2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE) | 978-1-6654-0337-5/21/$31.00 ©2021 IEEE | DOI: 10.1109/ASE51524.2021.9678749

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Using Static Analysis to Address Microservice
Architecture Reconstruction

Vincent Bushong
Dept. of Computer Science
Baylor University
Waco, Texas, United States
vincent_bushong1 @baylor.edu

Dipta Das

Baylor University

Abstract—Microservice design offers many advantages for
enterprise applications, including increased scalability and faster
deployment times. Microservices’ independence from one another
in development and deployment provides these advantages. This
separation, however, results in the absence of a centralized view
of the application’s functionality, and each microservice’s data
model is isolated and replicated. As a result, it has the potential
to deviate from the architectural design’s original intent. To
address this, we offer a method for analyzing a microservice mesh
and generating a communication diagram, context map, and
microservice-specific limited contexts using static code analysis.

Index Terms—Software Architecture Reconstruction, Reverse
Engineering, Static Analysis, Microservices, Cloud-computing

I. INTRODUCTION

Microservice Architecture is the emerging best practice in
enterprise software development. All of the integration and
business logic are implemented in the microservices them-
selves. No centralized model is agreed upon, except for the in-
terface that each service will expose to the others. This decou-
pling means each microservice can be developed, deployed,
and scaled independently, leading to more rapid development,
evolution, and update cycles and improved performance of the
entire system. However, with the missing global perspective
of the overall system, it becomes challenging to control the
holistic and distributed evolution, avoid consistency errors or
poor design decisions leading to architectural degradation.

We propose a method of Software Architecture Reconstruc-
tion (SAR) to recover the holistic data model and inter-service
communication of a microservice system. Our approach uses
static code analysis with no need for dynamic analysis. We
demonstrate our method on a large microservice testbed [1].

II. BACKGROUND AND RELATED WORK

There are three broad categorizations for SAR methods:
dynamic analysis, static analysis, and manual analysis.

Static code analysis has been used to identify calls between
microservices to generate security policy automatically [2].
Also, it has been used to analyze monolithic applications
to recommend splits for converting to microservices [3]. In

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049 and a grant from Red Hat Research,
https://research.redhat.com.

978-1-6654-0337-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ASE51524.2021.00134

Dept. of Computer Science

Waco, Texas, United States
dipta_das1 @baylor.edu

1199

Abdullah Al Maruf
Dept. of Computer Science
Baylor University
Waco, Texas, United States
maruf_maruf1@baylor.edu

Tomas Cerny
Dept. of Computer Science
Baylor University
Waco, Texas, United States
tomas_cerny @baylor.edu

generating a service dependency graph, Esparrachiari et al.
posit that source code analysis is not sufficient since the de-
ployment environment may impact the actual dependencies a
given deployed module has [4]. However, our goal is different
from theirs; we do not necessarily target every possible call
in a system for dependency detection; rather, we find the calls
that are part of the application’s business logic, and for this
purpose, the source code contains sufficient information.

Besides source code analysis, Ibrahim et al. used a project’s
Dockerfiles to search for known security vulnerabilities of the
container images being used, which they overlay on the system
topology extracted from Docker Compose files to generate
an attack graph showing how a security breach could be
propagated through a microservice mesh [5].

III. STATIC ANALYSIS APPROACH TO SAR

Our method does not need system runtime data; instead,
it uses code analysis to identify microservice’ endpoints
and calls between individual microservices. In addition, it
identifies data entities that individual microservices operate
with. These identified calls allow us to extract a view of
the system architecture before it is deployed, whereas other
methods require a deployed system [4], [6]-[8]. Using this
method, developers can get an updated view of the system’s
service APIs and service interactions as the code changes,
rather than waiting for deployments. This API/interaction view
was identified by Mayer and Weinreich as one of the most
important aspects of a microservice monitoring tool [9]. This
view also corresponds to the service viewpoint identified by
Rademacher et al. as one of the fundamental viewpoints to
be obtained from the SAR process on microservice-based
systems [10]. We also extract a bounded context [11] for
each individual microservice and combine them into a single
context map for the entire system. This combines entities
shared across microservices into a single combined entity,
preserving all properties and relationships the entity is part of
across the entire system. This view corresponds to the domain
viewpoint also identified by Rademacher et al. [10], and to our
knowledge, ours is the only microservice-oriented SAR tool
to include this viewpoint. Such views reveal system details,
current design state, serve as base for consistency checking,
or architecture erosion assessment [12].

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 23:02:50 UTC from IEEE Xplore. Restrictions apply.

Creating a context map consists of two parts. First, each
microservice project’s bounded context has to be created, and
second, those bounded contexts are combined into a context
map for the entire system. Extracting a bounded context from
each microservice requires each service to be analyzed. The
first goal is to extract a list of all local classes used in the
service. Once the classes have been identified, the next goal
is to determine which of them are serving as data entities and
which are not; for example, classes acting as REST controllers
or internal services need to be filtered out. This is where
we use enterprise standards to our advantage; development
frameworks use standard components and constructs involving
annotation descriptors that indicate a class’s semantic purpose.
For instance, there are multiple standards for persistence, input
validation, transaction boundaries, synchronization, layering,
and security. We use these descriptors to identify which classes
are acting as entities. Even though we reference mostly Java,
similar standards are adopted across platforms.

After the entities are identified, the bounded context of the
microservice can be built. This is done by identifying the rela-
tionships the entities have with each other. These relationships
have three different components, which we extract using static
analysis: the types involved in the relationship, the multiplicity
of the relationship, and the directionality of the relationship.
Identifying the types is done on the basis of the type names
of the entities’ fields, the multiplicity can be determined by
whether or not the field is a collection, and its directionality
can be determined by whether or not there is a corresponding
field in both of the entities involved or in only one entity.

A context map for the entire system is generated by merging
the bounded contexts from for all microservices together. Since
the mesh services operate on some of the same entities, the
entities in each microservice can be merged by detecting
if they have the same or similar names. Different bounded
contexts may have different purposes for the entities they share
and so may retain different fields from each other. Therefore,
the next step is to merge the fields of merged entities. Fields
with the same or similar names and the same data type are
merged into a single field in the merged entity, while non-
matching fields from all the source entities can simply be
appended to the merged entity. The result is a context map
that represents the scope of all entities used in the mesh.

Next, the code is analyzed to find calls among the mi-
croservices to create the communication diagram. This consists
of two phases: identifying each service’s API endpoints and
finding where these endpoints are called from other services.
With these two pieces of information, we can create a graph
showing the paths of communication between services. Re-
gardless of the method of extracting this information, certain
metadata must be collected regarding the endpoints and calls;
this includes the path, call method (HTTP/RPC), parameters,
and return type (or the expected return type for a call).

Our method depends on using the standardized formats
that enterprise standards use to encode this information. In
enterprise applications, exposing endpoints is most commonly

done in code using functions or annotations specific to a
framework or library; this means the definitions will appear
consistent each time they appear in code, so code analysis
can be used to identify the metadata about defined endpoints.
For instance, HTTP/RPC requests are made from a particular
client, likely part of the same framework used to define the
endpoints. Code analysis can also identify the metadata about
every request in the system by finding the function call formats
appropriate to the known library. Once the requests have been
identified, they can be matched with the catalog of known
service endpoints and protocols collected earlier; a match
means there is a communication path between the two services.

Extracted communication diagrams and context map, recon-
struct the system’s architecture in how the services communi-
cate among themselves and how the system treats its data.

To demonstrate the proposed approach, we implemented
a prototype suited for Java Spring framework projects and
applied it on the TrainTicket microservice benchmark [1]. The
system consists of 41 microservices; of these, 36 microservices
are Java-based, and they contain 27,259 lines of Java code,
counted by the CLOC (Count Lines of Code) tool. The
benchmark was analyzed using a MacBook Pro with a 2.9
GHz Quad-Core Intel Core i7 processor and 16 GB of RAM.
Prophet took 2 minutes and 37 seconds on this device to
clone, analyze, and generate the graphs for the repository. To
manually analyze the project and enumerate the entities and
inter-service calls took approximately 1.5 hours.

For class entities, manual analysis of the source code
revealed 64 distinct entities in the project, and we were able to
recover all of the entities, their properties, and their relation-
ships, with the exception of one property and one relationship.
Prophet also reported five additional classes that were not
considered entities during the manual inspection because they
were being used as data transfer objects (DTO) instead of
entities. The manual analysis showed 153 connections between
the services and their endpoints; separate calls. We identified
135 of these, missing 18 calls. The missing calls were all
due to those calls choosing from multiple potential URLs, an
ambiguity our tool was not designed to detect.

IV. CONCLUSIONS

We have presented a method to analyze a microservice mesh
and automatically generate an up-to-date data model and com-
munication diagram for it. This novel method provides several
contributions: it is much faster than creating these artifacts
manually; it can be re-run as often as the project changes; it
effectively serves as a centralized source of documentation of
a distributed system that does not introduce further coupling
between the services. We demonstrated it on a case study with
promising results and plan to expand it to other frameworks
and languages to face heterogeneity in future work.

Our tool git-repo: https://github.com/cloudhubs/
prophet-utils.

REFERENCES

[1] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao,
“Benchmarking microservice systems for software engineering

1200

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 23:02:50 UTC from IEEE Xplore. Restrictions apply.

[2]

[3]

[4]

[51

[6]

research,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
323-324. [Online]. Available: https://doi.org/10.1145/3183440.3194991
X. Li, Y. Chen, and Z. Lin, “Towards automated inter-service
authorization for microservice applications,” in Proceedings of the
ACM SIGCOMM 2019 Conference Posters and Demos, ser. SIGCOMM
Posters and Demos ’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 3-5. [Online]. Available:
https://doi-org.ezproxy.baylor.edu/10.1145/3342280.3342288

S. Eski and F. Buzluca, “An automatic extraction approach:
Transition to microservices architecture from monolithic application,”
in Proceedings of the 19th International Conference on Agile Software
Development: Companion, ser. XP ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi-org.ezproxy.baylor.edu/10.1145/3234152.3234195

S. Esparrachiari, T. Reilly, and A. Rentz, “Tracking and controlling
microservice dependencies,” Queue, vol. 16, no. 4, pp. 10:44-10:65,
Aug. 2018. [Online]. Available: http://doi.acm.org/10.1145/3277539.
3277541

A. Tbrahim, S. Bozhinoski, and A. Pretschner, “Attack graph generation
for microservice architecture,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, ser. SAC "19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 1235-1242. [Online].
Available: https://doi-org.ezproxy.baylor.edu/10.1145/3297280.3297401
B. Mayer and R. Weinreich, “An approach to extract the architecture

1201

[8

[10]

[11]

[12]

of microservice-based software systems,” in 2018 IEEE Symposium on
Service-Oriented System Engineering (SOSE), 2018, pp. 21-30.

G. Granchelli, M. Cardarelli, P. D. Francesco, 1. Malavolta, L. Iovino,
and A. D. Salle, “Towards recovering the software architecture of
microservice-based systems,” in 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), 2017, pp. 46-53.

K. A. Torkura, M. I. Sukmana, and C. Meinel, “Integrating continuous
security assessments in microservices and cloud native applications,”
in Proceedings of ThelOth International Conference on Utility and
Cloud Computing, ser. UCC *17. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 171-180. [Online]. Available:
https://doi.org/10.1145/3147213.3147229

B. Mayer and R. Weinreich, “A dashboard for microservice monitoring
and management,” in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), 2017, pp. 66—69.

F. Rademacher, S. Sachweh, and A. Ziindorf, “A modeling method for
systematic architecture reconstruction of microservice-based software
systems,” in Enterprise, Business-Process and Information Systems
Modeling, S. Nurcan, I. Reinhartz-Berger, P. Soffer, and J. Zdravkovic,
Eds. Cham: Springer International Publishing, 2020, pp. 311-326.

C. and Trnka, Michal, “Contextual Understanding of Microservice
Architecture:Current and Future Directions,” SIGAPP Appl. Comput.
Rev., vol. 17, no. 4, pp. 29-45, 2018.

A. Baabad, H. B. Zulzalil, S. Hassan, and S. B. Baharom, “Software
architecture degradation in open source software: A systematic literature
review,” IEEE Access, vol. 8, pp. 173681-173709, 2020.

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 23:02:50 UTC from IEEE Xplore. Restrictions apply.

