Communication Papers of the of the 17" Conference on Computer ~ DOI: 10.15439/2022F171
Science and Intelligence Systems pp. 313-318 ISSN 2300-5963 ACSIS, Vol. 32

& s

A Data Analysis Study of Code Smells within Java
Repositories

Noah Lambaria

Baylor University
One Bear Place #97141, Waco, USA
Email: Noah_Lambarial @baylor.edu

Abstract—Although code smells are not categorized as a bug,
the results can be long-lasting and decrease both maintainability
and scalability of software projects. This paper presents findings
from both former and current industry individuals, aiming
to gauge their familiarity with such violations. Based on the
feedback from these individuals, a collection of smells were
extracted from a sample size of 100 Java repositories in order to
validate some of the smells that are typically encountered. After
analyzing these repositories, the smells typically encountered are
Long Statement, Magic Number, and Unutilized Abstraction. The
results of this study are applicable for developers and researchers
who require insight on the frequencies of code smells within a
typical repository.

I. INTRODUCTION

HE term "code smell" dates back to the 1990s, where

Kent Beck first defined the term. Martin Fowler was
another individual responsible for popularizing the term within
his book Refactoring, which addressed code smells with the
application of Java examples [1]. Although many authors and
researchers have defined an abundant amount of code smells,
what is deemed to be a code smell or not is subjective and
abstract. This is due to the vast variations of smells that exist,
and what is considered to be a harmful and non-harmful smell.
An example of a code smell that this study and future work
aims to address is the God Class, as well as several other
smells. Alves et al. mention that God Classes can be up
to 13 times more likely to contain faults embedded within
the smell itself [2]. For this reason, it is imperative to dive
deeper within large classes and methods and examine their
occurrences since these smells are detrimental. Our goal is to
compare the frequencies of such smells compared to others
with our selected tool, which will be elaborated on in further
sections.

Evident in the works of Fontana et al., anti-patterns and code
smells have the potential to impact Technical Debt (TD) and
Architectural Degradation (AD) [3]. Their research suggested
that some code anomalies were more inclined to be better
indicators of TD than others. Because of instances such as
these, code smells can be detrimental to software systems
over the course of time. To resolve these conflicts, there are

This research was funded by National Science Foundation grant number
1854049 and a grant from Red Hat Research https://research.redhat.com

©2022, PTI

Tomas Cerny
Baylor University
One Bear Place #97141, Waco, USA
Email: tomas_cerny @baylor.edu

abundance of different static analyzers within the software
community that assist code smell identification.

For these reasons, it is important to further examine the
repercussions that code smells have, and what types of smells
are common in code bases. Within these next couple of
sections, we will be covering how we collected our data along
with the results found based on the repositories examined.
Before discussing our results, however, we want to highlight
other works that have impacted our approach to our case study
and rationale.

Through undertaking this study, there were many challenges
we encountered. Firstly, we were unsure what static analyzers
were available for Java that best fit our needs. Although there
are many add-ons and plugins that assist developers in refac-
toring their code in common IDEs (Integrated development
environment)s, we wanted to utilize a tool that was unrestricted
to a specific extension. As further discussed in later sections,
the accuracy of each tool can differ, which was why our
goal was to find a tool that could provide extensive feedback
on different smells. Thus, ensuring that false positives of
particular smells proved to be concerning and a challenge.
Our research challenge was to observe the frequency of the
Long Method and God classes, comparing this data to related
works that have highlighted the severity of smells such as
these. Furthermore, we sought to determine how often they
appear in repositories compared to other smells.

This paper is organized by discussing some similar studies
and works that have been conducted in more recent years.
We will then cover the prevalent smells we recorded out of
the repositories examined, highlighting the frequency of each
smells. These findings are beneficial to developers who are
interested in our selected tool and the common implemen-
tation, design, and architectural smells that exist in popular
Java libraries on GitHub. We also discuss potential validity
concerns, and how we minimized and reduced potential risks
while collecting and analyzing the data. Further studies need
to be conducted to gain knowledge on various tools, which we
will examine in our future work.

II. RELATED WORK

Many papers have aimed to better detect code smells within
software. Within the work of Paiva et al. [4], researchers
conducted comparison studies on various code smell tools.

313



Their research suggests that each tool had a different amount
of accuracy when identifying code smells such as God Classes
or God Methods. The challenges of creating such tools with
minimal inaccuracy is difficult, as some code smells could be
erroneous or not be flagged properly.

Our selected code smell detection tool was DesigniteJava
I [5]. Developed by Sharma et al., this particular tool is
newer and provides a detailed assessment report about ar-
chitectural, design, and implementation smells. Some of the
naming conventions for each smell slightly differ, such as
the terms God Class and Insufficient modularization, which
are interchangeable for describing a class that can be further
broken up to reduce complexity. These slightly differ from a
God Component, which is an architectural smell that denotes
an excessively large component (e.g., a package) that can be
reduced or further broken up.

Further details associated with the definitions of each term
(e.g. Unutilized abstraction, Deficient Encapsulation) can be
found the works of Sharma et al. [6]. Although Designite
supports the examination of C# code, we were most interested
in Java projects only. The tool also offers more features
and flexibility than other code smell detection tools such as
JDeodorant.

JDeodorant, an Eclipse plug-in developed by Tsantalis et
al. at Concordia University and the University of Macedonia
[7], currently supports detection of 5 types of code smells at
the time of this writing. Because of its dedication specifically
to Java, it was a tool that was considered to be used for our
selected repositories. However, the amount of time required
to operate the tool on hundreds of repositories would be
dramatically different due to DesigniteJava’s flexibility and
lack of limitations. This enables researchers the capability of
creating scripts or programs to enhance the overall automation
of collecting code smell results without the restriction and
usage of Eclipse.

Another tool that has been used for code analsyis is iPlasma,
which Marinescu et al. described [8]. This tool provides
analysis of various metrics and can detect violations such as
duplicate code. It is available in object-oriented languages such
as C++ and Java.

Prior to this study, we asked ourselves what the pitfalls
related to the current static analyzers and tools out there to
detect various metrics were. Samarthyam, Suryanarayana, and
Sharma mentioned some of the downsides to tools such as
Sonargraph [9]. A non-exhaustive list of some of these worries
were the following: lack of extensive support of architectural
smells, lack of contextual information related to each smell,
and limited availability of popular IDE (Integrated Develop-
ment Environment) support for refactoring architectural smells
[10]. While inspecting code smells, it is also important to
filter out harmful and less severe smells. Highlighted in
the upcoming sections, some of the uncertainties of these
static analyzers are the filtering methods used along with the
potential for false positive smells. In the works of Fontana et

Uhttps://github.com/tushartushar/DesigniteJava

COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TABLE 1
BRIEF OVERVIEW OF SOME OF THE SURVEY QUESTIONS ASKED

Question 2 On a scale from 1-5, how familiar are you with the
term “code smells”?

On a scale from 1 to 10, how often do you encounter
violations within your software?

Are you familiar with static code analyzers?

If you answered "Yes" to the previous question, what
types (or name) of tool(s) did/do you use to monitor
violations (code smells) within your codebase/pro-
ject?

At your company, did you measure / use any kind of
calculation to assess technical debt? (e.g., monthly
reports on developer/cloud-usage cost/performance
stats, etc.)

At your company, did you use any visualization tool
to assess technical debt? If so, how did you visualize
it?

Besides static code analyzers, how much time would
you say you spent manually observing and inspecting
code for violations per week?

How much time did you typically spend refactoring
code at your company, per week?

Question 3

Question 6
Question 7

Question 8

Question 9

Question 10

Question 13

al. [11], they devised strong and weak filters which can be used
to alleviate possible false positive instances. Furthermore, the
strong filters proved to increase overall precision on detecting
such smells.

Similar case studies have been done in the past, such as
in the writings of Sharma, Fragkoulis, and Spinellis, where
they examined C# repositories in order to inform the reader
about characteristics of code smells in C# code bases [6].
Their results showed that both the Unutilized Abstraction and
Magic Number were the most frequently occurring smells in
C# code [6]. Rather than selecting their repositories manually,
they utilized RepoReaper [12] to gather their repositories. The
overall findings are similar to our results, which will be further
discussed in later sections.

ITI. PRACTITIONER SURVEY

Before data collection, we sought to identify the typical
amount of time developers spend refactoring code and inspect-
ing it for violations. A survey was created in order to gain
insight from individual’s experiences with code violations.
This allowed us to attain an understanding on the currently
adopted tools and how familiar the respondents were of
code smells. A total of 14 questions were asked with initial
questions pertaining to a generalization of technical debt and
evaluating economical cost associated with it. Due to relevancy
of the paper, those questions were omitted from the first
table. The feedback was collected through google forms and
served primarily as a basis for determining what tools were
used to monitor code violations. A total of 14 individuals
were surveyed and their feedback will be discussed in further
sections.

Many surveys have been conducted in the past to accumu-
late feedback from software developers. An example of such
is in the work of Yamashita and Moonen, where 85 software
developers were surveyed to gain insight on their thoughts
of code smells [13]. The results from this study showed that



NOAH LAMBARIA, TOMAS CERNY: A DATA ANALYSIS STUDY OF CODE SMELLS WITHIN JAVA REPOSITORIES

32% of respondents had no prior knowledge of code smells.
Furthermore, the most mentioned smells that were familiar to
the developers were smells such as the Large Class and Long
Method.

Another survey that has been conducted is evident in the
works of Golubev et al. [14], where over 1100 individuals
were surveyed in order to determine how often they spent
refactoring code. Furthermore, they assessed how developers
refactored their code. Their findings suggested that two-thirds
of developers spent longer than an hour refactoring code for
every instance spent working. They also found that 40.6% of
developers refactored code almost every day [14].

Based on the tiny sample we collected from our survey,
almost all respondents that are currently in the industry said
that they spent less than 5 hours a week refactoring code. On
the contrary, 70% of the respondents for the Graduate survey
stated that they spent 5 hours of more a week refactoring code
while they were in industry. Although further studies would
need to be conducted, a possibility for this differentiation is
that the Graduate students who opted to participate in the
survey are newer developers or have not spent a lot of time in
industry. Furthermore, these individuals could be a younger
demographic that has not had an immense exposure as a
software developer compared to their peers. As a result, it
could take more time for those individuals to refactor code due
to the lack of experience. Based on this minuscule sample-size
however, much more research would need to be conducted
for further evaluation and verification of the possibilities
mentioned.

From the individuals surveyed, some tools utilized for
code quality were SonarQube, JavaParser, and Jacoco. Others
mentioned linters such as ESLint and golint to help improve
the quality of production-based code while working with
continuous integration pipelines. When asked whether or not
there was any visualization tool used for assessing technical
debt, all respondents from both surveys stated that they were
unfamiliar such tools or did not employ any. For this reason,
we sought tools that can be beneficial to developers, which
are discussed in prior sections.

Code smells can take a lot of time to evaluate and iden-
tify. Because of the immense amount of allocated resources
spent, researchers have attempted to alleviate the time spent
refactoring by developing tools that can minimize the amount
of time in identifying the smells to fix. This can impact the
cost of the company as funds would be used for refactoring
and fixing rather than innovation and enhancements, impacting
profits over a long period of time.

IV. PROPOSED METHOD
A. Methodology

For this study, we gathered 100 repositories that were as
close as possible to being fully written in Java due to the
uncertainty of how DesigniteJava would perform. Another
requirement we decided upon was that each repository con-
tains at least 3000 lines of code for it to be considered.
As mentioned in further sections, this was due to alleviating

potential inconsistencies and ensuring that one particular smell
would not be disproportionate to other smells. This particular
minimum value was selected due to testing the tool with
smaller repositories and discovering this value to be suitable
and adequate for our sample size.

Most repositories examined were libraries and frameworks
that were highly active and recommended when searching
for repositories on GitHub. These repositories were chosen at
random to prevent any biases. Each repository would also be
thoroughly checked to ensure that no other languages would
be scanned in by our chosen tool.

B. Data Extraction

Once validated and identified, the repositories are down-
loaded and unzipped. DesigniteJava is then utilized to generate
an XML file, which can be read in by OQScored [15]. Provided
by Sharma et al., QScored agent is readily available for
analyzing information from DesigniteJava and uploading it to
QScored for a visual representation along with computing a
raw score for the particular repository [15]. Our primary focus
was extracting the data returned by the DesigniteJava output
and parsing it to collect the summation of total smells within
that particular repository as well as examining the number
of instances of God Classes or God Components and Long
Methods detected. For this reason, QScored was only used
for initial testing to visualize some of the earlier repositories.
It was also used for pinpointing files within each repository
that had high levels of lines of code, which is beneficial for
our future work. We tested out the feature and modified the
sample python source code provided with a granted API key
to see how simplistic it is to convert the XML file to a visual
depiction on QScored.

To organize the data, a shell script was created for running
each repository selected against DesigniteJava. This script also
generated new sub-directories to store each file obtained by the
tool for every repository examined. For each repository, the
results were redirected from standard output and appended
to one large result file. The name of the repository would
also be appended subsequently after redirection occurred so
that the data would have proper association for future parsing.
After running the detection tool on all of the repositories, the
result file would be parsed and sorted into manageable data
using other programs. A majority of the original output data
would be discarded and only the total lines of code, top two
code smells recorded, and number of instances of particular
smells for each repository would remain for the final data
set. The smells that remained in our final data set were the
following: Long Method, Magic Number, Long Statement, God
Components, and Unutilized Abstraction. As further discussed
in our results section, these were ultimately chosen as the
remaining smells due to their popularity and sole focus of
our research.

The data collected would then be easily transferable and
converted to a readable format, such as an excel sheet or CSV
file. The results of the study are an open data source and

315



316

Start

|
1

Select
Repositories

LoC > 3000

Execute
DesigniteJava
on Repository

COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

Automated script
computing
summations and info

Manual
Computations

xtract
calculations
to result set

Parse data for L
<

xeR

Append stdou
report,

Collection of
statistical data for
all repos

False

True

Fig. 1. Flowchart of our process

accessible through GitHub?. Our process for collecting the
data is depicted in Figure 1, which entails each step conducted
to obtain the final data set.

V. CASE STUDY
A. Results

Prior studies have mentioned the prevalence of specific
smells within software projects, however, our findings sug-
gest that some smells such as the Long Method and God
Components are fairly uncommon. Based on our results, the
Long Method was documented for 0.144% of all methods
scanned. The Long Method also only accounted for 0.255%
of all smells collected, which is reasonably minuscule. This
number was heavily impacted due to other code smells that
seemed to be highly widespread. On the other hand, both the
Long Method and God Components contain significantly more
lines of code compared to others such as the Magic Number.
Although they are not as prevalent, both smells still make up
a significant portion of total lines of all smells. The Magic
Number smell was one of the more common smells detected
within the repositories, however, in most instances it can be
omitted in real-world practices as a potential smell. It made
up 48.357% of all code smells detected, making it substantial
compared to other smells. The second most common smell
was a Long Statement, which comprised of 21.425% of all
smells. Both the Magic Number and Long Statement together
appeared as the most common and second common code smell
for 70.0% of all repositories.

Zhitps://bit.ly/39LOITH

Broken Hierarchy
Feature Erwy
Long Identifier

Insufficient Modularization

Top Two Smells Detected

LI
11
11
11

Complex Method B 2
Deficient Encapsulation Wl 5
Long Parameter List Ml 6
Unutililzed Abstraction I 12
Long Statement GGG S5

Magic Number 86

20 40 60 80 100

Number of Occurrences

Fig. 2. Frequency of top two smells detected

TABLE 11
OVERALL AVERAGES OF EACH REPOSITORY SELECTED

Attribute Average (AVG)
Number of Smells Detected 3924.04
Lines of Code (LoC) 59509.73
Number of Methods 6926

Some code smells are insignificant compared to others. To
clarify, a few smells such as a Magic Number could be seen as
appropriate or easily modifiable in specific instances compared
to other smells that can have long-lasting effects and degrade
the overall quality of the software. Because of instances where
there could be valid solutions that require code segments to be



NOAH LAMBARIA, TOMAS CERNY: A DATA ANALYSIS STUDY OF CODE SMELLS WITHIN JAVA REPOSITORIES

designed a particular way as well as many other factors, smells
like these can be discarded under most circumstances. Other
code smell that were flagged many times were Unutilized
Abstraction and Broken Hierarchy. For Unutilized Abstraction,
6.654% of total code smells were devised of this violation.
This particular smell was third most prevalent and relative
to the top two smells, the overall percentage is substantially
small. Out of the total lines of code analyzed, only 6.594% of
all repositories contained violations. This ratio was calculated
by computing the total number of smells in all 100 reposito-
ries, and divided by the total lines of code in each program.
This is only an estimate, as some of the code smells could take
several lines of code. The outcome was an expected result, as
these libraries are likely maintained by experienced developers
who practice good coding habits. Likewise, the developers are
likely to follow these standards to ensure high scalability and
to maintain their libraries efficiently.

From this study, we can confirm that similarly to C#
code analyzed in Sharma et. al [6], that Magic Number and
Unutilized Abstraction are both prevalent smells that are also
common in Java repositories. Furthermore, we can conclude
that the commonality between both Long Statement and Magic
Number frequencies are significantly higher than other smells,
which is depicted in Figure 2.

* Long Method « Magic Number
* Unutilized Abstraction * God Component
* Long Statement * Other smells

Fig. 3. Pie Chart displaying distribution percentages of particular smells out
of all 100 repositories examined

B. Threats to Validity

1) Internal Validity: Bias in regards to data extraction could
be a potential issue. Only Java projects were selected due to
the limitations of DesigniteJava. Because of the restriction,

different types of smells could potentially be more or less
common in other languages. Although the data was validated
through several automated checks, some of the smells were
manually checked and computed. Specifically, all smells in
our final data set were manually calculated.

To prevent any errors, these manual operations were com-
pared with programs to validate that the summations equalled
the summations calculated initially by hand and vice versa. In
order to alleviate any potential conflicts, popular repositories
from experienced developers that contained several thousands
of lines of code were primarily selected to be analyzed.
Because of the restrictions on the number of lines required,
this removes the possibility of special cases where there could
be an outlier of a particular code smell.

2) External Validity: A minor subset of individuals who
were surveyed haven’t been within the industry in the past
couple years. To reduce these biases, the survey data was
separated by those who are currently employed as a software
developer, and those who recently departed from the industry,
such as for Graduate School. Within the software field, new
tools and technologies are rapidly evolving, which allow devel-
opers to spend significantly less time refactoring their code. As
a result, these former developers could have potentially utilized
outdated tools even if they have only been out of the industry
for a few years, which could heavily impact the amount of
time it takes to refactor code.

In regards to the repositories collected, the data extracted
was reliant on the accuracy of the tool. Because of the tool
being recently developed and not as widely used overall, De-
signiteJava could pick up false positives of a particular smell.
Conducting the study again with different static analyzers or
other tools that detect code smells and comparing the results to
the current data set would lessen the probability of inaccurate
data. Furthermore, due to these popular repositories constantly
changing with updates, the number of code smells for each
repository could differ at the time of this writing.

VI. FUTURE WORK

As previously discussed, it would be beneficial to utilize
these exact same repositories but with many tools to compare
the rate of success and accuracy of each tool. A larger data set
expanding the use of other languages would be advantageous
to ensure that the most frequent smells identified within this
study is widespread in other languages besides Java. Although
Java and C# projects are compatible with our selected tool,
further identification of analyzers that support other object-
oriented languages such as Python or C++ need to be tested.
This will allow for identifying potential relationships between
different design, architectural, and implementation smells in
contrary projects.

Because of the programs created and utilized as a result of
this experiment, a data set with thousands of repositories can
be applied under the same circumstances as the small selection
of this case study at significant rate. The only limitation is the
manual selection of each repository, since criteria must be met
for every selected repository to ensure valid data collection.

317



For our future work, we plan to devise or identify software
that will assist in fetching repositories, while adhering to our
criteria. Some static analyzers only support specific languages
and are potentially vulnerable to issues if conflicting files are
also embedded in the same repository.

Our future work entails examining the code that was as-
sociated with the Long Method and God Components for
the repositories selected, and running code smell detectors
and analyzers on these sections of code. The results could
potentially detect other embedded code smells within these
particular smells, as well as a correlation between the creation
of these oversized classes or methods. Furthermore, many tools
would be utilized, ensuring that a wide range of smells are
fetched from each repository.

VII. CONCLUSIONS

Based on the repositories examined, the Long Method, God
Components and other architectural and design smells are
typically not as detected in well-developed Java repositories
compared to other code smells. The most common smells
recorded were the Long Statement and Magic Number, ac-
counting for 69.782% of all smells recorded within the chosen
repositories. The Long Method was recorded for 0.144% of
all methods in the repositories selected. It also only accounted
for 0.255% of all total smells analyzed. Although insignificant
smells such as the Magic Number disproportionately impacted
other smells’ percentage weight, if this smell was omitted,
the Long Method would only slightly increase to 0.494%
of all detected smells. Future studies will be conducted to
gather a larger sample size and analyze the God Components
and Long Method segments of code within each repository
fetched. DesigniteJava is an extremely beneficial tool, which
both researchers and those in industry can utilize to further
evaluate production code and long-term maintainability.

ACKNOWLEDGMENTS

This research was funded by National Science Foundation
grant number 1854049 and a grant from Red Hat Research
https://research.redhat.com

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. USA: Addison-Wesley
Longman Publishing Co., Inc., 1999.

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

N. S. Alves, T. S. Mendes, M. G. de Mendonca, R. O.
Spinola, F. Shull, and C. Seaman, “Identification and management
of technical debt: A systematic mapping study,” Information and
Software Technology, vol. 70, pp. 100-121, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584915001743
F. A. Fontana, V. Ferme, and M. Zanoni, “Towards assessing soft-
ware architecture quality by exploiting code smell relations,” in 2015
IEEE/ACM 2nd International Workshop on Software Architecture and
Metrics, 2015, pp. 1-7.

T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna, “On the
evaluation of code smells and detection tools,” Journal of Software
Engineering Research and Development, vol. 5, p. 7, 12 2017.

T. Sharma, “Designitejava,” Dec.
https://github.com/tushartushar/DesigniteJava. ~ [Online].

https://doi.org/10.5281/zenodo.2566861
T. Sharma, M. Fragkoulis, and D. Spinellis, “House of cards:

Code smells in open-source c# repositories,” in Proceedings of the
11th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM *17. 1EEE Press, 2017,
p. 424-429. [Online]. Available: https://doi-org.ezproxy.baylor.edu/10.
1109/ESEM.2017.57

M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in 2011
33rd International Conference on Software Engineering (ICSE), 2011,
pp. 1037-1039.

C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, and R. Wettel,
“iplasma: An integrated platform for quality assessment of object-
oriented design.” 01 2005, pp. 77-80.

“Sonargraph-quality: A tool for assessing and monitoring technical
quality.” [Online]. Available: https://www.hello2morrow.com/products/
sonargraph/quality

G. Samarthyam, G. Suryanarayana, and T. Sharma, “Refactoring for
software architecture smells,” in Proceedings of the Ist International
Workshop on Software Refactoring, ser. INoR 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 1-4. [Online].
Available: https://doi-org.ezproxy.baylor.edu/10.1145/2975945.2975946
F. A. Fontana, V. Ferme, and M. Zanoni, “Filtering code smells detection
results,” in Proceedings of the 37th International Conference on Software
Engineering - Volume 2, ser. ICSE ’15. IEEE Press, 2015, p. 803-804.
N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github
for engineered software projects,” PeerJ Preprints 4:¢2617v1, 2016.

A. Yamashita and L. Moonen, “Do developers care about code smells?
an exploratory survey,” in 2013 20th Working Conference on Reverse
Engineering (WCRE), 2013, pp. 242-251.

Y. Golubev, Z. Kurbatova, E. A. AlOmar, T. Bryksin, and M. W.
Mkaouer, “One thousand and one stories: A large-scale survey of
software refactoring,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2021. New
York, NY, USA: Association for Computing Machinery, 2021, p.
1303-1313. [Online]. Available: https://doi-org.ezproxy.baylor.edu/10.
1145/3468264.3473924

V. Thakur, M. Kessentini, and T. Sharma, “Qscored: An open platform
for code quality ranking and visualization,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020, pp.
818-821.

2018,
Available:



