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Abstract—With the rise of cloud computing, many applications
have been implemented into microservices to fully utilize cloud
computing for scalability and maintainability purposes. However,
there are some traditional monolith applications that developers
would like to partition into microservices. Unfortunately, it is
difficult to find a solution when considering multiple factors (i.e.,
the strong dependency in each cluster and how often different
microservices communicate with each other). Further, because we
allow duplications of classes in multiple microservices to reduce
the communications between them, the number of duplicated
classes is also another important factor for maintainability.
Therefore, we need to use machine learning algorithms to
approximate a good solution due to the infeasibility of finding
the optimal solution. We apply the variational autoencoder to
extract features of classes and use the fuzzy ¢ means to group the
classes into microservices according to their extracted features.
As a result, our approach outperforms the other baselines in some
significant metrics. Also, when we allow duplication, we find that
it is helpful in terms of reducing the overhead of communications
between microservices.

Index Terms—Microservices, Machine learning, Clustering,
Graph neural networks, Variational autoencoder

I. INTRODUCTION

Despite advancements in cloud-native systems, many avail-
able web applications still follow the traditional architecture
style, called a monolith. Monolith applications are composed
of all the business functionalities in one place. Thus, it
has essential drawbacks: scalability, maintainability and cost.
When a monolith application is overloaded, we usually scale
it up (e.g., increasing the space of its main memory and im-
proving its CPU). These actions are costly and involve humans
migrating the application from one server to another. We also
can scale it out to mitigate the problem. However, we need
to clone the whole application to other machines although the
overloaded part is tiny in the application. Further, it is difficult
to determine who is responsible for a specific functionality
because all the functionalities are in the same place. It is not
clear to specify who is responsible for which part. Therefore,
we start using the idea of microservices for implementing web
applications. The microservices architecture style designs an
application as a group of services, each of which one team
may take care of. Hence, it is trivial to maintain this kind of
application.
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Additionally, if any service is overloaded, we can scale
out only that service. The microservices architecture is more
scalable and easier to maintain than the monolith architecture.
Also, Auer et al. [1] showed that maintainability and scalabil-
ity are ones of the major reasons that many web application
practitioners would like to choose the microservices architec-
ture rather than the monolith architecture.

Even though microservices can provide several benefits,
some web application practitioners have already implemented
their monolith applications and would like to modify them to
microservice-based applications. This problem is non-trivial
since we do not have the best solution for this modification.
Several attempts try to apply software engineering techniques
and machine learning techniques for this problem. Nonethe-
less, we do not have the best technique so far. Although
there are some approaches [2]-[7] trying to improve the
microservices and detect some issues in them, it is better to
generate good microservices in the first place after partitioning
a monolith application.

Our work focuses on applying machine learning techniques
because we need to solve a multi-objective problem for
partitioning a monolith application into microservices. We
consider some factors in this work: dependency, entrypoints
and entrypoints co-existence. We obtain this information from
static analysis, and we do not use inheritance relationships
since the applications used in the experiments do not have
them. Furthermore, we apply a graph neural network for this
problem because we can transform the application into a
graph. Moreover, our approach allows functionality in multiple
microservices to address the dependency between microser-
vices. Therefore, instead of k-means used in various works
[8]-[10], we use the fuzzy c-means [11] for clustering to allow
duplicated functionalities in multiple microservices. At last,
we extensively construct experiments to compare the results
from our approach to the state-of-the-art works. Then, we can
list our contributions as follows:

o We propose the first machine-learning-based work that
applies the variational autoencoder and fuzzy ¢ means to
partition a monolith application into microservices.

o This work allows duplication in multiple microservices
where the previous machine-learning-based approaches
did not pay attention to this.
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o We build experiments and show that our approach out-
performs the state-of-the-art machine-learning-based ap-
proaches in multiple metrics.

This paper is organized as follows; Section II briefly de-
scribes some works that are close to our approach and shows
the distinction of our work; Section III explains the problem
of transferring a monolith application into microservices and
formulates it in an optimization problem; Section IV summa-
rizes our approach and demonstrates each component of our
approach in detail; Section V describes how we construct the
experiments and discusses their results; Section VI discusses
the limitation of our approach, points out the future works and
concludes everything.

II. RELATED WORKS

On these days, many works have paid attention to de-
composing monolith applications into microservices to uti-
lize cloud computing. Nonetheless, it is not trivial due to
several factors (e.g., low cohesion between microservices).
Then, software engineering techniques have been applied to
help software architects decompose applications. However,
when considering various factors, the problem became too
complicated to be solved. Therefore, several works focused on
utilizing machine learning algorithms to approximate the solu-
tion to this problem. Further, we describe the literature related
to our software-engineering-based and machine-learning-based
work.

A. Software-Engineering-Based Approach

There have been many different approaches to converting a
monolith application to a microservice application. In 2017,
Li, Chen, and Li [12] have implemented a dataflow-driven ap-
proach to decompose monolith applications into microservices
where they first manually constructed a Data Flow Diagram
(DFD). Then, they condensed the DFD into a decomposable
DFD by combining the same operations with the same type
of output data. Finally, microservice candidates were identified
from the decomposable DFD. In 2019, Taibi and Systa [13]
proposed a decomposition framework that utilized the static
analysis (e.g., dependency graph) and dynamic analysis (i.e.,
process mining). Their framework included six steps: execu-
tion path analysis, frequency analysis of the execution paths,
removal of circular dependencies, identification of decom-
position options, metric-based ranking of the decomposition
options and selection of decomposition solution. However,
their framework was not automatic and still required some
experts in some steps during the process. In 2020, Krause-
Glau et. al [14] presented an approach to decompose monolith
applications to microservices based on static and dynamic
analysis of the monolith application. In this approach, they
combined bounded-context pattern of domain-driven design
with static code analysis and dynamic software visualization
in order to identify the microservice boundaries. Firstly, they
performed domain analysis and divided the application into
smaller bounded contexts. Then, they performed static code
analysis to partition the source code. Lastly, dynamic analysis

was used for trace visualization. Auer et.al [15], in 2021,
have come up with an assessment framework for migrating
a monolithic application to microservices. They surveyed
industry professionals to identify metrics that someone would
need to consider before and after making the transition. The
assessment framework considered functional stability, perfor-
mance efficiency, reliability, maintainability, and cost.

B. Machine-Learning-Based Approach

Since obtaining the optimal solution for partitioning a
monolith application into microservices is not feasible, some
existing works applied machine learning algorithms to this
problem. Eski and Buzluca [16] proposed an automatic ex-
traction approach. In particular, they applied the static analysis
to an application and the dynamic analysis to log files. Then,
they utilized the agglomerative hierarchical algorithm [17] for
partitioning the application into microservices. They evalu-
ated their approach by computing a similarity between their
approach and references implemented by experts. In 2019,
Abdullah et al. [18] partitioned a monolith application based
on URIs and applied the k-means algorithm to clustering them
with respect to their document sizes and response times. Then,
they provided a virtual machine (VM) for each microservice
by considering its document size and response time. After
that, they proposed a simple auto-scaling algorithm for the
VMs for dynamically scaling out overloaded VMs. In 2020,
Kalia et al. [8] invented the Mono2Micro framework. This
framework used the dynamic analysis to create a tree and then
applied the static analysis to obtain information from the code.
Then, they combined these results and, at last, applied the
hierarchical clustering algorithm to partition the application
into microservices.

In 2021, some researchers started utilizing a graph neural
network (GNN) on this problem. Desai et al. [9] converted
a monolith application to a graph by treating each class as
a node and each dependency as an edge. They applied the
graph convolution network (GCN) [19] on the generated graph.
Then, they used an autoencoder to extract an embedding vector
for every node and utilized the k-means algorithm to cluster the
nodes with respect to their embedding vectors. Later, Mathai
et al. [10] proposed a similar approach to [9]. Nonetheless,
they used the heterogeneous graph neural network [20] for
handling many types of nodes and edges. Then, Yedida et al.
[21] attempted to optimize the hyperparameters of existing
machine-learning-based monolith to microservices methods
and used the work in [9] as an example.

III. PROBLEM FORMULATION

We are given a monolith application consisting of n classes
and would like to partition it into a group of classes in the same
microservice. However, when the result is too much coarse-
grain, we will face the same issue as in a monolith application
as described in Section I. On the other hand, when the result is
too fine-grain, the application will suffer from communication
between microservices since many microservices may strongly
depend on each other. Therefore, the first objective is that
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all classes in a microservice strongly depend on each other.
The second objective is that two microservices should not
frequently communicate with each other. Further, since we
allow duplicated classes in multiple microservices to easily
achieve the second objective, the third objective is that the
number of the duplicated classes should be minimized due
to maintainability. Then, we can create a multi-objective
optimization problem as

e XY Y dlee) th XY dmm
meM ci€EmM coEM my1EM moeM
+ )\2 Z d5 (C)
c

ce ( 1)

where M is a set of microservices, C is a set of classes,

dy(c1,c9) is a distance function between class ¢; and co,

do(my, mo) indicates the number of communication between

microservice my and mg, dz(c) denotes the number of class

¢ in the microservices and A\ and )\, are the balancers of the

optimization problem. Explicitly, the optimal solution of this

problem is not feasible. Thus, we desire to apply a machine-

learning-based approach to determine a local minimum of this
problem.

IV. OUR APPROACH

As mentioned in the previous section that problem 1 is
infeasible to solve, our approach utilizes machine learning and
greedy algorithms to determine the solution. Our approach is
based on the work in [9], and we describe it in this section.
Fig. 1 illustrates the flow of our approach including three main
steps. In the data preparation step, we use tools to extract
useful information and create a dependency graph from the
application. Then, we produce more information from the
graph and preprocess this information to obtain a feature
matrix. After that, we apply the graph convolution network to
the information to extract embedding vectors for nodes in the
graph in the embedding-vector creation step. At last, we utilize
the fuzzy c-means algorithm to determine the microservices in
the clustering step.

A. Data Preparation

To feed the machine learning model, we collected three
kinds of data from a monolithic application: dependency
graph, entrypoint existence matrix, and entrypoint co-existence
matrix. Note that we denote P as the set of entrypoints. The
dependency graph (A) is a matrix that lists all the classes a
particular class is dependent upon. The entrypoint existence
matrix (E) indicates which classes are in at least one path
initiated by which entrypoints. Thus, £;; is one when class 4
is in at least one path initiated by entrypoint j. The entrypoint
co-existence matrix (C'o) indicates how often two classes co-
exist in the same paths initiated by the same entrypoints. That
is, C'o;; is the number of paths where class 7 and class j
co-exist in the same entrypoints.

We only considered web-application projects built on Spring
Framework for this approach. We used JavaParser, a Java

library that provides an Abstract Syntax Tree (AST) of our
code. The AST can then be used to extract information from
our code. To generate the dependency graph for a particular
class, we first fetched a list of all the classes it had imported.
Then, we filtered the list only to include the classes inside the
project’s root package and exclude the classes imported from
external libraries.

To obtain the entrypoint existence matrix (E), for class i,
we perform depth first search (DFS) in the dependency graph
by having entrypoint j as the root. If we find class ¢ at any
point of DFS, we set Ej;; to be one. Furthermore, to obtain
the entrypoint co-existence matrix (C'o), we also perform DFS
in the dependency graph and list all the paths initiated by the
entrypoints. Given class 4 and class j, we set C'o;; to be the
number of paths where class ¢ and class j exist. After that,
we create a feature matrix (X ) as

X=E®Co

where - ©- is the concatenate operation. Thus, the size of X is
|C| by |P|+ |C|. Then, with the graph convolutional network
(GCN) technique, we normalize X according to the adjacency
classes in the graph by

X =D :AD X

where A = A+ 1, 1 is the identity matrix, D is the degree
diagonal matrix, and Dy; = jec Ajj.

B. Embedding-Vector Creation

Given the dependency graph A and feature matrix X from
the previous step, we would like to find an embedding matrix
extracted from X to use a similarity metric (i.e., Ly norm) on
two embedding vectors of two classes. Note that the higher
the similarity, the more dependent the two classes become and
the more similar workloads they have. We use the variational
autoencoder (VAE) [22] for creating the embedding matrix
because it has been proved that it could organize the latent
vectors such that two similar vectors indicated two similar
inputs. Specifically, X is an input of VAE, and X is the
reconstruction of X. The latent space of VAE is the feature
matrix Z where Z € R™ ! and [ is the length of each
embedding vector in Z. Hence, in this step, we train VAE such
that it can output X that is as close to X as possible. We use
the mean square error (MSE) to compute the reconstruction
error between X and X because we do not want to pay much
attention to tiny errors on some features. Furthermore, I would
like to inject the graph architecture into the embedding matrix
(Z). Hence, the embedding vector of a node needs to be similar
to its neighbors. Also, according to VAE, we need to make
sure that the embedding matrix is a normal distribution by
using the Kullback-Leibler (KL) divergence. Therefore, we can
formulate the loss function of VAE as

n n
STIX = Xill3+ 114 - ZZT |3+ KL(Z.p(2)) )

i=1 i=1
where || - ||2 denotes the Lo norm, n is the number of classes
(i.e., nodes), X; is row i of matrix X, p(Z) is the prior
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Fig. 1: The flow of our approach

distribution of Z where we assume that it is the normal
distribution and KL(Z,p(Z)) is the KL divergence function
between Z and p(Z). The first term is the reconstruction loss,
and the second term is the architecture loss. The last term is
the latent distribution loss. After obtaining Z from training
VAE with respect to the loss, we use it in the next step for
clustering.

C. Clustering

This step applies the fuzzy c-means algorithm on Z, and
we then obtain the membership matrix (denoted by W) where
W e [0, 1]””, k is the number of microservices (i.e., clusters)
and Z?:l W;; = 1 for every 4. Note that the fuzzy c-means
algorithm determines W and a centroid matrix (denoted by I'
where I' € R¥*P) by finding the local minimum of

k n
S whllz - Tl 3)

i=1 j=1

where W;; is a membership of class j on microservice ¢. Then,
we assign class ¢ to the microservice on which the class has
the most membership. Moreover, since we allow duplicated
classes in multiple microservice, we also assign class 4 to other
microservices, on which the class has memberships greater
than the maintainability threshold. When the threshold is high,
the number of redundancies is less. Also, when the threshold
is 0.5, it is not different from the approach without duplication
because for any class j, Zle W;; = 1. Then, there is at most
one microservice where a class has a membership greater than
0.5.

V. EXPERIMENTS AND RESULTS

To evaluate our approach, we first pick datasets and base-
lines for comparison. The baselines are based on a state-
of-the-art approach in the literature. Then, we construct the
experiments to check if our approach can outperform the
baselines in terms of some metrics described later. Also,
when we allow duplication in the microservices, our approach
can reduce the communication cost between microservices.
After that, we show that the microservices generated by our
approach are better than the ones generated by the baselines
in Section V-E.

A. Datasets

We choose three monolith web applications that have been
implemented by Spring framework: Bearboard', Autocare®
and Pharmacy®. To justify the selection of our dataset appli-
cations, these applications have been developed by one of the
coauthors. Hence, we are familiar with them and can provide
reliable evaluation of the decomposition. Table I shows some
information with respect to the datasets. We will partition
the applications into five clusters because we plotted graphs
according to sum square errors (SSE) for one to ten clusters.
Then, we found that five clusters are the best number according
to the Elbow method [23]. Fig. 2 shows SSE achieved by the
fuzzy ¢ means algorithm on those datasets and demonstrates
that after the cluster size of five, SSE does not significantly
decrease.

Ihttps://github.com/rokinmaharjan/bear-board
2https://github.com/rokinmaharjan/autocare-nepal
3https://github.com/rokinmaharjan/pharmacy
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Fig. 2: Sum square errors (SSE) over the number of clusters generated by fuzzy ¢ means
TABLE I Information of our datasets 1) Structural modularity (SM): This metric indicates how
Dataset _ # Classes _# Entrypoints _# Clusters well the members in each .cluste.r are r.elated to each
other, compared to the relationship outside the cluster.
Bearboard 37 5 5 We defi .
Autocare 47 4 5 ¢ define 1t as
Pharmacy 59 7 5 & -1k
sM= 1t PP 2 PP
k4=n? k(k—1)4 £ 2n;n;
=1 i=1 j=141
B. Models

This section discusses what models we will use for experi-
ments and comparison. There are three models:

1) Autoencoder with kmeans (AE-K): This approach is
the state-of-the-art work [9]. We use the autoencoder
as the feature extractor and the kmeans algorithm for
partitioning the monolith application.

2) Autoencoder with fuzzy ¢ means (AE-C): We use the au-
toencoder as the feature extractor and the fuzzy c means
algorithm for partitioning the monolith application.

3) Variational autoencoder with fuzzy ¢ means (VAE-C):
This is our approach. We use the variational autoencoder
as the feature extractor and the fuzzy c means algorithm
for partitioning the monolith application.

Table II shows the architecture of the embedding-vector cre-
ation part for each dataset. They are all composed of dense
layers.

TABLE II: Architecture of the neural network part in each
dataset. Note that each number is the number of neurons in
each layer.

Dataset Encoder Decoder
Bearboard 42,21, 10, 5,2 2, 4,8, 16, 42
Autocare 51, 25,12, 6,2 2,4,8 .16, 51
Pharmacy 66, 33, 16, 8, 4,2 2,4, 8, 16, 32, 66
C. Metrics

To evaluate the quality of a cluster, human-related evaluation
may be costly. Thus, we use two metrics used in the previous
works instead. The first metric focuses on the structure of the
cluster, and the second one pays attention to the size of each
cluster.

where k is the number of clusters, e; is the number of
edges inside cluster ¢, n; is the number of classes inside
cluster ¢ and e; ; is the number of edges between cluster
1 and cluster j. We desire high SM for resulted clusters.

2) Non-Extreme Distribution (NED): This metric indicates
how well the number of classes is in each cluster. We
desire that each cluster does not have too many classes
or too few classes. We can define this metric as

k
1
NED = — > " a(5 < n; < 20)n
=1

e~

where a(z) is 1 when x is true and O otherwise, and
C is a set of classes. Explicitly, we count only clusters
that contain 5 to 20 classes. Therefore, we prefer to have
high NED.

3) Interface number (IFN): This metric indicates the av-
erage number of interfaces in a microservice. Note
that an interface means a class that other classes from
other microservices depend on. Hence, the lower IFN
becomes, the better microservices are produced.

D. Results

We construct two kinds of experiments. The first experiment
involves partitioning monolith applications into microservices
without duplication. Hence, the models used in this experi-
ment are AE-K, AE-C and VAE-C. The second experiment
partitions the applications into microservices by considering
duplication. Then, the models evaluated in this experiment are
AE-C and VAE-C because AE-K does not allow duplication.
Note that the results from VAE-C are computed by the average
of five attempts since VAE'’s latent space is based on the
normal distribution.
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TABLE III: SM, NED and IFN for each model in each dataset. Our approach (i.e., VAE-C) outperforms the other models.

Bearboard

Autocare Pharmacy

Model I —oyr—NED TN | SM

NED IFN SM NED IFN

AE-K -2.71 0.89 3.6 | -6.14
AE-C -2.98 0.89 34 | -351
VAE-C -1.07 094 284 | -1.81

0.49 48 | 493 051 72
0.51 48 | 473  0.54 72
1 43 | -3.79 091 712

1) No Duplication: Table III shows all the metrics in the
experiments, and VAE-C (i.e., our approach) outperforms the
other models in every datasets and every metric. Although
VAE-C achieves almost the same NED as AE-C in Bearboard,
it can have significantly higher NED in the other datasets than
AE-C. This phenomenon indicates that VAE can organize the
latent spaces of the classes better than AE.

2) Duplication: This experiment considers only SM and
IFN because NED can exceed one when we allow duplication
of classes in multiple microservices. Fig. 3 demonstrates that
VAE-C outperforms AE-C in every maintainability threshold
although it does not show the significant advantage in Bear-
board. Noticeably, the lower maintainability can increase SM
in VAE-C since the latent spaces from VAE can represent the
features of the classes very well. Also, the trend shows that
when we allow duplication, the approach tries to include the
classes that are also relevant to the corresponding clusters due
to the increase of SM. Therefore, allowing the duplication can
significantly reduce the overhead of communications between
clusters (i.e. microservices), and we can set the maintainability
threshold according to how easy we would like to maintain
the application. On the other hand, we cannot find any pattern
of SM achieved by AE-C in the figure. Furthermore, Fig. 4
demonstrates that VAE-C could produce microservices that
have lower interfaces than AE-C. Nevertheless, for Autocare
dataset, with the maintainability threshold of 0.1, IFN of VAE-
C is higher than AE-C because AE-C puts several duplicated
irrelevant classes to the microservices.

E. Case Study: Bearboard

For this case study, co-author Rokin Maharjan did the
analysis. He is a software engineer with more than five years
of industry experience with monolithic applications and about
1.5 years of experience with microservices. We used the
project Bearboard to perform the case study. Bearboard is a
monolithic REST API application we built from scratch using
Spring Framework. Since we know the ins and outs, it made
sense to choose this project for this study. We used two metrics
to judge the results of the different machine learning models:
placement of all the necessary classes in every microservice
including duplicated classes, and whether the microservices
can run independently.

This case study will compare the results of three approaches:
AE-K, VAE-C without duplication, and VAE-C with duplica-
tion with a maintainability threshold of 0.15 and 0.2. The AE-
K approach decomposed the monolithic Bearboard application
into five microservices fairly well as seen in Fig. 5, but there
were a few misclassifications. For instance, the RoleRepository
is a repository class that has methods to perform operations

on the Role domain, which in turn is associated with the
User domain. However, the RoleRepository has been placed
in microservice 2 while the classes associated with Role
and User have been placed in microservice 1. Similarly,
microservice 4 has a UserService class while the other classes
in the microservice are related to Event. Also, the utility
class CustomBeanUtils is shared across multiple classes in the
project. Nonetheless, it is only placed in a single microservice
since this approach does not allow duplication of classes.
Although the result is not perfect, we understand how the
classes can be structured into different microservices.

In our first approach (i.e., the VAE-C without duplication),
the result in Fig. 6 was comparable to the AE-K approach.
Some of the microservices (e.g., microservice 1 and microser-
vice 2) were self-sufficient and could be run independently
because microservice 1 has all the Whitelist components, and
microservice 2 has all the Award components. However, there
were some misclassification issues and not replicating com-
mon classes. For instance, the classes associated with User and
Role should be in the same microservice, but the classes Rol-
eRepository, UserController, and User are spread across three
microservices. Furthermore, the utility class CustomBeanU'tils
is used by both AwardService and EventService, but it is only
placed in microservice 2 with the Award components. To solve
these issues, we allowed duplication in the VAE-C with a
maintainability threshold of 0.15. The result of this in Fig.
7 was far better than the previous two. Although some of the
microservices had unnecessary classes, they had every class
required for it to be self-sufficient and independently runnable.
The common class CustomBeanUtils was also duplicated in
all the microservices that required it. We also tested the
VAE-C with a maintainability threshold of 0.2. The result of
this is shown in Fig. 8. This resulted in a fewer number of
unnecessary classes in each microservice. However, it failed
to include some of the necessary classes for the microservice
to be self-sustained and independently runnable. For example,
microservice 4 lacked the RoleRepository, Roles enums, and
UserRepository for the User module to be complete.

VI. CONCLUSION AND FUTURE WORKS

Throughout this work, we mathematically formulate the
problem of partitioning a monolith application to microser-
vices into a multi-objective optimization problem. This prob-
lem implies that it is infeasible to optimize it directly. Then,
we design a machine-learning-based approach to solve the
problem by applying the variational autoencoder and the fuzzy
¢ means algorithm. As a result, our approach can outperform
all the baselines including a state-of-the-art approach based
on the autoencoder and the k means algorithm in terms of
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Fig. 4: Interface number (IFN) over the maintainability thresholds by AE-C and VAE-C

Microservice 1

"User", "UserRegistrationTest", "UserRepository", "UserController", "EventService",
"Roles", "Role"

Microservice 2

"WebConfig", "PasswordUtils", "AwardController", "AwardService",
"BaylorBoardApplicationTests", "AwardRepository", "RoleRepository", "TwitterConfig",
"WebSocketConfig", "WebSecurityConfig", "CustomBeanUtils", "Award",
"BaylorBoardApplication", "BadRequestException”, "KafkaConfig"

Microservice 3

"Tweet", "TweetServiceTest", "TweetController", "TweetRepository", "TweetStatus

Microservice 4

"EventController", "UserService", "Event", "EventRepository"

Microservice 5

"WhitelistUserRepository", "WhitelistUserService", "WhitelistUser", "WhitelistUserController",
"TweetService"

Fig. 5: Microservices of Bearboard dataset generated by AE-K
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Microservice 1

"WhitelistUserRepository", "WhitelistUserService", "WhitelistUser",
"WhitelistUserController", "TweetService"

Microservice 2

"AwardController", "AwardService", "AwardRepository”, "CustomBeanUstils", "Award"

Microservice 3

"WebConfig", "PasswordUtils", "UserRepository", "BaylorBoardApplicationTests",
"RoleRepository", "TwitterConfig", "WebSocketConfig", "WebSecurityConfig",
"BaylorBoardApplication", "BadRequestException", "KafkaConfig"

Microservice 4

"UserController", "EventController", "UserService", "EventService", "Event",
"EventRepository"

Microservice 5

"User", "Tweet", "UserRegistrationTest", "TweetServiceTest", "TweetController",
"TweetRepository", "TweetStatus", "Roles", "Role"

Fig. 6: Microservices of Bearboard dataset generated by VAE-C (i.e., our approach) without duplication

Microservice 1

"WhitelistUserRepository", "WhitelistUserService", "WhitelistUser",
"WhitelistUserController", "TweetService", "BaylorBoardApplicationTests"

Microservice 2

"AwardController", "AwardService", "AwardRepository", "CustomBeanUtils", "Award",
"WebConfig", "BaylorBoardApplicationTests"

Microservice 3

"WebConfig", "PasswordUtils", "UserRepository", "BaylorBoardApplicationTests",
"RoleRepository", "TwitterConfig", "WebSocketConfig", "WebSecurityConfig",
"BaylorBoardApplication”, "BadRequestException”, "KafkaConfig", "User",
"UserRegistrationTest", "UserService", "Roles", "Role", "TweetService", "CustomBeanUtils"

Microservice 4

"UserController”, "EventController”, "UserService", "EventService", "Event",
"EventRepository", "User", "UserRegistrationTest", "UserRepository", "RoleRepository",
"Role", "CustomBeanUtils"

Microservice 5

"User", "Tweet", "UserRegistrationTest", "TweetServiceTest", "TweetController",
"TweetRepository", "TweetStatus”, "Roles", "Role", "TweetService"

Fig. 7: Microservices of Bearboard dataset generated by VAE-C (i.e., our approach) with duplication and the maintainability
threshold of 0.15. Note that the classes in red are the ones added to the result of VAE-C without duplication.
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Microservice 1

"WhitelistUserRepository", "WhitelistUserService", "WhitelistUser",
"WhitelistUserController", "TweetService", "BaylorBoardApplicationTests"

Microservice 2

"AwardController", "AwardService", "AwardRepository”, "CustomBeanUtils", "Award"

Microservice 3

"WebConfig", "PasswordUtils", "UserRepository", "BaylorBoardApplicationTests",
"RoleRepository", "TwitterConfig", "WebSocketConfig", "WebSecurityConfig",
"BaylorBoardApplication", "BadRequestException”, "KafkaConfig", "User",
"UserRegistrationTest", "Roles", "Role", "CustomBeanUtils"

Microservice 4

"UserController", "EventController", "UserService", "EventService", "Event",
"EventRepository", "User", "Role", "CustomBeanUtils"

Microservice 5

"User", "Tweet", "UserRegistrationTest", "TweetServiceTest", "TweetController",
"TweetRepository", "TweetStatus”, "Roles", "Role", "TweetService"

Fig. 8: Microservices of Bearboard dataset generated by VAE-C (i.e., our approach) with duplication and the maintainability
threshold of 0.2. Note that the classes in red are the ones added to the result of VAE-C without duplication.

structural modularity, non-extreme distribution and interface
number in every dataset. Also, when we consider duplication,
the structural modularity and the interface number are better
when we reduce the maintainability threshold.

On the other hand, the approach with the autoencoder
does not show this pattern due to its unorganized latent
space. In addition, we show the microservices formed by the
previous approach, our approach without duplication and our
approach with duplication. We found that our approach can
create more reasonable microservices than the previous one.
Also, when we consider duplication, the microservices become
more independent and self-contained than the one without
considering duplication.

Despite the success of our approach, it still does not
consider the dynamic analysis that can provide valuable data
(e.g., document size and response time). With this data, we can
partition an application better if we would like to perform auto-
scaling when some microservices need to scale themselves
because we can group classes that have similar loads together.
Moreover, this approach still stays in theory. Therefore, we
also plan to create an application that automatically makes
actual microservices from a particular monolith application.
We leave these ideas for future works.
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