
Visualizing Architectural Evolution via Provenance Tracking: A
Systematic Review

Kaitlynn Burgess
kate_burgess1@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Dante Hart
dante_hart1@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Amr Elsayed
amr_elsayed1@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Tomas Cerny
tomas_cerny@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Miroslav Bures
miroslav.bures@fel.cvut.cz

FEE, Czech Technical University
Prague, Czech Republic

Pavel Tisnovsky
ptisnovs@redhat.com

Red Hat
Brno, Czech Republic

ABSTRACT
Provenance tracking is used to record vital information such as user
actions and the origin of data, but its potential has not been utilized
with software architecture. Given the importance of provenance
tracking, it can be seen as beneficial to understand the methods
used to track this architecture evolution, as well as having methods
to help visualize the architecture evolution. Throughout this paper,
a systematic review is conducted addressing how provenance track-
ing can be used to track software architectural changes. Addition-
ally, open-source provenance tracking tools, Trrack, ProvViewer,
VisTrails, InDiProv, and GraphTrail are discussed to show how
such functionality can be applied to visualize software architecture.
In this study, we analyzed a final selection of 35 papers. Among
these papers, we compile content from them to better understand
the potential of how provenance tracking can be used to aid the
visualization of software architecture. This analysis can be applied
to existing provenance tracking visualization tools as well as ben-
efit researchers or practitioners intending to maintain and trace
software architecture.

CCS CONCEPTS
• Software and its engineering → Visual languages.

KEYWORDS
Provenance Tracking, Software Architecture, Visualization, Log
Analysis, Mapping Study

ACM Reference Format:
Kaitlynn Burgess, Dante Hart, Amr Elsayed, Tomas Cerny, Miroslav Bu-
res, and Pavel Tisnovsky. 2022. Visualizing Architectural Evolution via
Provenance Tracking: A Systematic Review. In International Conference on
Research in Adaptive and Convergent Systems (RACS ’22), October 3–6, 2022.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3538641.3561493

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RACS ’22, October 3–6, 2022, Virtual Event, Japan
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9398-0/22/10. . . $15.00
https://doi.org/10.1145/3538641.3561493

1 INTRODUCTION
Architecture evolution is defined as a high-level representation spec-
ifying the structure and interactions of components of a system
that change over an allotted time frame [32]. Maintaining and track-
ing architectural changes is essential for organizations to produce
high-quality products for clientele and produce valid and verifiable
results in data-centered research [17, 32]. The expanding size and
complexity of these platforms make managing applications more
difficult, known as software degradation [14].

The next natural step to prevent this software degradation is
using provenance tracking to visualize and trace architecture evo-
lution by recording and showing each change. Provenance tracking
shows derivation history of data [29]. Provenance graphs can pro-
vide easy-to-understand visualizations of architecture evolution
and complexity. Therefore, using provenance graphs as a method
to monitor architectural change is a viable, visual solution to un-
derstanding how component interactions can lead to architecture
degradation or anti-patterns. Such component interactions can also
be utilized to display the version history of software architecture.

This systematic literature review is focused on provenance track-
ing architecture evolution as discussed in current relevant publi-
cations as well as current software used for provenance tracking
visualization. Be that as it may, we discovered limited informa-
tion on architectural evolution monitored by provenance tracking.
However, improving existing provenance visualization tools to gen-
erate an accurate representation of architectural changes using
provenance tracking is plausible.

In this study, we analyzed 474 studies, from which we selected 35
directly relevant to the topic. The selected 35 publications discuss
provenance models [35], provenance frameworks [24], provenance
systems [33], provenance visualization tools [8], and integrating
provenance with existing frameworks [23]. We identified five tools
that are specialized to track provenance visually. Be as this may,
collaboration, the capacity of history stored, and managing large
data sets all presented to be an issue. Accessing provenance is a
goal nearly all tracking tools have. However, support of collabora-
tion, accessing previous versions of data, and being able to store
large data are essential to tracing architecture. We discuss possible
solutions to these obstacles.

83

https://orcid.org/0000-0001-8366-2453
https://doi.org/10.1145/3538641.3561493
https://doi.org/10.1145/3538641.3561493
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3538641.3561493&domain=pdf&date_stamp=2022-10-20

Kaitlynn Burgess, Dante Hart, Amr Elsayed, Tomas Cerny, Miroslav Bures, and Pavel TisnovskyRACS ’22, October 3–6, 2022, Virtual Event, Japan

2 PAPER ORGANIZATION
This paper is organized as follows. Section 3 discusses provenance
tracking and the integration with architecture as well as this paper’s
focus and articles that were deemed relevant but did not encompass
the scope of our research questions. Section 4 addressed how we
formulated research questions and refined a search query. Section 5
discusses how each primary study of the search query was selected
and trends pertaining to publication year and author’s countries
of origin. Section 6 discusses how we categorized the papers to
answer the research questions. Section 7 addressed visualization
methods used to trace provenance tracking. Section 8 describes the
provenance tracking tools discovered which can be used to trace
architecture evolution. Section 9 addressed the solutions to our
research questions. Section 10 addresses the threats to the validity
of our systematic literature review. Section 11 discusses the future
directions for research as well as difficulties faced throughout this
systematic literature review. Lastly, section 12 concludes this paper
and restates what this paper is aiming to achieve and has discovered.

3 BACKGROUND
Software architecture evolves in parallel with software develop-
ment. Monitoring such changes is becoming increasingly complex
as platforms grow. As architecture expands, a system must remain
flexible and maintain its original functionality [14]. Therefore, visu-
alizing and tracking how modifications impact an architecture via
provenance tracking could be beneficial for software maintenance
and to avoid architecture degradation. Thus, using provenance
tracking to display such architectural changes is a potential solu-
tion to visualize and understand these changes easier.

Provenance is information representing entities, agents, activi-
ties and their association with other components [35]. Provenance
tracking, in general, is used to monitor changes in data. Provenance
tracking can be used to detect architectural changes via the record-
ing of evolving architecture in a series of graphical versions [8].
The importance of understanding modifications in a given archi-
tecture is useful for organizations to understand how changes may
influence the architecture or impact its components.

Logging architectural changes are not always necessarily ade-
quate on their own. Architects may not understand how software
changes will impact the architecture as a whole or how they will
impact other components within the architecture. Another issue
with monitoring architecture changes is visually showing previous
versions of the architecture once a change has been made. More
often than not, the methods used to track architecture evolution do
not use provenance tracking visualization, as a result, most versions
of previous architecture models are quickly rendered obsolete and
can create difficulties for communication in project teams. Addition-
ally, a lack of provenance tracking for visualization of a software
architecture system over time can potentially increase software
degradation as only the original developers of a said system can
fully analyze and recall a project’s history efficiently.

In one study, ’Big Data Provenance: Challenges, State of the
Art and Opportunities’ [30] researchers discuss issues that arise
with big data provenance tracking. Although helpful to understand
issues with provenance tracking, this does not encompass the scope
of our research. Another publication, ’A Semantic Foundation for

Provenance Management’ [27] discusses who, what, when, where,
and why the aspect of provenance tracking. Initially thought to be
beneficial to answer our research questions, instead, the focus of
the paper exceeded the range of our paper’s intended goal.

Our focus in this study pertains to how the process of visualizing
architecture usually evolves. We aim to identify current works
applying provenance tracking to architecture evolution and its
visualization.

4 MAPPING STUDY METHOD
We followed the methodology formulated by Kitchenham and con-
ducted a systematic literature review to provide in-depth explana-
tions of how our research progressed over time [19]. As seen in
Figure 1 we utilized a multi-phase approach to gather and organize
relevant research articles. In phase one, we collaborated to gener-
ate a set of research questions. To progress the understanding of
our area of research, we frequently revised these questions to best
reflect our intentions with this paper. This literature review was
centered around the four research questions defined below:
RQ1 How is provenance tracking used to visualize and trace

changes in software architecture/evolution? What are the
common visualization and internal representation approaches
to provenance tracking of software architecture evolution?

RQ2 What specifics of provenance tracking are considered in the
architecture provenance visualization?

RQ3 How can we visualize an intermediate change in software
architecture given to a selected baseline?

RQ4 What are the current issues/challenges in provenance track-
ing in relation to software architecture visualization? How
can these methods be improved?

These research questions aim to utilize existing provenance visual-
ization tools to trace architectural evolution. Once these questions
were formulated, we progressed to phase two of the filtration pro-
cess. Phase two consisted of constructing a list of search queries
among defined indexers to establish a foundation for our systematic
literature review. The defined indexers used were: ACM, Springer-
Link, IEEE, Scopus, and Science Direct.

We, tested five search queries with varying terms, however, all
but one query would be exceedingly large with over 500 publi-
cations or the papers in a given query were not relevant to our
research. As our topic centers on provenance tracking, our search
query is primarily based on the phrase “provenance tracking”. To
better focus the query results on publications relevant to prove-
nance visualization, we included the terms “graph OR model OR
visual OR view OR representation” which broadened the query
to deliver provenance visualization tools. Following this, we con-
cerned ourselves with provenance visualization as it pertains to
architecture; thus, the last search terms added to the query were
“architecture OR design” which allowed studies focused on architec-
ture visualization to be included in the query. Finally, we sought the
most recent discoveries as they pertain to our query; subsequently,
we restricted the results to papers published in the last ten years
(2012 - 2022). Once these search terms and filters were compiled into
one query, we used this query across the indexers for a total of 466
results. Be as this may, during the filtration process, we snowballed
eight scholarly publications leading to a total of 474 publications

84

Visualizing Architectural Evolution via Provenance Tracking: A Systematic Review RACS ’22, October 3–6, 2022, Virtual Event, Japan

Figure 1: Query Filtration Process

as shown in Table 2 and Figure 1. Therefore, after assessing which
query would be best for our research, the final query is shown in
Table 1.

Table 1: Search Query

Search Query
"provenance tracking" AND (Graph OR model OR
visual OR view OR representation) AND (
Architecture OR Design)

Table 2: Search Query Results for Various Index Sites

Indexer Search
Results

Post
Abstract
and Title
Filtration

Total
Relevant

ACM DL 232 31 13
IEEE Xplore 2 1 1
SpringerLink 86 10 5
Scopus 21 8 5
ScienceDirect 125 15 6
Others 8 8 8
Total 474 73 35

Once these 474 papers were assembled, the 3-step filtration pro-
cess began. The first phase consisted of narrowing down papers
based on their title followed by the abstract. Papers that did not
meet inclusion criteria or met exclusion criteria were considered
not relevant to our research and removed from the pool. The third
phase consisted of light, full text skimming through the remaining
papers. If any paper met the exclusion criteria shown in Table 3
they were considered not relevant for our research. The final phase
consisted of full-text reads of the remaining 46 papers, which were
then included or excluded based on criteria that will be provided in
the below section. During each step of the process, article conflicts
and partner disagreements were discussed and resolved before pro-
ceeding to the next step. Once the filtration process was completed,
the final paper pool consisted of 35 research articles.

Table 3: Inclusion and Exclusion Criteria

Inclusion Criteria

(1) Architecture evolution studies.
(2) Provenance tracking studies.
(3) Provenance tracking impacting architectural

visualization studies.
(4) Provenance tracking visualization tools studies.
(5) Provenance tracking correlating to visualization of

architecture studies.
(6) Papers addressing correlations between provenance

tracking and architecture.
(7) Evolution of architecture or architecture complexity

publications.

Exclusion Criteria

(1) Duplicate papers found across indexers.
(2) Paper whose findings are out of our scope of

research.
(3) Publications based on expert opinion.
(4) Case studies without generalization.
(5) Papers that are non-peer reviewed.
(6) Papers with no full-text availability.
(7) Publications not written in English.

Of the 35 relevant articles, multiple articles were relevant in-
volving provenance tracking, yet how they utilized provenance
tracking often regarded areas that were decided to be too niche
to be included as relevant in our study. Despite this, we were able
to analyze and study our remaining papers to help answer our
research questions that will be demonstrated in the next upcoming
sections.

4.1 Author Country of Origin
Among the research papers aggregated, there was only one author
overlap in the papers discovered. Additionally, most if not all papers

85

RACS ’22, October 3–6, 2022, Virtual Event, Japan Kaitlynn Burgess, Dante Hart, Amr Elsayed, Tomas Cerny, Miroslav Bures, and Pavel Tisnovsky

Figure 2: Research Article Country of Origin

consisted of more than three authors. This discovery demonstrates
a balanced and non-biased distribution in regards to our research
database. Additionally, in regards to the country of origin as seen
in Figure 2, you can see for each paper, there is a country of origin
recorded to show the distribution of papers found across the world.
Of our 35 papers, most authors come from a mixture of the United
States, China, or Europe, with the United States and China being the
two most dominant contributors with them taking up 41 percent
and 23 percent of all the research articles, respectively.

5 QUERY ANALYSIS RESULTS
Each relevant publication was analyzed, if a paper discussed prove-
nance tracking visualization or architecture evolution it was consid-
ered useful for answering what specifics of provenance tracking are
used to visualize architectural changes. Moreover, papers analyzing
provenance visualization tools were used to assess issues about
provenance tracking as a means to monitor architecture changes,
how each tool uses a selected baseline for tracking such changes vi-
sually, and what are internal approaches to tracing changes in data
from a visual standpoint. Papers discussing provenance models or
architecture evolution were used to elaborate on how provenance
visualization can be used as a means to trace architectural changes
and what problems arise when tracing such evolution.

In the upcoming section, we discuss the findings of our investi-
gation and answer the research questions in varying subsections.
We then conclude with a brief overview of the validity of our study.

5.1 Modeling Architectural Trends
Monitoring architecture evolution has been a large focus for many
industries. In regards to modeling architecture in general, modeling
can be generalized into two separate categories: process-centric and
data-centric [9]. While it is common to use process-centric model-
ing to visualize where the data is flowing in an architecture graph,
we want to focus on the architectural design itself and analyze the
components via a data-centric approach. We desire to utilize data
provenance tracking to visualize changes on the architectural com-
ponents in the system itself, rather than the flow of data within that
system. However, when using this approach, the varying methods
to use provenance tracking to record such changes is scarce with

Figure 3: Number of papers found per year

only five tools being discovered in our query. As mentioned pre-
viously, most research articles marked as relevant for provenance
tracking only desired to analyze changes in their respective area of
study, rather than the generalization of the software architecture
itself [4, 7, 15, 29, 33]. Nonetheless, from 2005 to 2020 it can be
seen in Figure 3, there is a spiked interest in provenance tracking
and its applications. This increase in popularity demonstrates how
studying provenance tracking is becoming a lucrative field of study.

6 PAPER CATEGORIZATION

Table 4: Citations Per Category

Category Citations
Graph [7] [12] [17] [13] [18] [25] [26] [28] [36]
Data Management [2] [3] [7] [17] [36]
Structural Changes [2] [8]
Component
Relationships [2] [8][20] [36]

Version History [2] [8] [10] [20]

Each publication was associated with a respective category as
demonstrated in Table 3. Certain primary studies were mapped
to multiple categories based on their content. The essential cate-
gories are highlighted in Table 4: interactive visualization, graphs,
data management, structural changes, component relationships,
and version history. These categories were formulated based on
reading and clustering. Throughout the literature review, graphs
were considered essential to generate a visual representation of
provenance tracking. Data management; in our scope, was defined
as ways to ensure provenance data is secure and how provenance
data can be stored or retrieved. In addition, structural changes were
equated to provenance graph behavior: colors, shapes, movement,
adding, and deleting. Component relationships were considered
vital to describe how nodes should be connected and the relevance
of said connection. Since provenance tracking describes the lin-
eage of data version history was deemed vital to recording and
monitoring changes. Papers addressing provenance tracking visual-
ization were linked to either interactive visualization, graph-based

86

Visualizing Architectural Evolution via Provenance Tracking: A Systematic Review RACS ’22, October 3–6, 2022, Virtual Event, Japan

visualization, data management, structural changes, or defining
relationships. Publications discussing the storage and retrieval of
provenance-tracked data were assigned to the data management
category. If a paper mentioned data integrity or provenance security
the paper was assigned to data management. All papers discussing
provenance visualization tools were assigned to a version history
to allow for a compare and contrast analysis.

In this systematic literature review, five interactive provenance
tracking tools were found and assessed to have a means to visu-
alize changes in architecture evolution: Trrack library [8], Prov
Viewer [7], VisTrails [2], GraphTrail [10], and InDiProv [17]. Be-
fore preceding, each tool discussed is not developed for monitoring
architectural changes specifically. However, extending these tools
to fit our research goals is possible. Therefore, we will discuss how
each tool uses visualization of provenance, the limitations of each
tool, the specifics of the tools, and how each application can manage
data from a given baseline.

7 VISUALIZATION METHODOLOGY
7.0.1 Interactive Visualization. Interactive visualization is defined
as allowing in-depth analysis of data via chart manipulation with
motions, colors, shapes, and optical cues. Most provenance visual-
ization tools rely on interactive functionality to record user inter-
actions. Such actions allow the user to keep a fluid and up-to-date
graph which, when used to model software architecture, allows
the user to prevent software degradation. Ideally, the most com-
mon functionality for node linked interactive graphs and workflow
diagrams involved hovering, selecting nodes and moving nodes
[2, 8, 20].

7.0.2 Graph. Graphical visualization involves the use of symbols
or other visual aids to represent data. Different graphs show non-
identical information. For example, as seen in Table 4 we found
a multitude of graphs used for provenance tracking: bar graphs,
tables, matrices, tag clouds, scatter plots, hybrids, workflows, and
node-based graphs. However, their applications were not directed
toward software architecture. Be this as it may, utilizing various
graphs to see architecture evolution from varying perspectives
can be deemed as beneficial [11, 13]. Throughout this systematic
literature review, we found bar graphs [7], scatter plots [28], line
charts [18], and workflow diagrams [12, 17, 26] used as means to
capture interactions between components and aid in provenance
tracking visualization. Other researchers utilized directed acyclic
graphs (DAG’s) as a mechanism to record information [36]. Some
publications address provenance graphs employing node size rep-
resentation of the rank value of nodes, and edge width denoting
the impacts one node had on another [25]. Each provenance graph
discussed can be used as a visual snapshot of software architecture
from a select period of time.

7.1 Data Management
To trace software architectural evolution, provenance tracking tools
should provide a tamper-resistant data archive for analysis results
[36]. Maintaining the integrity of data for software architecture
is vital to generating reproducible and trustworthy data. Certain
approaches to maintaining data integrity include the use of novel
algorithms, provenance encoding, and adding a tamper-resistant

provenance layer [36]. Other publications suggest the establish-
ment of fine-grained access control policies to protect provenance
information [3].

Besides the maintenance of data integrity, a provenance tool
must be able to store data and retrieve data from previous sessions
in order to record architectural changes. Throughout this litera-
ture review, we found instances where tools utilize a server-client
approach to store and retrieve data. Other publications describe
writing data to XML or JSON files for easy retrieval [7]. The tool
VisTrails uses an XML dialect that acts as a data pipeline enabling
easy sharing capabilities and maintaining visualization provenance
[2]. Whilst, InDiProv utilizes PROV-XML to serialize instances of
the PROV data model to XML [17]. Be as this may, every prove-
nance task: workflow creation, storing provenance, and tracking is
written as a JSON exchange messed and sent to the server [17].

7.1.1 Structural Changes. Throughout this literature review, we
found the most essential structural changes required to monitor
architecture evolution via provenance tracking in an interactive
node-based graph to be adding, deleting, and moving nodes. We
found publications that describe provenance tools recording hov-
ering over nodes, moving nodes, undo, and redo functionality on
the graph post a modification [8]. Each of these functionalities is
beneficial, however, from the tools found in this literature review
monitoring adding, and deleting nodes is not a readily available
functionality. Other publications address the functionality of direct
manipulation of objects in a given visualization; allowing scaling
and positioning [2].

7.1.2 Component Relationships. From the node-base provenance
graphs described previously, it was found that node grouping es-
tablished by a developer can be used to generate a state for a given
provenance tracking application. The specificity of grouping can
be applied to software architecture in which the grouping of nodes
represents components such as data sets, services, and portrays
how common these two components interact. Other authors use
node-based graphs where nodes represent expressions, and edges
represent the node’s sub-expressions [36]. Furthermore, other in-
teractive node-based graphs show entities as circles, activities as
vertices, and agents as pentagons [20]. In addition, edges were used
to identify relationships between nodes in order to convey how an
interaction may lead to positive or negative effects. Other examples
use nodes to correspond to a module element in a given schema [2].
In this same schema, an edge between two nodes corresponds to a
connect element where connections show the data dependencies
among varying modules. One such application uses an abstract
approach to establishing node link interactions in which the user
establishes the node interactions [8].

7.1.3 Version History. To monitor architectural changes from a
selected baseline a provenance visualization tool should be able
to store various versions of given software architecture. To elabo-
rate, upon each change to a software architecture a snapshot of the
provenance graph should be recorded in order to allow an easy-to-
understand visualization of how the architecture evolves. During
our literature review, we found provenance tracking tools which
upon the user creating numerous provenance graphs, the tool auto-
matically connects the graphs via links to indicate a chain of actions

87

RACS ’22, October 3–6, 2022, Virtual Event, Japan Kaitlynn Burgess, Dante Hart, Amr Elsayed, Tomas Cerny, Miroslav Bures, and Pavel Tisnovsky

[10]. This functionality in turn can be used to analyze changes in
a given architecture from a selected baseline or analyze previous
versions of a given architecture. Furthermore, we found tools that
allow the storage of various provenance graphs in a single domain
and allow developers to merge two existing graphs which can be
used to trace changes in version history [20]. Even more so, we
found a provenance tracking tool that allows a multi-view scenario
where researchers can see side-by-side direct changes in a given
set of data [2]. In addition, one provenance tracking tool utilizes
an interactive node-link tree to record version history; each node
represents a previous version of the same provenance graph [8].

8 PROVENANCE VISUALIZATION TOOLS

Table 5: Provenance Tracking Tools Analysis

Prov
Viewer

Trrack-
/Track-
Vis

Graph-
Trail

In-
DiProv

Vis-
Trail

Bar Graphs ✓ ✓
Tables ✓
Matrices ✓
Tag Clouds ✓
Scatter Plots ✓ ✓
Hybrid
Graphs ✓ ✓

Workflows ✓ ✓
Node-based
graphs ✓ ✓ ✓

Throughout this systematic literature review, we discovered five
provenance visualization tools that can have the means to monitor
architecture evolution. As shown in Table 5 each tool has diverse
provenance graphs which can be used to monitor architecture evo-
lution.

To begin, one tool GraphTrail shows exploration history via
provenance tracking user actions and displaying visual and textual
cues [10]. GraphTrail uses bar graphs, tables, matrices, tag clouds,
scatter plots, hybrid graphs, and node-based graphs as visualization
techniques to record data. Be as this may, GraphTrail an open source
version is currently unavailable.

The next tool to be analyzed is VisTrails. VisTrails records the
provenance of visualization data products [2]. VisTrails also has
a built-in history tree that keeps track of all changes for a given
workflow graph. Besides this provenance utility, VisTrails also has
an intuitive user interface for adding and connecting different mod-
ules within the program. This allows users to easily reconstruct,
analyze, and view software architecture evolution.

Another provenance tool Prov Viewer is a graph-based visu-
alization tool for exploration provenance [20]. Prov Viewer uses
provenance tracking and has been used to record game analytics
of player-enemy interactions to give developers data related to
locations where players face issues the most [7].

The fourth tool to be discussed, InDiProv, is a provenance ap-
plication built on a server/client architecture[17]. The server is an
engine responsible for provenance and data management whilst

the client handles workflows and pipelines [17]. This functionality
allows for faster data storage for provenance tracking. However,
testing with this tool proved unfruitful as the tool is inaccessible.
This could be due to it being a non-released prototype or it being a
proprietary tool.

The final tool, Trrrack, and its optional visual library TrackVis
interact to make a provenance visualization tool that has the ability
to trace architectural changes. Developers must import the data de-
sired to monitor and apply local changes to the library to generate
a provenance visualization best suited for their intended research.
Trrack provides node-based graphs, scatter plots, bar charts, and
hybrid graphs as means to monitor software architecture. Addi-
tionally, Trrack provides abstract and modular functionality by
allowing users to create custom node-link relationships.

Of the tools mentioned throughout this systematic review, each
has different limitations in regards to visualization of provenance. A
direct issue faced by Trrack and GraphTrail is managing large data
sets [8, 20]. Issues pertaining to VisTrails is how collaboration is
not supported without explicitly transferring history [17]. InDiProv
supports visualization, however, in the publication discussing In-
DiProv the examples of visual provenance were minuscule. Our
research intends on improving existing tools and achieving the best
user interface to display architectural changes.

For Trrack two solutions are proposed to overcome large data
sets. The first proposed solution is to store the data set as an attribute
node but an issue arises when mixing actions and data [8]. The
second solution discussed is to write the data set to an output file
but this makes the association between the data and application
state weak [8]. GraphTrail utilizes aggregation according to node
and edge attributes to reduce the impact of large data sets [10].

9 RESEARCH QUESTION ANSWERS
How is provenance tracking used to visualize and trace changes in
software architecture/evolution? What are the common visualization
and internal representation approaches to provenance tracking of
software architecture evolution?

Of the studies found that report how provenance tracking is
used to trace data changes visually, most focused on recording
user sessions and node behavior in interactive provenance graphs.
Other publications address diverse forms of provenance graphs. As
stated in section 7, interactive visualization and graphs are the most
common forms to visualize how provenance tracking is used in
software architecture and evolution. This is usually done by using a
provenance tracking visualization tool, which has been discussed in
section 8. Using these tools, a user can utilize provenance tracking
to show changes in a myriad of different formats, such as scatter
plots and workflow diagrams to name a few.

What specifics of provenance tracking are considered in the archi-
tecture provenance visualization?

Understanding the specifics of provenance tracking considered
for monitoring software architecture evolution is important be-
cause it can assist architects in comprehending impact analysis.
Throughout our literature review, we found how relationships in
provenance graphs are defined, how to maintain data, and the data
required to monitor software architecture changes as the essen-
tial specifics of provenance tracking architecture evolution. When

88

Visualizing Architectural Evolution via Provenance Tracking: A Systematic Review RACS ’22, October 3–6, 2022, Virtual Event, Japan

considering visualization, provenance tracking is used to trace the
data management of a software architecture graph to ensure the
data being analyzed is tamper-resistant to ensure a consistent foun-
dation for analysis. Additionally, provenance tracking records the
structural change of a software architecture graph, the component
relationships of different node/entities in the graph, and different
versions of the graph that have been saved or recorded.

How can we visualize an intermediate change in software archi-
tecture given to a selected baseline?

It has been shown that accessing the previous version history of
architecture is imperative to gain an insight into how a change has
impacted a given system [32]. When a modification has been made
to software architecture tracing a change from a selected baseline
is necessary to understand the impact on components. It is possible
to visualize intermediate changes in software architecture through
provenance tracking software tools. These tools utilize graphing
assets to visualize the software architecture, and use provenance
tracking to record and show the different versions of the software
architecture when it has been modified. Additionally, the prove-
nance graphing tools can demonstrate component relationships
between different nodes in an software architectural system as well
as structural changes to the software architecture system itself.

What are the current issues/challenges in provenance tracking in
relation to software architecture visualization? How can these methods
be improved?

Analyzing provenance tracking visualization throughout the 35
relevant publication suggests monitoring architecture evolution
will equate to two main issues: the capacity of how much data can
be stored by a tool and storing large data sets in a selected node.
Be that as it may, we also found potential solutions to some of the
more pressing issues. As discussed in section 8, a plausible solution
was to store the data set as an attribute node, with another solution
for storage capacity being to write the data set to an output file.
However, these are not the only matters of concern with software
architecture visualization.

10 THREATS TO VALIDITY
A major consideration in the validity of the relevant publications
is the limitation of information describing software architecture
provenance tracking in our search query. When considering how
provenance tracking intertwines with software architecture it is
vital to see how other researchers have or are implementing such
an intervention. In our case, this research was limited greatly. Cor-
respondingly, connecting two fields of research was the only viable
solution to answering our questions. Due to this, we must assert
that there may be tools and articles outside of our finalized search
query.

Another consideration is a bias throughout most of the primary
studies. For example, in publications proposing new provenance
models, frameworks, or visualization tools there was an increase in
selective outcome reporting. Thus, when analyzing new provenance
visualization tools, challenges pertaining to the application were
rarely asserted.

11 DISCUSSION AND FUTURE DIRECTIONS
11.1 Importance of Security
An observation noticed throughout our query was the reoccurring
notion of tracking provenance securely and maintaining prove-
nance integrity. Of the papers we considered relevant, nine stressed
the importance of their provenance methods being secure.[1, 3,
4, 9, 22, 23, 29, 31, 36] Additionally, a notion of not only being a
secure system in it of itself, but also being resistant to tampering
was seen. One research article deemed relevant utilized provenance
for the express purpose of monitoring potential attacks and unde-
sired modification of data in their system by using the provenance
semiring model to apply provenance polynomial expressions to
tuples[36]. Therefore, maintaining a tamper-resistant provenance
system for architecture was considered an essential function and
used to answer research question 2.

11.2 Lack of Generalization
A difficulty encountered during our research revolved around find-
ing papers that discussed visualization of software architecture from
a general and abstract perspective. Many papers discussed method-
ologies to visualize their specific provenancemethods in a myriad of
graphs earlier described, yet these papers could not help us visualize
architecture in general. Usually these papers revolved around pro-
prietary workflow visualization that we deemed to be not as helpful
as other visualization tools and methods [5, 6, 15, 16, 24, 25, 34]. We
could use these papers as examples, but the tools described work
only for the researchers’ specific fields. If these tools were used in
a more abstract and general setting, a disadvantage would be how
a developer not involved in the previous research uses the appli-
cation for newly intended purposes. For example, a provenance
tracking-based research article focused on provenance tracking
data-centric processes, and their provenance visualization methods
considered their methodology with data-dependent processes and
not software architecture as a whole.[9] Had this been the case, we
could’ve used and applied their methods to our research to greater
effect.

11.3 Future Directions
One of our future aspirations is to discover or implement a con-
sistent, abstract, and general method to include functionality for
software architecture graphs for provenance tracking to allow de-
velopers to trace changes from a selected baseline. In this way, one
can not only visualize provenance tracking for architecture but
also have added versatility when working with a project for a team.
Rather than always starting at a consistent and immutable base
graph, with the ability to import and update the base graph, we be-
lieve that this would drastically improve productivity. Additionally,
with the functionality of provenance tracking for a given project,
the history of the different architecture graphs would be able to
be traced and replicated at will, ensuring data loss prevention. Ad-
ditionally, another goal is to continue development with existing
open-source tools to try to implement a prototype showcasing the
functionality of the tool withworking on the tracking of provenance
with software architecture graphs. Another goal is to continue the
search for more abstract provenance tracking visualization tools

89

RACS ’22, October 3–6, 2022, Virtual Event, Japan Kaitlynn Burgess, Dante Hart, Amr Elsayed, Tomas Cerny, Miroslav Bures, and Pavel Tisnovsky

that can be applied for software architecture in general or to en-
courage the development of new tools that can be applied to fulfill
the requirements of provenance tracking for software architecture.
Additionally, in the interests of visualizing architecture, provenance
tracking methods could also be utilized for tracking architectural
languages and microservices.[21] A future research goal consists
of an understanding of how provenance tracking could be applied
to help visualize microservice architecture as well.

12 CONCLUSION
In this paper, we investigated how varying tools use provenance
tracking to trace visual changes in data and how this applies to
architecture evolution.We address the specifics of provenance track-
ing used to track changes in a given architecture and how to trace
changes from a selected baseline. Furthermore, we discuss issues
that pertain to architecture evolution, namely maintaining large
data sets, the capacity of history storage, and the ability to have
version history.

Visualizing architecture via provenance tracking can improve
project design analysis and prevent software degradation for a soft-
ware architecture-based system by introducing provenance not
just on data within the architecture, but the architecture itself. In
this way, an architecture system’s evolution can be mapped and
documented for posterity. Utilizing more abstract and versatile
tools, such as Trrack, Prov Viewer, and VisTrails, one can help
monitor software architectural evolution over time. However, cur-
rent support and availability for such software functionality are
slim, with some tools either still in beta releases or support ended
altogether.[2, 20] Such all-encompassing functionality described
previously is not standard for other provenance tools, and it would
be beneficial for this field if more options were available or if exist-
ing tools were continued to be developed.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1854049 and a grant from Red Hat
Research https://research.redhat.com.

REFERENCES
[1] Idrees Ahmed, Abid Khan, Mansoor Ahmed, and Saif ur Rehman. [n. d.]. Order

preserving secure provenance scheme for distributed networks. 82 ([n. d.]),
99–117. https://doi.org/10.1016/j.cose.2018.12.008

[2] L. Bavoil, S.P. Callahan, P.J. Crossno, J. Freire, C.E. Scheidegger, C.T. Silva, and
H.T. Vo. [n. d.]. VisTrails: enabling interactive multiple-view visualizations. In VIS
05. IEEE Visualization, 2005. (2005-10). 135–142. https://doi.org/10.1109/VISUAL.
2005.1532788

[3] Elisa Bertino, Gabriel Ghinita, Murat Kantarcioglu, Dang Nguyen, Jae Park, Ravi
Sandhu, Salmin Sultana, Bhavani Thuraisingham, and Shouhuai Xu. [n. d.]. A
roadmap for privacy-enhanced secure data provenance. 43, 3 ([n. d.]), 481–501.
https://doi.org/10.1007/s10844-014-0322-7

[4] C. Bier. [n. d.]. How usage control and provenance tracking get together - A data
protection perspective. 13–17. https://doi.org/10.1109/SPW.2013.24

[5] P. Bourhis, D. Deutch, and Y. Moskovitch. [n. d.]. Equivalence-Invariant Algebraic
Provenance for Hyperplane Update Queries. 415–429. https://doi.org/10.1145/
3318464.3380578 ISSN: 0730-8078.

[6] Dai Chaofan, Zhang Ran, Li Pei, Wang Wenqian, and Cao Zewen. [n. d.]. A Mini-
mal Attribute Set-oriented Data Provenance Method. In Proceedings of the Interna-
tional Conference on Big Data and Internet of Thing (2017-12-20) (BDIOT2017). Asso-
ciation for Computing Machinery, 1–5. https://doi.org/10.1145/3175684.3175686

[7] Troy Costa Kohwalter, Felipe Machado de Azeredo Figueira, Eduardo Assis de
Lima Serdeiro, Jose Ricardo da Silva Junior, Leonardo Gresta Paulino Murta, and
Esteban Walter Gonzalez Clua. [n. d.]. Understanding game sessions through
provenance. 27 ([n. d.]), 110–127. https://doi.org/10.1016/j.entcom.2018.05.001

[8] Zach Cutler, Kiran Gadhave, and Alexander Lex. [n. d.]. Trrack: A Library for
Provenance-Tracking in Web-Based Visualizations. In 2020 IEEE Visualization
Conference (VIS) (2020-10). 116–120. https://doi.org/10.1109/VIS47514.2020.00030

[9] Daniel Deutch, Yuval Moskovitch, and Val Tannen. [n. d.]. Provenance-based
analysis of data-centric processes. 24, 4 ([n. d.]), 583–607. https://doi.org/10.
1007/s00778-015-0390-5

[10] Cody Dunne, Nathalie Henry Riche, Bongshin Lee, Ronald Metoyer, and George
Robertson. [n. d.]. GraphTrail: analyzing large multivariate, heterogeneous
networks while supporting exploration history. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2012-05-05). ACM, 1663–
1672. https://doi.org/10.1145/2207676.2208293

[11] R. Genquan, Z. Li, W. Jianmin, and L. Yinbo. [n. d.]. One method for provenance
tracking of product lifecycle data in collaborative service environment. 347–356.
https://doi.org/10.1109/CyberC.2011.62

[12] Sandra Gesing, Malcolm Atkinson, Rosa Filgueira, Ian Taylor, Andrew Jones,
Vlado Stankovski, Chee Sun Liew, Alessandro Spinuso, Gabor Terstyanszky, and
Peter Kacsuk. [n. d.]. Workflows in a dashboard: a new generation of usability.
In Proceedings of the 9th Workshop on Workflows in Support of Large-Scale Science
(2014-11-16) (WORKS ’14). IEEE Press, 82–93. https://doi.org/10.1109/WORKS.
2014.6

[13] Eric Griffis, Paul Martin, and James Cheney. [n. d.]. Semantics and provenance
for processing element composition in dispel workflows. In Proceedings of the 8th
Workshop onWorkflows in Support of Large-Scale Science (2013-11-17) (WORKS ’13).
Association for Computing Machinery, 38–47. https://doi.org/10.1145/2534248.
2534252

[14] Mohamed Oussama Hassan and Henri Basson. [n. d.]. Tracing Software Archi-
tecture Change Using Graph Formalisms in Distributed Systems. In 2008 3rd
International Conference on Information and Communication Technologies: From
Theory to Applications (2008-04). 1–6. https://doi.org/10.1109/ICTTA.2008.4530365

[15] Lianlian He, Peng Yue, Liping Di, Mingda Zhang, and Lei Hu. [n. d.]. Adding
Geospatial Data Provenance into SDI—A Service-Oriented Approach. 8, 2 ([n. d.]),
926–936. https://doi.org/10.1109/JSTARS.2014.2340737 Conference Name: IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16] Jingmei Hu, Jiwon Joung, Maia Jacobs, Krzysztof Z. Gajos, and Margo I. Seltzer.
[n. d.]. Improving data scientist efficiency with provenance. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (2020-06-27)
(ICSE ’20). Association for Computing Machinery, 1086–1097. https://doi.org/10.
1145/3377811.3380366

[17] C. Hänel, M. Khatami, T.W. Kuhlen, and B. Weyers. [n. d.]. Towards Multi-user
Provenance Tracking of Visual Analysis Workflows over Multiple Applications.
23–27. https://doi.org/10.2312/eurorv3.20161112

[18] KarvounarakisGrigoris, GreenTodd J, IvesZachary G, and TannenVal. [n. d.].
Collaborative data sharing via update exchange and provenance. ([n. d.]). https:
//doi.org/10.1145/2500127 Publisher: ACM PUB27 New York, NY, USA.

[19] Barbara Kitchenham, Pearl Brereton, David Budgen, Mark Turner, John Bai-
ley, and Stephen Linkman. [n. d.]. Systematic literature reviews in software
engineering-A systematic literature review. 51 ([n. d.]), 7–15. https://doi.org/10.
1016/j.infsof.2008.09.009

[20] Troy Kohwalter, Thiago Oliveira, Juliana Freire, Esteban Clua, and Leonardo
Murta. [n. d.]. Prov Viewer: A Graph-Based Visualization Tool for Interactive
Exploration of Provenance Data. https://doi.org/10.1007/978-3-319-40593-3_6
Pages: 82.

[21] Luka Lelovic, Michael Mathews, Amr Elsayed, Tomas Cerny, Karel Frajtak, Pavel
Tisnovsky, and Davide Taibi. 2022. Architectural Languages in the Microservice
Era: A Systematic Mapping Study. In Architectural Languages in the Microservice
Era: A Systematic Mapping Study. Association for Computing Machinery, New
York, NY, USA, 8. https://doi.org/10.1145/3538641.3561486

[22] Zitong Li, Xiang Cheng, Lixiao Sun, Ji Zhang, Bing Chen, and Weizhi Meng. [n.
d.]. A Hierarchical Approach for Advanced Persistent Threat Detection with
Attention-Based Graph Neural Networks. 2021 ([n. d.]). https://doi.org/10.1155/
2021/9961342

[23] Cong Liao and Anna Squicciarini. [n. d.]. Towards provenance-based anomaly
detection in MapReduce. In Proceedings of the 15th IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing (2015-05-04) (CCGRID ’15). IEEE
Press, 647–656. https://doi.org/10.1109/CCGrid.2015.16

[24] P. Lüthi, T. Gagnaux, and M. Gygli. [n. d.]. Distributed ledger for provenance
tracking of artificial intelligence assets. 576 LNCS ([n. d.]), 411–426. https:
//doi.org/10.1007/978-3-030-42504-3_26 ISBN: 9783030425036.

[25] Shiqing Ma, Yousra Aafer, Zhaogui Xu, Wen-Chuan Lee, Juan Zhai, Yingqi Liu,
and Xiangyu Zhang. [n. d.]. LAMP: data provenance for graph based machine
learning algorithms through derivative computation. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering (2017-08-21) (ESEC/FSE
2017). Association for Computing Machinery, 786–797. https://doi.org/10.1145/
3106237.3106291

[26] Andrius Merkys, Nicolas Mounet, Andrea Cepellotti, Nicola Marzari, Saulius
Gražulis, and Giovanni Pizzi. [n. d.]. A posteriori metadata from automated
provenance tracking: integration of AiiDA and TCOD. 9, 1 ([n. d.]), 56. https:
//doi.org/10.1186/s13321-017-0242-y

90

https://doi.org/10.1016/j.cose.2018.12.008
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1007/s10844-014-0322-7
https://doi.org/10.1109/SPW.2013.24
https://doi.org/10.1145/3318464.3380578
https://doi.org/10.1145/3318464.3380578
https://doi.org/10.1145/3175684.3175686
https://doi.org/10.1016/j.entcom.2018.05.001
https://doi.org/10.1109/VIS47514.2020.00030
https://doi.org/10.1007/s00778-015-0390-5
https://doi.org/10.1007/s00778-015-0390-5
https://doi.org/10.1145/2207676.2208293
https://doi.org/10.1109/CyberC.2011.62
https://doi.org/10.1109/WORKS.2014.6
https://doi.org/10.1109/WORKS.2014.6
https://doi.org/10.1145/2534248.2534252
https://doi.org/10.1145/2534248.2534252
https://doi.org/10.1109/ICTTA.2008.4530365
https://doi.org/10.1109/JSTARS.2014.2340737
https://doi.org/10.1145/3377811.3380366
https://doi.org/10.1145/3377811.3380366
https://doi.org/10.2312/eurorv3.20161112
https://doi.org/10.1145/2500127
https://doi.org/10.1145/2500127
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1007/978-3-319-40593-3_6
https://doi.org/10.1145/3538641.3561486
https://doi.org/10.1155/2021/9961342
https://doi.org/10.1155/2021/9961342
https://doi.org/10.1109/CCGrid.2015.16
https://doi.org/10.1007/978-3-030-42504-3_26
https://doi.org/10.1007/978-3-030-42504-3_26
https://doi.org/10.1145/3106237.3106291
https://doi.org/10.1145/3106237.3106291
https://doi.org/10.1186/s13321-017-0242-y
https://doi.org/10.1186/s13321-017-0242-y

Visualizing Architectural Evolution via Provenance Tracking: A Systematic Review RACS ’22, October 3–6, 2022, Virtual Event, Japan

[27] Sudha Ram and Jun Liu. [n. d.]. A Semantic Foundation for Provenance Manage-
ment. 1, 1 ([n. d.]), 11–17. https://doi.org/10.1007/s13740-012-0002-0

[28] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. [n. d.]. Software
provenance tracking at the scale of public source code. 25, 4 ([n. d.]), 2930–2959.
https://doi.org/10.1007/s10664-020-09828-5

[29] Marten Sigwart, Michael Borkowski, Marco Peise, Stefan Schulte, and Stefan
Tai. [n. d.]. Blockchain-based Data Provenance for the Internet of Things. In
Proceedings of the 9th International Conference on the Internet of Things (2019-10-
22). ACM, 1–8. https://doi.org/10.1145/3365871.3365886

[30] Jianwu Wang, Daniel Crawl, Shweta Purawat, Mai Nguyen, and Ilkay Altintas.
[n. d.]. Big data provenance: Challenges, state of the art and opportunities. In
2015 IEEE International Conference on Big Data (Big Data) (2015-10). 2509–2516.
https://doi.org/10.1109/BigData.2015.7364047

[31] David Wilkinson, Luís Oliveira, Daniel Mossé, and Bruce Childers. [n. d.]. Soft-
ware Provenance: Track the Reality Not the Virtual Machine. In Proceedings of
the First International Workshop on Practical Reproducible Evaluation of Computer
Systems (2018-06-11). ACM, 1–6. https://doi.org/10.1145/3214239.3214244

[32] Byron J. Williams and Jeffrey C. Carver. [n. d.]. Characterizing software architec-
ture changes: A systematic review. 52, 1 ([n. d.]), 31–51. https://doi.org/10.1016/

j.infsof.2009.07.002
[33] Yinjun Wu, Val Tannen, and Susan B. Davidson. [n. d.]. PrIU: A Provenance-

Based Approach for Incrementally Updating Regression Models. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data (2020-
06-11) (SIGMOD ’20). Association for Computing Machinery, 447–462. https:
//doi.org/10.1145/3318464.3380571

[34] Yulai Xie, Dan Feng, Xuelong Liao, and Leihua Qin. [n. d.]. Efficient monitoring
and forensic analysis via accurate network-attached provenance collection with
minimal storage overhead. 26 ([n. d.]), 19–28. https://doi.org/10.1016/j.diin.2018.
05.001

[35] Mingda Zhang, Peng Yue, ZhaoyanWu, Danielle Ziebelin, Huayi Wu, and Chenx-
iao Zhang. [n. d.]. Model provenance tracking and inference for integrated
environmental modelling. 96 ([n. d.]), 95–105. https://doi.org/10.1016/j.envsoft.
2017.06.051

[36] Nan Zheng and Zachary G. Ives. [n. d.]. Compact, tamper-resistant archival
of fine-grained provenance. 14, 4 ([n. d.]), 485–497. https://doi.org/10.14778/
3436905.3436909

91

https://doi.org/10.1007/s13740-012-0002-0
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1145/3365871.3365886
https://doi.org/10.1109/BigData.2015.7364047
https://doi.org/10.1145/3214239.3214244
https://doi.org/10.1016/j.infsof.2009.07.002
https://doi.org/10.1016/j.infsof.2009.07.002
https://doi.org/10.1145/3318464.3380571
https://doi.org/10.1145/3318464.3380571
https://doi.org/10.1016/j.diin.2018.05.001
https://doi.org/10.1016/j.diin.2018.05.001
https://doi.org/10.1016/j.envsoft.2017.06.051
https://doi.org/10.1016/j.envsoft.2017.06.051
https://doi.org/10.14778/3436905.3436909
https://doi.org/10.14778/3436905.3436909

	Abstract
	1 Introduction
	2 Paper Organization
	3 Background
	4 Mapping Study Method
	4.1 Author Country of Origin

	5 Query Analysis Results
	5.1 Modeling Architectural Trends

	6 PAPER CATEGORIZATION
	7 Visualization Methodology
	7.1 Data Management

	8 Provenance Visualization Tools
	9 RESEARCH QUESTION ANSWERS
	10 Threats to Validity
	11 Discussion and Future Directions
	11.1 Importance of Security
	11.2 Lack of Generalization
	11.3 Future Directions

	12 Conclusion
	Acknowledgments
	References

