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Abstract—Despite the fact that there are numerous classifica-
tions of technical debt based on various criteria, Code Debt or
code smells is a category that appears in the majority of current
research. One of the primary causes of code debt is the urgency
to deliver software quickly, as well as bad coding practices.
Among many approaches, static code analysis has received the
most attention in studies to detect code-smell/code debt. However,
most of them examine the same programming language, although
today’s software company utilizes many development stacks with
various languages and tools. This problem can be resolved
by detecting code debt with Issue/Ticket cards. This paper
presents a method for detecting code debt leveraging natural
language processing on issue tickets. It also proposes a method
for calculating the average amount of time that a code debt was
present in the software. This method is implemented utilizing git
mining.

Index Terms—Code Debt, Code Smell, Architectural Degra-
dation, Technical Debt, Economical-Cost, Version Control, Issue
Ticket

I. INTRODUCTION

Many researchers have attempted to classify technical debt
using various criteria [1], [2]. For example, Martini et al.
[3] defined five types of technical debt in their study: code
debt, architectural debt, test debt, documentation debt, and
infrastructure debt. Regardless of the criteria, code debt is one
of the most common categories that was proposed in this study.

Although runtime and static code analysis are viable meth-
ods for detecting code debt, they frequently lack support
for multiple programming languages. In modern microservice
software architecture, it’s common to use various languages/s-
tacks to take advantage of distinct benefits. Since ’ticket cards’
(e.g., Jira or Trello ticket cards) have become the norm for
tracking software development and issues, identifying code
debt by processing issue tickets will be compelling.

The cost of a code debt that is paid while the debt is
addressed can be estimated using version control software such
as git. The purpose of this paper is to demonstrate a way
to calculate the cost of code debt and discuss a method for
discovering code debt using issue tickets.
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II. BACKGROUND AND RELATED WORK

Code debt is mostly caused by many types of code smells.
Walker e al. described their approach of automatically de-
tecting code-smells in a microservice architecture utilizing
bytecode and or source code in their study [4].

Faris et al. described self-admitted technical debt analysis
using code comments with a contextualized vocabulary where
the developer writes comments to indicate code debt [5].

In a separate study [6], the authors did a case study on
Mozilla and introduced the concept of debt-prone bugs, which
they divided into three types: tag bugs, reopened bugs, and
duplicate bugs.

Martini et al. ’s case study [7] presented a measurement
technique for architectural technical debt, as well as a math-
ematical relationship for determining interest in terms of
additional work and development.

IIT. PROCESSING ISSUE TICKETS/BUG TRACKING

Natural language processing (NLP) can be used on issue
tickets to analyze and detect code debt issues. NLP is an
area of Artificial intelligence(Al) that helps machines read
language and has applications in spam detection, translation,
social media sentiment analysis, and etc. A recent publication
of google researchers, BERT (Bidirectional Encoder Repre-
sentations from Transformers), impacted the NLP community,
which is a State-of-the-Art Pre-training model for NLP. NLP
can understand contextual relationships between words using
this pre-trained machine learning model [8].

A reasonable quantity of train data is necessary to apply
the NLP model. The accuracy of the train data determines the
likelihood of properly detecting code debt issues. As a result,
collecting and verifying train data is critical. We can obtain
train data by identifying issues with certain labels and then
manually filtering the data.

Popular open-source repositories are a good place to look
for code debt issues because they provide best practices for
labeling. To collect issues, we can use ’allowed’ labels, for
example "bug’ and ’todo’. However, we will disregard 'non-
allowed’ labels while gathering issues with allowed labels. For
example, a single issue may contain both the labels “todo”
and “documentation”. These issues will be skipped in these
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cases because ’documentation’ is not included in the Code
debt. Since we cannot rely only on labels, we must manually
assess these issues once they have been collected to ensure
their accuracy.

After collecting the training data, we can train the NLP
model. This can be accomplished using the Bert model that
has been pre-trained. With the model trained, it can be applied
to other repositories/issue tickets that do not contain any labels.

IV. EcoNOMICAL COST FROM VERSION CONTROL

The economic cost of technical debt can take several forms,
including development hours wasted to address the debt,
financial costs incurred resulting from affecting users, a poor
basis for development plans, etc. We develop a method to
calculate the average amount of time that a code debt was
present in the software.

A reference to an updated code commit that fixed the
issue/code debt is commonly included in an issue/bug tracking
system. We may analyze code changes using this reference to
apply the cost estimation method.

To calculate this cost, we start with the commit’s code
diff. In Listing 1 is described the method in an algorithmic
manner. There are three possible scenarios: a code block is
only deleted, a code block is deleted due to the addition of a
code block, or a code block is only added.

For the deletion code block (scenario 1), we take the sum of
all the deleted lines’ time differences from the current commit.
Then, for each additional line, if it resulted in the deletion
of any line (scenario 2), we calculate the time difference
between the deleted line and the current commit time. For
each additional line, we add this time difference to the entire
summation. In the third case, if there is no line deletion but
simply addition, we take the average of the upper and lower
lines’ time stamps of changed blocks and then add the time
difference to the overall summation. We take the average after
processing all impacted lines by dividing the total summation
by the number of affected lines.

Listing 1
FINDING TECHNICAL DEBT COST FOR EACH COMMIT

sum 0
Find diff of a commit
For each deleted line:
sum += time diff of older line commit and
current commit
For each added line:
If it caused deletion of line:
— Use time diff of that deletion time
Else if there was no deletion:
— Take the average of upper and lower line
commit time
sum += time diff of an old commit and current
commit
Average cost

sum/#_of_affected_lines
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V. CONCLUSIONS

Code debt detection through an issue/bug tracking system is

a good alternative to code analysis for multi-stack microservice
architecture since it can be used without depending on the

system’s programming language. Since NLP and machine
learning are becoming more proficient at evaluating data to
generate models, this technique may yield superior analysis
outcomes. Although gathering data is a challenging effort, it is
a do-once task, which means we may reuse the trained model
once the data has been collected and the machine learning
model is trained. Obtaining a reasonable cost from git mining
is also useful for producing matrices that demonstrate which
code debts were present in the system for how long.
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