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Abstract—With the rise of cloud computing, many applications
have been implemented into microservices to fully utilize cloud
computing for scalability and maintainability purposes. However,
there are some traditional monolith applications that developers
would like to partition into microservices. Unfortunately, it is
difficult to find a solution when considering multiple factors (i.e.,
the strong dependency in each cluster and how often different
microservices communicate with each other). Further, because we
allow duplications of classes in multiple microservices to reduce
the communications between them, the number of duplicated
classes is also another important factor for maintainability.
Therefore, we need to use machine learning algorithms to
approximate a good solution due to the infeasibility of finding
the optimal solution. We apply the variational autoencoder to
extract features of classes and use the fuzzy c means to group the
classes into microservices according to their extracted features.
As a result, our approach outperforms the other baselines in some
significant metrics. Also, when we allow duplication, we find that
it is helpful in terms of reducing the overhead of communications
between microservices.

Index Terms—Microservices, Machine learning, Clustering,
Graph neural networks, Variational autoencoder

I. INTRODUCTION

Despite advancements in cloud-native systems, many avail-

able web applications still follow the traditional architecture

style, called a monolith. Monolith applications are composed

of all the business functionalities in one place. Thus, it

has essential drawbacks: scalability, maintainability and cost.

When a monolith application is overloaded, we usually scale

it up (e.g., increasing the space of its main memory and im-

proving its CPU). These actions are costly and involve humans

migrating the application from one server to another. We also

can scale it out to mitigate the problem. However, we need

to clone the whole application to other machines although the

overloaded part is tiny in the application. Further, it is difficult

to determine who is responsible for a specific functionality

because all the functionalities are in the same place. It is not

clear to specify who is responsible for which part. Therefore,

we start using the idea of microservices for implementing web

applications. The microservices architecture style designs an

application as a group of services, each of which one team

may take care of. Hence, it is trivial to maintain this kind of

application.

Additionally, if any service is overloaded, we can scale

out only that service. The microservices architecture is more

scalable and easier to maintain than the monolith architecture.

Also, Auer et al. [1] showed that maintainability and scalabil-

ity are ones of the major reasons that many web application

practitioners would like to choose the microservices architec-

ture rather than the monolith architecture.
Even though microservices can provide several benefits,

some web application practitioners have already implemented

their monolith applications and would like to modify them to

microservice-based applications. This problem is non-trivial

since we do not have the best solution for this modification.

Several attempts try to apply software engineering techniques

and machine learning techniques for this problem. Nonethe-

less, we do not have the best technique so far. Although

there are some approaches [2]–[7] trying to improve the

microservices and detect some issues in them, it is better to

generate good microservices in the first place after partitioning

a monolith application.
Our work focuses on applying machine learning techniques

because we need to solve a multi-objective problem for

partitioning a monolith application into microservices. We

consider some factors in this work: dependency, entrypoints

and entrypoints co-existence. We obtain this information from

static analysis, and we do not use inheritance relationships

since the applications used in the experiments do not have

them. Furthermore, we apply a graph neural network for this

problem because we can transform the application into a

graph. Moreover, our approach allows functionality in multiple

microservices to address the dependency between microser-

vices. Therefore, instead of k-means used in various works

[8]–[10], we use the fuzzy c-means [11] for clustering to allow

duplicated functionalities in multiple microservices. At last,

we extensively construct experiments to compare the results

from our approach to the state-of-the-art works. Then, we can

list our contributions as follows:

• We propose the first machine-learning-based work that

applies the variational autoencoder and fuzzy c means to

partition a monolith application into microservices.

• This work allows duplication in multiple microservices

where the previous machine-learning-based approaches

did not pay attention to this.
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• We build experiments and show that our approach out-

performs the state-of-the-art machine-learning-based ap-

proaches in multiple metrics.

This paper is organized as follows; Section II briefly de-

scribes some works that are close to our approach and shows

the distinction of our work; Section III explains the problem

of transferring a monolith application into microservices and

formulates it in an optimization problem; Section IV summa-

rizes our approach and demonstrates each component of our

approach in detail; Section V describes how we construct the

experiments and discusses their results; Section VI discusses

the limitation of our approach, points out the future works and

concludes everything.

II. RELATED WORKS

On these days, many works have paid attention to de-

composing monolith applications into microservices to uti-

lize cloud computing. Nonetheless, it is not trivial due to

several factors (e.g., low cohesion between microservices).

Then, software engineering techniques have been applied to

help software architects decompose applications. However,

when considering various factors, the problem became too

complicated to be solved. Therefore, several works focused on

utilizing machine learning algorithms to approximate the solu-

tion to this problem. Further, we describe the literature related

to our software-engineering-based and machine-learning-based

work.

A. Software-Engineering-Based Approach

There have been many different approaches to converting a

monolith application to a microservice application. In 2017,

Li, Chen, and Li [12] have implemented a dataflow-driven ap-

proach to decompose monolith applications into microservices

where they first manually constructed a Data Flow Diagram

(DFD). Then, they condensed the DFD into a decomposable

DFD by combining the same operations with the same type

of output data. Finally, microservice candidates were identified

from the decomposable DFD. In 2019, Taibi and Systa [13]

proposed a decomposition framework that utilized the static

analysis (e.g., dependency graph) and dynamic analysis (i.e.,

process mining). Their framework included six steps: execu-

tion path analysis, frequency analysis of the execution paths,

removal of circular dependencies, identification of decom-

position options, metric-based ranking of the decomposition

options and selection of decomposition solution. However,

their framework was not automatic and still required some

experts in some steps during the process. In 2020, Krause-

Glau et. al [14] presented an approach to decompose monolith

applications to microservices based on static and dynamic

analysis of the monolith application. In this approach, they

combined bounded-context pattern of domain-driven design

with static code analysis and dynamic software visualization

in order to identify the microservice boundaries. Firstly, they

performed domain analysis and divided the application into

smaller bounded contexts. Then, they performed static code

analysis to partition the source code. Lastly, dynamic analysis

was used for trace visualization. Auer et.al [15], in 2021,

have come up with an assessment framework for migrating

a monolithic application to microservices. They surveyed

industry professionals to identify metrics that someone would

need to consider before and after making the transition. The

assessment framework considered functional stability, perfor-

mance efficiency, reliability, maintainability, and cost.

B. Machine-Learning-Based Approach

Since obtaining the optimal solution for partitioning a

monolith application into microservices is not feasible, some

existing works applied machine learning algorithms to this

problem. Eski and Buzluca [16] proposed an automatic ex-

traction approach. In particular, they applied the static analysis

to an application and the dynamic analysis to log files. Then,

they utilized the agglomerative hierarchical algorithm [17] for

partitioning the application into microservices. They evalu-

ated their approach by computing a similarity between their

approach and references implemented by experts. In 2019,

Abdullah et al. [18] partitioned a monolith application based

on URIs and applied the k-means algorithm to clustering them

with respect to their document sizes and response times. Then,

they provided a virtual machine (VM) for each microservice

by considering its document size and response time. After

that, they proposed a simple auto-scaling algorithm for the

VMs for dynamically scaling out overloaded VMs. In 2020,

Kalia et al. [8] invented the Mono2Micro framework. This

framework used the dynamic analysis to create a tree and then

applied the static analysis to obtain information from the code.

Then, they combined these results and, at last, applied the

hierarchical clustering algorithm to partition the application

into microservices.

In 2021, some researchers started utilizing a graph neural

network (GNN) on this problem. Desai et al. [9] converted

a monolith application to a graph by treating each class as

a node and each dependency as an edge. They applied the

graph convolution network (GCN) [19] on the generated graph.

Then, they used an autoencoder to extract an embedding vector

for every node and utilized the k-means algorithm to cluster the

nodes with respect to their embedding vectors. Later, Mathai

et al. [10] proposed a similar approach to [9]. Nonetheless,

they used the heterogeneous graph neural network [20] for

handling many types of nodes and edges. Then, Yedida et al.
[21] attempted to optimize the hyperparameters of existing

machine-learning-based monolith to microservices methods

and used the work in [9] as an example.

III. PROBLEM FORMULATION

We are given a monolith application consisting of n classes

and would like to partition it into a group of classes in the same

microservice. However, when the result is too much coarse-

grain, we will face the same issue as in a monolith application

as described in Section I. On the other hand, when the result is

too fine-grain, the application will suffer from communication

between microservices since many microservices may strongly

depend on each other. Therefore, the first objective is that

2
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all classes in a microservice strongly depend on each other.

The second objective is that two microservices should not

frequently communicate with each other. Further, since we

allow duplicated classes in multiple microservices to easily

achieve the second objective, the third objective is that the

number of the duplicated classes should be minimized due

to maintainability. Then, we can create a multi-objective

optimization problem as

min
M

∑

m∈M

∑

c1∈m

∑

c2∈m

d1(c1, c2) + λ1

∑

m1∈M

∑

m2∈M

d2(m1,m2)

+ λ2

∑

c∈C

d3(c)

(1)

where M is a set of microservices, C is a set of classes,

d1(c1, c2) is a distance function between class c1 and c2,

d2(m1,m2) indicates the number of communication between

microservice m1 and m2, d3(c) denotes the number of class

c in the microservices and λ1 and λ2 are the balancers of the

optimization problem. Explicitly, the optimal solution of this

problem is not feasible. Thus, we desire to apply a machine-

learning-based approach to determine a local minimum of this

problem.

IV. OUR APPROACH

As mentioned in the previous section that problem 1 is

infeasible to solve, our approach utilizes machine learning and

greedy algorithms to determine the solution. Our approach is

based on the work in [9], and we describe it in this section.

Fig. 1 illustrates the flow of our approach including three main

steps. In the data preparation step, we use tools to extract

useful information and create a dependency graph from the

application. Then, we produce more information from the

graph and preprocess this information to obtain a feature

matrix. After that, we apply the graph convolution network to

the information to extract embedding vectors for nodes in the

graph in the embedding-vector creation step. At last, we utilize

the fuzzy c-means algorithm to determine the microservices in

the clustering step.

A. Data Preparation

To feed the machine learning model, we collected three

kinds of data from a monolithic application: dependency

graph, entrypoint existence matrix, and entrypoint co-existence

matrix. Note that we denote P as the set of entrypoints. The

dependency graph (A) is a matrix that lists all the classes a

particular class is dependent upon. The entrypoint existence

matrix (E) indicates which classes are in at least one path

initiated by which entrypoints. Thus, Eij is one when class i
is in at least one path initiated by entrypoint j. The entrypoint

co-existence matrix (Co) indicates how often two classes co-

exist in the same paths initiated by the same entrypoints. That

is, Coij is the number of paths where class i and class j
co-exist in the same entrypoints.

We only considered web-application projects built on Spring

Framework for this approach. We used JavaParser, a Java

library that provides an Abstract Syntax Tree (AST) of our

code. The AST can then be used to extract information from

our code. To generate the dependency graph for a particular

class, we first fetched a list of all the classes it had imported.

Then, we filtered the list only to include the classes inside the

project’s root package and exclude the classes imported from

external libraries.

To obtain the entrypoint existence matrix (E), for class i,
we perform depth first search (DFS) in the dependency graph

by having entrypoint j as the root. If we find class i at any

point of DFS, we set Eij to be one. Furthermore, to obtain

the entrypoint co-existence matrix (Co), we also perform DFS

in the dependency graph and list all the paths initiated by the

entrypoints. Given class i and class j, we set Coij to be the

number of paths where class i and class j exist. After that,

we create a feature matrix (X̂) as

X̃ = E � Co

where ·�· is the concatenate operation. Thus, the size of X̂ is

|C| by |P |+ |C|. Then, with the graph convolutional network

(GCN) technique, we normalize X̂ according to the adjacency

classes in the graph by

X = D̃− 1
2 ÃD̃− 1

2 X̃

where Ã = A + I , I is the identity matrix, D̃ is the degree

diagonal matrix, and D̃ii =
∑

j∈C Ãij .

B. Embedding-Vector Creation

Given the dependency graph A and feature matrix X from

the previous step, we would like to find an embedding matrix

extracted from X to use a similarity metric (i.e., L2 norm) on

two embedding vectors of two classes. Note that the higher

the similarity, the more dependent the two classes become and

the more similar workloads they have. We use the variational

autoencoder (VAE) [22] for creating the embedding matrix

because it has been proved that it could organize the latent

vectors such that two similar vectors indicated two similar

inputs. Specifically, X is an input of VAE, and X̂ is the

reconstruction of X . The latent space of VAE is the feature

matrix Z where Z ∈ R
n×l and l is the length of each

embedding vector in Z. Hence, in this step, we train VAE such

that it can output X̂ that is as close to X as possible. We use

the mean square error (MSE) to compute the reconstruction

error between X and X̂ because we do not want to pay much

attention to tiny errors on some features. Furthermore, I would

like to inject the graph architecture into the embedding matrix

(Z). Hence, the embedding vector of a node needs to be similar

to its neighbors. Also, according to VAE, we need to make

sure that the embedding matrix is a normal distribution by

using the Kullback-Leibler (KL) divergence. Therefore, we can

formulate the loss function of VAE as
n∑

i=1

||Xi − X̂i||22 +
n∑

i=1

||Ai − ZiZ
T ||22 + KL(Z, p(Z)) (2)

where || · ||2 denotes the L2 norm, n is the number of classes

(i.e., nodes), Xi is row i of matrix X , p(Z) is the prior

3

Authorized licensed use limited to: Baylor University Libraries. Downloaded on January 29,2023 at 23:28:39 UTC from IEEE Xplore.  Restrictions apply. 



Dependency graph

Entrypoint
existence

matrix

Entrypoint  
co-existence

matrix
Monolith application

Data preprocessing

Feature
matrix 

Data
Data preparation

Dependency
graph

Embedding-vector creation

Embedding
matrix 

ClusteringMicroservices application

Fig. 1: The flow of our approach

distribution of Z where we assume that it is the normal

distribution and KL(Z, p(Z)) is the KL divergence function

between Z and p(Z). The first term is the reconstruction loss,

and the second term is the architecture loss. The last term is

the latent distribution loss. After obtaining Z from training

VAE with respect to the loss, we use it in the next step for

clustering.

C. Clustering

This step applies the fuzzy c-means algorithm on Z, and

we then obtain the membership matrix (denoted by W ) where

W ∈ [0, 1]n×k, k is the number of microservices (i.e., clusters)

and
∑k

j=1 Wij = 1 for every i. Note that the fuzzy c-means

algorithm determines W and a centroid matrix (denoted by Γ
where Γ ∈ R

k×p) by finding the local minimum of

k∑

i=1

n∑

j=1

Wji||Zj − Γi||22 (3)

where Wji is a membership of class j on microservice i. Then,

we assign class i to the microservice on which the class has

the most membership. Moreover, since we allow duplicated

classes in multiple microservice, we also assign class i to other

microservices, on which the class has memberships greater

than the maintainability threshold. When the threshold is high,

the number of redundancies is less. Also, when the threshold

is 0.5, it is not different from the approach without duplication

because for any class j,
∑k

i=1 Wji = 1. Then, there is at most

one microservice where a class has a membership greater than

0.5.

V. EXPERIMENTS AND RESULTS

To evaluate our approach, we first pick datasets and base-

lines for comparison. The baselines are based on a state-

of-the-art approach in the literature. Then, we construct the

experiments to check if our approach can outperform the

baselines in terms of some metrics described later. Also,

when we allow duplication in the microservices, our approach

can reduce the communication cost between microservices.

After that, we show that the microservices generated by our

approach are better than the ones generated by the baselines

in Section V-E.

A. Datasets

We choose three monolith web applications that have been

implemented by Spring framework: Bearboard1, Autocare2

and Pharmacy3. To justify the selection of our dataset appli-

cations, these applications have been developed by one of the

coauthors. Hence, we are familiar with them and can provide

reliable evaluation of the decomposition. Table I shows some

information with respect to the datasets. We will partition

the applications into five clusters because we plotted graphs

according to sum square errors (SSE) for one to ten clusters.

Then, we found that five clusters are the best number according

to the Elbow method [23]. Fig. 2 shows SSE achieved by the

fuzzy c means algorithm on those datasets and demonstrates

that after the cluster size of five, SSE does not significantly

decrease.

1https://github.com/rokinmaharjan/bear-board
2https://github.com/rokinmaharjan/autocare-nepal
3https://github.com/rokinmaharjan/pharmacy
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(a) Bearboard (b) Autocare (c) Pharmacy

Fig. 2: Sum square errors (SSE) over the number of clusters generated by fuzzy c means

TABLE I: Information of our datasets

Dataset # Classes # Entrypoints # Clusters

Bearboard 37 5 5
Autocare 47 4 5
Pharmacy 59 7 5

B. Models

This section discusses what models we will use for experi-

ments and comparison. There are three models:

1) Autoencoder with kmeans (AE-K): This approach is

the state-of-the-art work [9]. We use the autoencoder

as the feature extractor and the kmeans algorithm for

partitioning the monolith application.

2) Autoencoder with fuzzy c means (AE-C): We use the au-

toencoder as the feature extractor and the fuzzy c means

algorithm for partitioning the monolith application.

3) Variational autoencoder with fuzzy c means (VAE-C):

This is our approach. We use the variational autoencoder

as the feature extractor and the fuzzy c means algorithm

for partitioning the monolith application.

Table II shows the architecture of the embedding-vector cre-

ation part for each dataset. They are all composed of dense

layers.

TABLE II: Architecture of the neural network part in each

dataset. Note that each number is the number of neurons in

each layer.

Dataset Encoder Decoder

Bearboard 42, 21, 10, 5, 2 2, 4, 8, 16, 42
Autocare 51, 25, 12, 6, 2 2, 4, 8 ,16, 51

Pharmacy 66, 33, 16, 8, 4, 2 2, 4, 8, 16, 32, 66

C. Metrics

To evaluate the quality of a cluster, human-related evaluation

may be costly. Thus, we use two metrics used in the previous

works instead. The first metric focuses on the structure of the

cluster, and the second one pays attention to the size of each

cluster.

1) Structural modularity (SM): This metric indicates how

well the members in each cluster are related to each

other, compared to the relationship outside the cluster.

We define it as

SM =
1

k

k∑

i=1

ei
n2
i

− 2

k(k − 1)

k−1∑

i=1

k∑

j=i+1

ei,j
2ninj

where k is the number of clusters, ei is the number of

edges inside cluster i, ni is the number of classes inside

cluster i and ei,j is the number of edges between cluster

i and cluster j. We desire high SM for resulted clusters.

2) Non-Extreme Distribution (NED): This metric indicates

how well the number of classes is in each cluster. We

desire that each cluster does not have too many classes

or too few classes. We can define this metric as

NED =
1

|C|
k∑

i=1

a(5 ≤ ni ≤ 20)ni

where a(x) is 1 when x is true and 0 otherwise, and

C is a set of classes. Explicitly, we count only clusters

that contain 5 to 20 classes. Therefore, we prefer to have

high NED.

3) Interface number (IFN): This metric indicates the av-

erage number of interfaces in a microservice. Note

that an interface means a class that other classes from

other microservices depend on. Hence, the lower IFN

becomes, the better microservices are produced.

D. Results

We construct two kinds of experiments. The first experiment

involves partitioning monolith applications into microservices

without duplication. Hence, the models used in this experi-

ment are AE-K, AE-C and VAE-C. The second experiment

partitions the applications into microservices by considering

duplication. Then, the models evaluated in this experiment are

AE-C and VAE-C because AE-K does not allow duplication.

Note that the results from VAE-C are computed by the average

of five attempts since VAE’s latent space is based on the

normal distribution.

5
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TABLE III: SM, NED and IFN for each model in each dataset. Our approach (i.e., VAE-C) outperforms the other models.

Model
Bearboard Autocare Pharmacy

SM NED IFN SM NED IFN SM NED IFN
AE-K -2.71 0.89 3.6 -6.14 0.49 4.8 -4.93 0.51 7.2
AE-C -2.98 0.89 3.4 -3.51 0.51 4.8 -4.73 0.54 7.2

VAE-C -1.07 0.94 2.84 -1.81 1 4.3 -3.79 0.91 7.12

1) No Duplication: Table III shows all the metrics in the

experiments, and VAE-C (i.e., our approach) outperforms the

other models in every datasets and every metric. Although

VAE-C achieves almost the same NED as AE-C in Bearboard,

it can have significantly higher NED in the other datasets than

AE-C. This phenomenon indicates that VAE can organize the

latent spaces of the classes better than AE.

2) Duplication: This experiment considers only SM and

IFN because NED can exceed one when we allow duplication

of classes in multiple microservices. Fig. 3 demonstrates that

VAE-C outperforms AE-C in every maintainability threshold

although it does not show the significant advantage in Bear-
board. Noticeably, the lower maintainability can increase SM

in VAE-C since the latent spaces from VAE can represent the

features of the classes very well. Also, the trend shows that

when we allow duplication, the approach tries to include the

classes that are also relevant to the corresponding clusters due

to the increase of SM. Therefore, allowing the duplication can

significantly reduce the overhead of communications between

clusters (i.e. microservices), and we can set the maintainability

threshold according to how easy we would like to maintain

the application. On the other hand, we cannot find any pattern

of SM achieved by AE-C in the figure. Furthermore, Fig. 4

demonstrates that VAE-C could produce microservices that

have lower interfaces than AE-C. Nevertheless, for Autocare
dataset, with the maintainability threshold of 0.1, IFN of VAE-

C is higher than AE-C because AE-C puts several duplicated

irrelevant classes to the microservices.

E. Case Study: Bearboard

For this case study, co-author Rokin Maharjan did the

analysis. He is a software engineer with more than five years

of industry experience with monolithic applications and about

1.5 years of experience with microservices. We used the

project Bearboard to perform the case study. Bearboard is a

monolithic REST API application we built from scratch using

Spring Framework. Since we know the ins and outs, it made

sense to choose this project for this study. We used two metrics

to judge the results of the different machine learning models:

placement of all the necessary classes in every microservice

including duplicated classes, and whether the microservices

can run independently.

This case study will compare the results of three approaches:

AE-K, VAE-C without duplication, and VAE-C with duplica-

tion with a maintainability threshold of 0.15 and 0.2. The AE-

K approach decomposed the monolithic Bearboard application

into five microservices fairly well as seen in Fig. 5, but there

were a few misclassifications. For instance, the RoleRepository
is a repository class that has methods to perform operations

on the Role domain, which in turn is associated with the

User domain. However, the RoleRepository has been placed

in microservice 2 while the classes associated with Role
and User have been placed in microservice 1. Similarly,

microservice 4 has a UserService class while the other classes

in the microservice are related to Event. Also, the utility

class CustomBeanUtils is shared across multiple classes in the

project. Nonetheless, it is only placed in a single microservice

since this approach does not allow duplication of classes.

Although the result is not perfect, we understand how the

classes can be structured into different microservices.

In our first approach (i.e., the VAE-C without duplication),

the result in Fig. 6 was comparable to the AE-K approach.

Some of the microservices (e.g., microservice 1 and microser-

vice 2) were self-sufficient and could be run independently

because microservice 1 has all the Whitelist components, and

microservice 2 has all the Award components. However, there

were some misclassification issues and not replicating com-

mon classes. For instance, the classes associated with User and

Role should be in the same microservice, but the classes Rol-
eRepository, UserController, and User are spread across three

microservices. Furthermore, the utility class CustomBeanUtils
is used by both AwardService and EventService, but it is only

placed in microservice 2 with the Award components. To solve

these issues, we allowed duplication in the VAE-C with a

maintainability threshold of 0.15. The result of this in Fig.

7 was far better than the previous two. Although some of the

microservices had unnecessary classes, they had every class

required for it to be self-sufficient and independently runnable.

The common class CustomBeanUtils was also duplicated in

all the microservices that required it. We also tested the

VAE-C with a maintainability threshold of 0.2. The result of

this is shown in Fig. 8. This resulted in a fewer number of

unnecessary classes in each microservice. However, it failed

to include some of the necessary classes for the microservice

to be self-sustained and independently runnable. For example,

microservice 4 lacked the RoleRepository, Roles enums, and

UserRepository for the User module to be complete.

VI. CONCLUSION AND FUTURE WORKS

Throughout this work, we mathematically formulate the

problem of partitioning a monolith application to microser-

vices into a multi-objective optimization problem. This prob-

lem implies that it is infeasible to optimize it directly. Then,

we design a machine-learning-based approach to solve the

problem by applying the variational autoencoder and the fuzzy

c means algorithm. As a result, our approach can outperform

all the baselines including a state-of-the-art approach based

on the autoencoder and the k means algorithm in terms of
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(a) Bearboard (b) Autocare (c) Pharmacy

Fig. 3: Structural modularity (SM) over the maintainability thresholds by AE-C and VAE-C

(a) Bearboard (b) Autocare (c) Pharmacy

Fig. 4: Interface number (IFN) over the maintainability thresholds by AE-C and VAE-C

Microservice 1

"User", "UserRegistrationTest", "UserRepository", "UserController", "EventService",
"Roles", "Role"

Microservice 2

"WebConfig", "PasswordUtils", "AwardController", "AwardService",
"BaylorBoardApplicationTests", "AwardRepository", "RoleRepository", "TwitterConfig",

"WebSocketConfig", "WebSecurityConfig", "CustomBeanUtils", "Award",
"BaylorBoardApplication", "BadRequestException", "KafkaConfig"

Microservice 3

"Tweet", "TweetServiceTest", "TweetController", "TweetRepository", "TweetStatus"

Microservice 4

"EventController", "UserService", "Event", "EventRepository"

Microservice 5

"WhitelistUserRepository", "WhitelistUserService", "WhitelistUser", "WhitelistUserController",
"TweetService"

Fig. 5: Microservices of Bearboard dataset generated by AE-K
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Microservice 1

"WhitelistUserRepository", "WhitelistUserService", "WhitelistUser",
"WhitelistUserController", "TweetService"

Microservice 2

"AwardController", "AwardService", "AwardRepository", "CustomBeanUtils", "Award"

Microservice 3

"WebConfig", "PasswordUtils", "UserRepository", "BaylorBoardApplicationTests",
"RoleRepository", "TwitterConfig", "WebSocketConfig", "WebSecurityConfig",

"BaylorBoardApplication", "BadRequestException", "KafkaConfig"

Microservice 4

"UserController", "EventController", "UserService", "EventService", "Event",
"EventRepository"

Microservice 5

"User", "Tweet", "UserRegistrationTest", "TweetServiceTest", "TweetController",
"TweetRepository", "TweetStatus", "Roles", "Role"

Fig. 6: Microservices of Bearboard dataset generated by VAE-C (i.e., our approach) without duplication

Microservice 1

"WhitelistUserRepository", "WhitelistUserService", "WhitelistUser",
"WhitelistUserController", "TweetService", "BaylorBoardApplicationTests"

Microservice 2

"AwardController", "AwardService", "AwardRepository", "CustomBeanUtils", "Award",
"WebConfig", "BaylorBoardApplicationTests"

Microservice 3

"WebConfig", "PasswordUtils", "UserRepository", "BaylorBoardApplicationTests",
"RoleRepository", "TwitterConfig", "WebSocketConfig", "WebSecurityConfig",

"BaylorBoardApplication", "BadRequestException", "KafkaConfig", "User",
"UserRegistrationTest", "UserService", "Roles", "Role", "TweetService", "CustomBeanUtils"

Microservice 4

"UserController", "EventController", "UserService", "EventService", "Event",
"EventRepository", "User", "UserRegistrationTest", "UserRepository", "RoleRepository",

"Role", "CustomBeanUtils"

Microservice 5

"User", "Tweet", "UserRegistrationTest", "TweetServiceTest", "TweetController",
"TweetRepository", "TweetStatus", "Roles", "Role", "TweetService"

Fig. 7: Microservices of Bearboard dataset generated by VAE-C (i.e., our approach) with duplication and the maintainability

threshold of 0.15. Note that the classes in red are the ones added to the result of VAE-C without duplication.
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Microservice 1

"WhitelistUserRepository", "WhitelistUserService", "WhitelistUser",
"WhitelistUserController", "TweetService", "BaylorBoardApplicationTests"

Microservice 2

"AwardController", "AwardService", "AwardRepository", "CustomBeanUtils", "Award"

Microservice 3

"WebConfig", "PasswordUtils", "UserRepository", "BaylorBoardApplicationTests",
"RoleRepository", "TwitterConfig", "WebSocketConfig", "WebSecurityConfig",

"BaylorBoardApplication", "BadRequestException", "KafkaConfig", "User",
"UserRegistrationTest", "Roles", "Role", "CustomBeanUtils"

Microservice 4

"UserController", "EventController", "UserService", "EventService", "Event",
"EventRepository", "User", "Role", "CustomBeanUtils"

Microservice 5

"User", "Tweet", "UserRegistrationTest", "TweetServiceTest", "TweetController",
"TweetRepository", "TweetStatus", "Roles", "Role", "TweetService"

Fig. 8: Microservices of Bearboard dataset generated by VAE-C (i.e., our approach) with duplication and the maintainability

threshold of 0.2. Note that the classes in red are the ones added to the result of VAE-C without duplication.

structural modularity, non-extreme distribution and interface

number in every dataset. Also, when we consider duplication,

the structural modularity and the interface number are better

when we reduce the maintainability threshold.

On the other hand, the approach with the autoencoder

does not show this pattern due to its unorganized latent

space. In addition, we show the microservices formed by the

previous approach, our approach without duplication and our

approach with duplication. We found that our approach can

create more reasonable microservices than the previous one.

Also, when we consider duplication, the microservices become

more independent and self-contained than the one without

considering duplication.

Despite the success of our approach, it still does not

consider the dynamic analysis that can provide valuable data

(e.g., document size and response time). With this data, we can

partition an application better if we would like to perform auto-

scaling when some microservices need to scale themselves

because we can group classes that have similar loads together.

Moreover, this approach still stays in theory. Therefore, we

also plan to create an application that automatically makes

actual microservices from a particular monolith application.

We leave these ideas for future works.
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