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Abstract—Despite the fact that there are numerous classifica-
tions of technical debt based on various criteria, Code Debt or
code smells is a category that appears in the majority of current
research. One of the primary causes of code debt is the urgency
to deliver software quickly, as well as bad coding practices.
Among many approaches, static code analysis has received the
most attention in studies to detect code-smell/code debt. However,
most of them examine the same programming language, although
today’s software company utilizes many development stacks with
various languages and tools. This problem can be resolved
by detecting code debt with Issue/Ticket cards. This paper
presents a method for detecting code debt leveraging natural
language processing on issue tickets. It also proposes a method
for calculating the average amount of time that a code debt was
present in the software. This method is implemented utilizing git
mining.

Index Terms—Code Debt, Code Smell, Architectural Degra-
dation, Technical Debt, Economical-Cost, Version Control, Issue
Ticket

I. INTRODUCTION

Many researchers have attempted to classify technical debt

using various criteria [1], [2]. For example, Martini et al.
[3] defined five types of technical debt in their study: code

debt, architectural debt, test debt, documentation debt, and

infrastructure debt. Regardless of the criteria, code debt is one

of the most common categories that was proposed in this study.

Although runtime and static code analysis are viable meth-

ods for detecting code debt, they frequently lack support

for multiple programming languages. In modern microservice

software architecture, it’s common to use various languages/s-

tacks to take advantage of distinct benefits. Since ’ticket cards’

(e.g., Jira or Trello ticket cards) have become the norm for

tracking software development and issues, identifying code

debt by processing issue tickets will be compelling.

The cost of a code debt that is paid while the debt is

addressed can be estimated using version control software such

as git. The purpose of this paper is to demonstrate a way

to calculate the cost of code debt and discuss a method for

discovering code debt using issue tickets.

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049 and a grant from Red Hat Research,
https://research.redhat.com.

II. BACKGROUND AND RELATED WORK

Code debt is mostly caused by many types of code smells.

Walker et al. described their approach of automatically de-

tecting code-smells in a microservice architecture utilizing

bytecode and or source code in their study [4].

Faris et al. described self-admitted technical debt analysis

using code comments with a contextualized vocabulary where

the developer writes comments to indicate code debt [5].

In a separate study [6], the authors did a case study on

Mozilla and introduced the concept of debt-prone bugs, which

they divided into three types: tag bugs, reopened bugs, and

duplicate bugs.

Martini et al. ’s case study [7] presented a measurement

technique for architectural technical debt, as well as a math-

ematical relationship for determining interest in terms of

additional work and development.

III. PROCESSING ISSUE TICKETS/BUG TRACKING

Natural language processing (NLP) can be used on issue

tickets to analyze and detect code debt issues. NLP is an

area of Artificial intelligence(AI) that helps machines read

language and has applications in spam detection, translation,

social media sentiment analysis, and etc. A recent publication

of google researchers, BERT (Bidirectional Encoder Repre-

sentations from Transformers), impacted the NLP community,

which is a State-of-the-Art Pre-training model for NLP. NLP

can understand contextual relationships between words using

this pre-trained machine learning model [8].

A reasonable quantity of train data is necessary to apply

the NLP model. The accuracy of the train data determines the

likelihood of properly detecting code debt issues. As a result,

collecting and verifying train data is critical. We can obtain

train data by identifying issues with certain labels and then

manually filtering the data.

Popular open-source repositories are a good place to look

for code debt issues because they provide best practices for

labeling. To collect issues, we can use ’allowed’ labels, for

example ’bug’ and ’todo’. However, we will disregard ’non-

allowed’ labels while gathering issues with allowed labels. For

example, a single issue may contain both the labels ”todo”

and ”documentation”. These issues will be skipped in these
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cases because ’documentation’ is not included in the Code

debt. Since we cannot rely only on labels, we must manually

assess these issues once they have been collected to ensure

their accuracy.

After collecting the training data, we can train the NLP

model. This can be accomplished using the Bert model that

has been pre-trained. With the model trained, it can be applied

to other repositories/issue tickets that do not contain any labels.

IV. ECONOMICAL COST FROM VERSION CONTROL

The economic cost of technical debt can take several forms,

including development hours wasted to address the debt,

financial costs incurred resulting from affecting users, a poor

basis for development plans, etc. We develop a method to

calculate the average amount of time that a code debt was

present in the software.

A reference to an updated code commit that fixed the

issue/code debt is commonly included in an issue/bug tracking

system. We may analyze code changes using this reference to

apply the cost estimation method.

To calculate this cost, we start with the commit’s code

diff. In Listing 1 is described the method in an algorithmic

manner. There are three possible scenarios: a code block is

only deleted, a code block is deleted due to the addition of a

code block, or a code block is only added.

For the deletion code block (scenario 1), we take the sum of

all the deleted lines’ time differences from the current commit.

Then, for each additional line, if it resulted in the deletion

of any line (scenario 2), we calculate the time difference

between the deleted line and the current commit time. For

each additional line, we add this time difference to the entire

summation. In the third case, if there is no line deletion but

simply addition, we take the average of the upper and lower

lines’ time stamps of changed blocks and then add the time

difference to the overall summation. We take the average after

processing all impacted lines by dividing the total summation

by the number of affected lines.

Listing 1
FINDING TECHNICAL DEBT COST FOR EACH COMMIT

sum := 0
Find diff of a commit
For each deleted line:

sum += time diff of older line commit and
current commit

For each added line:
If it caused deletion of line:

- Use time diff of that deletion time
Else if there was no deletion:

- Take the average of upper and lower line
commit time

sum += time diff of an old commit and current
commit

Average cost := sum/#_of_affected_lines

V. CONCLUSIONS

Code debt detection through an issue/bug tracking system is

a good alternative to code analysis for multi-stack microservice
architecture since it can be used without depending on the

system’s programming language. Since NLP and machine

learning are becoming more proficient at evaluating data to

generate models, this technique may yield superior analysis

outcomes. Although gathering data is a challenging effort, it is

a do-once task, which means we may reuse the trained model

once the data has been collected and the machine learning

model is trained. Obtaining a reasonable cost from git mining

is also useful for producing matrices that demonstrate which

code debts were present in the system for how long.
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