Check for
Updates

Technical Debt Resulting from Architectural Degradation
and Code Smells: A Systematic Mapping Study

Dipta Das
Baylor University
. Waco, TX 76798
dipta_das1@baylor.edu

Rofiqul Islam
Baylor University
Waco, TX 76798

Abdullah Al Maruf
Baylor University
Waco, TX 76798

maruf_maruf1@baylor.edu

Noah Lambaria
Baylor University
Waco, TX 76798

rofiqul_islam1@baylor.edu noah_lambarial@baylor.edu

Samuel Kim
Baylor University
Waco, TX 76798

Amr S. Abdelfattah
Baylor University
Waco, TX 76798

Tomas Cerny
Baylor University
Waco, TX 76798

samuel_kim1@baylor.edu amr_elsayedi1@baylor.edu tomas_cerny@baylor.edu

Karel Frajtak
Czech Technical University
Prague, Czechia
frajtak@fel.cvut.cz

ABSTRACT

Poor design choices, bad coding practices, or the need to
produce software quickly can stand behind technical debt.
Unfortunately, manually identifying and managing technical
debt gets more difficult as the software matures. Recent
research offers various techniques to automate the process
of detecting and managing technical debt to address these
challenges. This manuscript presents a mapping study of the
many aspects of technical debt that have been discovered in
this field of study. This includes looking at the various forms
of technical debt, as well as detection methods, the financial
implications, and mitigation strategies. The findings and
outcomes of this study are applicable to a wide range of
software development life-cycle decisions.

CCS Concepts

eSoftware and its engineering — Maintaining software; Soft-
ware design tradeoffs; Software evolution;

Keywords

Technical Debt, Architectural Degradation, Code Smells,
Architectural Debt, Design Debt, Code Debt

1. INTRODUCTION

Intense competition in the modern software industry forces
companies to produce their products and release new ver-
sions under strict time constraints. To meet these deadlines,

Copyright is held by the authors.

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

Miroslav Bures
Czech Technical University
Prague, Czechia
buresm3@fel.cvut.cz

Pavel Tisnovsky
Red Hat
_ Brno, Czechia
ptisnovs@redhat.com

companies often adopt shortcuts in software development
and maintenance.

Technical debt refers to these shortcuts, and the resultant
poor software quality [79]. It applies a financial metaphor to
express the tradeoffs between short-term benefits and long-
term costs of the Software Development Life-Cycle (SDLC)
[68, 4]. Studies found that technical debt is primarily cre-
ated as a result of deliberate decisions made to satisfy cus-
tomers [79]. Technical debt can be a worthwhile investment
as long as the project team is aware of its presence and the
higher risks it entails [61]. If effectively managed, technical
debt can assist the project in achieving its objectives sooner
or more inexpensively [61]. Technical debt can also occur
unintentionally due to poor design choices and bad coding
practices [21, 74]. While code-level debt can be easily identi-
fied and fixed with minimal effort, design debt is difficult to
detect and resolve [74]. Also, as software increases in com-
plexity during development, technical debt becomes harder
to manually detect and manage [34]. To overcome these
challenges, recent studies propose several tools to automate
the process of identifying, measuring, and managing techni-
cal debt. However, due to different definitions of technical
debt and the lack of agreement among these tools, auto-
mated technical debt assessments remain complex and hard
to generalize [4, 39].

The purpose of this paper is to categorize different aspects of
technical debt discovered in this field of research. These in-
clude analyzing everything from the types of technical debt,
detection tools, and mitigation strategies. We summarized
the obstacles of efficient measurement of technical debt. Fur-
thermore, we discussed the detection strategies of architec-
tural smells and code smells, two principal subsets of techni-
cal debt. Also, we analyzed the financial impact of technical

20

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3512753.3512755&domain=pdf&date_stamp=2022-01-19

debt described in recent studies.

The findings and conclusions of this study are relevant for
a variety of decisions in the software development lifecycle,
e.g., restructuring architecture, refactoring codebase, adopt-
ing new technologies where cost and time analysis are cru-
cial.

The rest of the paper is organized as follows. Section 2
gives a general background and lists related work on tech-
nical debt, architectural smells, architectural degradation,
and code smells. Section 3 describes how the authors col-
lected and analyzed the relevant papers on technical debt.
Section 4 answers the research questions listed in section 3.
The validity of our systematic study is discussed in Section
5. Finally, we conclude the paper in Section 6 with a general
summary of our contributions along with future works.

2. BACKGROUND AND RELATED WORK

Technical debt is defined in many ways in different litera-
ture. The most common definition is that Technical debt
is a future cost attribute due to code smells, architectural
flaws, or any other reason in production-level code that
needs to be fixed [30, 19, 41, 48, 73, 69, 5, 43, 42]. Tech-
nical debt can occur for many reasons, although the most
common reason is the speeding-up process of software de-
velopment [30, 41, 73, 69, 5, 43]. Developers often ignore
some low-profile requirements to finish the project on dead-
line and postpone them for future work. It is a common
practice in the software development process, since clients
require updates in every assessment and a working project
by the deadline. Moreover, there are also some unintentional
and undiscovered flaws that only can be identified when the
project runs on the production platform [43].

Technical debt is a metaphorical representation introduced
by Ward Cunningham to describe a specific kind of prob-
lem that deteriorates software day by day. In 1992, Ward
Cunningham, in his experience report [19, 41, 43] for the
OOPSLA conference, describes technical debt as the follow-
ing:

"Shipping first time code is like going into debt. A lit-
tle debt speeds development so long as it is paid back
promptly with a rewrite... The danger occurs when the
debt is not repaid. FEvery minute spent on not-quite-
right code counts as interest on that debt. Entire en-
gineering organizations can be brought to a stand-still
under the debt load of an unconsolidated implementa-
tion, object-oriented or otherwise.”

Technical debt is considered similar to financial debt [22].
In financial debt, we have to return some extra financial
credit as interest with the capital. Similarly, in technical
debt, we have to pay some extra labor for code or design
refactoring when we attempt to recover it [43]. Oftentimes
technical debt can be inescapable, with developers taking
shortcuts in the hopes of having some form of savings [60].
Likewise to financial debt, it is also crucial to evaluate pay-
back strategies in further assessing the cost [55].

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

The importance of studies on technical debt is significant for
the maintenance of running software on production. There
is a vital influence of technical debt on software quality and
lifetime [30]. No client wants a great working project which
will no longer work perfectly or break in the future. The
study on technical debt needs to be continued since there
are multiple questions left that are not answered yet. Firstly,
there are multiple tools for identifying and measuring archi-
tectural degradation, but we can not select any of them as
standard [7, 62, 30, 67, 37]. Secondly, there is no standard
measurement unit for architectural degradation which makes
measuring technical debt very difficult [4, 40]. Thirdly, there
is no standardized mapping between the priority scale of a
technical debt and its type. [4]. Such a mapping is very
important because it can give us a guideline when we face
multiple technical debts in the same project by suggesting
what kind of technical debt needs to be fixed first and which
can be solved later. Even sometimes holding technical debt
is better for software, so we need to find when it is beneficial
to keep technical debt [61]. Fourthly, the relation between
technical debt and economical debt is also an important con-
cern that involves estimating the cost of different kinds of
technical debts and determining when and by whom those
will be paid [10, 20].

Technical debt arises from many sources. Architectural de-
gradation and Code smells are two main factors for occurring
technical debt [48, 73, 26, 67, 43, 37, 78].

The term code-smell was first coined by Kent Beck in the
1990s. Unlike traditional bugs, code smells are violations
that can potentially impact the performance of code [18].
Furthermore, code smells can be subjective as there are vari-
ations of what is considered both harmful and non-harmful
smells.

Code smell detection is essential in order to prevent fu-
ture flaws or issues that could occur during the SDLC. As
Mandi¢ et. al mentioned in [49], researchers are able to
grasp and identify technical debt and architectural degrada-
tion by examining code smells. Based on data provided from
a research questionnaire [14], some of the most prevalent
code smells that software developers encounter are dupli-
cated code, large classes, long methods, etc. These are just
a few of many smells that contribute to architectural degra-
dation and erosion. When encountering these types of code
smells, it is typically common that some form of refactoring
occurs to dispose of the smell. Not only does this enhance
the code, but it also improves source code maintainability
and comprehension, which developers can keep track of [1].
There is also a significant amount of tools and static ana-
lyzers on the market which assist in identifying code smells
[23].

Architectural degradation is the process of the actual archi-
tecture of a system deviating from the intended architecture
[8]. This, like technical debt, occurs when faulty code is
added to a system without consideration for its long-term
consequences [78]. Architectural degradation can manifest
in the form of architectural smells such as cyclic dependen-
cies, hub-like dependencies, unstable dependencies, cyclic hi-
erarchies, scattered functionality, god components, abstrac-
tion without decoupling, multipath hierarchies, ambiguous
interfaces, unutilized abstractions, implicit cross-module de-

21

pendencies, and architecture violations [7].

Architectural degradation can be caused by architectural
debt, also known as architectural technical debt, a subset
of technical debt [78]. Architectural technical debt can be
understood as an erroneous architectural relation between
files that accumulates a maintenance cost over time. [78]. A
systematic literature review on architectural degradation in
open source software [8] found its main causes to be rushed
system evolution, recurring changes, lack of awareness on
the part of developers, time pressure, and design decision
accumulation.

3. MAPPING STUDY METHOD

In this study, we carried out a structured procedure to accu-
mulate and synthesize the research works on technical debt
in SDLC. Although there are many recent studies discussing
technical debt, in this paper, we narrowed our focus on archi-
tectural debt and code smells, two primary constituents of
technical debt. To find existing groundwork relevant to the
specific field of interest, we followed a software engineering
approach of systematic mapping studies [57].

In the first phase of our mapping study, we defined a set of
research questions and refined them over time such that the
answers to those questions represent a comprehensive un-
derstanding of the topic under consideration: technical debt
resulting from architectural degradation and code smells.
Next, we identified the search terms for querying across dif-
ferent indexing sites and portals. This phase required a trial-
and-error process to finalize the search terms relevant to our
topic. Once all papers were gathered, we manually filtered
out out-of-scope papers by reading through the abstracts
and prepared a shortlist. Finally, we rigorously analyzed
the shortlisted papers to answer the research questions.

The questions we examined in this study are as follows:

RQ1 What is the trend in research over time? Has more
or less been done recently?

RQ2 Which countries and people are most active in this
field of research?

RQ3 What are the types of technical debt?

RQ4 What are the common strategies to detect technical
debt? What tools are used?

RQ5 How to measure technical debt? What are the limi-
tations?

RQ6 What are the common ways to manage technical
debt?

RQ7 What is the relationship between architectural degra-
dation and technical debt? What approaches and
tools are used?

RQ8 How do code smells cause technical debt? How to
detect them?

RQ9 How can we estimate the economical impact of ar-
chitectural degradation?

RQ10 What are the future directions for detecting and
managing technical debt?

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

Table 1: Search Query Results for Various Indexer Sites

Indexer Search Filtered
ACM DL 191 33
IEEE Xplore 75 16
SpringerLink 46 8
ScienceDirect 25! 4
Total 337 61

We used four indexing sites and portals (indexers), includ-
ing IEEE Xplore, ACM Digital Library (DL), ScienceDirect,
and SpringerLink. We tailored our search query to look
for papers related to technical debt caused by architectural
degradation and code smells. We divided our search query
into three parts. In the first part of our query, we included
the search term “technical debt” however, we also consid-
ered related terms like “code debt” and “design debt”. In the
second part, we used similar terms that represent architec-
tural degradation. For the last part, we injected the terms
relevant to code smells. The full search query is presented
in the Listing 1.

Each paper after the initial filtering was then manually eval-
uated on its title and abstract to determine if it was a fit for
the scope we are looking for. Our search query returned a
large number of papers; however, after the manual process-
ing, we found that most of them are related to failure detec-
tion instead of failure prediction. Apart from that, we have
also discarded non-English papers, papers without available
full-text, opinion-based papers, and short papers with less
than four pages. Then we went through the related work
section of the remaining papers to include relevant studies
that the search query omitted.

The results of our search queries and manual filtering are
listed in Table 1 along with the papers we found by ex-
ploring related work sections. Once we narrowed down the
relevant works to about 61 papers, we thoroughly studied
them to discover current trends in technical debt in relation
to architectural degradation and code smells.

4. ANALYSIS RESULTS

Out of 337 papers returned by the search, we recognized a
very small number of relevant works. The majority of the
works focused on technical debt in general. Only 61 papers
that discuss technical debt as a result of code smells and
architectural anomaly were considered for the final analy-
sis. In this section, we present the findings of the study
by answering the research questions in separate subsections.
The validity of our systematic study is discussed in the last
subsection.

4.1 Trends

The idea of technical debt has been around since the 1990s.
Even though research started in the 1990s, most of them
were focused on technical debt in general until around 2011
when a larger emphasis was placed on code smells and archi-
tectural degradation. This emphasis occurred naturally as
a reaction to the ever-growing size and complexity of soft-

22

Listing 1: The Search Query for the Indexers
("technical debt" OR "code debt" OR "design debt" OR "architectural debt")
AND ("architectural smell" OR "architectural anomaly" OR "architectural degradation"
OR "architectural erosion" OR "architectural decay" OR "architectural drift"

OR "code smell" OR "code refactoring"

10

Paper Count
o

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year

Figure 1: Number of papers found per year

30

Paper Count

2009-2011 2012-2014 2015-2017 2018-2020

Years
Figure 2: Number of papers found per 3 years

ware systems and the escalating risk technical debt creates.
Figure 1 illustrates all of the papers the authors included in
this study. As can be seen from the graph above, the general
trend of research on technical debt has been increasing over
time, especially over the last few years. For the 61 selected
papers, Figure 2 shows an sharp increase in the number of
papers written after 2014.

4.2 Countries and People

We found several common authors in the selected research
papers. Francesca Arcelli Fontana from the University of
Milan is the most active researcher in this field, publish-
ing more than 10 articles on technical debt. The other au-
thors who contributed to more than 5 papers are Philippe
Kruchten, Ipek Ozkaya, and Lu Xiao. However, in general,
each person contributed to one or two papers. This shows
us that the research is fairly widespread, and not contained
to one group of people. This conclusion can also be seen

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

OR "code quality")

40

20

Number of Authors

O @ > & 2 3 e N
\fy N S ,b&b > NS b@“ L F c}‘\ NI RN 7’2\» %%\'b

®
3 3 < N S 0% N
B LR FE S S P & o
AR LS et P S Z\@Qo@&v R
N
3

,

)

Country

Figure 3: Number of researchers involved per country

in Figure 3, which outlines the number of people in each
country that are involved in researching technical debt, ar-
chitectural degradation, and code smells. Out of the 61
papers analyzed, the United States currently has the most
people involved in this research. The other countries that
contributed the most to the research of technical debt are
Italy, Netherlands, Brazil, Sweden, and Greece.

4.3 Identification of Technical Debt

Different kinds of technical debt identification mechanisms
are available on market. Analyzing code, code comments,
commits, and architecture are the most used mechanisms
for identifying technical debt. Some papers solely worked
on the identification of technical debt [48, 73, 78, 71]. Aside
from that, most of the related papers identify technical debt
for the necessity of it in their work. Solely analyzing code
is a widely used method for technical debt identification
[7, 62, 13, 26, 67, 20, 43, 56, 12] and there are multiple
tools for this which are quite popular, including SonarQube,
Arcade, Arcan, Designite, Hotspot detector, etc. Analyzing
only commits on the version controlling platform is another
used strategy to identify technical debt [66, 64]. Moreover,
combining both code and commit analysis is also a popu-
lar strategy [48, 9]. Architecture analysis [73, 5, 37] and a
combination between code and architecture analysis [30, 41]
are also used to identify technical debt in many studies in
the literature. Finding patterns 78] is another strategy to
identify technical debt.

4.4 Categorization of Technical Debt

Categorizing the technical debt is an important task and
several studies tried to do so based on different criteria. Us-
ing multiple tools is a common and well-accepted way to
categorize technical debt. Azadi and Umberto [7] proposed
a catalog of architectural debt which is a subset of technical
debt. This paper used 9 tools and established 12 different

23

kinds of architectural debt. Roveda and Riccardo [62] an-
alyzed around 109 open-source projects and defined a new
Architectural Debt Index. Another indexing of technical
debt was done by Fontana and Francesca [62], which used
five tools, some of them being free and others being com-
mercial.

Martini and Stray [51] identified five main types of techni-
cal debt in their work: Code debt, Architectural debt, Test
Debt, Documentation debt, and Infrastructure debt.

e Code debt mainly arises from different kinds of code
smells.

e Architectural debt occurs due to design flaws in project
architectures; for example, monolithic architectures are
a substandard choice for large projects since depen-
dency handling will cause technical debt.

e Test debt mainly happens due to insufficient test sets
and the lack of structured and automated tests.

e Documentation debt arises due to poor levels of code
or project documentation like an insufficient descrip-
tion of APIs, an inadequate use-case or domain-model
diagram, etc.

e Infrastructure debt mainly occurs due to poor resource
management.

Martini and Stray also mentioned non-technical debts such
as social debt and process debt. These kinds of debts are
mainly generated due to lack of communication and faulty
project leading strategy.

4.5 Challenges in Measuring Technical Debt

Measuring technical debt properly is a great challenge for ev-
ery researcher since there is no fixed unit of technical debt
[4, 40, 6] to serve as the analog for money in the economical
debt analogy. Different technical debt measurement tools
use different criteria as the unit of debt which are not mutu-
ally approved by all. When we recover from an economical
debt, we pay the principal as well as the interest, totaling
to a measurable compensation for the debt. However, be-
cause there is no fixed unit for technical debt, completely
measuring the compensation of technical debt recovery re-
mains a difficulty. For this reason, there is no fixed scale for
an available tool’s quality, which is a great challenge to the
research in this area.

4.6 Reduction Management of Technical Debt

The study of reducing technical debt is also a hot topic for re-
search. Strategic management [41] is the first approach that
we will discuss. It mainly focuses on distinguishing different
technical debts and strategies to overcome those debts. It
uses various tools, multiple industrial-level source projects,
published literature, and other activities on technical debt
as the resources for this study. The next approach is get-
ting a better understanding of technical debt. Many papers
[43, 56, 49, 37] have discussed the required technical knowl-
edge to reduce technical debt. Some of them also finalized
some questionnaires which need to be passed to guarantee

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

the minimal technical debt. Another approach is using au-
tomated tools. There are different kinds of tools available
in the market, some of them being free, though most are
commercial. Designite [67] is a software design quality as-
sessment tool that not only supports comprehensive design
smell detection but also provides a detailed metrics analy-
sis. Other similar tools include SonarQube, Arcade, Arcan,
Designite, Hotspot detector, etc. Using these types of tools
in specific steps of SDLC will help developers to minimize
technical debt.

4.7 Strategies to Detect Architectural Degra-
dation

Multiple strategies for addressing architectural degradation
involve the use of static code analysis tools which detect
code smells [31, 65, 29, 7, 26, 52]. However, one 2017 paper
[46] presents issues with the use of code smell detection tools
in addressing architectural degradation, such as the finding
that Naive Bayes classification models cannot use software-
detected code smells to identify classes with architectural
inconsistencies and that a relation between architectural in-
consistencies and code smells only exists when code smells
are detected manually. The study therefore argues that re-
flexion models are currently more effective than the use of
code smell detection tools for determining architectural in-
consistencies until detection tools improve.

Other papers mainly present tools that are developed specif-
ically to identify or mend architectural degradation [65, 13,
62, 64]. The Architecture Recovery, Change, and Decay
Evaluator (ARCADE) is an example of a tool developed for
addressing architectural degradation that also incorporates
existing static code analysis tools [65].

In another group of papers, rather than focusing on static
code analysis tools or presenting software specifically for ar-
chitectural degradation, other strategies or models are intro-
duced, such as the "THCP Matrix”, the "Design Rule Space”,
and a predictive model for identifying the significance of ar-
chitectural issues [78, 76, 66, 50, 73]. Thus, as summarized
in Table 2, the papers can be grouped into three (not mu-
tually exclusive) categories based on whether the strategy
presented involves static code analysis tools, involves the
use of a tool specifically for architectural degradation, or is
a process or model.

The strategies for detecting architectural degradation that
involve the use of static code analysis tools are varied. One
method is to detect cyclic dependencies through Sonargraph,
Sonarqube, and inFusion [31]. As mentioned earlier, static
code analysis tools — specifically Dependency Finder and
PMD — are also used in ARCADE and are visible in the
repository mentioned by Laser et. al [65]. Another paper
introduces a method of using of SonarQube, inFusion, Struc-
tural Analysis for Java, and Structure 101 to detect the fol-
lowing Quality Indexes: SQALE, technical debt, QDI, Sta-
bility Index, and SoC [29]. Numerous static code analysis
tools are also mentioned in a catalog that maps common ar-
chitectural smells to the code analyzers that can detect them
[7]. Additionally, Arcan uses the static analysis of compiled
source code to detect architectural smells [28].

Multiple papers mainly present software that deal specif-

24

Table 2: Categories of architectural degradation detection tools
| Category

| Reference |
[31, 65, 29, 7, 28]

Tools that involve the use of
static code analysis

Tools developed specifically | [65, 13, 62, 28]

for architectural degradation

[46, 78, 76, 66, 50,
73, 24, 26)

Presents a process or model

ically with architectural degradation. One paper explains
how ARCADE offers solutions for addressing architectural
decay [65], and this is discussed further in section 4.9. An-
other paper presents Arcan, an open-source tool for detect-
ing architectural smells through analyzing the evolution of
individual architectural smell instances [64]. Further papers
in this group describe research which expands on Arcan,
such as the development a C/C++ port for Arcan which de-
tects five architectural smells [13] as well as the proposal to
incorporate into Arcan an Architectural Debt Index, based
on measurable factors, for assigning priorities to architec-
tural smells and rating the architectural debt of a project
over time [62].

Several papers focus more so on a process or model rather
than the use of a specific piece of software for dealing with
architectural degradation. One such model is the HCP ma-
trix, a history model introduced in 2016 which is used for
estimating the chances for change propagation in files [78].
Another model is the Design-Rule Space (DRSpace), an
architecture model that posits that overlapping DRSpaces
compose a software architecture, and this is used for archi-
tectural debt identification [76]. Furthermore, a different
paper proposes the Active Hotspot model for monitoring
architecture degradation through analyzing the changes in
source files and their relations to other files over time for a
given issue [24]. Another paper proposes a predictive model
which allows for automatic detection of architecturally sig-
nificant issues and identification of the significance of new
issues. Shahbazian et. al in their paper [66] explain this pre-
diction process by describing how they both gather the tex-
tual information and the architectural significance of project
issues and apply their machine learning approach. In an-
other paper, a holistic framework is proposed for identifying
and estimating architectural debt through the use of a mea-
surement system and estimation formula [50]. Moreover, a
different paper proposes the use of ”"Self-admitted” Architec-
tural Technical Debt, "abstracted code evolution analysis”,
and an approach for gathering information from multiple
sources to identify architectural technical debt [73]. In an-
other study, multiple Views, including a Related Code Smell
View, are proposed for analyzing architectural issues based
on detected code smells [26]. Finally, the Reflexion Mod-
eling process [46, 54] can be used as a method for finding
architectural inconsistencies by creating modules that de-
scribe the software’s intended architecture and mapping the
source code onto those modules. This allows for comparing
the software’s intended architecture with its actual architec-
ture, revealing architectural debts.

4.8 Code Smells in Relation to Technical Debt

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

Harmful code smells are typically a result of bad design or
quality. This results in the lack of maintainability, leading
to both technical debt and architectural degradation as soft-
ware evolves. Code smells are an indication of design flaws;
however, they can be eradicated through continuous refac-
toring. Based on our mapping study, only a small portion
of the total papers mentioned code smells.

Some further anomalies that were mentioned while discussing
code smells were the following;:

Design Smells [59]

Architectural smells [62, 27, 15, 32]
Structural Anti-patterns [26]
Abstraction Smells [35]

Although architectural smells and code smells differ, they
sometimes can be uncovered within the same files. As men-
tioned in [26], architectural smells are also caused due to vio-
lations of design principles. Based on the work by Plosch et.
al [59], both code smells and design smells are interchange-
able terms that refer to the same concepts and violations.

Some prevalent code smells as mentioned in three papers [14,
26, 3] that software developers encounter and researchers
discuss are the following:

Duplicated Code [14, 38]
Large Class [14]

Long Method [14, 38]

God Class [26, 3, 59, 38, 25]
Data Class [26]

Brain Method [26, 25]
Shotgun Surgery [26]
Dispersed Coupling [26]
Message Chains [26]

This is a non-exhaustive list of some of the types of code
smells that contribute to technical debt, hindering the main-
tainability of software. The authors in each of the papers
[14, 26, 3, 59] provide a detailed analysis as well as definitions
of each type of smell, including statistics on how frequently
they appear.

4.8.1 Relationship with Technical Debt

Bad code smells can sometimes result in technical debt.
From our findings, code smells coincide with technical debt
significantly more than they coincide with architectural degra-
dation. Only a minor percentage of papers mentioned both
architectural degradation and code smells, demonstrating
that it typically is more associated with technical debt. To
manage technical debt, it typically is essential to have some
form of interaction with static analyzer tools, which will be
further discussed. Fontana et. al [26] assumes that specific
code anomalies are more inclined to be indicators of archi-
tectural degradation and technical debt.

A majority of papers discussed both technical debt and code
smells together. As seen in [3], research suggests that code
smells are the most analyzed and mentioned indicators of
technical debt. Furthermore, Alves et. al elaborated that
on when beginning to detect technical debt, one of the best
candidates is god classes. This is because they are thirteen
times more likely to be affected with faults [3] and are the

25

most conceptually identifiable. Further papers, such as in
[62], suggest that architectural issues are a substantial source
of technical debt. Code smells also result in design debt,
leading to potential refactoring.

4.8.2 Tools Used

Our findings suggest that there are several commonly avail-
able tools to detect code smells. Several papers mentioned
static analyzers, which assist in the process of identifying
various code smells [44]. These tools are also efficacious at
revealing quality rule violations. Static analyzers that are
used to identify technical debt and architectural degrada-
tion as previously examined are also beneficial for recogniz-
ing code smells. As Falessi and Kruchten mentioned in [23],
these static analyzers provide analysis of code smells such
as god classes or god clones. Some of the more commonly
mentioned tools to examine code smells were Kaleidoscope,
HistoryMiner, Arcan, Arcade, and CodeVizard. These tools
will be further discussed later in the paper.

4.8.3 Obstacles and Challenges

If bad code smells are not caught early on, it can lead to sig-
nificant technical debt and oftentimes go undetected. This
also significantly impacts the performance of software sys-
tems. Most papers highlight challenges while managing code
smells. Although static analyzers are beneficial and speed
up the process, Haendler et al. [35] mentions that most code
smells must be manually observed and inspected. Another
obstacle that Fontana et al. [26] indicates is that there is no
specific standard set of base measures that evaluate software
architecture quality. Similarly, Li et. al [47] discusses how
it is challenging to know ahead of time what technical debt
items (e.g., code smells) will have the highest cost.

4.9 Architectural Degradation, Code Smells,
and Technical Debt Tools

There are many tools on the market that are beneficial in ex-
amining architectural degradation, technical debt, and code
smells. These tools differ in many ways, whether by input
type, output type, analysis strategy, objective, etc. In this
work, we have analyzed 22 tools that address these topics
and categorize them into four different groups, those be-
ing Code-based, Code and design-based, Commit-based, and
Architecture and design-based. Table 3 presents the catego-
rization for each tool based on its usefulness in a particular
area.

4.9.1 Code-Based Tools

In our study, the Code-based category covers a large set
of tools. Normally, Code-based tools take source code as
input and analyze it to find out architectural degradation,
technical debt, or code smells.

SonarQube [70, 63] is a code-based tool that checks code
quality against a set of coding rules. It can operate over
around 27 programming languages including Java, C/C++,
C+#, Python, etc. It finds out code smells by reporting about
duplicate code, coding standards, unit tests, code coverage,
code complexity, comments, bugs, security vulnerabilities,

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

and other significant flaws in code. Also, it is able to detect
the cyclic dependency architectural smell [31].

Designite [67] is another code-based tool that only works on
the C# programming language and is used as an assessment
tool for software design and quality. It gives detailed metric
analysis along with comprehensive design smell detection
by accessing the AST to prepare a hierarchical meta-model
which is used for inferring design smell. The main features of
this tool are metric analysis, dependency analysis, hotspot
analysis, code-clone detection. Additionally, this tool can
detect nine architectural smells [7].

ARCADE [45] is the next code-based tool and works only on
the Java programming language. It is a software workbench
that employs a suite of architecture recovery techniques and
a set of metrics for measuring different aspects of architec-
tural change. It can detect both architectural degradation
and code smells. ARCADE has five subsystems — Recovery,
Decay Detection, Measurement, Visualization, and Predic-
tion — and the first four only require source code as input.

Sonargraph [36] is another code-based tool that works on
Java, C#, C, and C++. It is a prominent tool for mod-
ernizing legacy applications, such as converting monolithic
projects to microservices. The main features of this tool
are code comprehension, quality assessment, detection and
elimination of architectural debt, addressing technical debt,
and reducing maintenance costs. Furthermore, it can detect
cyclic dependencies and architecture violations [7].

The next code-based tools are Cast MRI for Software and
Cast Highlight, which are software analysis tools that de-
tect the cyclic dependency architectural smell [13]. Along
with detecting that smell, Cast Highlight outputs other code
smells for improving resiliency and reducing technical debt
as well as an analysis of which applications to prioritize
based on their business impact, where the maintenance effort
should be prioritized, and where technical debt reduction is
best spent [16]. Cast MRI for Software additionally outputs
an interactive map of the software architecture and reports
of the architectural flaws [17].

CodeVizard [47, 80] is another code-based tool that allows
the visualization of code smells within C# and Java projects.
Within their work [47], Li et. al highlighted CodeVizard as
a potential tool for recognizing code smells. Provided by the
University of Maryland, this instrument allows individuals
to investigate data from software repositories. As Zazworka
and Ackermann discussed in [80], the tool demonstrates that
specific code smells that linger in software components “were
more change-prone than non-infected components”. Like
HistoryMiner, CodeVizard is beneficial for empirical stud-
ies.

Structure 101 [58, 72] is also a code-based tool that works
on C, C++, Java, and several other programming languages.
The tool takes the output of the QA C and QA C++ pars-
ing engines as input. This software provides deep structural
analysis, dependency management, impact analysis, and de-
pendency analysis.

InFusion [31, 26] is another code-based software analysis tool
that detects three architectural smells: cyclic dependencies,
SAP breakers, and unstable dependencies. It works on Java,

26

C, and C++ programming languages.

The next code-based tool is Lattix [13, 77]. It is a software
analysis tool that creates a Dependency Structure Matrix
(DSM) to detect dependencies between architectural com-
ponents. Lattix is available for multiple programming lan-
guages, takes source code as input, and is mostly used for
finding architectural degradation.

The Breaking Point Calculator (BPC) [6] is a tool developed
in Java for the purpose of validating the FITTED frame-
work and calculating the Technical Debt Breaking Point,
the point at which the accumulated interest resulting from
the technical debt equals the principal. This program uses
SonarQube and Percerons Client to aid in project analysis.
The input for this desktop application is the source code of
a Java project and the output is, among other information
related to the FITTED framework, the principal, interest,
and breaking point.

Arcan [13, 7, 28], originally made for Java, is a tool for de-
tecting architectural smells and is composed of four compo-
nents: the system reconstructor which extracts dependen-
cies, the graph manager which builds dependency graphs,
the metrics engine which computes software metrics, and
the AS engine which detects architectural debt.

A C/C++ port for Arcan exists [13] which detects five ar-
chitectural smells: unstable dependencies, hub-like depen-
dencies, cyclic dependencies, multiple architectural smells,
and specification implementation violation.

AT Reviewer [7, 2] has the capability to conduct automated
code reviews, specifically in C and C++. Furthermore, the
tool examines numerous code metrics, which it takes in as its
input. Using S.O.L.I.D. design principles, Al Reviewer de-
tects violations. The tool also heavily focuses detection with
concrete classes, generating code reviews as well as measure-
ment reports at ease.

4.9.2 Code and Design Based

There are multiple tools in the market which use the code
and design of a project jointly to identify architectural degra-
dation and technical debt. In this section, we will talk about
some of them.

Titan [77] is a tool for creating and visualizing DRSpaces.
The Design Rule Space (DRSpace) is an architectural model
that is based on Baldwin and Clark’s design rule theory.
This model allows for an algorithm that computes the min-
imal set of DRSpaces which represent the software’s erro-
neous files, and this set is known as the architecture roots.
The architecture roots, which are groups of erroneous files
that are architecturally related, are analyzed across multiple
versions, and if they are consistently erroneous, the group
of files is identified as an architectural debt.

STAN [7] is an Eclipse-based structural analysis tool for Java
that combines development and quality assurance to visual-
ize the design, help understand code, and measure quality
reports and design flaws. STAN can detect the cyclic de-
pendency architectural smell.

Kaleidoscope [35] is a software design analysis tool that as-
sesses smell candidates. Haendler et al. used Kaleidoscope

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

to incorporate a test framework that collects test execu-
tion trace data, placing it into a corresponding trace model.
Lastly, this tool bundles the trace data to corresponding
matrices and generates UML2 sequence diagrams. This is
advantageous as the tool assists in the visualization of code
smells.

4.9.3 Commit Based

Some of the tools encountered in this study are noteworthy
for the way they incorporate commit information as input.

One such tool is the Prediction subsystem of ARCADE [45].
To produce prediction models, ARCADE first extracts the
project issues from an issue repository and the architectural
smell instances from the Decay Detection subsystem. Rela-
tion analyzers then combine this information into correlation
data that the model constructors use to output predictions
for a system, examples being future issues or the system’s
proneness to change.

Another tool in this category is HistoryMiner, which Beh-
namghader et al. utilized [9]. HistoryMiner provides the
capability of analyzing every commit in a specific software’s
history and checking if a code smell is discovered. This tool
is beneficial for conducting large-scale empirical studies.

4.9.4 Architecture and Design Based

This category is for a tool which uses the architecture and
design of a project as input.

Hotspot Detector [13, 7] is an architecture and design-based
tool which is used for Java. It detects five architectural
smells identified as hotspot patterns: unstable interface, im-
plicit cross-module dependency, unhealthy interface inheri-
tance hierarchy, cross-module cycle, and cross-package cycle.
As input, it takes structural dependencies, coupling informa-
tion, and clustering information.

4.10 Economical Debt and Its Measurement

In the case study of Besker et al. [11], the authors discussed
the influence of technical debt on the productivity of soft-
ware developers. They conducted interviews with industry
professionals to determine how much time was spent overall
as a result of technical debt, as well as specific tasks develop-
ers spend this time on. According to their results, technical
debt is said to be responsible for wasting almost 25% of
all developer’s working time and this additional time was
wasted on additional source code analysis and refactoring,
as well as additional testing. Besker et. al [10] also con-
ducted a similar survey. In their findings, on average 36%
of all development time is wasted because of technical debt.

The case study of Martini et al. [50] provided a measure-
ment system for architectural technical debt along with a
mathematical relationship for calculating interests in terms
of additional work and development that was put in. Their
case study was based on finding architectural technical debt
due to lack of modularization. They utilized the ISO Stan-
dard [33] for source code measurement. They estimated
both the present extra costs incurred as a result of architec-
tural technical debt and the long-term cost savings achieved
by modularization. Authors used Developer Work Months

27

Table 3: Tools Examined

Category |Tool Name Input Output Domain Supported Lan-|Citations
guage(s)
Code SonarQube Source Code |Reports code analysis, Cyclic|Arch Debt, |27+ [70] [70, 63, 31]
based dependency detection Code Smells
Designite Source Code |Reports code analysis, Arch.|Arch Debt, |C# 67, 7]
smell detection Code Smells
ARCADE Source Code |Architectural recovery and|Arch Debt,|Java [45]
change detection Code Smells
Sonargraph Source Code |Reports code analysis, Arch.[Arch Debt,|[Java, C#, C,|[36, 7]
smell detection Code Smells, [C++
Technical
Debt
Cast Highlight Source Code |Reports code analysis, Arch.|Arch Debt, |35+ [16] (13]
smell detection Code Smells
Cast MRI for Software|Source Code |Reports code analysis and ar-|Arch ~ Debt, |60+ [17] [13]
chitectural flaws Code Smells
CodeVizard Source Code |Visualization of code smells |Code Smells [Java, C# [47, 80]
Structure101 Source Code [Analysis of structural metrics |Arch Debt Java, C, C++,[[58, 72|
and others
InFusion Source Code |Reports code analysis, Arch.|Arch Debt,|Java, C, C++ [31, 26]
smell detection Code Smells
Lattix Source Code |DSM Arch Debt Java, C, C++,[[13, 77]
C#, Javascript,
Python, and oth-
ers
BPC Source Code |Technical Debt Breaking|Technical Java [6]
Point Debt
Arcan Source Code |Architectural smell detection |Arch Debt, [Java, C, C++ [13, 7, 13]
Code Smells
AI Reviewer Source Code |Generates Code reviews and|Arch Debt, |C, C4++ [7, 2]
Measurement Reports Arch Smells
Code and|Titan DSM and |Creates and visualizes|Arch Debt [N/A [77]
Design clustering DRSpaces
based files
STAN Source Code |Structure Analysis Code Smells |Java [7]
Kaleidoscope Execution Trace models and UML2 Se-|Code Smells [N/A (35]
trace data quence Diagrams
Commit |ARCADE (Prediction |Issue Infor-|Predictions of future architec-|Arch Debt |Java [66]
based Subsystem) mation and|tural significance for existing
Source Code |issues
HistoryMiner Commit In-|Code smell detection Code Smells [N/A 9]
formation
Architec- |Hotspot Detector Structural Architectural smell detection [Arch Debt [N/A (13, 7]
ture and dependen-
Design cies, coupling
based informa-
tion and
clustering
information

(DWM) as a unit to represent man-hours of developers. In
their case study, after refactoring, the developers were able
to save 2.279 DWM/month, which is essentially the interest
that is paid each month due to the architectural technical
debt.

4.11 Future Directions

The definition and measurement of technical debt are be-
coming finer over recent years, yet there are many challenges
in this field of research [43]. Technical debt depends heavily
upon the perspective of how the study was conducted and
which tools were used. Many authors aim to investigate

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

technical debt from an additional point of view and exper-
iment with more tools in their future work [31, 53]. It is
possible to elaborate on existing models to estimate the mit-
igation costs of technical debt [59]. Automation of technical
debt management can be improved by directly mining arti-
facts from version control systems like Git [64]. Since many
organizations are utilizing research works in different ways
based on their context, it is desirable to define a baseline
practice for technical debt management [43]. Some authors
have also expressed their interest in refining the classifica-
tion of technical debt, preparing a catalog of detection tools,
and collecting examples [56, 7]. Also, most of the research
works verified their approach on small projects. Those ap-

28

proaches can be tested against real-world industry-standard
benchmark projects [59, 53, 62, 48, 13, 31].

S. THREATS TO VALIDITY

Mapping studies are frequently challenged by several validity
issues that must be addressed. We attempted to reduce the
impact of issues on the quality of the results and the study’s
outcome. From the standpoint of Wohlin’s taxonomy [75],
we explore four possible validity threats: external validity,
concept validity, internal validity, and conclusion validity.

5.1 Construct Validity

Construct validity takes into account the studied area con-
cerning the research questions. The primary term technical
debt, as well as its immediate extensions code debt and de-
sign debt, are coupled with secondary terms as described in
Section 3. All of the primary and secondary keywords are
widely used as search strings.

Omitting important research from our review might jeop-
ardize the validity of our study. We attempted to mitigate
the impact of this threat by choosing and analyzing differ-
ent search phrases, as well as doing pilot searches for many
papers. We set our query to be as broad as feasible to find
all relevant work from our original search.

However, another point of view must be taken into account.
Our study included four major research databases, includ-
ing ACM Digital Library, IEEE Xplore, SpringerLink, and
ScienceDirect, although the authors only had limited access
to indexed full texts on SpringerLink. Other publishers may
index and publish additional articles that we did not include.
To ensure the impartiality and credibility of the information
sources, we included only peer-reviewed papers published by
journals or conferences. It does not include reprints of arti-
cles submitted to or accepted for publication in arXiv.org,
researchgate.net, or individual personal sites. These reprints
may feature innovative ideas, techniques, and challenges re-
lated to the topic of the articles under consideration.

5.2 Internal Validity

Internal validity questions the techniques used to collect
and evaluate data. The search query viewpoint is to en-
sure that we have acquired all relevant articles on the spec-
ified topic. We examined common publication databases
for peer-reviewed literature (excluding gray literature). In
terms of dependability and repeatability, we specified search
keywords and used synonyms that others might duplicate.

Another most likely threat is connected to the extent of
the paper’s inclusion and exclusion. We spent a lot of time
screening and reading the selected articles to assure that
they are within the scope of the study considering the vast
range of publications on technical debt and the wide variety
of research objectives. Section 3 describes the selection cri-
teria in full. For example, we excluded papers that did not
provide a specific output, papers that offered suggestions or
opinions about technical debt analysis but did not include
experiments or robust proposed methods, and literature that
focused on topics other than technical debt cause, impact,
categorization, measurement, or tools.

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

A data extraction bias is one possible issue. The extraction
method, in which just one individual pulls information from
the articles, might be the source of this bias. To lessen the
impact of this issue, we dispersed data extraction across mul-
tiple authors. Furthermore, we had at least three authors
examine each search result and double-check the extraction
of other authors. The usage of shared spreadsheets for grad-
ing and result verification was part of this procedure. This
comprised a cursory assessment of the title, abstract, and
keywords of the paper, followed by a more in-depth investi-
gation of the whole text with extracts and classification.

To address concerns about categorization bias, we created
a mind map that was sent to all authors for discussion,
comments, and expansion. While the classification is not
exhaustive, it represents our perspective on the recognized
literature. Given the overlapping perspectives, additional
alternative categorizations might be established.

The interpretation of the results may be influenced by data
synthesis bias. To reduce this risk, the gathered data was
synthesised by several authors in many rounds including re-
view sessions.

5.3 External Validity

Knowledge generalization is concerned with external valid-
ity. In this study, we gathered data from a wide range of
online databases. Our findings and observations apply to
technical debt, code smells, and architectural deterioration.
They may, however, be partially relevant to other SDLC
concerns. Because we evaluated and classified given publica-
tions based on the topic of the research, our categorization
cannot be implicitly generalized. Furthermore, there is a
possibility that missing related work will influence general-
ity since our findings are only the outcome of a peer-reviewed
literature search published during 20XX-2021 at four index-
ing sites.

5.4 Conclusions Validity

The validity of findings is concerned with whether the con-
clusions are justified on the available evidence. To reduce
author bias, extraction bias, and interpretation bias, we
had many authors participate in addressing this danger,
double-checking the publication’s rating and extracts. Sev-
eral brainstorming sessions resulted in the conclusions. Fur-
thermore, they were all resolved separately by all writers.

6. CONCLUSION

Code debt and architectural debt are the two forms of tech-
nical debt that have attracted the most research. One of the
consequences of architectural debt is architectural degrada-
tion. Both architectural degradation and code smells may
originate from violations of design principles. The most used
techniques to identify technical debt are analyzing code,
comments, commits, and architecture. We divided these
strategies into four categories in our mapping study: code-
based, code and design-based, commit-based, and architec-
ture and design-based. We looked at 22 tools, and 50 percent
of them are code-based. Java, C, C++, and C+# are the most
commonly supported languages in these code-based tools.

29

In addition to these four languages, only 34% of code-based
tools support other languages. This demonstrates a lack of
available tools for other languages. The remaining tools in
each category made up about 10% to 13% of the total we
considered. This also demonstrates the potential for study
in the categories of commit-based as well as architectural
and design-based research.

7. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1854049 and a grant
from Red Hat Research (https://research.redhat.com).

8. REFERENCES

[1] M. Abidi, M. Grichi, F. Khomh, and Y.-G.
Guéhéneuc. Code smells for multi-language systems.
In Proceedings of the 24th European Conference on
Pattern Languages of Programs, EuroPLop ’19.
Association for Computing Machinery, New York, NY,
USA, 2019. doi: 10.1145/3361149.3361161

[2] AI Reviewer. Al Reviewer Features. Accessed on Dec.
9, 2021. [Online]. Available:
https://www.aireviewer.com/features/, 2021.

[3] N. S. Alves, T. S. Mendes, M. G. de Mendonga, R. O.
Spinola, F. Shull, and C. Seaman. Identification and
management of technical debt: A systematic mapping
study. Information and Software Technology,
70:100-121, 2016. doi: 10.1016/j.infsof.2015.10.008

[4] T. Amanatidis, N. Mittas, A. Moschou,
A. Chatzigeorgiou, A. Ampatzoglou, and L. Angelis.
Evaluating the agreement among technical debt
measurement tools: building an empirical benchmark
of technical debt liabilities. Empirical Software
Engineering, 25(5):4161-4204, Sept. 2020. doi: 10.
1007/510664-020-09869-w

[5] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou,
P. Avgeriou, P. Abrahamsson, A. Martini, U. Zdun,
and K. Systa. The perception of technical debt in the
embedded systems domain: An industrial case study.
In 2016 IEEFE 8th International Workshop on
Managing Technical Debt (MTD), pp. 9-16, 2016. doi:
10.1109/MTD.2016.8

[6] A. Ampatzoglou, A. Michailidis, C. Sarikyriakidis,

A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou.
A framework for managing interest in technical debt:
An industrial validation. In Proceedings of the 2018
International Conference on Technical Debt, TechDebt
’18, p. 115-124. Association for Computing Machinery,
New York, NY, USA, 2018. doi: 10.1145/3194164.
3194175

[7] U. Azadi, F. A. Fontana, and D. Taibi. Architectural
smells detected by tools: A catalogue proposal. In
Proceedings of the Scientific Workshop Proceedings of
XP2016, XP ’16 Workshops. IEEE Press, 2019. doi:
10.1109/TechDebt.2019.00027

[8] A. Baabad, H. B. Zulzalil, S. Hassan, and S. B.
Baharom. Software architecture degradation in open
source software: A systematic literature review. I[IEEE

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Access, 8:173681-173709, 2020. doi: 10.1109/ACCESS
.2020.3024671

P. Behnamghader, P. Meemeng, 1. Fostiropoulos,

D. Huang, K. Srisopha, and B. Boehm. A scalable and
efficient approach for compiling and analyzing commit
history. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement, ESEM ’18. Association
for Computing Machinery, New York, NY, USA, 2018.
doi: 10.1145/3239235.3239237

T. Besker, A. Martini, and J. Bosch. The pricey bill of
technical debt: When and by whom will it be paid?

In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 13-23,
2017. doi: 10.1109/ICSME.2017.42

T. Besker, A. Martini, and J. Bosch. Technical debt
cripples software developer productivity: A
longitudinal study on developers’ daily software
development work. In Proceedings of the 2018
International Conference on Technical Debt, TechDebt
’18, p. 105-114. Association for Computing Machinery,
New York, NY, USA, 2018. doi: 10.1145/3194164.
3194178

T. Besker, A. Martini, J. Bosch, and M. Tichy. An
investigation of technical debt in automatic
production systems. In Proceedings of the XP2017
Scientific Workshops, XP '17. Association for
Computing Machinery, New York, NY, USA, 2017.
doi: 10.1145/3120459.3120466

A. Biaggi, F. Arcelli Fontana, and R. Roveda. An
architectural smells detection tool for ¢ and c++
projects. In 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications
(SEAA), pp. 417-420, 2018. doi: 10.1109/SEAA.2018.
00074

J. Bogner, J. Fritzsch, S. Wagner, and

A. Zimmermann. Limiting technical debt with
maintainability assurance: An industry survey on used
techniques and differences with service- and
microservice-based systems. In Proceedings of the 2018
International Conference on Technical Debt, TechDebt
’18, p. 125-133. Association for Computing Machinery,
New York, NY, USA, 2018. doi: 10.1145/3194164.
3194166

C. Carrillo, R. Capilla, O. Zimmermann, and U. Zdun.
Guidelines and metrics for configurable and
sustainable architectural knowledge modelling. In
Proceedings of the 2015 European Conference on
Software Architecture Workshops, ECSAW ’15.
Association for Computing Machinery, New York, NY,
USA, 2015. doi: 10.1145/2797433.2797498

Cast. Cast Highlight. Accessed on Dec. 9, 2021.
[Online]. Available: https://www.castsoftware.com/
products/highlight/outputs-analytics, 2021.

Cast. Cast MRI for Software. Accessed on Dec. 9,
2021. [Online]. Available: https://www.
castsoftware.com/products/MRI-for-Software,

2021.
Codegrip. What are code smells? how to detect and

30

https://www.aireviewer.com/features/
https://www.castsoftware.com/products/highlight/outputs-analytics
https://www.castsoftware.com/products/highlight/outputs-analytics
https://www.castsoftware.com/products/MRI-for-Software
https://www.castsoftware.com/products/MRI-for-Software

[19]

[20]

[21]

[23]

[24]

[26]

[27]

remove code smells? Accessed on Dec. 9, 2021.
[Online]. Available:
https://www.codegrip.tech/productivity/
everything-you-need-to-know-about-code-smells/,
2019.

W. Cunningham. The WyCash Portfolio Management
System. Accessed on Dec. 9, 2021. [Online]. Available:
http://c2.com/doc/oopsla92.html, Mar. 1992.
publisher: OOPSLA.

B. Curtis, J. Sappidi, and A. Szynkarski. Estimating
the size, cost, and types of technical debt. In 2012
Third International Workshop on Managing Technical
Debt (MTD), pp. 49-53, 2012. doi: 10.1109/MTD.
2012.6226000

G. Digkas, A. Ampatzoglou, A. Chatzigeorgiou, and
P. Avgeriou. On the Temporality of Introducing Code
Technical Debt. In M. Shepperd, F. Brito e Abreu,

A. Rodrigues da Silva, and R. Pérez-Castillo, eds.,
Quality of Information and Communications
Technology, Communications in Computer and
Information Science, pp. 68—82. Springer International
Publishing, Cham, 2020. doi: 10.
1007/978-3-030-58793-2_6

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and

I. Gorton. Measure it? manage it? ignore it? software
practitioners and technical debt. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, p. 50-60. Association
for Computing Machinery, New York, NY, USA, 2015.
doi: 10.1145/2786805.2786848

D. Falessi and P. Kruchten. Five reasons for including
technical debt in the software engineering curriculum.
In Proceedings of the 2015 Furopean Conference on
Software Architecture Workshops, ECSAW ’15.
Association for Computing Machinery, New York, NY,
USA, 2015. doi: 10.1145/2797433.2797462

Q. Feng, Y. Cai, R. Kazman, D. Cui, T. Liu, and

H. Fang. Active hotspot: An issue-oriented model to
monitor software evolution and degradation. In
Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE
'19, p. 986-997. IEEE Press, 2019. doi: 10.1109/ASE.
2019.00095

C. Ferndndez-Sanchez, J. Garbajosa, C. Vidal, and
A. Yagiie. An analysis of techniques and methods for
technical debt management: A reflection from the
architecture perspective. In Proceedings of the Second
International Workshop on Software Architecture and
Metrics, SAM ’15, p. 22-28. IEEE Press, 2015.

F. A. Fontana, V. Ferme, and M. Zanoni. Towards
assessing software architecture quality by exploiting
code smell relations. In 2015 IEEE/ACM 2nd
International Workshop on Software Architecture and
Metrics, pp. 1-7, 2015. doi: 10.1109/SAM.2015.8

F. A. Fontana, I. Pigazzini, C. Raibulet, S. Basciano,
and R. Roveda. Pagerank and criticality of
architectural smells. In Proceedings of the 13th
European Conference on Software Architecture -
Volume 2, ECSA 19, p. 197-204. Association for

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

(28]

29]

(30]

(31]

(32]

33]

34]

35]

(36]

37]

(38]

Computing Machinery, New York, NY, USA, 2019.
doi: 10.1145/3344948.3344982

F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri,
M. Zanoni, and E. Di Nitto. Arcan: A tool for
architectural smells detection. In 2017 IEEE
International Conference on Software Architecture
Workshops (ICSAW), pp. 282-285, 2017. doi: 10.
1109/ICSAW.2017.16

F. A. Fontana, R. Roveda, S. Vittori, A. Metelli,

S. Saldarini, and F. Mazzei. On evaluating the impact
of the refactoring of architectural problems on
software quality. In Proceedings of the Scientific
Workshop Proceedings of XP2016, XP 16 Workshops.
Association for Computing Machinery, New York, NY,
USA, 2016. doi: 10.1145/2962695.2962716

F. A. Fontana, R. Roveda, and M. Zanoni. Technical
debt indexes provided by tools: A preliminary
discussion. In 2016 IEEE 8th International Workshop
on Managing Technical Debt (MTD), pp. 28-31, 2016.
doi: 10.1109/MTD.2016.11

F. A. Fontana, R. Roveda, and M. Zanoni. Tool
support for evaluating architectural debt of an
existing system: An experience report. In Proceedings
of the 81st Annual ACM Symposium on Applied
Computing, SAC ’16, p. 1347-1349. Association for
Computing Machinery, New York, NY, USA, 2016.
doi: 10.1145/2851613.2851963

F. A. Fontana, W. Trumler, C. Izurieta, and R. L.
Nord. Ninth international workshop on managing
technical debt: Report on the mtd 2017 workshop. In
Proceedings of the XP2017 Scientific Workshops, XP
"17. Association for Computing Machinery, New York,
NY, USA, 2017. doi: 10.1145/3120459.3120461

1. O. for Standardization/International
Electrotechnical Commission et al. Systems and
software engineering—measurement process. ISO/IEC
15939: 2007, 1, 2007.

Y. Guo, R. O. Spinola, and C. Seaman. Exploring the
costs of technical debt management — a case study.
Empirical Software Engineering, 21(1):159-182, Feb.
2016. doi: 10.1007/s10664-014-9351-7

T. Haendler, S. Sobernig, and M. Strembeck. Towards
triaging code-smell candidates via runtime scenarios
and method-call dependencies. In Proceedings of the
XP2017 Scientific Workshops, XP ’17. Association for
Computing Machinery, New York, NY, USA, 2017.
doi: 10.1145/3120459.3120468

Hello2morrow. Sonargraph: Tools to control technical
debt and empower software craftsmanship.

C. Izurieta, G. Rojas, and I. Griffith. Preemptive
management of model driven technical debt for
improving software quality. In Proceedings of the 11th
International ACM SIGSOFT Conference on Quality
of Software Architectures, QoSA 15, p. 31-36.
Association for Computing Machinery, New York, NY,
USA, 2015. doi: 10.1145/2737182.2737193

R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao,
S. Haziyev, V. Fedak, and A. Shapochka. A case study
in locating the architectural roots of technical debt. In

31

https://www.codegrip.tech/productivity/everything-you-need-to-know-about-code-smells/
https://www.codegrip.tech/productivity/everything-you-need-to-know-about-code-smells/
http://c2.com/doc/oopsla92.html

[40]

[41]

[42]

[45]

[48]

Proceedings of the 37th International Conference on
Software Engineering - Volume 2, ICSE ’15, p.
179-188. IEEE Press, 2015.

I. Khomyakov, Z. Makhmutov, R. Mirgalimova, and
A. Sillitti. An Analysis of Automated Technical Debt
Measurement. In J. Filipe, M. S,rnia}ek7 A. Brodsky,
and S. Hammoudi, eds., Enterprise Information
Systems, Lecture Notes in Business Information
Processing, pp. 250-273. Springer International
Publishing, Cham, 2020. doi: 10.
1007/978-3-030-40783-4_12

I. Khomyakov, Z. Makhmutov, R. Mirgalimova, and
A. Sillitti. An analysis of automated technical debt
measurement. In J. Filipe, M. gmia}ek, A. Brodsky,
and S. Hammoudi, eds., Enterprise Information
Systems, pp. 250-273. Springer International
Publishing, Cham, 2020.

P. Kruchten. Strategic management of technical debt:
Tutorial synopsis. In 2012 12th International
Conference on Quality Software, pp. 282284, 2012.
doi: 10.1109/QSIC.2012.17

P. Kruchten, R. L. Nord, and I. Ozkaya. 4th
international workshop on managing technical debt
(mtd 2013). In Proceedings of the 2018 International
Conference on Software Engineering, ICSE 13, p.
1535-1536. IEEE Press, 2013.

P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi.
Technical debt: Towards a crisper definition report on
the 4th international workshop on managing technical
debt. SIGSOFT Softw. Eng. Notes, 38(5):51-54, Aug.
2013. doi: 10.1145/2507288.2507326

P. Kruchten, R. L. Nord, I. Ozkaya, and J. Visser.
Technical debt in software development: From
metaphor to theory report on the third international
workshop on managing technical debt. SIGSOFT
Softw. Eng. Notes, 37(5):36-38, Sept. 2012. doi: 10.
1145/2347696.2347698

D. M. Le, P. Behnamghader, J. Garcia, D. Link,

A. Shahbazian, and N. Medvidovic. An empirical
study of architectural change in open-source software
systems. In 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, pp.
235-245, 2015. doi: 10.1109/MSR.2015.29

J. Lenhard, M. M. Hassan, M. Blom, and S. Herold.
Are code smell detection tools suitable for detecting
architecture degradation? In Proceedings of the 11th
European Conference on Software Architecture:
Companion Proceedings, ECSA ’17, p. 138-144.
Association for Computing Machinery, New York, NY,
USA, 2017. doi: 10.1145/3129790.3129808

Z. Li, P. Avgeriou, and P. Liang. A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193-220, 2015.
doi: 10.1016/j.jss.2014.12.027

Z. Li, P. Liang, and P. Avgeriou. Architectural
technical debt identification based on architecture
decisions and change scenarios. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture, pp.
65-74, 2015. doi: 10.1109/WICSA.2015.19

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

V. Mandié, N. Tausan, and R. Ramac¢. The prevalence
of the technical debt concept in serbian it industry:
Results of a national-wide survey. In Proceedings of
the 3rd International Conference on Technical Debt,
TechDebt 20, p. 77-86. Association for Computing
Machinery, New York, NY, USA, 2020. doi: 10.
1145/3387906.3388622

A. Martini, E. Sikander, and N. Madlani. A
semi-automated framework for the identification and
estimation of architectural technical debt: A
comparative case-study on the modularization of a
software component. Information and Software
Technology, 93:264-279, 2018. doi: 10.1016/j.infsof.
2017.08.005

A. Martini, V. Stray, and N. B. Moe. Technical-,
social- and process debt in large-scale agile: An
exploratory case-study. In R. Hoda, ed., Agile
Processes in Software Engineering and Extreme
Programming — Workshops, pp. 112-119. Springer
International Publishing, Cham, 2019.

R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot
patterns: The formal definition and automatic
detection of architecture smells. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture, pp.
51-60, 2015. doi: 10.1109/WICSA.2015.12

A.-J. Molnar and S. Motogna. Long-term evaluation
of technical debt in open-source software. In
Proceedings of the 14th ACM / IEEE International
Symposium on Empirical Software Engineering and
Measurement (ESEM), ESEM ’20. Association for
Computing Machinery, New York, NY, USA, 2020.
doi: 10.1145/3382494.3410673

G. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: bridging the gap between design and
implementation. IEEE Transactions on Software
Engineering, 27(4):364-380, 2001. doi: 10.1109/32.
917525

I. Ozkaya, P. Kruchten, R. Nord, and N. Brown.
Second international workshop on managing technical
debt (mtd 2011). In Proceedings of the 33rd
International Conference on Software Engineering,
ICSE 11, p. 1212-1213. Association for Computing
Machinery, New York, NY, USA, 2011. doi: 10.
1145/1985793.1986051

I. Ozkaya, P. Kruchten, R. L. Nord, and N. Brown.
Managing technical debt in software development:
Report on the 2nd international workshop on
managing technical debt, held at icse 2011. SIGSOFT
Softw. Eng. Notes, 36(5):33-35, Sept. 2011. doi: 10.
1145/2020976.2020979

K. Petersen, S. Vakkalanka, and L. Kuzniarz.
Guidelines for conducting systematic mapping studies
in software engineering: An update. Information and
Software Technology, 64:1-18, Aug. 2015. doi: 10.
1016/j.infsof.2015.03.007

Phaedrus Systems Ltd. QA Structure 101. Accessed
on Dec. 9, 2021. [Online]. Available:
https://www.phaedsys.com/principals/
programmingresearch/pr-structure.html, 2021.

32

https://www.phaedsys.com/principals/programmingresearch/pr-structure.html
https://www.phaedsys.com/principals/programmingresearch/pr-structure.html

[59]

[60]

[61]

[62]

[63]

[66]

[67]

R. Plosch, J. Brauer, M. Saft, and C. Kérner. Design
debt prioritization: A design best practice-based
approach. In Proceedings of the 2018 International
Conference on Technical Debt, TechDebt ’18, p.
95-104. Association for Computing Machinery, New
York, NY, USA, 2018. doi: 10.1145/3194164.3194172

K. Rindell, K. Bernsmed, and M. G. Jaatun.
Managing security in software: Or: How i learned to
stop worrying and manage the security technical debt.
In Proceedings of the 14th International Conference on
Awailability, Reliability and Security, ARES ’19.
Association for Computing Machinery, New York, NY,
USA, 2019. doi: 10.1145/3339252.3340338

N. Rios, R. O. Spinola, M. Mendonga, and C. Seaman.
The practitioners’ point of view on the concept of
technical debt and its causes and consequences: a
design for a global family of industrial surveys and its
first results from Brazil. Empirical Software
Engineering, 25(5):3216-3287, Sept. 2020. doi: 10.
1007/s10664-020-09832-9

R. Roveda, F. Arcelli Fontana, I. Pigazzini, and

M. Zanoni. Towards an architectural debt index. In
2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp.
408-416, 2018. doi: 10.1109/SEAA.2018.00073

N. Saarimaki, M. T. Baldassarre, V. Lenarduzzi, and
S. Romano. On the accuracy of sonarqube technical
debt remediation time. In 2019 45th Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA), pp. 317-324, 2019. doi: 10.
1109/SEAA.2019.00055

D. Sas, P. Avgeriou, and F. Arcelli Fontana.
Investigating instability architectural smells evolution:
An exploratory case study. In 2019 IEEE
International Conference on Software Maintenance
and Evolution (ICSME), pp. 557-567, 2019. doi: 10.
1109/ICSME.2019.00090

M. Schmitt Laser, N. Medvidovic, D. M. Le, and

J. Garcia. Arcade: An extensible workbench for
architecture recovery, change, and decay evaluation.
In Proceedings of the 28th ACM Joint Meeting on
FEuropean Software Engineering Conference and
Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, p. 1546-1550.
Association for Computing Machinery, New York, NY,
USA, 2020. doi: 10.1145/3368089.3417941

A. Shahbazian, D. Nam, and N. Medvidovic. Toward
predicting architectural significance of implementation
issues. In Proceedings of the 15th International
Conference on Mining Software Repositories, MSR
’18, p. 215-219. Association for Computing Machinery,
New York, NY, USA, 2018. doi: 10.1145/3196398.
3196440

T. Sharma, P. Mishra, and R. Tiwari. Designite - a
software design quality assessment tool. In 2016
IEEE/ACM 1st International Workshop on Bringing
Architectural Design Thinking Into Developers’ Daily
Activities (BRIDGE), pp. 1-4, 2016. doi: 10.
1109/Bridge.2016.009

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

(68]

(69]

[70]

(1]

(72]

(73]

[74]

(75]

[76]

[77]

(78]

F. Shull, D. Falessi, C. Seaman, M. Diep, and

L. Layman. Technical Debt: Showing the Way for
Better Transfer of Empirical Results. In J. Miinch and
K. Schmid, eds., Perspectives on the Future of
Software Engineering: Essays in Honor of Dieter
Rombach, pp. 179-190. Springer, Berlin, Heidelberg,
2013. doi: 10.1007/978-3-642-37395-4_12

S. Soares de Toledo, A. Martini, A. Przybyszewska,
and D. I. Sjgberg. Architectural technical debt in
microservices: A case study in a large company. In
2019 IEEE/ACM International Conference on
Technical Debt (TechDebt), pp. 78-87, 2019. doi: 10.
1109/ TechDebt.2019.00026

SonarQube. Code Quality and Code Security |
SonarQube. Accessed on Dec. 9, 2021. [Online].
Available: https://www.sonarqube.org/, 2021.

P. Strecansky, S. Chren, and B. Rossi. Comparing
maintainability index, sig method, and sqale for
technical debt identification. In Proceedings of the
85th Annual ACM Symposium on Applied Computing,
SAC 20, p. 121-124. Association for Computing
Machinery, New York, NY, USA, 2020. doi: 10.
1145/3341105.3374079

Structurel01. Structural analysis. Accessed on Dec. 9,
2021. [Online]. Available: https:
//structurel01.com/legacy/structural-analysis/,

2021.

R. Verdecchia. Architectural technical debt
identification: Moving forward. In 2018 IEEE
International Conference on Software Architecture
Companion (ICSA-C), pp. 43-44, 2018. doi: 10.
1109/ICSA-C.2018.00018

R. Verdecchia, P. Kruchten, and P. Lago.
Architectural Technical Debt: A Grounded Theory. In
A. Jansen, I. Malavolta, H. Muccini, I. Ozkaya, and
O. Zimmermann, eds., Software Architecture, Lecture
Notes in Computer Science, pp. 202-219. Springer
International Publishing, Cham, 2020. doi: 10.
1007/978-3-030-58923-3_14

C. Wohlin. Ezperimentation in Software Engineering:
An Introduction. International Series in Engineering
and Computer Science. Kluwer Academic, 2000.

L. Xiao. Quantifying architectural debts. In
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE
2015, p. 1030-1033. Association for Computing
Machinery, New York, NY, USA, 2015. doi: 10.
1145/2786805.2803194

L. Xiao, Y. Cai, and R. Kazman. Design rule spaces:
A new form of architecture insight. In Proceedings of
the 36th International Conference on Software
Engineering, ICSE 2014, p. 967-977. Association for
Computing Machinery, New York, NY, USA, 2014.
doi: 10.1145/2568225.2568241

L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng.
Identifying and quantifying architectural debt. In
Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, p. 488-498.

33

 https://www.sonarqube.org/
https://structure101.com/legacy/structural-analysis/
https://structure101.com/legacy/structural-analysis/

Association for Computing Machinery, New York, NY,
USA, 2016. doi: 10.1145/2884781.2884822

J. Yli-Huumo, A. Maglyas, and K. Smolander. The
Sources and Approaches to Management of Technical
Debt: A Case Study of Two Product Lines in a
Middle-Size Finnish Software Company. In

A. Jedlitschka, P. Kuvaja, M. Kuhrmann,

T. Ménnisto, J. Miinch, and M. Raatikainen, eds.,
Product-Focused Software Process Improvement,
Lecture Notes in Computer Science, pp. 93-107.

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

(80]

Springer International Publishing, Cham, 2014. doi:
10.1007,/978-3-319-13835-0_7

N. Zazworka and C. Ackermann. Codevizard: A tool
to aid the analysis of software evolution. In
Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’10. Association for Computing
Machinery, New York, NY, USA, 2010. doi: 10.
1145/1852786.1852865

34

ABOUT THE AUTHORS:

Dipta Das is a software engineer at Amazon. He completed his Master’s degree from
Baylor University in 2021 and a bachelor’s degree from Chittagong University of
Engineering and Technology in 2017. In 2021, he received the Outstanding Graduate
Student Award from Baylor University. His research interests include software
engineering, microservice security, and code analysis.

Abdullah Al Maruf is a graduate student of Computer Science at Baylor University.
His research interests include software engineering, code analysis, and runtime log
analysis. He received his Bachelor’s degree from the Department of Computer
Science and Engineering at the Chittagong University of Engineering and
Technology in Bangladesh. He has worked in the industry for four years as both a
software developer and a DevOps engineer. He is an open-source enthusiast.

MD Rofiqul Islam is a graduate student of Computer Science at Baylor University.
His research area includes software engineering, microservices architecture, code
analysis, and log analysis. He received his Bachelor’s degree from the Department of
Computer Science and Engineering at the University of Dhaka in Bangladesh. He
has experience as a researcher for more than three years in multiple research groups
in different countries. He also served as a software engineer in TigerIT in
Bangladesh for more than two years while he worked on SOA and Microservice
Architecture.

Noah Lambaria is an undergraduate student of Computer Science at Baylor
University. He has worked under the guidance of Dr. Cerny during the summer and
fall periods of 2021 in research related to architectural degradation. He aspires to
continue research in software engineering, particularly in code analysis.

Samuel Kim is an undergraduate student of Computer Science at Baylor University.
He has worked under Dr. Cerny during the summer and fall periods of 2021 in
research related to architectural degradation.

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

35

Amr S. Abdelfattah is a Ph.D. student and Research Assistant of Computer Science
at Baylor University in the USA. His research interests are Cloud Computing,
Mobile Cloud Computing, the Internet Of Things, and Software Engineering. He
received his Bachelor’s and Master's degrees from the Faculty of Computer and
Information Science at Ain Shams University in Egypt. Amr worked 9+ years in the
industry as a mobile technical lead for international companies. In addition to being
a Lecturer Assistant at Ain Shams University.

Tomas Cerny is a Professor of Computer Science at Baylor University. His area of
research is software engineering, code analysis, security, and cloud-based system
design. He received Master's and Ph.D. degrees from the Czech Technical
University in Prague, and an M.S. degree from Baylor. Dr. Cerny served 10+ years
as the lead developer of the International Collegiate Programming Contest and
authored nearly 100 publications related to code analysis. Among his awards are the
Outstanding Service Award ACM SIGAPP or the 2011 ICPC Joseph S. DeBlasi
Outstanding Contribution Award. He chaired multiple conferences, including ACM
SAC/RACS, and ICITCS.

Karel Frajtak is a lecturer and researcher with the System Testing IntelLigent Lab
(STILL) at the Dept. of Computer Science, Faculty of Electrical Engineering, Czech
Technical University in Prague. He received his Master's and Ph.D. degrees from the
Faculty of Electrical Engineering at the Czech Technical University in Prague. His
lectures and area of research focus on software testing methods, test automation
approaches, and software architectures.

Miroslav Bures leads the System Testing IntelLigent Lab (STILL) at the Computer
Science, FEE, Czech Technical University in Prague, where he was appointed in
2010 and currently serves as the Associate Professor of Computer Science. His
research interests include quality assurance and reliability methods, model-based
testing, path-based testing, combinatorial interaction testing and test automation for
software, Internet of Things, and mission-critical systems. He leads several projects
in the field of test automation for software and Internet of Things systems, covering
the topics of automated generation of test scenarios as well as automated execution
of the tests.

Pavel Tisnovsky is known for the in-depth articles he writes on various technical
topics for the Czech Linux magazine root.cz. He taught computer graphics at Brno
Technical University and worked as a C, C++, and Java developer in various
companies before he joined Red Hat, where he was a quality assurance engineer in
the OpenJDK team. Now he works as SW developer and tech lead using Python and
Go programming languages to develop scalable data processing pipelines and
notification systems. He also teaches professional Java and Go training.

APPLIED COMPUTING REVIEW DEC. 2021, VOL. 21, NO. 4

36

	Introduction
	Related Works
	Interoperability Framework
	Semantic-aware ABAC
	Reference Architecture
	Access Control Ontology
	Relationship Pattern and Instance
	Distributed Relationship Inference
	Ontology Update

	Access Control Prototype
	Ontology Building and Updating Process
	Access Right Assessment
	An Example Application

	Evaluation
	Correctness of Inference Algorithm (Experiment 1)
	Complexity of Inference Algorithm(Experiment 2)
	Performance of Access Control(Experiment 3)

	Conclusions
	Acknowledgments
	References
	Introduction
	Background And Related Work
	Mapping Study Method
	Analysis Results
	Trends
	Countries and People
	Identification of Technical Debt
	Categorization of Technical Debt
	Challenges in Measuring Technical Debt
	Reduction Management of Technical Debt
	Strategies to Detect Architectural Degradation
	Code Smells in Relation to Technical Debt
	Relationship with Technical Debt
	Tools Used
	Obstacles and Challenges

	Architectural Degradation, Code Smells, and Technical Debt Tools
	Code-Based Tools
	Code and Design Based
	Commit Based
	Architecture and Design Based

	Economical Debt and Its Measurement
	Future Directions

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusions Validity

	Conclusion
	Acknowledgments

