Check for
Updates

Architectural Languages in the Microservice Era: A Systematic

Luka Lelovic
luka_lelovicl@baylor.edu
Computer Science, Baylor University
Waco, Texas, USA

Tomas Cerny
tomas_cerny@baylor.edu
Computer Science, Baylor University

Mapping Study
Michael Mathews

michael_mathewsl@baylor.edu
Computer Science, Baylor University
Waco, Texas, USA

Karel Frajtak
frajtak@fel.cvut.cz
CS, FEE, Czech Technical University

Amr Elsayed
amr_elsayedl@baylor.edu
Computer Science, Baylor University
Waco, Texas, USA

Pavel Tisnovsky
ptisnovs@redhat.com
Red Hat

Waco, Texas, USA

Prague, Czech Republic

Brno, Czech Republic

Davide Taibi
taibi@oulu.fi
Oulu University
Oulu, Finland

ABSTRACT

In modern software systems, Microservice Architecture (MSA) has
gained popularity over monolithic design by providing the ability
for flexible and independently upgradable services. Although there
are considerable benefits that MSA provides, as new microservices
are introduced into these MSA-based systems, they can become
increasingly complex and hard to understand. Architectural lan-
guages are a potential solution to this problem because they can
provide a comprehensive overview of system’s architecture as it
changes. In this paper, the authors conduct a systematic mapping
study to identify the architectural languages discussed in academia.
In particular, the authors observe the architectural languages that
have the capability of representing MSA-based systems. Through
the use of a detailed query in 4 reliable indexers, a collection of
402 papers were filtered down to a small set of 19 relevant papers.
This filtration was done based on a research paper inclusion criteria
and a language inclusion criteria. With these papers, a total of 12
architectural languages were investigated for the representation of
MSA-based systems.

CCS CONCEPTS

- Software and its engineering — Software design engineering;
Architecture description languages; System modeling languages; «
Computer systems organization — Client-server architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RACS °22, October 3—6, 2022, Virtual Event, Japan

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9398-0/22/10...$15.00
https://doi.org/10.1145/3538641.3561486

39

KEYWORDS

Microservices Architecture, Architectural Language, Domain-specific
Language, Service Composition

ACM Reference Format:

Luka Lelovic, Michael Mathews, Amr Elsayed, Tomas Cerny, Karel Frajtak,
Pavel Tisnovsky, and Davide Taibi. 2022. Architectural Languages in the
Microservice Era: A Systematic Mapping Study. In International Conference
on Research in Adaptive and Convergent Systems (RACS °22), October 3-6, 2022.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3538641.3561486

1 INTRODUCTION

Microservice Architecture (MSA) is a paradigm in the software in-
dustry where applications are comprised of small, independent sets
of services. Each service carries out a particular business process
and performs lightweight communication with other services. This
paradigm has evolved from Service-Oriented Architecture (SOA),
or traditionally monolithic applications, and provides a number of
benefits including fault tolerance, loose coupling, and high scalabil-
ity [25].

Issues arise, however, in MSA-based systems as complexity grows.
Maintaining a holistic view of the system becomes increasingly
difficult as new requirements and logic are distributed across mi-
croservices [24]. One way to address these issues of complexity is
through the use of architectural languages (ALs) for microservice
systems. An architectural language, as defined by related work from
Francesco et. al [3], is any form of expression used for architec-
ture description. Related work from Aksakalli et al. [4] describes
how these languages allow complex business processes and inter-
actions between microservices to be described in a way that gives
the architect a comprehensive picture of the system. We identify
architectural languages as encompassing programming languages
and domain-specific languages (DSLs) [12]. Other approaches may
exist, but are not covered.

In this paper, a systematic mapping study (SMS) is presented,
providing a comprehensive overview of the current architectural
languages proposed in academia relating to MSA-based systems.

https://doi.org/10.1145/3538641.3561486
https://doi.org/10.1145/3538641.3561486
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3538641.3561486&domain=pdf&date_stamp=2022-10-20

RACS 22, October 3-6, 2022, Virtual Event, Japan

A comparison is made between the languages of their characteris-
tics, features, and research surrounding them. This literature review
does not include the architectural languages found in industry with-
out academic research behind them. Findings and conclusions of
this study are relevant for industry experts who want a holistic
perspective on the languages that exist. This is also helpful for
understanding the similarities and differences between these lan-
guages, and potential future challenges in architectural languages
that may need to be addressed.

The rest of the paper is organized as follows: Section 2 pro-
vides background information on work relating to architectural
languages. Section 3 describes how the authors aggregated and
analyzed papers on architectural languages. Section 4 answers the
research questions identified in Section 3. Section 5 discusses the
threats to the validity of this study. Section 6 concludes the paper
and provides a discussion of future work.

2 BACKGROUND AND RELATED WORK

While previous work does exist that provides an overview of lan-
guages for describing system architecture, there is still a lack of
research surrounding architectural languages relating specifically
to microservice systems. In this section, we describe the related
mapping studies, surveys, and literature reviews found, providing
a background and context for our research.

Aksakalli et al. [4] conducts a SLR on the current state of deploy-
ment of microservices. The paper explains how Amazon, Netflix,
eBay, and other companies were found to be using MSA because
monolithic applications no longer suited their needs, and MSA
proved to have an upgradable and flexible architecture. It explores
current methods of deployment and useful tools created for the
automatic deployment of microservices. Although there is little
mention of architectural languages for microservice systems, the
paper proves that there is widespread growth and adoption of the
MSA paradigm in industry.

A mapping study by Francesco et al. [3] evaluates the publication
trends and research focus of architecting with microservices. From
their selected studies, the authors find a growth in research on the
subject in recent years, but note a gap in the amount of research
dealing with architectural languages [3]. At one point the study also
notes nine architectural languages relating to modeling MSA, but it
is not the paper’s primary focus. The relevance of this study shows
that there is further literature needed with a focus on architectural
languages.

Bergmayr et al. [1] provides a systematic literature review on
cloud modeling languages. The authors define a cloud modeling
language as a domain-specific language in the domain of cloud com-
puting. While the literature review provides an extensive overview
of the various cloud modeling languages and their features, it omits
microservice orchestration platforms [1]. The study is useful to
consider as we investigate architectural languages.

Nikoo et al. [6] presents a related survey on service composition
languages. Of the 38 languages found, 14 are explored more deeply
in their paper. While some of the described languages pertain to
the orchestration of microservices, the study specifically observes
languages dealing with service composition [6]. This means other

40

Lelovic et al.

types of languages are also mentioned, and the study does not
specifically look at languages for describing microservice systems.

Finally, Malavolta et al. [5] conducts a survey on what the indus-
try needs from architectural languages. The wide array of archi-
tectural languages that exist is due to the varying, ever-changing
system requirements. The survey conducted interviews of indus-
trial experts to identify the needs from ALs, as well as the useful
and unuseful features that exist [5]. The findings of the study re-
veal a need to reconcile informal architectural languages used in
industry with formal ones produced in academia [5]. The study also
finds that the most used ALs are produced in industry. This should
be kept in mind as we conduct a mapping study of the languages
produced through research.

The existing literature previously listed that we observed still
shows a gap in discussion on the current state of architectural lan-
guages for MSA-based systems. This demonstrates that a mapping
study of the languages is a beneficial and worthwhile investigation.

3 MAPPING STUDY METHOD

In this study, we performed a deep investigation of architectural
languages and, specifically, those relating to microservices. We
followed the guidelines used by Petersen et al. [7] for conduct-
ing the systematic mapping study review. Our complete mapping
study document can be found below!. We began our mapping study
by describing key research questions that would help define our
overall query. These questions were initially created with a broad
perspective and were gradually refined into a final, specific set. The
questions we examined in this literature review are as follows:

RQ1 How do we categorize architectural languages for MSA-
based systems and what are these categories?

RQ2 What are the architectural languages for the specific lan-
guage categories and what do the languages offer?

RQ3 What are the challenges for architectural languages and their
future directions?

RQ1 addresses how we categorize architectural languages for the
purpose of having a comparison framework between the languages.
These languages are specifically ones that relate to MSA-based
systems. RQ2 addresses the architectural languages found and how
they fit into the categories defined in RQ1. RQ3 addresses future
challenges and research directions for architectural languages that
could be taken based on the findings from our study.

Following the creation of our research questions, we developed a
query based on our previously defined areas of interest. This query
went through multiple evolutions as we attempted to strengthen
the relevance of our results. It was finalized to focus on two main
parts: microservices and languages. The microservices part ensures
that our query remains in specific relation to microservice archi-
tecture. The languages part comprises both ADLs and DSLs, which
are commonly referenced in papers to describe an architectural
language or languages. Our final query can be seen in Listing 1.

Listing 1: Search Query for Systematic Mapping Study

OR

"language-based" OR "domain specific language"
OR "domain-specific language" OR "DSL"

("Architecture-description languagex"

!https://zenodo.org/record/6867724

Architectural Languages in the Microservice Era: A Systematic Mapping Study

OR "ADL") AND microservice*

3.1 Search and Filtration Process

Once we finalized our set of research questions, and our query,
we performed a search through indexer databases to obtain litera-
ture. The databases used for obtaining literature were ACM Digital
Library (DL), IEEE Xplore, Springer Link, and Science Direct. By
using our final query in these databases, we acquired a total of 402
research papers. The results found per year from this search can be
seen in Figure 1. This graph shows an increase in the number of
papers published regarding this topic.

The next phase of our literature review was a filtration based on
title and abstract. The relevance of a piece of literature was judged
based upon a fixed inclusion and exclusion criteria. This process
was performed by multiple authors. Our criteria is listed as follows:

Inclusion criteria:

1. Papers investigating architectural language(s)
2. Papers introducing an architectural language
3. Papers expanding upon an existing architectural language
4. Papers providing discussion of architectural language(s)
Exclusion criteria:
1. Not in English
. Short paper (Less than 4 pages)
. Non-peer reviewed
. Duplicate
. Opinion paper
. No full text available
. Published before 2010
8. Literature Reviews

For papers investigating a particular architectural language, or
languages, the inclusion of the paper had to meet additional crite-
ria. The first requirement of the paper was that the architectural
language must relate to microservice systems. This means the lan-
guage was originally developed, or evolved, with the microservice
paradigm in mind. The second criterion was that the language must
have an explicit name. The reasoning for this was that untitled lan-
guages in studies simply demonstrated how their language could
satisfy a particular problem, or be used in a particular domain, with-
out attempting to promote industry adoption of their language. This
is seen in [22] and [20], where no specific name to their proposed
DSL is given.

Due to the wide array of ALs introduced in academia and in-
dustry, an inclusion criterion had to have been made for choosing
between languages. The language had to be discussed in at least
two research papers to demonstrate its relevance. When deciding
inclusion between two similar languages, the language found to
have greater industry adoption was added. If industry adoption was
uncertain, the language with the more recent publication year was
chosen. If the language timeline was approximately the same, the
language with the greater number of publications was included.

After the exclusion of papers based on title and abstract, we
entered the next phase of our literature review which consisted of
full reads of papers accepted thus far. During this full read phase, we
found additional relevant papers referenced in our filtered papers.
These papers were snowballed and used in this study ([10, 14, 15,
23, 26]). Some of these snowballed papers were not published on

NN ok WN

41

RACS ’22, October 3-6, 2022, Virtual Event, Japan

Table 1: Search Query Results for Various Index Sites

Indexer Iizziit}; Filtered | Snowballed ’[I'Jc;tez:il
ACM DL 161 3 0 3
Science Direct 135 3 0 3
Springer Link 87 2 1 3
IEEE 19 6 1 7
Other 0 0 3 3
Total 402 14 5 19

the indexers we used, and were simply grouped into an "other"
indexer category. The specific number of papers that passed the
filtration, as well as the the number of papers that were snowballed,
are shown in Table 1.

3.2 Data Extraction and Analysis

Once the filtration process was complete, the final phase of mapping
and content analysis was entered. During this phase, two authors
independently extracted the relevant ALs. Then, the languages were
placed into a mind map with branching categories that described
each language’s application. This extraction was based on codes
that we devised for our coding schema. We identify the codes for
our coding schema as follows:

(1) General information. This includes a language’s name, fea-
tures, particular domain the language is used, and the para-
digm the language was developed for.

(2) Challenges. This relates to the problems or hurdles found
within a language.

(3) Future directions. This is different from the challenges be-
cause this describes future research, rather than simply the
problems encountered within the languages.

After the extraction process, we started our data analysis. This
analysis assessed how each part of the schema answered our re-
search questions. For RQ1 and RQ2, we looked at the general in-
formation we extracted, whether the languages met the inclusion
criteria, and whether they had overlapping features or distinct dif-
ferences. Rather than creating and asking questions to determine
the effectiveness of each architectural language in representing
an MSA-based system, we chose and compared a set of categories

0

0
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Papers Found

N

Year

Figure 1: Papers Found Per Year

RACS 22, October 3-6, 2022, Virtual Event, Japan

that provided extensive coverage of system concerns amongst the
ALs. This was also done for the purpose of answering RQ1. The
process of discovering these categories was an iterative one based
on observation of overlapping concerns and requirements found
amongst the ALs. These categories are listed and further explained
in Section 4. In relation to RQ3, we looked at the extracted chal-
lenges and directions that were found in the studies. The results of
this process are discussed in the following section as well.

4 ANALYSIS RESULTS

Out of 402 papers returned by the search, we found a small number
of relevant works. Only 19 papers are considered for the final anal-
ysis. The majority of these works focused on introducing one AL
as a solution to a particular problem (See [9] and [21]). From our
language inclusion criteria described in Section 3, out of a total of
44 languages identified from our results, 12 were included in this
literature review. These languages will be further discussed in sub-
sections to follow for the purpose of answering RQ2. The languages
included based off the inclusion criteria were Jolie [18], Ballerina
[24], Archimate [15], SysML [10], MicroART [13], StratoQL [11],
Mu [19], Silvera [23], Medley [9], Partitur [17], BPMN 2.0 [24], and
TOSCA [16].

4.1 Categories of Architectural Languages

We outline the following 6 language categories that we are con-

cerned with in an AL for the purpose of answering RQ1:

(1) Business Processes: The description of this in an architec-
tural language may be useful for providing a visual notation
of the processes [24]. If an architectural language serves
the purpose of describing business processes, the language
contains higher-level abstractions, rather than lower-level
technical details about the system.

(2) Workflows: ALs commonly define services in terms of their

logical flow of execution. This flow demonstrates how the
services interact with one another (where they send infor-
mation, and where they recieve information from).
Service Communication: Microservices often communicate
and interact with each other, sending data messages back-
and-forth. The ability for an AL to describe, and in some
instances execute, the data messages that are sent between
microservices may be important for understanding specifi-
cally how the microservices interact. This differs from the
workflows category in that the flow of execution from one
microservice to the next is not described, but instead the
potential interchange of data between microservices.

(4) Dynamism: During the evolution of an MSA-based system
changes often occur. This feature outlines whether an AL
supports the dynamic description of the system. The alter-
native to this is a static approach to describing the system,
that must occur initially at a design phase.

(5) Automatic Generation: Often the user does not want to man-
ually describe their system or write code after describing
their system in an AL. Some ALs have an automated solution
for either constructing the description of their system, or con-
structing the code based off of the description. This proves

®)

42

Lelovic et al.

useful as the user only needs to implement their system in
one language, and can translate it to another.

(6) Graphical Notation: ALs exist which are paired with a graph-
ical model for visually representing the system. The advan-
tage of this feature is that a visual representation exists
alongside the description of the system, which can make
understanding the system holistically easier.

In the following subsections, each language category, and the
particular languages that fit into them is discussed. This is done
for the purpose of answering RQ2. An overall comparison of the
languages and their categories can be seen in Table 2.

4.1.1 Business Processes. The languages found that are oriented
towards high-level business processes were Archimate, Partitur,
and BPMN 2.0 [15, 17, 24]. These languages and their approach to
business processes are discussed respectively in subsequent para-
graphs.

Archimate is an architecture description language for model-
ing enterprise architectures. Archimate addresses the category of
business processes through its modeling language which incorpo-
rates the business, application, and technology layer of systems
[15]. Maintained by the Open Group, the language is promoted as
an alternative to UML and other modeling approaches for being
more coarse-grained in its modeling concepts. Archimate provides
language concepts rather than a standard notation due to nota-
tions often being stakeholder-specific?. Archimate therefore is both
extensible, and holistic in providing both high-level business pro-
cesses, and low-level technical details.

Partitur is a DSL for orchestrating microservices using declara-
tive business processes [17]. The language is introduced as part of
the Beethoven platform, which consists of a reference architecture
for executing business processes alongside the Partitur language.
Partitur uses a set of tasks and event handlers to outline the execu-
tion and constraints of the business processes [17]. These tasks and
event handlers exist as part of a Partitur workflow. The purpose
of this overall is to allow complex business processes distributed
across microservices to be easily defined and executed. The authors,
however, describe a number of limitations for Partitur. Timeouts and
failures must be manually handled, and there is a lack of research
around how the language performs on real MSA-based systems
[17].

The Business Process Model and Notation (BPMN) Version 2.0 is
a domain-specific language used for describing business processes.
BPMN has a core set of elements it uses as its structure which is
enforced through an XML schema3. While BPMN does not quite
fit the inclusion criteria of being originally developed or evolving
with the MSA paradigm in mind, its applicability towards the para-
digm was the basis for its inclusion. Valderas et al. [24] provides
an approach for microservice composition in BPMN 2.0 based on
the choreography of BPMN fragments, reflecting the capability of
BPMN 2.0 as an architectural language applicable for some aspects
of MSA-based systems.

4.1.2 Workflows. The languages found that fit into the workflow
category, and not the service communication category as well, were

Zhttps://www.opengroup.org/archimate-forum/archimate-overview
3https://www.omg.org/spec/BPMN/2.0/

Architectural Languages in the Microservice Era: A Systematic Mapping Study

RACS ’22, October 3-6, 2022, Virtual Event, Japan

| Business Processes | Workflows | Service Communication |

Dynamic Configurability ‘ Automatic Generation ‘ Visualization Component

Programming Languages

Jolie v

v

NEN

Ballerina v

NN

Domain-Specific Languages

MicroART

StratoQL

Silvera

NENENEN

Mu

NENENEN

Medley

Partitur v

<

NENEN

BPMN 2.0 | V

Modeling Languages

Archimate | v v

v

SysML v

v

INENEN

TOSCA v

v

Table 2: Comparison of Language Categories

Medley, Partitur, and BPMN 2.0. The languages that fit into both
categories will be discussed in the subsection dealing with service
communication. Archimate is the exception to this, and will be
discussed in the following paragraph since it was already discussed
in a previous subsection.

Since Archimate, Partitur, and BPMN 2.0 were already intro-
duced, they are briefly discussed in their relation to workflows.
Archimate provides the capabilities for modeling both the work-
flow and communication of the internal services of an MSA-based
system through various structural relations between objects, which
can then be visualized [15]. Partitur, as previously explained in
the business processes category, provides workflow structures for
handling business processes [17]. In BPMN, many task components
are considered "workflow" tasks and executed in the context of
processes®.

Medley is a domain-specific workflow language proposed by
Yahia et al. [9] and further expanded on in [8] for composing mi-
croservices. Medley’s syntax for describing microservices takes
the form of composition structures which hold processes [9]. This
allows the expression of both control and data workflows. Further
development and research on Medley, however, does not exist since
2016, showing it may be a legacy language [9]. Therefore, updated
language alternatives for workflows may be a more suitable choice
for developers.

4.1.3 Service Communication. The languages that fit into the cate-
gory of service communication are MicroART, StratoQL, Mu, and
Silvera [11, 14, 19, 23]. Jolie, Ballerina, SysML, and TOSCA also
provide service communication alongside workflows [10, 16, 24],
and are discussed as well.

MicroART is a MSA recovery tool used to describe and visualize
the overall architecture of an MSA-based system [14]. MicroART
generates a visualization of a given MSA-based system alongside a
generated DSL [13]. The MicroART DSL consists of a meta-model
composed of seven metaclasses. The DSL is purposefully mini-
mal, with Interface and Link metaclasses that define lightweight
communication protocols, rather than workflows [13]. MicroART,
however, is currently a prototype that requires software architect
interaction for consistently successful MSA modeling. It also has

43

not been further evolved since being tested on a fictitious bench-
mark airline service in 2017 [14]. A common pattern emerges that
languages which incorporate workflows often do not demonstrate
service communication, with some exception. The reverse of this,
as demonstrated with MicroART, is also observed.

StratoQL is a Scala-like, domain-specific language for composing
microservices built by the Twitter team [11]. Rather than work-
flows, StratoQL supports the data interaction between microser-
vices. The language uses a structural type system for writing code
that deals with external data and services. StratoQL compiles into
an arrows-based, Scala concurrency library named Stitch which
provides atomic computations representing calls to services. A cor-
responding platform called Strato is used with the language to run
microservices [11]. This means that StratoQL, when paired with the
Strato platform, has not only the capability to describe the system
but to execute it as well.

Mu is an embedded DSL for developing microservices in different
programming languages, such as Scala and Haskell [19]. Mu has
an open type system where the user can decide whether to use
types provided by the language, or introduce their own types. Mu
provides the functionality for describing services, messages, and
requests in its schema. This provides similar service communication
capabilities as other languages. The downside of Mu’s open type
system is that it runs into issues with compilation performance,
abstraction mechanisms, and ambiguity [19], which may be an issue
for the user depending on what they need from the language.

Silvera is a DSL for MSA-based systems with a compiler that
allows the transformation of the Silvera model into code for any
programming language [23]. Silvera fits into the category of mi-
croservice communication rather than workflows. Silvera defines
communication patterns of remote procedure calls and messag-
ing. The syntax of the language then takes the form of services
which contain API methods [23]. Silvera is still in the early stages
of development, however, and the authors of the language hope to
continually improve and develop the language [23].

Jolie is a service-oriented programming language for both simple
and complex microservice systems [24]. The general idea of Jolie
is that every application written in the language is composed of
services and interfaces. The language contains the capability to

RACS 22, October 3-6, 2022, Virtual Event, Japan

describe both the execution flow of the system, and the communica-
tion between services. This description can then be executed in the
programming language as a functioning MSA-based system®. The
trade off of Jolie being a programming language, however, is that
the system must be strictly written in Jolie. While translation into
other languages such as Java is possible?, it is not straightforward,
which may be an issue if the user wants their system written in
multiple programming languages.

Ballerina is another programming language for integration and
orchestration of MSA-based systems [24]. Ballerina has a much
larger open-source community than Jolie but offers similar syntax.
Ballerina also provides the same workflow and communication
capabilities between microservices. The main difference between
Ballerina and Jolie is that Ballerina is less strict about its MSA
orchestration. In Ballerina, there is also the capability to create non-
service functions and executables (i.e. a simple main function) that
do not have to be orchestrated under a microservice architecture’.
Ballerina also does not offer automatic translation from its code to
another language, but does provide the capability to embed Java
code within Ballerina.

The Systems Modeling Language (SysML) is a modeling lan-
guage for system of systems (SoS) according to service-oriented
architecture (SOA) and MSA principles [10]. System of systems
are complex hardware and software systems. SysML models both
the workflow of systems composing services, interfaces, and local
clouds. SysML depicts workflows through an Arrowhead notation
within the language [10]. An arrows-based visualization of the SoS
is provided based on this as well. SysML as well can capture the
communication between elements [10]. This makes SysML an ef-
fective language solution when wanting to capture the complexity
of SoS.

The Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) is a domain-specific language for management of
cloud services and resources. TOSCA is an OASIS open standard
language that provides a blueprint for orchestrating workflows
[16]. Alongside this, TOSCA also includes communication between
services. There are a variety of approaches to TOSCA, including a
YAML-based and XML-based approach [26]. TOSCA does not exist
in its own standalone language, but rather is a set of topological
guidelines and templates promoted by its creators.

4.1.4 Dynamism. Most of the ALs found provided the capabilities
to support dynamism. The exceptions to this were Medley and
BPMN 2.0. Medley requires each microservice to be described ini-
tially, which means the lack of a dynamic location of microservices
may be a potential tradeoff for stakeholders. Partitur is compared
with Medley as an alternative that has the capability to dynamically
locate new microservices [17]. BPMN exists as a bridge between
the business process design, and the process implementation. It
is promoted as an initial draft of the business processes given to
technical developers. Workflows in BPMN thus must be described
before the system is actually implemented>.

4.1.5 Automatic Generation. The languages that support automatic

generation either into a description of their system or code based

*https://www.jolie-lang.org/
Shttps://ballerina.io/

44

Lelovic et al.

Languages Format
Jolie OL
Ballerina BAL
Archimate XML
SysML XMI
MicroART Java
StratoQL G8
Silvera PY
Mu HS
Medley JS
Partitur Java
BPMN 2.0 XML
TOSCA XML, YAML

Table 3: Language File Formats

off the description are Jolie, MicroART, and Silvera. As mentioned
when discussing service communication, Jolie does provide the
ability to translate the language into Java*. While this is possible
in the language, it is not a straightforward task. MicroART, by con-
trast, receives a system from the user, and generates a model and
description based off of the system [14]. Silvera, as explained previ-
ously, has a compiler that can produce code in any programming
language. Currently, the Silvera compiler produces only Java code.
This, however, could be extended in the future to support other
languages [23].

4.1.6 Graphical Notation. Archimate, SysML, MicroART, and BPMN
2.0 are ALs which also couple a graphical model of the system

alongside their descriptions. Archimate’s modeling language not

only supports the description of a system but also a graphical

visualization?. SysML as well supports the retrieval of a graph-
ical model based on its modeling language, but in the domain of

S0S [10]. BPMN 2.0 supports UML-like diagrams with its notation®.
The visual models between the languages are notably similar, and

should be differentiated by the specific type of application each

language is used for.

4.2 Language Target

This section outlines the supported file formats that the found ALs
target. This is done as an extension of RQ2 for describing further
what these languages offer. The file formats that are supported in
each of these languages is displayed in Table 3. This table shows
what format each language is targeted towards. Jolie* and Ballerina®
were found to have their own file format (.OL and .BAL). This shows
how these languages are targeted towards their own standalone
solutions. Silvera, Mu, Medley, Partitur, StratoQL and MicroART®
are written within other programming languages as an extension
[8, 11, 17, 19, 23]. Archimate?, SysML’, BPMN 2.0%, and TOSCA
[26] have their language components implemented within XML,
XMI, and YAML file formats. These file formats are a good fit for

translation across multiple languages.

®https://github.com/microart/microART-Tool
https://www.omg.org/spec/SysML/

Architectural Languages in the Microservice Era: A Systematic Mapping Study

4.3 Language Applicability

In this section, we discuss and compare which languages are most
applicable for the MSA paradigm in order to provide a general
understanding of which languages are better suited for modern
use. This is for the purpose of further answering RQ2. It should be
acknowledged there is no single language that is most applicable
over all others due to the different approaches each one takes.
While each language is applicable based on specific use cases and
requirements, there are certain languages that should be generally
considered over others.

Due to a lack of further development or adoption in industry,
Medley, Partitur, and MicroART seem to be legacy options and
therefore less applicable [14, 24]. While Mu was introduced rel-
atively recently, further research since its introduction was not
found. Furthermore, the performance and open-type system issues
found in Mu likely make the language less applicable when com-
pared to other alternatives [19]. Silvera may be a more applicable
option due to its recent introduction and compilation support for
other programming languages [23]. StratoQL as well may prove
a more applicable option due to its industry use and support by
Twitter [11].

BPMN 2.0 seems most applicable towards higher-level business
processes, rather than low-level details of MSA-based systems>.
When comparing Jolie and Ballerina, Jolie is most applicable when
looking for a programming language strictly for creating MSA-
based systems [18], while Ballerina for a more general-purpose
approach®. TOSCA has substantial research around it, and seems
most applicable when wanting to describe microservices specifically
for cloud applications [16].

4.4 Challenges and Future Research

This section outlines the challenges and future directions for archi-
tectural languages in order to answer RQ3. There are a number of
challenges facing the architectural languages that we found. Due
to Jolie and Ballerina being programming languages, they run into
hurdles supporting polyglot systems. The ability of an architec-
tural language to support polyglot systems provides advantages
in representing a system that encompasses multiple programming
languages. While Jolie tries to curb this by providing translation
to Java, it does not currently have translation to other languages®.
Another challenge with architectural languages is the loss of au-
tonomy in language choice. This is seen with StratoQL [11], where
the loss of autonomy is described as the most prevalent frustration
from the Twitter team. Upward scalability behavior is also a prob-
lem that languages such as Medley [8] run into. Providing support
and extension for additional tools also seems to be an overlapping
concern [14, 23]. There is significant room for improvement, and
additional features are missing throughout these languages.
While this SMS studied a few languages used in industry, such as
StratoQL, it mostly focussed on the languages discussed in academia.
One area of potential future research is with the architectural lan-
guages that are used in industry. These languages do not have as
much substantial research in academia. A query could be made on
commercial sources such as Stack Overflow for the most commonly
discussed architectural languages in industry. These languages may
include the ones that related work from Nikoo et al. [6] discusses,

45

RACS ’22, October 3-6, 2022, Virtual Event, Japan

such as Netflix Conductor and the Amazon States Language. Ad-
ditionally, surveying the reception of each particular architectural
language amongst multiple teams of developers could prove use-
ful in having an understanding of which languages stand out in
the workplace [23]. Finally, with the manual effort required in de-
scribing MSA-based systems using ALs, and the existing room for
improvement in the automated capabilities of these languages [25],
there may exist further research towards that specific capability.

5 THREATS TO VALIDITY

The main threat to the validity of this literature review is the ex-
clusion of relevant research papers. Attempted mitigation was per-
formed against this threat by keeping our research query broad
to include as many relevant papers as possible. The exclusion of
papers prior to the year 2010 also potentially might have resulted
in the removal of older related research. Our manual filtration of
papers from the search results based on title, abstract, keywords,
and through a full read is also prone to potential human error and
the omission of relevant articles. This threat was addressed through
multiple reviewers considering each paper and its relevance.

Furthermore, our categorization of ALs may have missed cer-
tain system concerns. While this threat was mitigated through the
investigation of related works as a foundation, and through the
identification of common concerns found across all languages, this
is still prone to error. There also may have been relevant languages
that were missed due to a lack of research surrounding them, or
missed key terms in our search. Due to the wide array of architec-
tural languages that exist, it is also not possible to cover all of them.
There are likely ones that are actively used and were not found or
included due to these reasons.

6 CONCLUSION

Architectural languages have the ability to provide a holistic view
of an MSA-based system[4]. A holistic view can help an architect
improve the overall design of a system, catch faults, and detect
bottlenecks in the system. In this study, we investigated the ar-
chitectural languages relating to MSA-based systems and their
categories. We outlined 6 language categories: business processes,
workflows, service communication, dynamism, automatic gener-
ation, and graphical notation. Each of these categories approach
describing the architecture of a microservice system differently. It
was then discussed which of the found architectural languages fit
into each of the categories. The challenges and future directions
were then taken based off of the discussed architectural languages.
This work, overall, provides an understanding of the current state
of architectural languages relating to MSA-based systems.

In our future work, we aim to extend an existing architectural
language from academia or introduce our own. The user of this lan-
guage would not have to describe their system manually, but rather
could generate the description from their already existing system.
This could be similar to the solution MicroART provides [13], and
provide a visualization software coupled with the language. This
solution would also provide the capability to dynamically describe
both workflows and data communication between microservices.
This language could also tie into related work from [2] on prove-
nance tracking of data evolution. This work would be beneficial for

RACS 22, October 3-6, 2022, Virtual Event, Japan

users who want to easily retrieve a description of their system and
a corresponding a visual model.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049, a grant from Red Hat Research
https://research.redhat.com and the Ulla Tuominen Foundation

(Finland).

REFERENCES
3!

Alexander Bergmayr, Uwe Breitenbiicher, Nicolas Ferry, Alessandro Rossini, Arnor

Solberg, Manuel Wimmer, Gerti Kappel, and Frank Leymann. 2018. A Systematic

Review of Cloud Modeling Languages. ACM Comput. Surv. 51, 1, Article 22 (feb

2018), 38 pages. https://doi.org/10.1145/3150227

Kaitlynn Burgess, Dante Hart, Amr Elsayed, Tomas Cerny, Miroslav Bures, and

Pavel Tisnovsky. 2022. Visualizing Architectural Evolution via Provenance Track-

ing: A Systematic Review. In International Conference on Research in Adaptive and

Convergent Systems (RACS °22). Association for Computing Machinery, New York,

NY, USA, 9. https://doi.org/10.1145/3538641.3561493

Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2019. Architecting with

microservices: A systematic mapping study. Journal of Systems and Software 150

(2019), 77-97. https://doi.org/10.1016/j.js.2019.01.001

[4] Isil Karabey Aksakalli, Turgay Celik, Ahmet Burak Can, and Bedir Tekinerdogan.

2021. Deployment and communication patterns in microservice architectures: A
systematic literature review. Journal of Systems and Software 180 (2021), 111014.
https://doi.org/10.1016/j.jss.2021.111014

[5] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony

Tang. 2013. What Industry Needs from Architectural Languages: A Survey. IEEE
Transactions on Software Engineering 39, 6 (2013), 869-891. https://doi.org/10.1109/
TSE.2012.74

[6] Mahdi Saeedi Nikoo, Onder Babur, and Mark van den Brand. 2020. A Survey on

Service Composition Languages. Association for Computing Machinery, New York,

NY, USA. https://doi.org/10.1145/3417990.3421402

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for

conducting systematic mapping studies in software engineering: An update. Infor-

mation and Software Technology 64 (2015), 1-18. https://doi.org/10.1016/j.infsof.

2015.03.007

[8] Elyas Ben Hadj Yahia, Inti Gonzalez-Herrera, Anthony Bayle, Yérom-David

Bromberg, and Laurent Réveillére. 2016. Towards Scalable Service Composi-

tion. In Proceedings of the Industrial Track of the 17th International Middleware

Conference (Middleware Industry ’16). Association for Computing Machinery,

New York, NY, USA, Article 3, 6 pages. https://doi.org/10.1145/3007646.3007655

Elyas Ben Hadj Yahia, Laurent Réveillere, Yérom-David Bromberg, Raphaél Cheva-

lier, and Alain Cadot. 2016. Medley: An Event-Driven Lightweight Platform for

Service Composition. In Web Engineering, Alessandro Bozzon, Philippe Cudre-

Maroux, and Cesare Pautasso (Eds.). Springer International Publishing, Cham,

3-20.

[10] Jerker Delsing, Géza Kulcsar, and @ystein Haugen. 2022. SysML modeling of
service-oriented system-of-systems. Innovations in Systems and Software Engi-
neering (09 May 2022). https://doi.org/10.1007/s11334-022-00455-5

[11] Jacob Donham. 2018. A Domain-Specific Language for Microservices. In Pro-
ceedings of the 9th ACM SIGPLAN International Symposium on Scala (Scala
2018). Association for Computing Machinery, New York, NY, USA, 2-12. https:
//doi.org/10.1145/3241653.3241654

[12] Haitham A. El-Ghareeb. 2020. 2 - Neutrosophic-based domain-specific languages
and rules engine to ensure data sovereignty and consensus achievement in mi-
croservices architecture. In Optimization Theory Based on Neutrosophic and
Plithogenic Sets, Florentin Smarandache and Mohamed Abdel-Basset (Eds.). Aca-
demic Press, 21-43. https://doi.org/10.1016/B978-0-12-819670-0.00002-0

[13] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Lu-
dovico Iovino, and Amleto Di Salle. 2017. Towards Recovering the Software
Architecture of Microservice-Based Systems. In 2017 IEEE International Confer-
ence on Software Architecture Workshops (ICSAW). 46-53. https://doi.org/10.1109/
ICSAW.2017.48

[14] Giona Granchelli, Mario Cardarelli, Paolo Francesco, Ivano Malavolta, Ludovico
Tovino, and Amleto Di Salle. 2017. MicroART: A Software Architecture Recovery
Tool for Maintaining Microservice-Based Systems. 298-302. https://doi.org/10.
1109/ICSAW.2017.9

[15] Marc Lankhorst, Henderik Proper, and Henk Jonkers. 2010. The Anatomy of the

ArchiMate Language. I7ISMD 1 (01 2010), 1-32. https://doi.org/10.4018/jismd.

2010092301

Paul Lipton, Derek Palma, Matt Rutkowski, and Damian A. Tamburri. 2018.

TOSCA Solves Big Problems in the Cloud and Beyond! IEEE Cloud Computing 5,

2 (2018), 37-47. hitps://doi.org/10.1109/MCC.2018.022171666

[2

[3

7

=

[16

46

(17

(18

[19

™
=

[21

[22

[23

™
=)

[25]

[26

Lelovic et al.

Davi Monteiro, Paulo Henrique M. Maia, Lincoln S. Rocha, and Nabor C. Men-
donca. 2020. Building orchestrated microservice systems using declarative busi-
ness processes. Service Oriented Computing and Applications 14, 4 (01 Dec 2020),
243-268. https://doi.org/10.1007/s11761-020-00300-2

Larisa Safina, Manuel Mazzara, Fabrizio Montesi, and Victor Rivera. 2016. Data-
Driven Workflows for Microservices: Genericity in Jolie. In 2016 IEEE 30th Inter-
national Conference on Advanced Information Networking and Applications (AINA).
430-437. https://doi.org/10.1109/AINA.2016.95

Alejandro Serrano and Flavio Corpa. 2020. Describing Microservices Using
Modern Haskell (Experience Report). In Proceedings of the 13th ACM SIGPLAN
International Symposium on Haskell (Haskell 2020). Association for Computing
Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/3406088.3409018
Zheng Song and Eli Tilevich. 2018. PMDC: Programmable Mobile Device Clouds
for Convenient and Efficient Service Provisioning. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). 202-209. https://doi.org/10.1109/
CLOUD.2018.00033

Zheng Song and Eli Tilevich. 2019. Equivalence-Enhanced Microservice Workflow
Orchestration to Efficiently Increase Reliability. In 2019 IEEE International Confer-
ence on Web Services (ICWS). 426-433. https://doi.org/10.1109/ICWS.2019.00076
Gustavo Sousa, Walter Rudametkin, and Laurence Duchien. 2016. Automated
Setup of Multi-cloud Environments for Microservices Applications. In 2016 IEEE
9th International Conference on Cloud Computing (CLOUD). 327-334. https://doi.
org/10.1109/CLOUD.2016.0051

Alen Suljkanovi¢, Branko Milosavljevi¢, Vladimir Indi¢, and Igor Dejanovi¢. 2022.
Developing Microservice-Based Applications Using the Silvera Domain-Specific
Language. Applied Sciences 12, 13 (2022). https://doi.org/10.3390/app12136679
Pedro Valderas, Victoria Torres, and Vicente Pelechano. 2020. A microservice
composition approach based on the choreography of BPMN fragments. Informa-
tion and Software Technology 127 (2020), 106370. https://doi.org/10.1016/j.infsof.
2020.106370

Muhammad Waseem, Peng Liang, Mojtaba Shahin, Amleto Di Salle, and Gaston
Marquez. 2021. Design, monitoring, and testing of microservices systems: The
practitioners’ perspective. Journal of Systems and Software 182 (2021), 111061.
https://doi.org/10.1016/].jss.2021.111061

Michael Wurster, Uwe Breitenbiicher, Kalman Képes, Frank Leymann, and
Vladimir Yussupov. 2018. Modeling and Automated Deployment of Serverless
Applications Using TOSCA. In 2018 IEEE 11th Conference on Service-Oriented Com-
puting and Applications (SOCA). 73-80. https://doi.org/10.1109/SOCA.2018.00017

https://doi.org/10.1145/3150227
https://doi.org/10.1145/3538641.3561493
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1016/j.jss.2021.111014
https://doi.org/10.1109/TSE.2012.74
https://doi.org/10.1109/TSE.2012.74
https://doi.org/10.1145/3417990.3421402
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1145/3007646.3007655
https://doi.org/10.1007/s11334-022-00455-5
https://doi.org/10.1145/3241653.3241654
https://doi.org/10.1145/3241653.3241654
https://doi.org/10.1016/B978-0-12-819670-0.00002-0
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.9
https://doi.org/10.1109/ICSAW.2017.9
https://doi.org/10.4018/jismd.2010092301
https://doi.org/10.4018/jismd.2010092301
https://doi.org/10.1109/MCC.2018.022171666
https://doi.org/10.1007/s11761-020-00300-2
https://doi.org/10.1109/AINA.2016.95
https://doi.org/10.1145/3406088.3409018
https://doi.org/10.1109/CLOUD.2018.00033
https://doi.org/10.1109/CLOUD.2018.00033
https://doi.org/10.1109/ICWS.2019.00076
https://doi.org/10.1109/CLOUD.2016.0051
https://doi.org/10.1109/CLOUD.2016.0051
https://doi.org/10.3390/app12136679
https://doi.org/10.1016/j.infsof.2020.106370
https://doi.org/10.1016/j.infsof.2020.106370
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1109/SOCA.2018.00017

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Mapping Study Method
	3.1 Search and Filtration Process
	3.2 Data Extraction and Analysis

	4 Analysis Results
	4.1 Categories of Architectural Languages
	4.2 Language Target
	4.3 Language Applicability
	4.4 Challenges and Future Research

	5 Threats to Validity
	6 Conclusion
	Acknowledgments
	References
	

