approach. Still, it provides a
great opportunity to understand the business logic embedded
in a system without running it. This provides a great trade-
off between a small impact on accuracy and running a large-
scale system to generate logs to depict the whole business
process set, which is costly. In future work, we target a better
prediction of the runtime system behavior to increase the
accuracy of business process mining.

Our tool is available at: https:/github.com/Rofiqul-
Islam/logparser

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 22:57:44 UTC from IEEE Xplore. Restrictions apply.



REFERENCES

[1] P. Louridas, “Static code analysis,” IEEE Software, vol. 23, no. 4, pp.
58-61, 2006

[2] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in 2009 Ninth
IEEE International Conference on Data Mining, 2009, pp. 149-158.

[3] X. Zhao, Y. Zhang, D. Lion, M. E Ullah, Y. Luo, D. Yuan,
and M. Stumm, “lprof: A non-intrusive request flow profiler for
distributed systems,” in [/th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14).  Broomfield,
CO: USENIX Association, Oct. 2014, pp. 629-644. [On-
line]. Available: https://www.usenix.org/conference/osdil4/technical-
sessions/presentation/zhao

[4] 1. Gomes, P. Morgado, T. Gomes, and R. Moreira, “An overview on the
static code analysis approach in software development,” Faculdade de
Engenharia da Universidade do Porto, Portugal, 2009.

[S5] J. Novak, A. Krajnc et al., “Taxonomy of static code analysis tools,” in
The 33rd international convention MIPRO. 1EEE, 2010, pp. 418-422.

[6] W. Van Der Aalst, “Process mining,” Commun. ACM,
vol. 55, no. 8, ©p. 76-83, Aug. 2012. [Online]. Available:
https://doi.org/10.1145/2240236.2240257

[71 W. van der Aalst, H. Reijers, A. Weijters, B. van Dongen,
A. Alves de Medeiros, M. Song, and H. Verbeek, “Business
process mining: An industrial application,” Information Systems,
vol. 32, no. 5, pp. 713-732, 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437906000305

[8] B.F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and
W. M. van Der Aalst, “The prom framework: A new era in process
mining tool support,” in International conference on application and
theory of petri nets. Springer, 2005, pp. 444-454.

[9] “VoidVisitorAdapter - javaparser-core 3.3.1 javadoc.” [On-
line]. Available: https://javadoc.io/doc/com.github.javaparser/javaparser-
core/3.3.1/com/github/javaparser/ast/visitor/Void VisitorAdapter.html

[10] C. Pang, J. Wang, Y. Cheng, H. Zhang, and T. Li, “Topological sorts
on dags,” Information Processing Letters, vol. 115, no. 2, pp. 298-301,
2015.

[11] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Jjournal on computing, vol. 1, no. 2, pp. 146-160, 1972.

[12] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson,

M. Overdijk, C. Dupuis, and S. Deleuze, “Spring boot reference guide,”

Part IV. Spring Boot features, vol. 24, 2013.

S. Gupta, “log4j and j2ee,” Pro Apache Log4j, pp. 157-161, 2005.

C. Anderson, “Docker [software engineering],” leee Software, vol. 32,

no. 3, pp. 102—3, 2015.

[15] D. Vohra, Kubernetes microservices with Docker. Apress, 2016.

==
it

1204

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 22:57:44 UTC from IEEE Xplore. Restrictions apply.



