2207.02776v1 [cs.SE] 6 Jul 2022

arxiv

Using Microservice Telemetry Data for System
Dynamic Analysis

1%* Abdullah Al Maruf
Department of Computer Science
Baylor University
Waco, Texas, United States
maruf_marufl @baylor.edu

274 Alexander Bakhtin
Software Engineering Group
Tampere University
Tampere, FI-33720, Finland
alexander.bakhtin @tuni.fi

3 Tomas Cerny
Department of Computer Science
Baylor University
Waco, Texas, United States
Tomas_Cerny @baylor.edu

4™ Davide Taibi
Software Engineering Group

Tampere University
Tampere, FI-33720, Finland

davide.taibi @tuni.fi

Abstract—Microservices bring various benefits to software
systems. They also bring decentralization and lose coupling
across self-contained system parts. Since these systems likely
evolve in a decentralized manner, they need to be monitored
to identify when possibly poorly designed extensions deteriorate
the overall system quality. For monolith systems, such tasks
have been commonly addressed through static analysis. However,
given the decentralization and possible language diversity across
microservices, static analysis tools are lacking. On the other
hand, there are available tools commonly used by practitioners
that offer centralized logging, tracing, and metric collection for
microservices. In this paper, we assess the opportunity to combine
current dynamic analysis tools with anomaly detection in the
form of quality metrics and anti-patterns. We develop a tool
prototype that we use to assess a large microservice system
benchmark demonstrating the feasibility and potential of such
an approach.

Index Terms—Microservices, Software Architecture Recon-
struction, Dynamic Analysis, Telemetry Data

I. INTRODUCTION

Microservice architecture (MSA) has become the industry
standard. MSA allows for efficient scaling, improved re-
siliency, and faster software delivery because of its loosely
connected nature. It also enables teams to focus on a single
task/module and produce reliable software faster by allowing
them to use any programming language that suits the task.
With the ability of agility and speed of development, MSA
needs constant monitoring and analysis to tackle the com-
plexity of the system. A microservice system’s longevity and
quality can be jeopardized without regular monitoring.

The system can be subjected to static and/or runtime analy-
sis. While static analysis can detect bugs, vulnerabilities, and
smells [1], [2] before putting software into production, it also
has the disadvantage of requiring language-specific analysis.
It is challenging to find language-specific static analyzer tools
unless the modules are written in a few popular languages.

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049, grant from Red Hat Research, and
Ulla Tuominen (Shapit).

Otherwise, the developers need to create their tool, which
will increase maintenance workload, or they must exclude
those modules from analysis, which is also not a good op-
tion. Runtime analysis can help solve this language-specific
issue. Telemetry data is one form of dynamic analysis which
provides a few key analysis perspectives, such as Service
Dependency Graph (SDG), detecting architectural smells, and
architectural evolution using the SDG.

This paper uses telemetry data to determine inter-service
communication and build the Software Dependency Graph.
Next, it uses this information to find architecture smells, cal-
culate anti-pattern metrics automatically, detect architectural
evolution, and effectively scale the microservice modules. This
can help system operators and engineers better understand
the system specifics and concerns that should be addressed
throughout the system evolution.

The following is a breakdown of the paper’s structure:
Section II discusses static and dynamic analysis and prior
studies on the analysis of microservice systems. Then Section
IIT goes over various types of telemetry data and their appli-
cations. Section IV proposes a method for generating SDGs
from telemetry logs. We discuss possible analysis directions
in Section V and showcase a case study in Section VI. We
conclude the paper with Section VII.

II. BACKGROUND & RELATED WORK

The static analysis uses software artifacts such as source
code, deployment manifests, and API documentation. Dy-
namic analysis is the real-time testing or profiling of a system.
Dynamic analysis can be applied to runtime data from a system
in either a production or a staging/development environment.
Users must use the system, or a script must replicate real-time
user behavior, such as accessing all use cases and making
reasonable user requests per minute, to generate runtime
data. Data obtained in runtime includes application logs and
telemetry data. Both these approaches have their specifics and

suitability for certain tasks. However, certain overlaps exist,
such as the aspects we address in this paper.

Detecting bad smells and poor design indicators in a de-
centralized environment have been addressed in the literature.
For instance, Taibi et al. [3] identified recurrent smells in
microservices. There has been approached by Walker et al.
[1], or Pigazzini et al. [4] in order to detect them. Both
these approaches involved static analysis or a combination
of static and dynamic analysis, which is currently limited
to a specific platform. The major challenge is to reconstruct
the holistic system perspective. A perspective that makes it
obvious for practitioners to understand how the system divides
into specific microservices and how these interact and depend
on one another. Rademacher et al. [5], Walker et al. [6] or
Granchelli [7] considered the process software architecture
reconstruction for microservices. While it can be performed
manually from various artifacts [5], combining static and
dynamic analysis [7] or an automated static analysis approach
using distributed codebase is also viable [6] as demonstrated
by Bushong et al. [8]. The major challenge with static analysis
is the code analysis language dependency and distribution.
While the initial approach to address this challenge has been
proposed [9], the tooling support is not yet available.

The tooling support is broader in the realm of dynamic
analysis. Common tools exist for centralized logging, dis-
tributed tracing, and telemetry. In addition, various system-
centric perspectives are available in such tools (i.e., Jaeger,
Kiali, etc.), and it is possible to preview trace-reconstructed
system topology or dependency graphs. While these views
cannot be as detailed as when assessing the code, it gives
sufficient abstraction on the running system and language
agnosticism. Given the broad availability of these tools, it is
reasonable to consider the integration of detection of various
patterns [10], anti-patterns [11], smells [3], or quality metrics
(e.g. Coupling [12]) using dynamic analysis. While it might be
assumed that development and operations (DevOps) engineers
can easily see these indicators, Bento et al. [13] suggested that
the current tools do not provide appropriate ways to abstract,
navigate, filter, and analyze tracing data and do not automate or
aid with trace analysis. Instead, the process relies on DevOps,
but these might lack the expertise or the time necessary to
determine the statistics in the ever-changing environment.

When using traces, it can be seen that SDG is commonly
used. For instance, Ma et al. [14] use it to analyze and test
microservices through graph-based microservice analysis and
testing. However, Ma et al. made the process dependent on
DevOps manual efforts to detect anomalies by analyzing risky
service invocation chains and tracing the linkages between
services.

In this paper, we look into the automation of quality metric
detection using dynamic analysis of telemetry data, which
would indicate the areas of concern for DevOps and let them
prioritize their tasks.

III. TELEMETRY DATA & ITS APPLICATIONS

In software engineering, telemetry data refers to collecting
data from software and systems that indicate the source’s
state. Telemetry is one of the key factors in increasing the
observability of a complex system [15]. Johnson et al. [16]
defined software project telemetry as a method of defining,
collecting, and analyzing software metrics that has the five
characteristics listed below:

« Data should be collected automatically, with no manual
intervention from humans.

« A timestamp must be assigned to each event in the data.

o Every project member has continuous and immediate
access to the data.

o Telemetry analysis should be valuable even if it lacks
complete data for the entire project’s lifespan.

o Telemetry analyses depict the project’s current state and
how it evolves over time.

Opentelemetry [17] is the standardization of the telemetry
data collection process. It is difficult for developers to switch
tools and adapt to a new tool because of the different stan-
dardization prior to Opentelemetry. Opentelemetry provides a
vendor-agnostic API for sending telemetry data to a backend
and a set of language-specific libraries for instrumenting code
and shipping data to one of the supported backends.

Telemetry data can be categorized into three main formats
[15], [171, [18]:

o Traces
e Metrics, and
o Logs.

Karumuri et al. defined metrics as numeric data, logs as
unstructured strings, and traces as a graph of a request’s
execution path [15]. Along with the available libraries, de-
velopers can add software-specific metrics to be shipped to
the backend, such as Prometheus. For example, if there are
many unsent emails in the queue. In that case, developers can
ship the number of unsent emails to Prometheus and then use
Alertmanager to trigger an alert. Grafana is a popular tool for
visualizing metrics, and developers can use a shared grafana
dashboard, a platform for sharing custom dashboards that use
critical metrics.

There are a few tools that can be used to trace a request
in order to analyze it. Some examples of such tools are
Zipkin and Jaeger. We can use tracing to find the source of
slow response and keep track of distributed transactions. The
majority of tracing tools also provide a software architecture
graph in the form of a service dependency graph.

Although there are a few tools for tracing, metrics analysis,
and visualization, there is little for log analysis. Most devel-
opers use ELK (Elasticsearch, Logstash, and Kibana) to store
and process a distributed system’s log centrally. Elasticsearch
stores large amounts of data while also allowing for faster data
searches. Logstash serves as a log aggregator and processor,
reading logs and sending them to Elasticsearch. Kibana allows
users to run queries against log data. It is common to combine

tracing and logs so that developers can search for error logs
with the request’s traceID across the entire distributed system.

Even though telemetry requires a language-specific SDK
library to produce metrics or traces, service mesh adds this
capability without requiring the addition of a library to the
source code. This eliminates the need for source code changes
and the language barrier. In addition to tracing, service mesh
includes metrics and access logs by default.

IV. SERVICE MESH & SERVICE DEPENDENCY GRAPH
(SDG)

Distributed systems are notoriously difficult to manage, and
adding traffic management to the mix makes things even
more difficult. A service mesh comes with traffic management,
observability, security, encryption, access control, rate limiting,
and other features out of the box. As a result, service mesh has
become an essential tool in Kubernetes-based systems. Each
service module is deployed separately in this system, and each
of these modules has a sidecar [19] proxy that receives and
sends traffic on behalf of the microservice module (shown in
figure-1). These proxy sidecars can control traffic and improve
the service’s observability and security.

Service Mesh

Ingress Traffic Mesh

Egress Traffic
Traffic ”

Y

N

\\\\\\ SN

Fig. 1: Architecture of a service mesh where proxy sidecars
handles all the network activity of a service.

Istio [20], linkerd!, and consul connect? are the most
popular open source service mesh tools, according to GitHub
stargazers. In addition to these tools, most service mesh tools
provide an access log (also known as audit logging or proxy
log), containing information about each inbound and outbound
request in a customizable format. Our method uses these ac-
cess logs to determine which service is calling which service,
which endpoint is being called, and how frequently a service
is called in a given time period. We can use this information
to reconstruct software architecture and automatically detect
anti-patterns and coupling.

Listing 1: Default Format of Access Logs in Istio service mesh

[$START_TIMES%] "$REQ (:METHOD) % %REQ (X-ENVOY-
ORIGINAL-PATH?:PATH) % $PROTOCOLS\" %
RESPONSE_CODE% %RESPONSE_FLAGSS %
RESPONSE_CODE_DETAILSS %
CONNECTION_TERMINATION_DETAILSS

Thttps://linkerd.io/
Zhttps://www.consul.io/docs/connect

"$UPSTREAM_TRANSPORT_FAILURE_REASON%\" %
BYTES_RECEIVED% %BYTES_SENT$ $%$DURATION% $RESP (X-—
ENVOY-UPSTREAM-SERVICE-TIME) % \"$REQ (X—-FORWARDED
—-FOR) $\" \"%REQ (USER-AGENT) %\" \"$REQ (X—REQUEST-
ID) %\"

"SREQ (:AUTHORITY) %\" \"%UPSTREAM_HOST%\" %
UPSTREAM_CLUSTER% $UPSTREAM_LOCAL_ADDRESSS %
DOWNSTREAM_LOCAL_ADDRESS% %
DOWNSTREAM_REMOTE_ADDRESSS %
REQUESTED_SERVER_NAME% $ROUTE_NAMES$\n

b-service
a-service &D /qms/categoryinfo
/qms/configuration
% /qms/configuration/1
c-service | = /qms/test?configld=1

Fig. 2: A SDP prototype that can be generated from an access
log. Each edge weight number represents the number of times
the endpoint is called. When the weight value is greater, the
edge thickens.

The default format of the access logs can be seen in
the Listing 1. The Envoy proxy website lists the definitions
of each term of this format, as well as other customizable
formats [21]. Table I contains a sample inbound and outbound
request’s ‘access-log’, where both logs are from service-a’s
proxy sidecar, and its service DNS inside the Kubernetes
cluster is ‘a-service.default.svc.cluster.local’. One thing to note
is that while both the inbound and outbound logs contain
downstream and upstream addresses in the form of IPs, IPs are
ephemeral in Kubernetes-based systems because they rely on
ephemeral ‘Pods’ [22]. The service’s DNS, on the other hand,
is stable, and it will forward traffic to a Pod’s or a group of
pods’ updated IP address [22].

The outbound request indicates that the event log contains
upstream service information in DNS format, with the key
‘upstream cluster’ and ‘path’ indicating which upstream ser-
vice endpoint is being requested. We can use this information
to construct the SDG, in which a-service and b-service each
represent a node, with a directed edge connecting a-service
to b-service’s endpoint /api/v1/endpoint/. We can also
maintain the interaction count as edge-weight on this directed
edge.’

We can analyze each access log of a distributed system and
generate an edge in the graph for each interaction between two
services within a time period. If the services already have an
edge, we can increase the weight of the edge by one. Finally,
we can use a visualizing tool to draw the graph automatically.
We can make the edge visually thinner or thicker depending
on the edge weight. Using different colors for different edges
is also effective. Figure 2 shows a prototype of such an
SDG, in which three services are represented by three nodes

Request Type

Sample Access Log

"start_time":
"upstream_host":
"downstream_local_address

"protocol": "HTTP/1.1",

"upstream_service_time":
"authority": "b-service
"requested_server_name":
"response_code_details":

"upstream_local_address":
"downstream_remote_addres
"path” .
"bytes_sent":
"request_id":

inbound request

44,

"bytes_received": O,
"route_name": "default",
"duration": 7,
"x_forwarded_for": null,
"response_flags": "-",
"response_code": 200,
"method": "GET",

"upstream_cluster":
"user_agent":

"2022-05-26T06:22:02.6612",
"10.244.0.65:12345",

"upstream_transport_failure_reason":

:12345",
null,

"connection_termination_details":

"/api/vl/endpoint/",

"4631dcdc-0abe-9ad2-ba6l-d257cddee50b",

"outbound|12345] |[b-service.default.svc.cluster.local",
"Apache-HttpClient/4.5.9

"10.96.162.171:12345",
null,

"6",
"via_upstream",
null,

"10.244.0.41:33326",
s": "10.244.0.41:48250",

(Java/1.8.0_111)"

"start_time":

"upstream_host": "10.244.

"upstream_local_address":
outbound request
"path":
"bytes_sent":
"request_id":

44,

"bytes_received": 0,
"route_name": "default",
"duration": 7,
"x_forwarded_for": null,
"response_flags": "-"
"response_code": 200,

"method": "GET",
"upstream_cluster":
"user_agent":

}

"2022-05-26T06:22:02.6612",

"downstream_local_address": "10.96.162.171:12345",
"upstream_transport_failure_reason": null,
"protocol": "HTTP/1.1",

"upstream_service_time": "6",

"authority": "b-service:12345",
"requested_server_name": null,
"response_code_details": "via_upstream",
"connection_termination_details": null,

"downstream_remote_address":
"/api/vl/endpoint/",

"4631dcd4c-0abe-9ad2-ba6l-d257cddee50b",

"outbound|12345] |b-service.default.svc.cluster.local",
"Apache-HttpClient/4.5.9

0.65:12345",

"10.244.0.41:33326",
"10.244.0.41:48250",

(Java/1.8.0_111)"

TABLE I: An example of an inbound and outbound request access log. Inbound requests have a-service as their destination,
while outbound requests have a-service as their source and b-service as their destination.

called ‘a-service,” ‘b-service,” and ‘c-service,” and each edge
represents a request from a source service to a destination

service endpoint.

V. POSSIBLE ANALYSIS DIRECTIONS

Using runtime logs to generate SDG and obtain service con-
nectivity information eliminates the need for a static method’s
language-specific analyzer. We can use this information to
detect anti-patterns and the evolution of the system architecture
after collecting communication information between services
and generating an SDG. The criticality and reliability metrics

of the microservice architecture (MSA) [23] can also be
measured automatically.

A. Architecture smell/Anti-Pattern detection

Architectural smells are one of the causes of architectural
decay, and technical debt [24], [25]. Finding architectural
smells and anti-patters can thus aid the software’s long-term
viability. We compiled a list of anti-patterns from Borges et
al. [26] and Rud et al. [23], which can be detected using SDG
and information about microservice communication:

o Absolute Importance of the Service (AIS) [23]: The

number of microservices that invoke the current service

[P}

a’ is the AIS of service ‘a’. Our analysis can count
the number of microservices with an in-degree directed
towards service ‘a’ to find AIS (a).

« Absolute Dependence of the Service (ADS) [23]: The
number of microservices on which service ‘a’ relies is
represented by the ADS of service ‘a’. We can count the
unique microservices with a directed edge from service
‘a’ to find ADS(a).

o Cyclic dependency / Services Interdependence in the
System (SIY): A service-to-service cycle exists. It could
be one, two, or even more services. Even though the
requests do not loop because the same endpoints are not
being called, this is still a bad practice that can lead to
architectural decay. The SIY metric was defined by Rud
et al. [23] as the number of pairs that are dependent on
each other. We can look at each pair (a,b) to see if there
is a path from service ‘a’ to service ‘b’ and vice versa.
The STY metric is the count of such pairs.

« Unbalanced API / Bottleneck Service / Absolute Crit-
icality of the Service (ACS): This anti-pattern appears
when a service has a large number of consumers, and the
service becomes a single point of failure [27], [28]. Rud
et al. [23] defined ACS of service ‘a’ as the product of
AlIS(a) and ADS(a), which is effectively the product of
the number of inbound and outbound microservices of
service a. As stated in the definition, we can calculate
ACS(a) by multiplying AIS(a) and ADS(a) together (a).

o Shared Persistency [29]: This anti-pattern indicates that
databases are shared among multiple services. The SDG
allows us to determine whether various services access a
single database.

o API Versioning [29]: APIs should have versions to deal
with API changes between versions. Because we have
endpoints in our SDG, we can check if they have ver-
sioning.

B. Software Architecture evolution/Design Rule Change from
SDG

The service dependency graph (SDG) can show the evo-
Iution of a system’s high-level architecture or design rules.
Although software architecture artifacts can provide a service
dependency graph, they can quickly become outdated, and
MSA commonly decays over time due to architectural debt
and code debt. As a result, an SDG generated from runtime
logs provides a realistic view of inter-service communication.
Furthermore, displaying SDG design rule changes can aid
in the verification of new microservice co-relations and the
detection of anomalies. It also shows how the new design rule
affects real-world traffic.

C. Efficiently scale module using SDG heatmap

SDG combined with a heat map (number of encounters
shown as edge weight) can help scale the system efficiently
in resource consumption and cost. For example, the most
frequently accessed services in the dependency graph can
be identified using the SDG heatmap. Once these services

have been identified, developers can make them stateless and
deploy multiple copies to increase system throughput. On the
other hand, if a service receives little traffic, it is more cost-
effective not to scale it. This way, developers can deploy the
system more efficiently while reducing costs and resource
consumption and increasing system throughput.

VI. CASE STUDY

We developed the prototype istio-log-parser tool 3, which
takes an access log as input and generates a Service De-
pendency Graph with heatmap. It also calculates anti-pattern
metrics and examines the system for any cycles. It generates
a CSV file with anti-pattern metrics calculated, and the cycles
are displayed in the program’s stdout. To create the graph,
we used Graphviz 4 which generates a dot file, which we
then converted to pdf format using the dot library [30]. We
used a microservice benchmark called TrainTicket [31] to
test the prototype. The microservice’s most recent release has
around 270,000 lines of code. To test the prototype, we utilized
both the v0.2.1 and v0.1.0 releases. TrainTicket v0.1.0 has 41
modules, while v0.2.1 has 42, and both use a reverse proxy
based on Nginx to route requests to modules. The system
was deployed on Kubernetes, along with Istio. The Istio was
set up in such a way that it generates and outputs a JSON-
formatted access log. We installed Kubernetes in a machine
with 32GB of RAM and an Intel i9-8950HK processor using
kind (Kubernetes-in-docker)’. There were 6 CPU cores and
12 threads in the system. Kubernetes’ resource limit was set
at 22GB of RAM and 8 threads of CPU.

We used the benchmarking tool PPTAM [32] to simulate
a real-time user. It had five scenarios to simulate, and five
users were making requests in these five scenarios at the same
time. The test lasted 30 minutes and resulted in a total of
10,000 requests being sent to the server. After the simulation
was finished, we collected each service’s Istio proxy logs and
ran our prototype tool on them. Both v0.2.1 and v0.1.0 went
through a similar simulation process.

A. Anti-Patterns

Figure 3 is the generated SDG with heatmap of trainticket-
v0.1.0 and Figure 4 is the SDG of v0.2.1. Table II shows
a comparison of the automatically calculated anti-pattern
metrics. From this available information we can find the
followings about anti-pattern:

« Absolute Importance of the Service (AIS): We can see
from Table-II that ‘ts-order-service.default’ has the most
AIS (9). In addition, few services with O AIS indicate that
they have no consumers or clients. Although this is not
true for ‘ts-ui-dashboard.default’, because it is a reverse
proxy, there are no inbound services, and the only con-
sumers are requests from outside the cluster/microservice,
which is referred to as ingress.

3https://github.com/the-redback/istio-log-parsing
“https://graphviz.org/
Shttps://kind.sigs.k8s.io/

ts-ticket-office-mongo.default

ts-ticket-office-service.default

ts-travel2-service.default

ts-ticketinfo-service.default

ts-train-service.default

. default

110418" Japi/v1/trainservice/trai~
/api/v1 /ticketinfoservice~ "1798"
¥l "4576" — s-price-service.default
ts-basic-service.default " - —
Jfapi/v1/priceservice/pric~
/api/v1/basicservice/basi~ "1798"
ts-travel-service.default Eeren 8964 ts-route-service.default
/api/v1/travelservice/rou~ ts-travel-mongo.default Japi/v1/routeservice/rout~
123 "392" /api/v1/travelservice/tra~
Japi/v1/travelservice/tri~
ts-seat-service. default ts-config-service.default | | o0
w3gqn w387 -
391 3187 Japi/v1/seatservi 2T ol Tapinv viceleon | \'15812"
[lapi/v1/secatservice/scats 3187
"1389"
w7gon
n .default
" ts-security-mongo.default ts-station-service. default
/ Japi/v1/stationservice/st~
- ts-order-other-mongo. default
13990 | [ts-order-other-service. default
ts-security-service.default w413 /api/v1/orderOtherService~ 403"
39" /api/v1/securityservice/s~
392"
s-preserve-service.default ts-food-mongo.default
410" /api/v1/preserveservice/p~ 391"
ts-food-service.default
Japi/v1/foodservice/orders ts-food-map-service.default ts-food-map-mongo.default
i oodservice Toods |13 | /201¥/foodmapservice/tr~
Japi/v1/foodmapservice/fo~ -
I
"415"
822" ts-contacts-service.default ts-contacts-mongo.default
/api/v1/contactservice/co~
ts-order-service.default
"403" -
754" /fapi/v1/orderservice/orde~
386" ts-inside-payment-service. default fapi/vforderservice/order
ts-ui default -

/api/v1/inside_pay_servic~

ice.default

"90"

ts-cancel-service.default

/api/vl/cancelservice/can~ |\

ts-admin-user-service.default

/api/v1/adminuserservice/~ . ts-user-service.default

22 Japi/v1 /userservice/users~

ts-voucher-service.default

£ /getVoucher

x
Japi/v1/paymentservice/pa~

nggn

nggn

ts-user-mongo.default

ts-auth-service.default

Japi/v1/auth

ts-assurance-service.default

/api/v1/assuranceservice/~

n - ts-consign-price-service.default
ts-consign-service.default

- —— Japi/v1/consignpriceservi~
o{ Japi/v1/consignservice/co~ pyvconsignpricesert

/api/v1/users/login

.default’ has

.default’ and ‘ts-seat-service.default’ have formed a cycle.

-S€rvice

Dependency Graph (SDG). The graph shows that ‘ts-travel

1CE

The trainticket-0.1.0 release’s Serv
become one of the system’s bottlenecks, while ‘ts-travel

3

Fig.

-S€rvice

ts-ticket-office-mongo.default

ice.default

ts-travel2-service.default

"1430"
"1464"
"553"
ts-voucher-service.default
/getVoucher
g
"732"
"732"
ts-preserve-service.default
732" Japi/v1/preserveservice/p~ .

w3

ts-voucher-mysql.default
/

"732"

ts-contacts-service.default

/api/v1/contactservice/co~

ts-food-service.default

/api/v1/foodservice/orders

/api/v1/foodservice/foods~

"7

732"

o

732"

w73

"6501"

"12600"

ts-ticketinfo-service.default

ts-train-service.default

Japi/v1/trainservice/trai~

ts-route-service.default

"2655

ts-basic-service.default

"14671"
"13939" Japi/v1/ticketinfoservice~ Japi/v1/basicservice/basi~
ts-travel-service.default

" n ts-travel-mongo.default
/api/vl/travelservice/rou~ 4/

n " ts-config-service.default
Japi/v1/travelservice/tra~ "4578" "3846" n -
/api/v1/travelservice/tri~ Japilv/configservice/con~

"1923"
ts-contacts-mongo.default "3846"
ts-seat-service.default
"4578" - -
/api/v/seatservice/seats~
/api/v1/seatservice/seats
"4578"

"1464"

ts-food-mongo.default
/

ts-food-map-mongo.default

ts-food-map-service.default

/

Japi/v1 iceltr

/api/v1/foodmapservice/fo~

"184"

ts-ui-dashboard.default

ts-security-service.default

/api/v1/securityservice/s~

ts-order-other-service.default e

ts-security-mongo.default

ts-order-other-mongo.default

/api/v1/orderOtherService~

wg3pm

"1462"
"1464"

w3

ts-order-service.default
/api/v1/orderservice/orde~

/api/v1/orderservice/order

"180"

| "732"
ts-cancel-service.default
“——>| /api/vl/cancelservice/can~
w3 "180"
"732"
ts-admin-user-service.default w73m
/api/v1/adminuserservice/~
"1464"
360"
ts-consign-service.default ot
/api/v1/consignservice/co~
\732"

ts-assurance-service.default

/api/v1/assuranceservice/~

ts-payment-mongo.default

ts-inside-payment-service.default

ice.default

/api/v1/inside_pay_servic~

ts-user-service.default

/api/v1/userservice/users~

ts-consign-mongo.default

ts-consign-price-service.default

/api/v1/consignpriceservi~

ts-user-mongo.default
/

ts-auth-service.default ts-auth-mongo.default

0

Japi/v1/auth

/api/v1/users/login

/api/v1/routeservi

.default

ts-price-service.default

e]

Japi/v/priceservice/pric~

ts-config-mongo.default

ts-station-service.default

/api/v1/stationservice/st~

.default’ has become

.default’ and ‘ts-seat-service.default’.

-S€rvice

lar to v0.1.0, ‘ts-travel

1mi

Dependency Graph (SDG) of trainticket-0.2.1 release. S

Service

4

Fig.

-S€rvice

one of the system’s bottlenecks, and a cycle has formed between ‘ts-travel

Train Ticket v0.2.1 Train Ticket v0.1.0
Criticality and Criticality and
Reliability Metrics Reliability Metrics
O ()

Service_Name

Service Dependencies Service Dependencies

Absolute Importance of the Service
(AIS)

Absolute Dependence of the Servic
(ADS)

Absolute Criticality of the Service
(ACS)

Absolute Importance of the Service
(AIS)

Absolute Dependence of the Servic
(ADS)

Absolute Criticality of the Service
(ACS)

In-Degrees | Out-Degrees In-Degrees | Out-Degrees

—_
—
—_

ts-admin-user-service.default 1 1 1 1

ts-assurance-mongo.default

ts-assurance-service.default

ts-auth-mongo.default

ts-auth-service.default

ts-basic-service.default

ts-cancel-service.default

ts-config-mongo.default

Sy [EEY SN U [S [T [ey
—|o| & & —| o]~

U NN VN (N (NG JSEY U VN
—|o| & & —=| | ==
—|o| & &[0 o] = —

ts-config-service.default

ts-consign-mongo.default

ts-consign-price-service.default

ts-consign-service.default

ts-contacts-mongo.default

ts-contacts-service.default

ts-food-map-mongo.default

ts-food-map-service.default

O | O 9| O —=| O

ts-food-mongo.default

| = 0| = ro| —=| —=| —
DN O —| O = O —=| O
2| = 8| = b = =f =
| O~ O~ —| 2

—_
=]

ts-food-service.default

ts-inside-payment-mongo.default

ts-inside-payment-service.default

ts-order-other-mongo.default

ts-order-other-service.default

0| = —| o
O = —| o
=
o —|of &

ts-order-service.default

ts-payment-mongo.default

ts-payment-service.default

ts-preserve-service.default

ts-price-mongo.default

U (U (VN [
— O] 0| O
—| O \O| O
— || O

ts-price-service.default

ts-route-mongo.default

ts-route-service.default

ts-seat-service.default

ts-security-mongo.default

Sy SN YO [N (SN U RN [N O N e e I S] Y [NS] [SSY NG S NG) JFSS) GRS [y (S RS JURY (R VY NG | [y [y
O I N I N [N B e N e = e) LS S I S] IS NOY NS NCY [FSS ST S R S R S S TN S

WO = O = OO === O|WR OO~ O —| OO —| O] &~
WO B = O —=| OO = O = = O W OO — OO OO —| O] & —|O| O
'\»OOOI\.)O'—‘OO—‘O\O-‘OO“OEOMOMOMOO'-O-P-PNOO

ts-security-service.default

ts-station-mongo.default

ts-station-service.default

ts-ticket-office-mongo.default

ts-ticket-office-service.default

ts-ticketinfo-service.default

ts-train-mongo.default

ts-train-service.default

OO O O B O W O| 00| O

ts-travel-mongo.default

(o)
(=]

ts-travel-service.default

ts-travel2-mongo.default

— OO O = O = = O = | O WO RO
= OO = O = | O = O WO~ O

—| OO = O] = —| O O
—| O QN O = O] —=| —=| S| O

ts-travel2-service.default

—_
[\)
—_
[\
—_
[\
—_
(3]

ts-ui-dashboard.default

ts-user-mongo.default

W = O O = | = D = 1] O = & —| = = 19|

| —| | o =| L] = o] =] o] of =| &

ts-user-service.default

ts-voucher-mysql.default

| = Wl | o Of = | | = 1| = 1| O =] | = =] = 1] ro

—| =] | =| o o =| k| =] o] =| | of =] &
NO@OOOObONONOOO

—| —
N OO

N OO
[S]E=li] e

—| —

N OO

N O O|o|Oo| O

ts-voucher-service.default

TABLE II: Comparison of antipattern metrics that are calculated automatically.

o Absolute Dependence of the Service (ADS): The out- sult, it has the highest ADS in the system. ts-preserve-
degree of ‘ts-ui-dasshboard.default’ is twelve. As a re- service.default has the second-highest ADS at nine.

e Cyclic dependency / Services Interdependence in
the System (SIY): Both versions have a cycle be-
tween the services ‘ts-travel-service.default’ and ‘ts-seat-
service.default’. We can verify that the prototype’s find-
ings are correct by looking at Figure-3 and Figure-4.

« Unbalanced API / Bottleneck Service / Absolute Critical-
ity of the Service (ACS): We can see from Table-II that
the ACS value for ‘ts-travel-service.default’ is the highest.
It applies to both versions v0.1.0 and v0.2.1. When
we look at the SDG, we can see how this service has
become a system bottleneck and a single point of failure.
There are five services that ‘ts-travel-service.default’ is a
client of, and six services that ‘ts-travel-service.default’
accesses. The ACS value for ’ts-food-service.default’ is
the second highest.

o Shared Persistency: It is clear from the SDGs (Figure-3
and Figure-4) that no MongoDB is shared by multiple
services.

o API Versioning: We can see from both SDGs (Figure-3
and Figure-4) that each endpoint has 1/api/v1’ as a prefix
to the endpoint. This indicates that API versioning is in
effect.

B. Evolution of MSA

The SDGs in versions 0.2.1 and 0.1.0 have the same number
of services, with the exception that version 0.1.0 lacks a few
MongoDB connections. Despite the fact that version 0.2.1
includes an additional module called ’ts-delivery-service,” it
is not visible in the graph. This is because the PPTAM testing
artifacts are older and do not cover the scenario of newly added
business logic/service. Although this is a limitation of dynamic
analysis, it does provide a scenario to verify that, due to API
versioning, older tests are still functional without introducing
new business flows.

C. Efficiently scale module

The services with the most inbound edges should be scaled
first, as they are the most important for others to communicate
with. In this case, it’s necessary to scale ‘ts-order-service.
default’ first. ‘ts-travel-service.default’ is the second service
that needs to be scaled, but it has become the system’s bottle-
neck with the highest absolute critical ACS value. Therefore,
developers of such microservices must first reduce tanglement
before scaling the service. The following microservices to
scale are those with the highest ADS values and the most
outbound edges. Because these services rely on various other
services, the response time for each request to this service may
increase, resulting in a queue for its users. Nevertheless, it is
still necessary to distribute it in order to handle more users.

VII. CONCLUSION

This paper presents broad advancement to the microservice
community, combining the perspective of dynamic analysis
with quality assessment applicable to system evolution. It
addresses current challenges in microservices. Challenges that

the static analysis did not yet overcome due to decentraliza-
tion and possible language heterogeneity across microservice
codebases. It demonstrates the feasibility of anomaly detection
on established telemetry tools and combines quality assurance
knowledge established in service-oriented systems. We demon-
strated the feasibility of the approach on a complex system
benchmark with 42 microservices, showed detection of anti-
patterns and metrics and presented a use case when applied
to the evolving system. The results can give practitioners an
automated tool to detect anomalies in non-centrally evolving
systems and the ability to prioritize identified tasks.

In future work, we anticipate integrating business pro-
cess analysis and enabling inter-weaving with anti-patterns.
We also aim to study other microservice-relevant patterns
that could be detected through dynamic analysis, such us
microservice—-api-patterns.org. We aim to inte-
grate our detection and metrics into established tooling. Fur-
thermore, despite the potential, we plan to compare it with
static analysis.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1854049, grant from Red
Hat Research, and Ulla Tuominen (Shapit).

REFERENCES

[11 A. Walker, D. Das, and T. Cerny, “Automated code-smell detection in
microservices through static analysis: A case study,” Applied Sciences,
vol. 10, no. 21, 2020. [Online]. Available: https://www.mdpi.com/
2076-3417/10/21/7800

[2] N. Saarimaki, M. T. Baldassarre, V. Lenarduzzi, and S. Romano, “On
the accuracy of sonarqube technical debt remediation time,” in 2079
45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2019, pp. 317-324.

[3] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad
smells,” IEEE Software, vol. 35, no. 3, pp. 56-62, 2018.

[4] 1. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, “Towards
microservice smells detection,” in Proceedings of the 3rd International
Conference on Technical Debt, ser. TechDebt '20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 92-97. [Online].
Available: https://doi.org/10.1145/3387906.3388625

[5]1 F. Rademacher, S. Sachweh, and A. Ziindorf, “A modeling method for
systematic architecture reconstruction of microservice-based software
systems,” in Enterprise, Business-Process and Information Systems
Modeling, S. Nurcan, 1. Reinhartz-Berger, P. Soffer, and J. Zdravkovic,
Eds. Cham: Springer International Publishing, 2020, pp. 311-326.

[6] A. Walker, I. Laird, and T. Cerny, “On automatic software architecture
reconstruction of microservice applications,” Information Science and
Applications: Proceedings of ICISA 2020, vol. 739, p. 223, 2021.

[71 G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,
and A. Di Salle, “Towards recovering the software architecture of
microservice-based systems,” in 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), 2017, pp. 46-53.

[8] V. Bushong., D. Das., and T. Cerny., “Reconstructing the holistic archi-
tecture of microservice systems using static analysis,” in Proceedings
of the 12th International Conference on Cloud Computing and Services
Science - CLOSER,, INSTICC. SciTePress, 2022, pp. 149-157.

[91 M. Schiewe, J. B. Curtis, V. Bushong, and T. Cerny, “Advancing static
code analysis with language-agnostic component identification,” IEEE
Access, 2022.

[10] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for mi-
croservices: A systematic mapping study,” in Proceedings of the Sth
International Conference on Cloud Computing and Services Science -
Volume 1: CLOSER,, INSTICC. SciTePress, 2018, pp. 221-232.

, Microservices Anti-patterns: A Taxonomy. Cham: Springer

International Publishing, 2020, pp. 111-128.

[11]

microservice-api-patterns.org
https://www.mdpi.com/2076-3417/10/21/7800
https://www.mdpi.com/2076-3417/10/21/7800
https://doi.org/10.1145/3387906.3388625

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

S. Panichella, M. R. Imranur, and D. Taibi, “Structural coupling for
microservices,” in 11th International Conference on Cloud Computing
and Services Science, 04 2021.

A. Bento, J. Correia, R. Filipe, F. Araujo, and J. Cardoso, “Automated
analysis of distributed tracing: Challenges and research directions,”
Journal of Grid Computing, vol. 19, no. 1, p. 9, 2021. [Online].
Available: https://doi.org/10.1007/s10723-021-09551-5

S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using service dependency graph to analyze and test microservices,” in
2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 02, 2018, pp. 81-86.

S. Karumuri, E. Solleza, S. Zdonik, and N. Tatbul, “Towards observabil-
ity data management at scale,” ACM SIGMOD Record, vol. 49, no. 4,
pp. 18-23, 2021.

P. M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and
T. Yamashita, “Improving software development management through
software project telemetry,” IEEE software, vol. 22, no. 4, pp. 76-85,
2005.

“Opentelemetry: High-quality, ubiquitous, and portable telemetry
to enable effective observability,” 2020. [Online]. Available: https:
/lopentelemetry.io/

R. Picoreti, A. P. do Carmo, F. M. de Queiroz, A. S. Garcia, R. F.
Vassallo, and D. Simeonidou, “Multilevel observability in cloud or-
chestration,” in 2018 IEEE 16th Intl Conf on Dependable, Autonomic
and Secure Computing, 16th Intl Conf on Pervasive Intelligence and
Computing, 4th Intl Conf on Big Data Intelligence and Computing and
Cyber Science and Technology Congress (DASC/PiCom/DataCom/Cy-
berSciTech). 1EEE, 2018, pp. 776-784.

B. Burns and D. Oppenheimer, “Design patterns for container-based
distributed systems,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), 2016.

“Istio: Simplify observability, traffic management, security, and policy
with the leading service mesh.” 2020. [Online]. Available: https://istio.io/
E. Authors, “Envoy-proxy access logging format rules,” Aug
2020. [Online]. Available: https://www.envoyproxy.io/docs/envoy/latest/
configuration/observability/access_log/usage

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

V. Marmol, R. Jnagal, and T. Hockin, “Networking in containers and
container clusters,” in Proceedings of netdev 0.1, 2015, pp. 14-17.

D. Rud, A. Schmietendorf, and R. R. Dumke, “Product metrics for
service-oriented infrastructures,” IWSM/MetriKon, pp. 161-174, 2006.
D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “An empirical study of architectural change in open-
source software systems,” in 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. 1EEE, 2015, pp. 235-245.

A. Fellah and A. Bandi, “On architectural decay prediction in real-time
software systems,” in Proceedings of 28th International Conference,
vol. 64, 2019, pp. 98-108.

R. Borges and T. Khan, “Algorithm for detecting antipatterns in mi-
croservices projetcs,” in SSSME-2019: Joint Proceedings of the Inforte
Summer School on Software Maintenance and Evolution. in SSSME-
2019, 2019, pp. 21-29.

M. Nayrolles, N. Moha, and P. Valtchev, “Improving soa antipatterns
detection in service based systems by mining execution traces,” in 2013
20th Working Conference on Reverse Engineering (WCRE). IEEE,
2013, pp. 321-330.

F. Palma and N. Mohay, “A study on the taxonomy of service antipat-
terns,” in 2015 IEEE 2nd International Workshop on Patterns Promotion
and Anti-patterns Prevention (PPAP). 1EEE, 2015, pp. 5-8.

D. Taibi and V. Lenarduzzi, “On the definition of microservice bad
smells,” IEEE software, vol. 35, no. 3, pp. 56-62, 2018.

E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software: practice and
experience, vol. 30, no. 11, pp. 1203-1233, 2000.

X. ZHOU, X. PENG, T. XIE et al., “Benchmarking microservice sys-
temsforsoftwareengineeringresearch,” in 40th ACM/IEEE International
Conference on Software Engineering (ICSE), 2018.

A. Avritzer, D. Menasché, V. Rufino, B. Russo, A. Janes, V. Ferme,
A. van Hoorn, and H. Schulz, “Pptam: production and performance
testing based application monitoring,” in Companion of the 2019
ACM/SPEC International Conference on Performance Engineering,
2019, pp. 39-40.

https://doi.org/10.1007/s10723-021-09551-5
https://opentelemetry.io/
https://opentelemetry.io/
https://istio.io/
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/access_log/usage
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/access_log/usage

	I Introduction
	II Background & Related Work
	III Telemetry Data & Its Applications
	IV Service Mesh & Service Dependency Graph (SDG)
	V Possible Analysis Directions
	V-A Architecture smell/Anti-Pattern detection
	V-B Software Architecture evolution/Design Rule Change from SDG
	V-C Efficiently scale module using SDG heatmap

	VI Case Study
	VI-A Anti-Patterns
	VI-B Evolution of MSA
	VI-C Efficiently scale module

	VII Conclusion
	References

