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1. Introduction

1.1. Lie Groups

Hopf proved that the cohomology of a real connected compact Lie group G is a free
exterior algebra on r = rank(G) generators of odd degree [12]. Its Poincaré series is
therefore given by

T

Hilb(H* (G);q) = [ (1 +¢%+). 1)

i=1

Chevalley presented these e; for the exceptional simple Lie algebras in his 1950 address
at the International Congress of Mathematicians [8], and Coxeter recognised them
from previous work with real reflection groups [10]. This observation has led to deep
relationships between the cohomology of G and the invariant theory of the corresponding
Weyl group W = Ng(T')/T, where T is a maximal torus in G [18, 17] — notably,

w

H*(G) ~ (H*(G/T) x H*(T))" ~ (S(V*)/va ®/\v*)
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2 C. E. Arreche and N. F. Williams

where V' = Lie(T) is the reflection representation of W, S(V*) is the algebra of polynomial
functions on V and IITV is the ideal generated by the W-invariant polynomials in S(V*)
with no constant term. For more details, we refer the reader to the wonderful survey [3].

1.2. Complex Reflection Groups

It turns out that the e; in Equation (1) can be computed from the generating function for
the dimension of the fixed space fix(w) := dim(ker(1 —w)) for w € W, via the remarkable
formula:

T

S ¢ = (g+e0)- (2)

weWw i=1

Shephard and Todd verified case by case that the same sum still factors when W
is replaced by a finite complex reflection group G C GL(V) acting by reflections on a
complex vector space V of dimension r [19, Theorem 5.3]. The e; are now determined by
the degrees d; of the fundamental invariants of G on V as e; =d; — 1. A case-free proof
of this result was given by Solomon in [20], mirroring Hopf’s result: (S(V*)® /\V*)G is
a free exterior algebra over the ring S(V*)¢ of G-invariant polynomials, which gives a
factorisation of the Poincaré series of the G-invariant differential forms

Hﬂb((S(V*)@/\V*)G;W) —Hlltl;‘fl (3)

i=1

Computing the trace of the projection \quzgec;g to the subspace of G-invariants on
S(V*)@ A V™, specialising to u = ¢(1 —x)—1 and taking the limit as x — 1 gives the
Shephard-Todd result in Equation (2).

1.3. Galois twists and cohomology

More generally, the fake degree of an m-dimensional simple G-module M is the polynomial
encoding the degrees in which M occurs in the coinvariant algebra S(V*)/IZ ~ Cg:

fu(@) =) ((Ca)iM)q' = qui(M)~ (4)

K2

The fake degree of a reducible G-module is defined as the sum of the fake degrees of its
simple direct summands. The integers e;(M) in Equation (4) are called the M-exponents
of G.

Letting (¢ denote a primitive |G|th root of unity, for o € Gal(Q({s)/Q) the Galois
twist V¢ is the representation of G obtained by applying o to its matrix entries. In [16],
Orlik and Solomon gave a beautiful generalisation of Equations (2) and (3) that takes
into account these Galois twists (see Section 2.3).
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Normal Reflection Subgroups of Complex Reflection Groups 3

Theorem 1.1 ([16, Thm. 3.3]). Let G C GL(V) be a complex reflection group of rank r
and let 0 € Gal(Q(¢¢)/Q). Then

Z H 11—_)\);((99))" qﬁxv(g):H(q—i—ei(V”))a

g€G \ \i(g9)#1 i=1

where the X\;(g) are the eigenvalues of g € G acting on V.

When o : (g + (g is complex conjugation, Orlik and Solomon [16, Thm. 4.8] further
connected their Theorem 1.1 to the cohomology of the complement of the corresponding
hyperplane arrangement — in this case V? ~ V* as a G-representation, and the co-
exponents e;(V*) are the degrees of the generators of the cohomology ring of the
complement of the hyperplane arrangement.

1.4. Normal Reflection Subgroups of Complex Reflection Groups

Let G C GL(V) be a complex reflection group. We say that N < G is a normal reflection
subgroup of G if it is a normal subgroup of G that is generated by reflections. The
main theorem of this article, Theorem 1.4, gives a new refinement of Theorem 1.1 to
accommodate a normal reflection subgroup. The following result is a special case of [4],
where they consider the more general notion of bon sous-groupe distingué in lieu of our
normal reflection subgroup N of G.

Theorem 1.2. Let G C GL(V) be a complex reflection group and let N I G be a
normal reflection subgroup. Then G/N = H acts as a reflection group on the vector space

V/N = E.

The bons sous-groupes distingués of [4] are precisely those normal subgroups for which
the associated quotient group is a reflection group acting on the tangent space at 0 of
V/N, which is a strictly weaker condition than being a normal reflection subgroup. Our
proof of Theorem 1.2 in Section 3 follows the ideas of [4] but specialised to our more
restricted setting where the normal subgroup under consideration is actually a normal
reflection subgroup. In this more restricted setting, we are able to prove the new results
Theorems 1.3 and 1.4 stated below.

The technical definition of the G-module UY that mediates the statement of the
following result is given in Definition 2.9. Because we are dealing with multiple reflection
groups acting on multiple spaces, we will begin labelling exponents and degrees by their
corresponding groups.

Theorem 1.3. Let G C GL(V) be a complex reflection group and let N <G be a normal
reflection subgroup. Let H=G/N and E=V/N. Then for a suitable choice of indexing
we have
e (V7)+e (U7) =€ (V)
el (B7) = ef (B7)

dN . d7 = 49,
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4 C. E. Arreche and N. F. Williams

In the special case o =1, it is well known that UY ~ E as G-modules (see Definition
2.9 and Lemma 4.1), so that Theorem 1.3 coincides with [1, Theorem 1.3] in this case.
As we explain in Remark 4.2, in this special case where o = 1, the equalities in Theorem
1.3 are compatible with the relations d; = e; + 1 between classical exponents and degrees
for the three reflection groups involved.

An essential tool in our proof of Theorem 1.3 is Proposition 3.3, which gives a graded
G-module isomorphism Cg ~ Cy ® C relating the spaces of harmonic polynomials for N
and H to that for G, which is an interesting and useful result in its own right.

Our Theorem 1.4 generalises the Orlik-Solomon formula from Theorem 1.1 to take into
account the additional combinatorial data arising from a normal reflection subgroup. The
technical definition of the G-module UY is again given in Definition 2.9.

Theorem 1.4. Let G C GL(V) be a complex reflection group of rank v and let N < G be
a normal reflection subgroup. Let E =V /N and o € Gal(Q((¢)/Q). Then for a suitable
choice of indexing we have

1-N\ 7 ix x : o
2| I 1—)\((9)) g @@ = T (gt +e (V) +ef(U))),
g€EG \ \i(g9)#1 i\g i=1

where the A\;(g) are the eigenvalues of g € G acting on V.

In view of Theorem 1.3, specialising to t = 1 recovers Theorem 1.1. Moreover, because
UN ~ E as G-modules when o =1 (see again Definition 2.9 and Lemma 4.1), Theorem
1.4 coincides with [1, Theorem 1.5] in this case, which when similarly specialised to t =1
recovers Equation (2). As explained in Remark 4.12; one can also recover Theorem 1.1
for the reflection group N from Theorem 1.4 by applying %% on both sides. In the
special case 0 = 1, one can recover Equation (2) for the reflection group H by specialising
Theorem 1.4 to ¢ =1 and dividing by |N| on both sides, but this same specialisation
does not seem to be directly related to Theorem 1.1 for H in general for arbitrary o €
Gal(Q((6)/Q)-

Our proof of Theorem 1.4 follows a strategy similar to the one employed in [16]: we
compute the Poincaré series for (S(V*)® A (UN)*)¢ in two equivalent and standard
ways and then obtain Theorem 1.4 from a well-chosen specialisation. However, a delicate
technical issue arises in that our specialisation does not provide the correct contribution
term by term in the left-hand side of Theorem 1.4. We overcome this technical difficulty
by applying the results of [7], where the authors develop a ‘twisted invariant theory’ for
cosets Ng of a reflection group N C GL(V) for g € GL(V) an element of the normaliser of
N in GL(V). Our proof of Theorem 1.4 applies the results of [7] to the special situation
where the cosets Ng all come from g € G, a reflection group containing N as a normal
reflection subgroup, to show that our specialisation argument does provide the correct
contribution coset by coset.

In summary, we have applied results and insights from [7, 4] in the development of
new results in the invariant theory for complex reflection groups G taking into account
the additional combinatorial data arising from normal reflection subgroups N < G and
their corresponding reflection group quotients H = G/N. The setting of [4] considers
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Normal Reflection Subgroups of Complex Reflection Groups b)

more general N (their bons sous-groups distingués), whereas the setting of [7] considers
more general cosets Ng (for arbitrary ¢ in the normaliser of N). The general study of
normal reflection subgroups initiated in this article is both natural, because it lies in the
intersection [4]N[7], as well as productive, as evidenced, for example, by Theorems 1.3
and 1.4, the graded G-module isomorphism Cg ~ Cy ® Cy of Proposition 3.3 and the
ancillary results in Section 3 relating the amenability of different modules with respect
to the groups G, N, and H.

1.5. Organisation

We recall standard results about complex reflection groups in Section 2. In Section 3,
we introduce normal reflection subgroups and prove ancillary results, relating spaces of
harmonic polynomials and amenability with respect to different reflection groups. We
prove the main results stated in the Introduction, Theorems 1.3 and 1.4, in Section 4.
In Section 5 we recall the case-by-case results of [22] and discuss how they are obtained
in a case-free manner by the methods of the present article. In Section 6 we provide
a complete classification of the normal reflection subgroups of the irreducible complex
reflection groups. Finally, in Section 7 we give several examples that illustrate our general
results.

2. Invariant Theory of Reflection Groups

Let V be a complex vector space of dimension r. A reflection is an element of GL(V')
of finite order that fixes some hyperplane pointwise. A complezx reflection group G is a
finite subgroup of GL(V') that is generated by reflections. A complex reflection group G is
called irreducible if V is a simple G-module; V is then called the reflection representation
of G. A (normal) reflection subgroup of G is a (normal) subgroup that is generated by
reflections. In what follows, a G-module will always be a complex representation of G.

2.1. Chevalley-Shephard-Todd’s Theorem

Let S(V*) be the symmetric algebra on the dual vector space V*, and write S(V*)¢
for its G-invariant subring. By a classical theorem of Shephard-Todd [19] and Chevalley
[9], a finite subgroup G C GL(V) is a complex reflection group if and only if S(V*)¢ is
a polynomial ring, and in this case S(V*)¢ is generated by r algebraically independent

homogeneous polynomials — the degrees dy < --- < d, of these polynomials are invariants
of G.

Theorem 2.1 (]9, 19]). A finite subgroup G C GL(V) is a complex reflection group if
and only if there exist r = dim(V') homogeneous algebraically independent polynomials
G1,...,Gy such that S(V*)¢ = C[G1,...,G,]. In this case, |G| = [[;_, d;, where d; =
deg(Gi).

Let Ig C S(V*) denote the ideal generated by homogeneous G-invariant polynomials
of positive degree. In [9], Chevalley proved that, as an ungraded G-module, S(V*) /Iér
affords the regular representation of G. Because Ig is G-stable, we may choose a
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6 C. E. Arreche and N. F. Williams

G-stable complement Cq C S(V*), so that S(V*) ~ I} ®Cq as graded G-modules, and
Cq is a graded version of the regular representation of G. Chevalley also proved in [9]
that S(V*) ~ S(V*)¥ ®Cq as graded G-modules. A canonical choice for such a G-stable
complement Cg is the space of G-harmonic polynomials [14, Corollary 9.37]; that is,
polynomials in S(V*) that are annihilated by all G-invariant polynomial differential
operators with no constant term [14, Definition 9.35].

Remark 2.2. The space Cg of G-harmonic polynomials is stabilised by the normaliser of
G in GL(V) [14, Proposition 12.2]. This fact will be essential in our treatment of normal
reflection subgroups.

Our choice of notation C for the space of harmonic polynomials, instead of the more
common and natural H used in the literature, is meant to avoid unfortunate phonetic
confusion with the quotient group H = G/N that will play a prominent role in the rest
of the article.

2.2. Solomon’s Theorem

We recall the following celebrated theorem of Solomon.

Theorem 2.3 ([20]). (S(V)®@ AV*)Y is a free exterior algebra over the ring of G-
imvariant polynomials

(S(V*)®AV) ~S(VH)e \US)
where (U%)* = spang {dG1,...,dG,} and dG; = Z;Zl gi ®x; form a free basis for
(S(V¥)@V*)¥ over S(V*)¢

Computing the trace on S(V*)® A V* of the projection to the G-invariants ﬁ Y gecd
gives a formula for the Poincaré series as a sum over the group.

Corollary 2.4 ([20]).

T

, . N det(1+uglv) 142 (Vy
H11b((S(V )®/\V ) ,x,u) @l Zdet T H

izllx

Specialising Corollary 2.4 to u = ¢(1 —x) — 1 and taking the limit as = — 1 gives the
Shephard-Todd formula from Equation (2).

2.3. Orlik-Solomon’s Theorem

The reflection representation V of G C GL(V) can be realised over Q({qz), where (g
denotes a primitive |G|th root of unity, in the sense that there is a choice of basis for V
with respect to which G € GL,.(Q((g)). For o € Gal(Q(()/Q), the Galois twist V° of V
is the representation of G on the same underlying vector space V obtained by applying
o to the matrix entries of g € GL,(Q({g)). Alternatively and equivalently, one can define
V9 by applying & to the matrix entries of g in terms of any basis of V, for ¢ any extension
of ¢ to a field automorphism of C.
In [16], Orlik and Solomon gave the following generalisation of Theorem 2.3.
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Normal Reflection Subgroups of Complex Reflection Groups 7

Theorem 2.5 ([16, Corollary 3.2]).

(sov) ®/\(V")*)G ~ (V)% e \(UF)

where the degrees of the homogeneous generators of (US)* := (Cq ® (Vo)) are ef (V7),
the V9 -exponents of G.

Computing the Poincaré series in two ways as in Corollary 2.4 gives the following
formula.

Corollary 2.6 ([16, Theorem 3.3]).

r

Hilb ((S(V*)@/\(Va>*)G’x’u) |G| Z C(lie(:t 1+u9‘V" H 14 2% (Vo

A-zglv) 23 1 x;'

Specialising Corollary 2.6 to u = ¢(1 —z) — 1 and taking the limit as z — 1 gives
Theorem 1.1.

2.4. Amenable Representations
More generally, an m-dimensional G-module M satisfying 7", e¥ (M) = eF(A™ M)

i=1 €
is called amenable. This amenability condition can be shown to be equivalent to the
requirement that (S(V*)® A M*) be a free exterior algebra over S(V*)¢. Because, in
particular, Galois twists V7 of the reflection representation V of G are amenable, the

following theorem generalises Theorem 2.5.

Theorem 2.7 ([16, Theorem 3.1]). Let M be an amenable G-module. Then

(S(V*)@/\M*) ~S(V)%e \US)",

where (U$)* := (Ca @ M*)Y and the degrees of the homogeneous generators of (US)* are
e$'(M), the M-exponents of G.

K2

From this, one can pursue the usual strategy of computing the Poincaré series of
(S(V*)®@ AM*)% in two different ways to obtain the following.

Corollary 2.8. If M is an amenable G-module, then

, G det(1+ugla) _ [T, (1427 M)
Hib | (S(V® \ANM*) ;zu)= = === .
(( V) /\ ) ) \G| Z det(1—2g|v) H:Zl(l—xj?)

However, it is no longer clear how to specialise Corollary 2.8 in the same way as Corollaries
2.4 and 2.6 to obtain an analogue of Equation (2) and Theorem 1.1 in this generality.

Definition 2.9. Let M be a G-module. We define the Orlik-Solomon space U to be
the dual G-module to (U})* := (Co ® M*)%. In the special case where M =V, we write
U :=U&. When M =V?, we write U := UG, .
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8 C. E. Arreche and N. F. Williams

3. Normal Reflection Subgroups

The following theorem is a special case of results in [4] (where they consider the more
general notion of bon sous-groupe distingué in lieu of our normal reflection subgroup N of
G). We emphasise that our proof follows the ideas in [4], specialised to our more restricted
setting.

Theorem 1.2. Let G C GL(V) be a complex reflection group and let N <G be a
normal reflection subgroup. Then G/N = H acts as a reflection group on the vector space

V/N = E.

Proof. We claim that there exist homogeneous generators Ny, ..., N, of S(V*)¥ such that
E* =spang{Ny,...,N,} is H-stable. By Theorem 2.1, the ring of N-invariants S(V*)" =
(C[Nl, . ,NT] for some homogeneous algebraically independent N;. Let I, C S(V*)N be
the ideal generated by homogeneous N-invariants of positive degree. Then both I and
Ii are H-stable homogeneous ideals, and therefore the algebraic tangent space I/ Ii to
E =V/N at 0 inherits a graded action of H that is compatible with the (graded) quotient
map 7 : I4 — I /1. Hence, there exists a graded H-equivariant section ¢ : I+/If_ —
I,. Letting N; = pon(N;), we see that Ni,...,N, are still homogeneous algebraically
independent generators for S(V*)N with deg(N;) = deg(N;) and E* :=spanc{Ny,...,N,.}
is H-stable.

Let x = {z1,...,2,} denote a dual basis for V and N = {Ny,...,N,} denote an H-
stable basis for E* as above. Because the action of H on the polynomial ring S(E*) =
S(V*)N is obtained from the action of G on S(V*), it preserves x-degrees as well as
N-degrees. Therefore, we may choose the fundamental G-invariants G;(x) € S(V*)¢ =
(S(V)YMH = S(E*)H to be simultaneously x-homogeneous and N-homogeneous, so that
H;(N) := G;(x) form a set of N-homogeneous generators for the polynomial ring S(E*)H.

Because any algebraic relation f(Hy,...,H,) =0 would result in an algebraic relation
f(Gy,...,G,) =0, the N-homogeneous H;(N) must be algebraically independent. By
Theorem 2.1, H is a complex reflection group. O

Remark 3.1. As pointed out in [4, Proposition 3.16] and explained in [7, Section 8.3],
the action of H on E is often not irreducible. Denote by Dy = {dV,...,dN} the set
of degrees d¥ := deg, (N;). For d € Dy, let us write Ny := {N; € N | deg, (N;) = d}
and E :=spancNy, so that E* ~ P cp Ej and S(E*) ~ @ ep, S(E;) as graded H-
modules. For d € Dy, let Hy C GL(E}) denote the image of H in GL(E}), so that H
decomposes as a direct product X deDy H(qy, where each H(g) is a reflection group on
the graded dual E_q of Ej. We see that in fact there exist algebraically independent
(bi)homogeneous polynomials H;(Nyv) € S(Ejy) such that S(E*)H = C[H,,...,H,], so
that the fundamental G-invariants G1,...,G, generating S(V*)¢ = (S(V*)N)H = §(E*)H
can be expressed as

Gi(x) = Hi(Nyy). (5)

Having chosen the fundamental G-invariants G; to have degrees d{ < --- < d%, we
implicitly index the N-degrees d¥ and H-degrees d so that Equation (5) is satisfied.
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Normal Reflection Subgroups of Complex Reflection Groups 9

Remark 3.2. Unlike in the real case [5, 11], H is not necessarily (isomorphic to) a

reflection subgroup of G or even a subgroup of G. A counterexample is given by Gg =
G> N =(G(4,2,2), so that G/N ~ &3 — but &3 is not a subgroup of Gs.

3.1. Harmonic polynomials

The space of N-harmonic polynomials Cy C S(V*) is G-stable [14, Proposition 12.2]
and isomorphic to the regular representation of N [14, Corollary 9.37]. The space of
H-harmonic polynomials Cir C S(E*) is bigraded, by x-degree as well as by N-degree,
and therefore it admits a C-basis of H-harmonic polynomials that are simultaneously x-
homogeneous and N-homogeneous. The following result elaborates on [7, Corollary 8.4]
in our present setting.

Proposition 3.3. There is a graded G-module isomorphism Cg ~Cy ® Cn such that
(Co)N ~Cq as graded H-modules.

Proof. Putting together the isomorphisms S(V*) ~ S(E*) ® Cy as graded N-modules,
S(E*)~ S(E*)? @Cy as bigraded H-modules (equivalently, as bigraded G-modules of N-
invariants) and S(V*)% = S(E*)H | we obtain the isomorphism S(V*) ~ S(V*)¢@Cy @Cy
as graded G-modules. Letting m: S(V*) — S(V*)/IZ denote the canonical projection, we
see that C®Cy ®Cy must surject onto the image S(V*)/I} ~Cg, because S(V*)% is
generated as a C-algebra by the generators of the ideal I g . But this surjection Cy @ Cny —
Co of graded G-modules must then be an isomorphism, because

dimC(CH ®CN) = dlmc(cH)dlm@(CN) = |H‘ . |N‘ = |G| = dlm(c(CG)
Because Cy C S(E*) consists of N-invariants, we have (Cy @Cn )N =Cr® (Cn)N =Cr ®

C, and therefore (Cq)N ~ Cy as graded H-modules, as claimed. O

Remark 3.4. It follows from the graded G-isomorphism S(V*) ~ S(V*)“ @ Cg that the
Poincaré series of C¢ can be written as [9, Theorem B]

Hilb(S(V*);q) 1o 1—q%

H.l . P = )
ilb(Ce;q) Hilb(S(V*)%;q) ,1;[1 1-q

Because |G| =d - --d,, it is natural to ask for a combinatorial interpretation of Hilb(Cg;q)
as a weighted sum over the elements of G. When G is a real reflection group, G acts simply
transitively on the connected components of its real hyperplane complement. Assigning
some base connected component R, to the identity element e € G gives a bijection between
group elements and connected components of the hyperplane complement g <+ R, and
we can define the statistic inv(g) to be the number of inversions of g € G; that is, the
number of hyperplanes separating the connected component R, from R.. In this case the
Poincaré series of Cg has the well-known interpretation (see for example [5, Section 7.1]
or [13, §3])
T 1_— qdiG

Hilb(Caiq) = [[——=>_¢™.

i=1 q geG
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10 C. E. Arreche and N. F. Williams

The graded G-module isomorphism Cg ~ Cx ®Cx of Proposition 3.3 yields a factorisa-
tion

Hilb(Ca:9) = Hilb(Crr3g) - Hilb(C:q) (6)

(bearing in mind that the quotient group H = G/N acts by reflections on the graded vector
space E =V/N as detailed in Remark 3.1, and Cy is endowed with the resulting grading
for Equation (6) to hold). This allows us to produce a combinatorial interpretation for
Hilb(Cg;q) in some additional cases: provided prior combinatorial interpretations

Hilb(Crsq) = Y ¢™*# ™ and Hilb(Cyiq) = Y ¢**~ ™),
heH neN

we can then obtain an interpretation

Hﬂb CG7 qutatc — Z qstatH(h) (Z qstatN(n)> ) (7)

geqG heH neN

We will now illustrate this strategy with two concrete (and scaffolded) examples.
A combinatorial interpretation for Hilb(Cg(4,2,2);q) is obtained from the choice of
normal reflection subgroup

veaman={(, € 9. DG )

which is real and therefore admits the combinatorial interpretation described above in
terms of the inversion statistic Hilb(Cx;q) = 1+ ¢+q+q®> = (1+¢)?. Let us choose the
coset representatives gp € G(4,2,2) for h € H ~ Cy x C3 to be

{ = 1 0 0 1 0 -1 i 0
9(1,1):9(-1,1):9(1,-1):9(-1,-1) §y = o 1)°\i o)\t o) \o .

Then we obtain the interpretation

Hilb(Coa,2,2):0) = 1+¢°)°(1+q)° = Y gtewzalE (8)
9€G(4,2,2)

from Equation (7), because for each h € H the partial sum in Equation (8) over the coset
gn N is given by
Z g2V e x ey (LN () _ (040 | (041 | (041 | 042,
nenN
Z G2V Cax ey (FLFmVN (n) _ 240 4 o241y 241 242
neN
Z q2~inV02Xcz(l,—l)-i-invN(n) _ q2+0+q2+1 +q2+1 +q2+2;
neN
Z G2V e X0y (CL 1)V (n) _ 440 4D pAH] a2
neN
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Normal Reflection Subgroups of Complex Reflection Groups 11

The factor of 2 in 2-inve,xc, above arises from the grading on the reflection
representation E of H ~ Cy x C5 as described in Remark 3.1: in this case we have that
E* =spanc{2? + 12 2y} is homogeneous of degree 2.

We can similarly obtain a combinatorial interpretation for

: 1—¢®\ (1—-¢* “a
Hilb(Cgy;q) = ( 1_qq) ( l—qq ) = Z gt (9) (9)

g€Gy

from the choice of normal reflection subgroup N = G(4,2,2), which has the combinatorial
interpretation Hilb(Cn;q) =3, cn ¢***N (") obtained in the previous example, and H =~
G(6,6,2), which is isomorphic as a reflection group to the dihedral group of order 12 and
is therefore real and admits the combinatorial interpretation

1 1- q2 1— q6 inv
Hllb(CG(&G,z);q) = (1(1) < — Z q G’(6,6,2)(h)_

1—q hEG(6,6,2)

Now given a choice of coset representatives g, € Gg for each h € H ~ G(6,6,2) we can
define, for each g = gpn € gn IV,

statg, (9) = 4-invg(g,6,2) (h) +statg,2,2)(n),

which is seen to satisfy Equation (9). The factor of 4 in 4-inv(g 6,2) above arises from
the grading on the reflection representation E of H ~ G(6,6,2) as described in Remark
3.1: in this case E* = spang{z* + y* 2%y?} is homogeneous of degree 4.

Remark 3.5. It follows from Proposition 3.3 that for any G-module M the (dual) Orlik-
Solomon space (UM)* = (Cx ® M*)N as in Definition 2.9 can be considered as an H-
module or (equivalently) as a G-module of N-invariants.

The following result is useful in determining the Orlik-Solomon space UL in particular
examples (cf. Section 7) up to graded G-module isomorphism.

Lemma 3.6. Let gy : S(V*) = Cny denote the G-equivariant projection onto the space
of N-harmonic polynomials. Let M be a G-module of rank m, and suppose that ty, ..., Upy
form a homogeneous basis for (S(V*)®@ M*)N as a free S(V*)N-module such that
(Uﬁ)* = spang{dy,..., Uy} is G-stable. Then the restriction of the projection ny @1 :
(UNY* = (UN)* is a graded G-module isomorphism.

Proof. Let uy,...,u, be a homogeneous basis for (U})* := (Cy ® M*)N. We may assume
that deg(u;) = e (M) = deg(;) for each i = 1,...,m. Let yy,...,ym be a basis for M*,
and write u; := Z;nzl (Nlij K Y; and u; = Z;nzl Qi QYj, where dij S S(V*) and aij; € Cn
and every nonzero a;; and a;; is homogeneous of degree e (M). Because the @; and
the wu; form bases for (S(V*)® M*)N as a free S(V*)N-module, there exists a matrix
[pij] € GL,, (S(V*)N) such that [a;;] = [pij] - [aij]. Because the kernel of ny : S(V*) — Cn

is precisely the ideal generated by homogeneous N-invariants of positive degree, it

follows that [nn(@i;)] = [pi;(0)] - [ai;], where p;;(0) denotes the evaluation at 0 € V.
Because deg(det|a;;]) = > iv, eN (M) = deg(det[a;;]), it follows that det[p;;] € C*, and
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12 C. E. Arreche and N. F. Williams

therefore [p;;(0)] € GL,,(C). Because ny @ 1 is G-equivariant and (U)* is G-stable,

nn®1: (UN)* — (UN)* is a graded isomorphism of G-modules. O

3.2. Numerology

The following consequence of Proposition 3.3 establishes the first equation of Theorem
1.3 in more generality.

Corollary 3.7. Let M be a G-module and define UL} as in Definition 2.9. For a suitable
choice of indexing we have

er (M) +ef (Unp) = e (M).
Proof. Applying Proposition 3.3, we see that
(Ca@M*)% =~ ((CralyeM* )N = (Cy oy MM = (Cre UN)).

Let m be the rank of M, and let y1, ...,y be a basis of M*. Let af}( € Cn be x-homogeneous
such that ul¥ := >t aly @y, form a basis for (Uf})* with deg, (u)¥) = el (M). Letting
EN = {eN(M),...,elN (M)} denote the set of M-exponents of N, we see that

U=~ @ Wi

ecEl

as an H-module. Therefore, there exist x-homogeneous ag € Cy such that uf =

> alf @ul form a basis for (Cy @ (Ugy)*)™ with deg, (uf') = e (U}) and such that
aji =0 whenever deg, (u}) # (M) (in other words, the [a]] may be chosen to be
square-diagonal corresponding to the graded decomposition of (Uﬁ)*) But then the uf;
form an x-homogeneous basis for (Cq ® M*)% ~ (Cy @ (UN)*)H, and we see that

ef (M) = degy (uf) = e (Un)) + €Y (M). O

3

3.3. Amenability

Recall from Section 2.4 that a G-module M of rank m is called amenable if Y"1~ | e (M) =
G/ AMm

e (A" M).

Remark 3.8. Regardless of whether a G-module M of rank m is amenable, we always
have a natural S(V*)%-linear injective homomorphism
SWVHYRA™(Ce@M*)C — S(V)Y® (Ca @ N"M*)°

in (S(V*)® AM*)%, which identifies \™(Cc ® M*)¢ with a® (Cq ® A" M*)¢ for
some 0 # a € S(V*)¢. The amenability of M as a G-module is therefore precisely the
requirement that a € C be a constant polynomial. For brevity and convenience, we will
summarise this equivalent characterisation of amenability in the following Lemma 3.9 (cf.
[7, Theorem 2.10]).

Lemma 3.9. A G-module M of rank m is amenable if and only if

A" ((Ca@M*)E) ~ (Cqa N"M*)C.
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Normal Reflection Subgroups of Complex Reflection Groups 13

The decomposition Cg ~ Cy ® Cy from Proposition 3.3 and its Corollary 3.7 have
many useful consequences. Although the following result can be proved more directly
by appealing to [7, Corollary 8.7], we provide a full proof.

Lemma 3.10. Let M be an H-module. Then
(i) (Cq@M*)C ~ (CypoM*)H and

(ii) M is amenable as a G-module if and only if M is amenable as an H-module.

Proof. The M-exponents e(M) of G are obtained as the x-degrees of any x-
homogeneous basis for (Cg ® M*), and the M-exponents el (M) of H are analogously
obtained as the N-degrees of any (bi)homogeneous basis for (Cxg ® M*)H. Letting m
denote the rank of M, the exponent .e1 F(A™ M) is the x-degree of a basis element for
(Cc @ N\" M*)¥, and the exponent e (A\™ M) is the N-degree of a basis element for
(Cg @ A\™ M*)H. Because both M and Cy are N-invariant, and Cg ~ Cy ®Cy as graded
G-modules such that (Cq)" ~ Cy by Proposition 3.3, we obtain

(Ce®M*)% = ((Ca@M* )M = ((Co)¥ @ M) = (Cy ® M*)
which establishes (i).

Applying (i) to A" M*, we have that (Co @ A" M*)¢ ~ (Cy @ A" M*)". By Lemma 3.9,
the amenability of M as a G-module and the amenability of M as an H-module are
respectively equivalent to

AN"(Cc@M*)¢) = (Ca@N"M*)¢ and A"((Cxpe@M*))~(Cya \N" M)
which proves (ii). O
Remark 3.11. Because the Orlik-Solomon space U ]Jv\f of Definition 2.9 is trivial as an
N-module, it follows from Lemma 3.10 that UL is amenable as a G-module if and only

if it is amenable as an H-module. From now on we will just say that UZ} is amenable
whenever these equivalent conditions hold.

Proposition 3.12. Let M be a G-module and define ULy as in Definition 2.9.

(i) If M is amenable as a G-module, then U3} is amenable.

(ii) If M is amenable as an N-module and UL is amenable, then M is amenable as a
G-module.

Proof. Let m denote the rank of M. Define the amenability defects

Y _Ze — e (N"M); V—Ze —eN (AT M); and

ni=> el (Un)—eF(A"UN),

i=1
so that M is amenable as a G-module if and only if y =0, M is amenable as an N-module
if and only if v =0 and U}} is amenable as a G-module if and only if = 0. By Lemma 3.10,
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14 C. E. Arreche and N. F. Williams

UJ is also amenable as an H-module if and only if = 0. By [16, Lemma 2.8] (see also
Remark 3.8), in any case we have that ~,v,n > 0.
Let Wi be the dual of (Wi})* := (Cx @ A" M*)N (instead of the more natural but
cumbersome U }\VmM in lieu of W3Y). From Corollary 3.7, we know that
e (M) +ef(Upp) =€ (M) and  ef (\"M) +ef (W) = e (A" M).
Summing the first equation over ¢ = 1,...,m and subtracting the second equation, we
obtain

vn+e (N"UR) =7 +ef (Way). (10)
Consider now the natural inclusion of graded G-modules
SEHNON"(CnoMHN < S(E*)® (Cy N M*)N

in (S(V*)®@ AM*)N, which identifies A™ (ULy)* with a® (W1Y)* as graded G-modules for
some x-homogeneous a € S(E*) with deg,(a) =v (cf. Remark 3.8). From this it follows
that e (A" UN) +v > ef (WL), which together with Equation (10) implies that n < ~.
Therefore, if M is amenable as a G-module, then UZ is amenable. If M is amenable
as an N-module, so that v = 0, then we see that A" (UN)* ~ (W2)* as G-modules.
Therefore, ef (A" UN) = ef (W5), and we obtain from Equation (10) that 7 =+ in this
case. Hence, if M is amenable as an N-module and UJ} is amenable, then M is amenable
as a G-module. 0

Remark 3.13. It is not true in general that M being amenable as a G-module implies
that M is amenable as an N-module. For a counterexample, let G = C, = (¢) and N =
Cy = (c®) with a = de, acting on V = C in the standard reflection representation by
¢+ Cq, a primitive ath root of unity. Consider the G-module M := V* @ (V*)®(d=1) 5o
that A’ M ~ (V*)®4. Then e&(M)=1=eN (M) and €5 (M) = d—1 = e} (M). Because
F(N°M) =d=ef(M)+e§ (M), M is amenable as a G-module. However, A>M is
trivial as an N-module, and therefore e (A\° M) =0+ d = e (M) +e) (M), so M is not
amenable as an N-module.

3.4. Poincaré Series

Suppose that M is an amenable G-module of rank m. Then by Proposition 3.12 and
Lemma 3.10, the Orlik-Solomon space U3} of Definition 2.9 is amenable (considered either
as a G-module or as an H-module). Let us again write £ := {eN (M),...,en (M)} for
the set of M-exponents of N. We have a graded G-module decomposition

U= P U

ecEl

from which we obtain more generally a graded G-module decomposition of A? (UL)*:

(/\p(Uﬁ)*)e = spang {uh N A, | ug; € (Uﬁ); with Z;’:lej = e}.
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Normal Reflection Subgroups of Complex Reflection Groups 15

*

This results in an obvious bigrading of A (UZY)
associative algebra S(V*)® A (UN)*.

and a corresponding trigrading of the

Definition 3.14. The trigraded Poincaré series for (S(V*)®@ A (UN)*)€ is
* G e
PG (,y,u) : Z dimg (S(V*)e® (AP (U5)) ).) zlycuP.

l,e,p>0

We will follow the usual strategy of computing this Poincaré series in two different ways
to deduce combinatorial formulas. Let us denote as before df,...,dS the degrees of the
fundamental G-invariants generating S(V*)¢ as a polynomial algebra. Let us index the
M-exponents of N, e (M),...,eN (M), and the ULj-exponents of G, e§'(UL),...,eS (UL),

as in Corollary 3.7, so that e (M) + S (UY) = ef (M).

H (1+g; i U]\/I)y Y (M) )
i=1

Proposition 3.15. P§(z,y,u) =

T

()
j=1

Proof. We proceed as in the proof of Corollary 3.7: let Y1,---,Ym be a basis of M*. Let
af}( € Cy be x-homogeneous such that u? := E;n 1035 N ®@y; form a basis for the e! (M)—
homogeneous component of (UN)*, and choose x-homogeneous %’j € Cyr such that uf :=

E;n 1 ” ®uN form a basis for (Cy ® (UM) (M))H with deg, (uf’) = eiG(Uﬁ) (where
again a/] = 0 whenever deg, (u}) # Y (M)). But then the u$ form an x-homogeneous
basis for (Cx @ (UN)*)H. Because U consists of N-invariants, by Lemma 3.10 we have
that (Co® (UN)*)Y ~ (Cy ® (UY)*)®. By Proposition 3.12, because M is amenable as a
G-module, UL} is amenable. Hence, by Theorem 2.7 we have that

(S(VH)@AUMC =SV @N(Ce® (Usy))©
Because (Cc ® (UN)*)Y ~ spanc{uf,...,u§} and uf € S(V*)es ) ® (UIJ\X):N(M)’ our
result follows. ' O

To simplify notation, for e € £ we denote by (UL). the homogeneous component of
U} corresponding to the dual of (Uf})?, rather than the more natural but cumbersome
graded dual (U)_. instead of our (U)..

eegNdet L+ y ug|(Ugy)e)
det (1 —xzg|V)

Proposition 3.16. P (z,y,u |G| Z

Proof. For g € G, let us write
Ph(ayu)= Y w(glS(V)e® (A" (UN))e)x'y u,

£,e,p>0

so that P (z,y,u) = ﬁ > gec Par(x,y,u) and

P (zyu) = | > tr(glS(V > (gl (AP UR))e)yu?

£>0 e,p>0
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16 C. E. Arreche and N. F. Williams

We know that 3, tr(g[S(V*)¢)a* = det(1 —2zg~|V)~!. On the other hand, because
(UH)* ~ Decer (UN)z, we have that A (U)* ~ Qeeen N (UN)# as bigraded G-modules.
Hence, for each g € G,

> (gl AU )e)yeu” = T | Do te(glA"(UM2)yu?

e,p=0 ecgl \p20

For each e € £Y we have that Zp>0tr(g|/\p(Uﬁ):)yepup =det(1+y°ug | (UL).). Hence,
for each g € G, -
[lecey det(1+y°ug™ |(Up)e)

det(l —xzg—1|V)

Pir(z,y,u) =
Our result follows after taking the average over g € G on each side. O

4. Proofs of the Main Theorems

We are now in a position to apply the results of Section 3 to prove the main results
announced in the Introduction. Fix G C GL(V) a complex reflection group acting by
reflections on the vector space V of dimension r. Let N < G be a normal reflection
subgroup with quotient H = G/N, which acts by reflections on E = V/N. For o €
Gal(Q(¢¢)/Q), where (¢ denotes a primitive |G|th root of unity, write V7 for the Galois
twist of V (as defined in Section 2.3). As in Definition 2.9, we write UY for the dual of
(Cxy ®@V*)N and, more generally, UY for the dual of (Cx @ (V°)*)V.

4.1. Proof of Theorem 1.3

Theorem 1.3. Let G C GL(V) be a complex reflection group and let N <G be a normal
reflection subgroup. Let H=G/N and E =V /N. Then for a suitable choice of indexing
we have

e (Vo) +ef (UF) =€ (V)
dif e (B7) = e (E”)

dN . q7 = 4%,

Proof. The first equality is Corollary 3.7 applied to the G-module M =V and the last
equality follows from the observations in Remark 3.1.

Let us establish the second equality. Let NY,...,NZ denote a basis for (E?)* as a G-
module. We will show that there exist a;; € S(E*) such that u; :=>""_, a;; ® Ny form
an N-homogeneous basis for (Cy ® (E?)*)# (so that each nonzero a;; is N-homogeneous
of N-degree ¢/’ (E7)) and, moreover, a;; = 0 whenever d # d¥ and each a;; € S(Ngy),
where as before N, denotes the set of fundamental N-invariants of degree d. Because
(Ce®(E?)*)Y ~ (Cy @ (E?)*)? by Lemma 3.10, the existence of such a;; will establish
our claim, because each nonzero a;; as above will then be x-homogeneous of x-degree
eG(EB7) = dV -l (E°).
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Normal Reflection Subgroups of Complex Reflection Groups 17

As in Remark 3.1, let us write Dy = {d¥,...,dN} for the set of degrees of N and
E for the graded component of E* spanned by the fundamental N-invariants of degree
d € Dy. To simplify notation, let us write Eq for the graded dual of £, instead of E_g4, so
that E' ~ D cp,, Fa, and similarly the Galois twist £7 ~ P ;. E7. We saw in Remark
3.1 that H decomposes as a direct product X, Dy H gy, where each H (g is a reflection
group acting on Eq and H(g) acts trivially on Ej whenever d # d’. We then see that
S(E*) ~ Quep, S(E;) and each S(Ej;) ~ S(E;)"@ ®Cpy , as H-modules, so that in
particular Cg ~ ®deDN Ch,,, as H-modules, where again H(4) acts trivially on CH(d,) for
d#d'. Tt follows from the above observations that

Xaepy Ha
Cr®(E)* (@ Cr., ® P (EF) ) ~ P (Cu,, @ (EF)")H @,

deDn deDn deDn

so that we may indeed choose a;; € C Hyn)
Hny o .

Z;zlaij ® N7 € (Cu (E" )*)7 @ (ie., with a;; = 0 whenever dY # dN) form a

basis for (Cy ® (E7)* )H that is simultaneously N-homogeneous of N-degree e (E?) and
x-homogeneous of x-degree e (E7) = dY - el (E7). O

C S(E}y) such that the N-homogeneous u; =

@My

When o = 1, the G-module UY in Definition 2.9 admits a more concrete description.

Lemma 4.1 ([7, Example 2.4]). Letn:S(V*) — Cn denote the projection onto the space
of N-harmonic polynomials, and let

d: E* =spanc{Ny,...,N,} = spanc{dNy,...,dN,}

ON;
* O

N; — dN; = Z

Then (n®@1)od: E* — (UN)* is a graded (of degree —1) isomorphism of G-modules.

Remark 4.2. As mentioned in the Introduction, in the case where o = 1, once we replace

e (UN) =ef(E) by Lemma 4.1, the equahtles in Theorem 1.3 are compatible with the
classmal relatlons df =eS(V)+1,dN =eN(V)+1 and df = el (E)+1. To see this, we
proceed as in [1, Theorem 1.3]. We found in Remark 3.1 a ch01ce of N-homogeneous
H-invariants Hi(Ndf\’) = G,(x), a set of fundamental G-invariants as in Equation (5),
immediately resulting in the equality d -df = diG of Theorem 1.3. Let us show that this
same choice of indexing results in the other two equalities of Theorem 1.3. We begin by
comparing x-degrees in

. 0G; B aH OH; ONi
dGi - = 8;10]- 1= ZZ 8Nk 8;1@]

Recall that e (V) = d¥ — 1 = deg, (dG;) and el (V) = dN —1 = deg,(dN;). Similarly,
el (E) = df — 1 = degn(dH;), where now dH e 1 oH: £ ® Ny € (S(E") ® E*)H

K2

Because aHl = 0 whenever deg, (N) # dY, it follows that

SV)y=eNV)+dYN - (dF —1)=eN(V)+dY -1 (E).
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18 C. E. Arreche and N. F. Williams

It remains to show that d - el (E) = ef(E) under this same choice of indexing.

The ef(E) are the x-degrees of a homogeneous basis for (Cq ® E*)¢. By Lemma 3.10,
(Coe®E*)¢ ~ (Cy® E*)H | and therefore the (ny ® 1)(dH;) serve as a homogeneous basis
for (Co ® E*)¢, where ng : S(E*) — Cy denotes the projection onto the space of H-
harmonic polynomials (cf. Lemma 4.1). Hence, for any & such that gHi #0, the ef(E)

Nk
are given by degx(gﬁ;) = (df —1)al.

The proof of the second equality of Theorem 1.3 generalises what is essential in the case
o =1 — where we have explicit bases for the relevant Orlik-Solomon spaces of Definition
2.9 in terms of fundamental invariants (up to a harmless isomorphism as in Lemma 4.1):
{dG;} for (U%)*, {dN;} for (UN)* and {dH;} for (U)* — to the more general situation
where o € Gal(Q({g)/Q) is arbitrary.

Example 4.3. Take G =W (Fy) = Gag, N to be the normal subgroup generated by the
reflections corresponding to short roots (see the proof of Theorem 6.2 for more details),
and o = 1. Then N ~ W (Dy) and G/N ~ W (Az) = &3 acts by reflections on C & C & C?
(trivially on C@® C). Theorem 1.3 corresponds to the identities

(1,5,3,3)+(0,0,4,8) = (1,5,7,11)
(2,6,4,4) - (0,0,1,2) = (0,0,4,8)
(2363434) : (1313233) = (23678712)

Note that the exponents and degrees of N ~ W (D,) must be reordered for the identities
to hold (see Remark 3.1).

Remark 4.4. When o =1, UY ~ E? as G-representations by Lemma 4.1 — but it is not
always the case that UY ~ E° as G-representations for more general o. For example,
take the cyclic groups G = C,>Cyq = N for d|a, with o being complex conjugation. Then
(UN)* = spanc{r ® 2°}, on which G acts trivially. We discuss this in more detail in
Section 7.1. See Section 7 for more examples of explicit identifications of the spaces UXN.

4.2. Proof of Theorem 1.4

Theorem 1.4. Let G C GL(V) be a complex reflection group of rank v and let N <G be
a normal reflection subgroup. Let E =V /N and o € Gal(Q((¢)/Q). Then for a suitable
choice of indexing we have

T

1—-X;(g9)° « N "
S I 55 ) oo [ s e v o£02),
9€G \i(g9)#1 i\g i=1

where the A\;(g) are the eigenvalues of g € G acting on V.

We refer to the left-hand side of Theorem 1.4 as the sum side and to the right-hand side
as the product side. We will prove Theorem 1.4 by computing the limit as x — 1 of the
specialisation y + 2t and u + ¢t(1 —x) — 1 of the trigraded Poincaré series P (z,y,u) :=
P&, (x,y,u) from Definition 3.14 in two different ways to obtain the sum side and the
product side separately.
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Normal Reflection Subgroups of Complex Reflection Groups 19

Proof of Theorem 1.4. By Corollaries 4.5 and 4.11, both sides are equal to lim,_,; |G|-
PE (x,mt,qt(l—x)—l). O

Because M =V is amenable as a G-module (and as an N-module) by [16, Thm. 2.13],
we can apply both Propositions 3.15 and 3.16 in this case to obtain
N N o
Z eegNdet 1+y° ug|(UN) ) PG( ) ﬁ (1—|—33€ ;) yei \% )u)
= €T u)=
G - det (1—zg|V) =1l (1 ,xdc) ’

where EN := {elV(V7),...,eN (V7)) denotes the set of V7-exponents of N as before. The
product side of Theorem 1.4 follows immediately.

Corollary 4.5 (Product side specialisation).

r

lim |G|.7Df(x,xt,qt(1—x)—1>:H(qt+e (VO)t+eC(UN)).

i=1
Proof. We compute:
1+xﬁ Fwl )yci YV
‘Gl H diG y:wt
u=qt(l—z)—1
r—1

= |G| lim

r—1

PO V) h(1 ) 1 — e Ol (V)
+
1—d¢ 1—xd¢

=1

T
=[] (at+e¥ (V)t+ef (UY)). O

i=1
Our argument for the sum side of Theorem 1.4 is more delicate. The reason for this
is that for g € G the fixed space of g acting on U often has larger dimension than the
fixed space of g acting on V7, which causes many terms in the term-by-term limit to be

Zero.

It turns out, as we will now show, that the contributions are correct when taken coset
by coset. For this, let us define for each coset Ng € H=G/N the twisted Poincaré series

Py (w,y,u) = ﬁ Y w(ngl(S(V )@ (N"(UN))e))ay u?,
neN

L,e,p>0

so that PY(z,y,u) = IHI ZNQGH’P 9(z,y,u). The following result is proved along the
same lines as Proposition 3.16 and serves as an equivalent definition of P9 (z,y,u).

[Tocen det (1+uy®(ng)| s
Lemma 4.6. PN9(z,,u) \N| Z ey (ng)l w2 )e)

T de(i=a(ng))
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Proof. For each n € N,

3 (gl (S(VF)e@ (AP (UN))e) )zt

£,e,p>0
Y otelnglS(Vea |- T | Do tr(ngl AP (U Dy P |
£20 ecEN \p>0
and our result follows after taking the average over n € N. O

Definition 4.7. We will adopt the following notation for the rest of this section. Let
g € G. We will denote by A\1(g),...,\-(g) the set of eigenvalues of g on V*. We choose once
and for all: a g-eigenbasis of fundamental N-invariants N; € E* such that deg, (N;) =d¥
and gN; = €/(E)N; and a g- elgenbasm for the Orhk Solomon space (see Definition 2. 9)
ulN € (UN)* such that deg, (ul¥) =elN(V7) and gul = e/ (UN)ulN. We observe as in [7]
that the multisets of pairs

{(ef(E)7de) ‘ i= 17...7r} and {(ef(UéV),efv(VU)) ‘ i= L...,r}

depend only on ¢ and the coset Ng € H and not on the choice of coset representative
ge Ng.

14 eg(UN)uyelN(Va)
Proposition 4.8. PN (x,y,u) = =7
£[1 1—eJ(B)zd

Proof. We write PN9(z,y,u) as in Lemma 4.6. First observe that, because UY is N-
invariant, for any n € N we have that

T

T det(@ +uy(nglwm:)) =[]+ e (U yuyes V),

ecEN i=1

independently of n € V.

Let Dy = {d¥,...,dY} denote the set of degrees for N, and let E = spanc:Ny for
d € Dy, where as before N; denotes the set of fundamental N-invariants having degree
d. Because S(E*) ~ @ cp, S(E), we have that

Sou(glsE))a’ = TT (D (er(glsym (B ))),
£>0 deDn £>0

where S(E*)y := S(E*) N Sym*(V*) = Sym‘(V*)N, and Sym®(V*) denotes the fth
symmetric power of V*. On the other hand,

IT (3 tr(glsym (E2) ")) = 1T G o

deDn >0

T

1
5;)) Hl 1-ed(B)z®

?

Therefore,

Ztr(g\S(E*)g)xé = Hﬁ.

>0 i=11—€ (E)x;"
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Normal Reflection Subgroups of Complex Reflection Groups 21

Because, for n € N,

1
det(1—z(ng

Ztr(ng\Syme(V*))xz =

>0

ve))’

it remains to show that

|N‘ Z (Ztr ng|Sym*(V ) Ztr glS(E™)e

neN (>0 £>0

or, equivalently, that for each £ > 0 we have that
1 * *
W Z (tr(ng|Symé(V ))) :tr(g|S(E )4).
neN

To see this, note that the operator on Syme(V*) given by

|N|Z ng=g- (lle% >=goprév,
ne

neN
where prY’ INI Y nen ™ is the projection from Sym‘(V*) onto its g-stable subspace
Sym*(V*)N = S(E*),, whence tr((gopry )|Sym* (V*) =tr(g|S(E*)e). O

Proposition 4.9 ([7, Theorem 3.1]).

det(1+u(ng)|vey-) 1+¢ (UN)ux7(V) N
= =PI (x,z,u),
|N| Z det(1—(ng)[v-) H 1= I(E)a 7 ¥ (@)

Proof. The first equality is a special case of [7, Theorem 3.1] (where we note that the
change in sign from the —u in their notation to +wu in our notation is harmless), and the
second equality follows directly from Proposition 4.8. O

We obtain the following crucial specialisation of Proposition 4.8, which exploits the
similarity between Proposition 4.9 and Proposition 4.8 and is inspired by [7, Theorem 3.3].

Proposition 4.10. For g € G, with notation as in Definition 4.7,

1-Xi(ng)”
lirn1 |N|-PNg (:L’,xt,qt(l —x)— 1) = (fixe(9) Z H & v (11)
o neN \ X (ng)#1 1 —Ai(ng)

Proof. Let us agree to index the pairs (¢(E),dY) and (e/(UY),eN (V7)) in the multisets
from Definition 4.7 such that e/ (E) =1 for 1<i<fixg(g ) (if fixp(g) #0) and €/ (UN) =1
for 1 <i <fixyn(g) (if fixyy (g9) #0). By Proposition 4.8, the left-hand side of Equation

(11) is

|N|- lim

rz—1

: <ef<U£’>qt(1—x> 2tV - Ut <V">>

Py 1—ed(B)zd 1—ed(B)zd
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22 C. E. Arreche and N. F. Williams

By [7, Proposition 3.2], fixy~ (g) > fixg(g). We will compute the above limit for the partial
products ranging over 1 <i <fixp(g), fixg(g) +1 <i <fixy~(g) and fixyn(g) +1<i<r
separately.

Because €/ (E) =1=¢/(UY) for 1 <i < fixg(g), we have that

o T @)t Ot B gt el (1)

z—=1 4 1—d¥ 1—dd , ay
i=1 i=1 e

Because €] (E) # 1 # €] (UY) for fixyx (9) +1 <@ <, we have that

r 9N ) — 1)t (V) r _ a(IN
i H <1+61(U0)(qt(1 x) 1)3’3 >: H 1-€/(Us .

N
z—1 1—€2(E)x%
i:ﬁxUév (9)+1 i ( ) i:ﬁXU(J;J (9)+1

If the inequality fix;~ (g) > fixp(g) is strict, so that €/ (E) # 1 =€ (UX) for fixg(g)+1 <
i < fixpw (9), then we see that for each such ¢ the limit of the corresponding factor is

. 14 (gt(1—2) - 1)xt€zN(Vg)
lim

z—1 1—6?(E)zdfv

=0.

Therefore, if fixy~ (g) > fixg(g), then (cf. [7, Theorem 3.3])
lim |N|-PN9 (x,zt,qt(l —)— 1) =0.
z—1

On the other hand, if fixyn~ (9) = fixg(g), then (cf. [7, Theorem 3.3])

fixg (9) r

i . pN t ) _ 4fixg(g9) N (y/,0
lim [N PN (w2t qt(1—2) — 1) = %@ TT (g +e¥(v7)) ]
=1 i=fixg(g)+1

In any case, we have shown that the left-hand side of Equation (11) is t82(9) . P(q) for
some P(q) € Clg|]. To conclude the proof, it suffices to compare the left- and right-hand
sides of Equation (11) at ¢ = 1. For this, we observe as in [7, Theorem 3.3] that, as a
consequence of Proposition 4.9 and the arguments of [16, Theorem 3.3] that are now
standard,

T

lim [N]- PN (22001 —2)~1) =3 HM

nen \i=1 1=X(ng)z | |u=q(1-z)-1
rx—1

=S II M ¢V (9

nEN \X;(ng)#1 1-Xi(ng) L

Corollary 4.11 (Sum side specialisation).

. 1-Xi(9)°
.pG t _ _ _ v fixy (g) +fixe(g)
i1_>r111|G| Pg<x,x,qt(1 x) 1)-5 Il T=ni(0) q v\ 9ixelg)
9€G \\i(g9)#1
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Normal Reflection Subgroups of Complex Reflection Groups 23

Proof. Let gl, 91| € G be a full set of coset representatives for G/N = H. Because
PE (z,y,u) = ‘H‘ ZIHl P (2,y,u) and fixg(g;) = fixg(ng;) for any n € N, it follows from
Proposition 4.10 that
|H]|
lim |G| -P¢ (a:,a:t,qt(l —x)— 1) = Z lim |N|- PN (x,xt,qt(l —x)— 1) =
r—1 . 1z~>1
J:

|H]|

_ZtﬁxE(gJ) Z H 1_5\(’”‘9])0 qﬁxv(ngj)

neN \Xi(ngy)£1 1= Ai(ngy)

_ Z M qﬁxv (g)tf:lXE(_‘])7
9€G \Xi(g9)#1 L=X (9)

and our result follows after replacing g with g—*. O

Remark 4.12. As mentioned in the Introduction, the formula of Theorem 1.4 corre-
sponding to the special case 0 = 1 becomes [1, Theorem 1.5]

T

> g™ @ =TT (gt+ e (V)E+ef (E)), (12)
geG i=1

which recovers Equation (2) for the reflection group G by evaluating at ¢t = 1, because E ~
UY as G-modules in this case by Lemma 4.1 and e¥ (V) 4§ (E) = e$ (V') by Theorem 1.3,
as discussed in Remark 4.2.

On the other hand, specialising Equation (12) at ¢ =1 and dividing by |N| on both sides
again recovers Equation (2) but this time for the reflection group H: the sum side follows
from observing that fixgp(Ng) = fixg(g) for every Ng € H. The product side follows from
the equality d - e (E) = ef(E) proved in Theorem 1.3, which is compatible with the
classical identities 1 +el¥ (V) =d¥ and [[;_, dY = |N| by Remark 4.2.

In fact, it is also possible to recover Equation (2) for the reflection group N from
Equation (12). Because H acts faithfully on E, we have N = {g € G | fixg(g) = r},
and therefore applying 2 = atr to the sum-side of Equation (12) recovers the sum side of
Equation (2) for N. That the analogous result obtains for the product side follows from

the well-known higher Leibniz rule for the Hasse-Schmidt derivations 50 = , a 3 which
yield
5 (H(threr(V)tJre?(E))) = H5(1)(qt+efv( )+ S _ H g+eN
i=1 i 4t

Similarly, as we mentioned in the Introduction, for arbitrary o € Gal(Q((¢)/Q) the
formula of Theorem 1.4

s 11 1-Xi(g)” qﬁxv(g)tﬁXE(g):ﬁ(qt+e (VOt+ef(Uy)  (13)

9€G \ Ni(g)#1 1-2i(g) i=1
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24 C. E. Arreche and N. F. Williams

recovers Theorem 1.1 by evaluating at ¢ = 1, because el¥ (V) +ef(UN) = eF(V7) by
Theorem 1.3. The above arguments also show that we recover Theorem 1.1 for the
reflection group N again by applying %g—; to both sides of Equation (13).

It would be desirable to recover Theorem 1.1 for the reflection group H from
Theorem 1.4 in analogy with the case o =1, by evaluating Equation (13) at ¢ =1
and dividing by |N| on both sides. But in this case we obtain something else: letting
g1,---,91m] € G be a full set of coset representatives for H = G/N, evaluating Equation

(13) at ¢ =1 yields

|H| r

S I 20T ) st Z TN (V) + i+ S @)),

j=1 \nen \x;(ng;)#1 1= Xi(ng;) i=1

which does not immediately compare to the statement of Theorem 1.1 for the reflection

group H:
|H| gli -
1—€eV(E)®
I ﬁf() ts) = T](t+ef (E%)),
]Zzl 95 ()1 1-&”(E) i=1

where compatibly with Definition 4.7 the Eigj (E) denote the eigenvalues of g; € G acting
on FE.

5. Reflexponents revisited

Fix G a complex reflection group of rank r with reflection representation V. Call an
r-dimensional representation M of G factorising if M has dimension r and

S @) =TT (qt +(eC (V) —my)t + m)
e i=1

for some nonnegative integers my,...,m,. More generally, call a representation M of G
of dimension dim M < r factorising if it is factorising in the above sense after adding in
r—dim M copies of the trivial representation.

A case-by-case construction of a factorising representation My, associated to an
arbitrary orbit of reflecting hyperplanes H was presented in [22], with two unexplained
exceptions. These factorising representations further restricted to the reflection represen-
tation of a parabolic subgroup supported on H. We can now give a uniform explanation for
those ad hoc identities, including the two exceptions left unexplained in [22, Section 5.1].

Let H be an orbit of hyperplanes, write Ry for the set of reflections fixing some H € H
and let Ny = (Ry) be the subgroup generated by reflections around hyperplanes in H.
Because these reflections form a conjugacy class in G, Ny is a normal reflection subgroup
of G. Furthermore,

(i) the quotient G/N3 acts by reflections on the vector space of Ny-orbits My,
(ii) this G-representation My is factorising by Theorem 1.4 and
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Normal Reflection Subgroups of Complex Reflection Groups 25

(iii) the mysterious indexing of the reflexponents (i.e., the e (M) left unexplained in
[22] is now explained in Remark 3.1.

Corollary 5.1. For H an orbit of hyperplanes and N3y = (Ry), the representation My
is factorising.

We can also explain the two exceptional factorising representations from [22]:

e TFollowing the conventions of [15], G = G153 = (s,t,u) was observed in [22,
Section 5.1] to have a 2-dimensional representation with the factorising property.
The group N = (gsg~!: g € G) (fixing the conjugacy class H,) is a normal subgroup
isomorphic to G(4,2,2) and the quotient G/N ~ W (Ay) ~ &3 gives the unexplained
2-dimensional factorising representation in this case.

e For G = G(ab,b,r) = (s,ta,th,ts,...,t,) with a,b > 1 and r > 2, we can take N =
(9sg~':g € G). N is a normal subgroup of G isomorphic to (C,)" (it consists
of diagonal matrices whose diagonal entries are ath roots of unity). The quotient
G/N ~ G(b,b,r) gives the unexplained r-dimensional factorising representation in
[22, Section 5.2].

6. Classification of Normal Reflection Subgroups

In this section, we state the classification of normal reflection subgroups of irreducible
complex reflection groups.

Recall that G(ab,b,r) is given in its standard reflection representation as the set of r xr
monomial matrices whose every nonzero entry is an (ab)th root of unity and in which the
product of the nonzero entries is an ath root of unity. The following theorem identifies
the normal reflection subgroups of the infinite family G(ab,b,r).

Theorem 6.1 ([14, Chapter 2]). Fiz positive integers a and b, and let a = de.
For rank r =1, G(ab,b,1) = C,, has normal subgroups and quotients

(la) Cp/Cy~=C..
For rank r =2, the normal subgroups and quotients are

(2.a) G(ab,b,2)/(Cy)? ~ G(eb,b,2),

(2.b) G(ab,b,2)/G(ab,db,2) ~ Cy,

(2.c) G(2ab,2d,2)/G(ab,a,2) ~ Csy x C,.
For rank r > 3, the normal subgroups and quotients are

(r.a) G(abb,r)/(Cq)" ~ G(eb,b,r) and

(r.b) G(ab,b,r)/G(ab,db,r) ~ Cj.

In cases (r.a) for r > 1, the polycyclic group N = (Cy)" is included in G as diagonal
matrices with each nonzero entry a dth root of unity. In cases (r.b) for r > 2, the
normal reflection subgroup N = G(ab,db,r) is included in G via its standard reflection

representation on C”. In case (2.c), the normal reflection subgroup N = G(ab,a,2) occurs
twice in G = G(2ab,2d,2): once via its standard reflection representation, and once as the
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group generated by the reflections {diag(¢F,1), diag(1,¢F) | k=1,...,b—1} (when b# 1)
along with the reflections

0 2k—1
{( —2k+1 2ab > ‘k—O,,ab—l}
2ab 0

Independent of the factorization a = de, these two copies of N are conjugate in GL2(C) by
the matrix diag(1,{2qp), which normalizes G. There are other coincidences in rank r = 2
where G contains several copies of ‘the same’ normal reflection subgroup N, related to the
well-known isomorphisms G(4,4,2) ~ G(2,1,2) and G(2,2,2) ~ Cy x C (see [14, Example
2.11)). For example, G(4,2,2) contains the dihedral group of order 8 as a normal reflection
subgroup in three different ways: G(4,4,2) in one way as case (2.b) and G(2,1,2) in two
ways as case (2.c). Similarly, G(4,2,2) contains Cy x Cy in three ways: (C2)? in one way
as case (2.a) and G(2,2,2) in two ways as case (2.c).

The exceptional (that is, primitive) irreducible complex reflection groups G and their
normal reflection subgroups N are listed in Table 1. This classification was computed
with Sage [21] using the code available at [2]. Most examples occur in rank r = 2. In rank
r > 3, every reflection has order 2 or 3 [14, Theorem 8.4] and the only exceptional groups
with more than a single orbit of reflections are Gag and Gag [14, Table D.2], which leads
to the four nontrivial exceptional examples listed in Table 1 in rank r > 3.

An isomorphism type of N is unique up to conjugation in GL,(C) sending isomorphic
normal reflection subgroups to each other while stabilising the reflection representation
of G. In fact, there are only two instances in the exceptional groups (G5>Gy and Gogi>
((2,2,4)) where an isomorphism type appears as a normal subgroup more than once. We
gather the situations where the same isomorphism type of N occurs more than once as a
normal reflection subgroup of G in the following result, where N(;) denote the different
isomorphic copies of the same normal reflection subgroup N <G.

Theorem 6.2. Suppose that G is an irreducible complex reflection group admitting

normal reflection subgroups Ny,...,Nqy) for k> 2 that are pairwise isomorphic (as
abstract groups) but not equal in G. Then k € {2,3} and the normaliser of G in GL(V)
permutes {Ny,...,Ny} transitively under conjugation. Moreover, precisely one of the

following possibilities occurs:

(1) G =G(4,2,2) and there are k = 3 different normal reflection subgroups isomorphic
to the dihedral group of order 8:
(a) Nay=G(2,1,2) as in Theorem 6.1(2.c);
(b) N(z) = diag(1, —1) - N - diag(L,i);
(c) Ny =G(4,4,2) as in Theorem 6.1(2.b).
(2) G =G(4,2,2) and there are k =3 different normal reflection subgroups isomorphic
to the Klein 4-group:
(a) Ny =G(2,2,2) as in Theorem 6.1(2.c);
(b) N(2) = diag(1, —1) - N - diag(L,i);
(¢) Nigy=(C2)? as in Theorem 6.1(2.a).
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TABLE 1. The exceptional groups, their nontrivial normal reflection subgroups and the corresponding
quotient reflection groups.

N a normal reflection subgroup of G

G List of pairs H the quotient G/N
Gy | Gy
Gs o | s
G G4 | G(4,2,2)
6 Cs Cs
a Gs | Gg | G(4,2,2)
T Cg Cg Cg X Cg
G(4,2,2)
Gs G(1.1.3)
G GS G12 G13 G(47272)
? Cy | Cy | Cy | G(6,6,2)
G Gs | Gy | Gs | G(4,2,2)
10 Cy| Cy | C3 | G(3,1,2)
G Gs G~ Gs |Gy |G| Gi2 Gz |Gu|Gis | G(4,2,2)
M Oy xCy | CaxCy | CoxC3 | Cs| Co |CaxCy|CsxCo| Cy | Cy | G(6,2,2)
G i G12 G(4a272)
13 Cy | G(1,1,3)
Gs | Gi2
G14 02 03
G Gs Gr G2 Gi3 | Gua | G(4,2,2)
15 CoxCy | Cy | CaxCs| C3 | Cy | G(3,1,2)
Gis | Gao
Gha Cy | Cs
Gi6 | Gao
Gis o | oo
a Gis Gi7 | Gis Gao G Gao
9 CoxCs | Cy | Cy | CoxCs | C5 | C3xCs
Gao | Gaz
Gar Cy | C3
G G(3v373) G25
26 G4 02
a G(2,2,4) | G(2,2,4)
2 G(1,1,3) | G(1,1,3)

(3) G=G(2ab,2d,2) # G(4,2,2) with d a factor of a and there are k =2 different normal
reflection subgroups isomorphic to G(ab,a,2):
(a) Nay=G(ab,a,2) as in Theorem 6.1( 2.c);

(b) Nz = diag(1,(yp) - Ny - diag(1,¢aap)-
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(4) G =G5 and there are k=2 different normal reflection subgroups isomorphic to Gy.

(5) G = Gas and there are k =2 different normal reflection subgroups isomorphic to
G(2,2,4).

Proof. By Theorem 6.1 and Table 1, the possibilities above are exhaustive, and it is clear
that they are mutually exclusive.

It remains to show that any two isomorphic normal reflection subgroups of G are
conjugate under an element of the normaliser of G. In every situation listed above, except
for G = Gag, we can find a complex reflection group W that contains G as a normal
reflection subgroup (in its standard reflection representation) but that does not contain
(the isomorphism type of) N as a normal reflection subgroup. Because there are at most
three isomorphic copies of N in each case, they must then form a single conjugacy class
in W.

In cases (1) and (2), we can take W to be any of Gg, G7, Gs, Go, G10, G11, G13 or
G15 because all of these contain G = G(4,2,2) as their only imprimitive normal reflection
subgroup according to Table 1.

In case (3), we can take W = G(2ab,1,2), which contains G = G(2ab,2d,2) as a normal
reflection subgroup as in Theorem 6.1(2.b) for each factor d of a, but does not normalise
N = G(ab,a,2).

In case (4), we can take W to be any of G7, G19, G11, G14 or G15 because all of these
contain G5 as a normal reflection subgroup but do not normalise G.

Finally, in case (5) it is not possible to find a complex reflection group W containing
G = (g as a normal reflection subgroup because Gag is the only irreducible complex
reflection group admitting a nontrivial normal reflection subgroup in rank r > 4. To see
that the two isomorphic copies of N ~ (G(2,2,4) in G = G5 are conjugate under an element
of the normaliser of G in GL4(C), consider the set of reflecting hyperplanes for Gag, which
are the orthogonal complements (with respect to the standard Hermitian inner product
in C*) of the lines in £, ULy ULz defined by (cf. [14, Section 7.6.2]):

L1={C-e; | 1<i<A4}; £2:{C'%(61ﬂ:€2i63i64)}; and
£3:{C~(eiiej) | 1§i<j§4}7

where e; denotes the standard basis vector with 1 in the ith entry and 0 elsewhere. There
are two orbits of reflecting hyperplanes for Gog = W (Fy) (the Weyl group of type Fy and
a real reflection group), corresponding to £1 ULy (the lines spanned by the short roots)
and L3 (the lines spanned by the long roots). The reflections around the 12 hyperplanes
corresponding to L3 generate the normal reflection subgroup Ny = G(2,2,4) acting in its
standard reflection representation. The other normal reflection subgroup N3 is generated
by the reflections around the other 12 hyperplanes corresponding to £1 U Ls. To conclude
the proof, note that the real orthogonal matrix

0 10 1
1|1 01 0
P'_ﬁ010—1
-1 01 0
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exchanges the two Gag-orbits of reflecting hyperplanes £1U Ly > L3 (identifying £1 with
the set of lines C- (e; £e;) € L3 such that j—i = 2). Hence, P normalises Gag and
exchanges V(1) and N9y under conjugation. O

7. Examples

In this section we illustrate our results with examples, beginning with the cyclic groups
in Section 7.1, continuing with the infinite family in Section 7.2 and concluding with a
non-well-generated exceptional example in Section 7.3.

7.1. Cyclic Groups

Consider G = C, = (c), the cyclic group of order a, acting on V = C via ¢+ (; *, where ¢,
is a primitive ath root of unity. Verifying Theorem 1.1 and determining the Orlik-Solomon
space US from Definition 2.9 for o € Gal(Q((,)/Q) is already an interesting calculation
in this case.

Let 0 € Gal(Q((,)/Q) act as o : (, — (5, where s € N is coprime to a. Although it
is sufficient to only consider s € {1,...,a— 1}, it will be essential to allow more general
positive exponents s in the description of the action of o on different roots of unity when
we begin considering (normal reflection) subgroups of G shortly. We compute the identity
of Theorem 1.1 in this example:

a—1s—1

1- )(T - a—ll_cgs ’
Z H 1_)\11((99) " (g)ZQ-F; 1=k ZQ-I-ZZQ’;]

g€G \ 1 (9)#1 k=1;=0

s—la—1

e [ ) s

=0 k=0

s—1 . .
a ifa
q+ E {0 g —S

— otherwise
7=0

s
=q+a[f—‘ —S.
a

On the other hand, we verify that ef' (V) =a E] — s by exhibiting zela]-s ®x% as a
basis vector for the dual (US)* of the Orlik-Solomon space UY, where z and x denote
basis vectors for V* and (V7)* respectively. More generally, we have the following.

Lemma 7.1. For G = C, = {(c¢) the cyclic group of order a acting on its reflection
representation V = C by ¢+ (1, and for any s € Z (not necessarily coprime to a),
the V®*-exponent of G is ef (V¥*) =a|£] —s.

Proof. Note that a[£] —s € {0,...,a—1} is congruent to —s(mod a). Letting * denote
a basis vector for (V®)* we see that c(z®) = ($z° and therefore 215172 © 25 is a basis
vector for (Ufg,)* = (Cc® (V®%)*)Y, because Ci; =spanc{1,z,...,2° '} in this case. O
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Suppose now that a = de and consider N = (¢¢) ~ Cy, which is a normal reflection
subgroup of G with quotient H = G/N ~ C,. We denote by (4 := (¢ and (. := (¢, so that
N acts on V* via ¢+ (4 and H = (cN) acts on E* = spanc{z?} via (cN)(z¢) = (..

Taking again s € N coprime to a and letting o € Gal(Q((,)/Q) be given by o : {, — (Z,
we have that E° is the 1-dimensional representation of G defined by ¢+ (;% or,
equivalently, the 1-dimensional representation of H defined by ¢N +— (°. Therefore,
by Lemma 7.1, ef(E?) = a[%] —ds and e}/ (E”) = e[2] —s. On the other hand,
(UN)* = spanc{zd(ﬂ “*®x?} by Lemma 7.1, where again z and x° denote basis vectors
for V* and (V?)*, respectively. Hence, the generator ¢ of G that acts by (;' on its
[4]

. . —d L
reflection representation V now acts by (, on UY and therefore another application

of Lemma 7.1 yields

When s =1, we see that (;d[ﬂ = (%, so that UN ~ F is the reflection representation
of H = C, defined by c¢N ~ (. !. But because {§—| is not necessarily coprime to e, even
when s € {1,...,a— 1}, it is possible for the action of H on UY to fail to be faithful; for
example, when s = a—1 corresponding to ¢ acting by complex conjugation, the generator

c of G acts trivially on (UN)* by C:PTIW = (¢ = 1. Hence, we see that, as we mentioned
in Remark 4.4 and contrary to what one might have hoped based on the s =1 case, in
general UY % E? as G-representations.

Using the explicit descriptions of the actions of N and G on V7 and the actions of G
and H on UY and E? described above, the three equalities in Theorem 1.3 become the
following numerological statements.

Corollary 7.2. Let a=de and s € N be coprime to a. Then

(31-0)+ (o | -a[31) = 1)

[4]

The first (and only nontrivial) equality in this case is equivalent to the identity [e—‘ =

(i], which holds more generally for e € N and s,d € R.
Our Theorem 1.4 in this situation states that the following expressions are equal:

d—1 is a—1
1=X(9)° | fixy (9) fixn(g) _ 1-¢) 1—¢as
(1A ) e g (S L[S
geG \ A1 (g9)#1 j=1 d IZTkl a

(qt+eN (Vo) +eS(UN)) =gt + (d H fs)tJr <a “’N dhﬂ) .
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The equality of the coefficients of ¢

S és S N
Zl 1-¢ =d[g]-s=elr)
p

was already verified above with a in place of d. To verify the equality of constant terms

=g [s] s
;1—@ :‘{Z _dH’
etk

one could proceed, for example, by noting that the same arguments show that the left-
hand side is equal to

(S8 (S ) = 2T 5] ) =] ol

and then appealing either to Corollary 7.2 or to more general properties of ceilings to

obtain the equality sz =[2].
We conclude our discussion of the cyclic case with a concrete illustration of the subtlety
involved in proving (in Corollary 4.11) that the sum side of Theorem 1.4 provides the
correct contribution coset by coset but not term by term as in the proof of Theorem 1.1.
To compare the two situations, we compute the trace of ng =c®*.¢/ € Ng (for 0 <k < d

and 0 < j < e) acting on S(V*) @ A(V)* and S(V*) @ A(UN)*:

* V4 o\ * 2 1+u(66k+j)|(vg)*
2_ gV @ N (V7)) = T

£,p>0

u=q(l—z)—1
r—1

1 uy D
- 1— $C2k+j

u=q(l—z)—1
r—1

_ (1—@(8’”” +q<1—m><3<5’““>>

1— x<§k+j 1—pCektd

z—1

H 1—Ai(ng)? gxv (ng)
1—XAi(ng) 7

A1(ng)#1

o rs(ek+)
because the term % vanishes in the limit z — 1 for all elements of G except

the identity. For examplea, for a = 6,d = 2,e =3 and s =5, summing over all elements of
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Cs = {c) and then specialising u +— g(1—x) — 1 and taking the limit as x — 1 gives

N cN 2N
id ¢ ‘ c c* ‘ 2 P
13 | 10 1-¢2 | 1@, 1-—¢f =¢q+1,
ITI=E | T T | mE T
g+1 0 0

so that each element contributes the ‘correct amount’ specified by the sum side of
Theorem 1.1.

On the other hand, computing the sum side of our refinement Theorem 1.4 gives the
following, where we have written b:=e{’ (V) =d[5] — s for legibility:

1+ be(Cekij)kUé\/)*b

D tr((ng)|S(VF)e@ AP (UN)*) ' yPub =

1 — z(cek+i « =zt
£,p>0 ( o) u:qf(lfw)*l
x—1
. —x—ux“’(«!ﬂ (ek+3)
1 —:CCng u=qt(l—z)—1
rx—1
- (1 _ it [4] . atqt(1— )¢ ] )
= o ek+j
1— xCa 1-— JUCG. z—1
gt+bt  ifk=5=0
=3 4]
% otherwise.

Continuing the example with a = 6,d = 2,e =3 and s = 5, because [5] = e = 3, after
specialising y — z¢, u+ qt(1 —z) — 1, and taking the limit as  — 1, every term except
for the identity vanishes — in particular, each element of G does not contribute the ‘correct
amount’ specified by the sum side of Theorem 1.4:

N cN N

id cg‘c 64‘62 C5ftt
@+r)+0 | 040 | 0t0 _9*F

gt+t 0 0

Here the only coset that provides a nontrivial contribution to the sum side of Theorem 1.4
is the trivial coset N, as predicted by the computation of the sum side of Theorem 1.1, but
this nontrivial contribution of ¢t 4+t for the whole coset N is concentrated on the identity
element ¥ € N alone, which, according to the sum side of Theorem 1.4, should have
only contributed qt, whereas the nontrivial element ¢® € N did not provide the correct

contribution of 1=21()° gixv ()yfixe(e?)

Tu@) =t specified by the sum side of Theorem 1.4.

7.2. The Infinite Family G(ab,b,r)

We begin by defining an ad hoc operation on G-modules for G = G(ab,b,r) (whose
definition was given in Section 6) that will allow us to succintly identify the Orlik-Solomon
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spaces UY of Definition 2.9 for the two kinds of normal reflection subgroups N of G listed
in Theorem 6.1 that occur in all ranks r > 2.

Definition 7.3. Forn € Z,let u,, : G — G be the group endomorphism obtained by raising
each nonzero matrix entry to the nth power. Given any representation p: G — GL(W),
we define the fake tensor power W™" as the representation po i, : G — GL(W).

Remark 7.4. Note that in general the ‘fake nth power map’ i, used in Definition 7.3 will
be neither injective nor surjective when ged(ab,n) # 1. In the case where ged(ab,s) =1,
note that V¥ ~ V7 the Galois twist corresponding to o : (qp — Cop-

Although the fake tensor power operation could be expressed in terms of more
systematic constructions (interpreting G(ab,b,r) as an index-b subgroup of the wreath
product Cgp?S,), we have preferred our ad hoc definition for its simplicity and
concreteness.

In the following result, we identify the G-module UY when N = C% as in Theo-
rem 6.1(r.a) for r > 2.

Proposition 7.5. Let a=de and N = C}<aG(ab,b,r) =G and fix 0 : (op — (5, for 1 <
s < ab with ged(s,ab) = 1. Then H ~ G(eb,b,r) and UN ~ E®N4] as G-modules.

Proof. For this choice of N, the fundamental N-invariants are N; = :Ef for 1 <i<r, and

df£7—
we obtain the basis ul¥ =z, 4] ®@x¢ for (UN)* as in Section 7.1.

Fix g € G and ¢ € {1,...,r} and suppose that g(x,) = (¥ z; for some 0 < k < ab and
j €{1,...,r}. Then from the explicit descriptions of E* and (UX)* above we see that

g(Ny) = C¥N; and g(ul)) = Cf:[ﬂujy. It follows that E ~ V¥ and UN ~ ng(ﬂ, and
therefore UYN ~ E'X[ﬂ, as claimed. O
As a special case of Proposition 7.5, UY ~ F when N = C} and s <d.

Following [18, Proposition 14.1], a simple choice of invariant polynomials for G(ab,b,r)
is the set

G, = Zm?bi for1<i<r and Gr=(x1--x,)% (14)
j=1

In the following result we determine the Orlik-Solomon space US of Definition 2.9 up to
graded cryptomorphism.

Theorem 7.6. Let G = G(ab,b,r) and o € Gal(Q(Cab)/Q) be given by o(Cab) = (g for
1 < s < ab with ged(s,ab) = 1. Let (US)* :=spanc{a{,...,al}, where
ﬂ?zzgx?biﬂ@x? for 1<i<r and ﬂ?zZ(xl---xr)(ﬂGx;S@)x?.
j=1 j=1
Let ng : S(V*) — Cg denote the natural projection from S(V*) onto its G-stable direct
summand Cq. Then ng ®1: (US)* — (US)* is an isomorphism of graded vector spaces,
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34 C. E. Arreche and N. F. Williams
and therefore the V7 -exponents of G(ab,b,r) are
{ab —s,2ab—s,...,(r—1)ab—s, {EW ar — s} .
a

Proof. By Lemma 3.6 (applied in the special case where N = G), it suffices to show that
the @§ form a basis for (S(V*)® (V?)*)€ as a free S(V*)%-module.

Because the group G(ab,b,r) acts on V* by permutation of the x; and multiplication by
(ab)th roots of unity, it is clear that the 4§ € S(V*)® (V7)* are G-invariant. Let uf’ =
Z;:O ag ®@x§ be a homogeneous basis for (US)*, where ag € Cq and deg(ag) =ef (V)
whenever ag # 0. Because (S(V*)® (V7)*)¢ ~ S(V*)¥ @ (US)*, there exists a matrix

g] € Mat, . (S(V*)) such that [pg] . [ag] = [dg], where

z j
as =
+ (z1- ~~1:T)[ﬂax<_s fori=r

a_ {xqbis forl<i<r
J

or, equivalently, such that 4§’ = Z;leg- u]G It is clear from the form of the @ that
they are C-linearly independent, which implies that det (pg) #0.
We claim that
det(al) =c-(z1--z) 3107 T (@3 —a2) (15)

7 J
1<i<j<r

for some 0 # ¢ € C. By Gutkin’s theorem [14, Theorem 10.13],

Gy _ C(H, V)
det(a;;) =c- H L,
HeRg

for some 0 # ¢ € C, where R denotes the set of reflecting hyperplanes for G, Ly €
V* denotes a linear form defining H and C(H,V7) is defined as follows. Denoting by
(ra) = Gg < G the cyclic subgroup of G that stabilises H pointwise, decompose (V7)* ~
EB:ZI A®ki as a G'-module with 0 < k; < |G| for 1 <i <r, where X denotes the standard
representation of Gy on the Gg-stable complement of H in V, and define C(H,V7) :=
22:1 k;. When Ly = x; — §£bxj with ¢ # j and 0 < ¢ < ab— 1, the cyclic generator ry
has order 2 and V7 ~ A@C®"~1 as a Gy-module, and therefore C(H,V?) =1 in this
case. If a > 1, then we have the additional reflecting hyperplanes defined by Ly = z;;
in this case, the cyclic generator ry has order a and (V7)* ~ A8([5]a=s) GCOr—1) a5
a Gy-module (cf. Lemma 7.1), and therefore C(H,V?) = [£]a—s. This concludes the
proof of Equation (15).
We see by direct inspection that
r

deg(det(ag)) =ab- (2> ST ([2—‘ a—s) = deg(det(dg)),

which implies that deg(det(pg-)) =0, and because det(pg-) # 0 as we had already seen, it
follows that [p{i] € GL,(S(V*)€), as we wanted to show. O

Remark 7.7. Note that when s =ab—1, so that o acts by complex conjugation, the
basis ;¢ for (US)* in Theorem 7.6 agrees with the one computed in [16, Section 6].
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In the following result, we identify the G-module UYN when N = G(ab,db,r) as in
Theorem 6.1(r.b) for r > 2.

Proposition 7.8. Let a =de and N = G(ab,db,r) I G(ab,b,r) =G, and fix 0 : Cup — (5
for 1< s < ab with ged(s,ab) = 1. Then H ~ Cy and UY ~ E®[E] as G-modules.
Proof. Note that for this choice of G and N, with fundamental invariants defined as
in Equation (14), we have N; =G, for i =1,...,r—1, and N, = (21 ---2,)¢ while G, =
(1 ---2,)% The matrix diag({s,1,...,1) € G maps to the cyclic generator ¢ € Cy ~ H,
acting trivially on spanc{Ny,...,N,_1} and mapping c¢: N, — (4N;., where (5 :=(; ¢ is a
primitive dth root of unity.

On the other hand, we see that the space (UN)* = span{al,...,aY} constructed in
Theorem 7.6 is G-stable and the @)Y form a homogeneous basis for (S(V*)® (V)*)V as
a free S(V*)N-module, and therefore it is isomorphic to (UY)* as a graded G-module by
Lemma 3.6. We see that diag(C,,1,...,1) € G acts trivially on spanc{a,...,aY ;} and
’Vi—lai\/' — Cdlrg] ~7]‘V‘ O

- —e
maps ¢: Y — (q U

Note that we do not necessarily have that [2] is relatively prime to d. When d = a so
that e=1 and N = G(ab,ab,r), G/N ~C, = (c) acts by c:ul} — (7 *ul, so that UN ~ E.
Another special case occurs when s < e, so that UN ~ E.

In the following result, we identify the representation UYN when G = (2ab,2d,2) and
N = G(ab,a,2) as in Theorem 6.1(2.c). In this case it is not possible to write UY as a fake

tensor power (Definition 7.3) of F in general.

Proposition 7.9. Let a=de and N = G(ab,q,2)<1G(2ab,2d,2) = G, and fix 0 : aap — (5,3
for 1 < s < 2ab with ged(s,2ab) =1. Then H ~ Cqy x C. and E ~ Ao @ A, where A2 is the
standard reflection representation of Co and A, is the standard reflection representation

of Ce, and UN ~ )\f (7] EB)\S) [#] as H-modules.
Proof. We may choose the fundamental N-invariants
Ni(x) = 2$° 4 22 and Na(x) = (z122)°

as in Equation (14). Letting

(0 o (G O
h1 = <C2a%) 0 ) and h2 = ( 0 1) .

We see that h;(N;) = Nj if i # j, h1(N1) = =Ny, and ha(N2) = (. N2, where (. := ¢;°, and
therefore hy and he map to the generators of the cyclic factors in the bicyclic quotient
group H ~ Cy x C,.. By Theorem 7.6 and Lemma 3.6 (UN)* = span{ad’, a4’} is isomorphic
to (UN)* as a graded G-module, where

al :m[ﬁ]ab_s(@x‘l’—kxz[“%}ab_s@xg; and
@y = (z122) (ﬂbxfs @] + (r122) [ﬂbx;s ®xg.
We see that (i) = @l if i # j, (@) = (~1) 55 [, and ho(ad) = gy O
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As before, note that we do not necessarily have that [%] is relatively prime to e. When

b =1, we have that UY ~ E° whenever s < a. When a =1 we do have UY ~ B8] as
in the previous cases. Another special case occurs when s < b, so that UY ~ E.

7.3. An exceptional example G15>G12

To illustrate the choice of indexing of degrees and exponents that is needed in
Theorem 1.3, consider

P A A S R R € R e R A Y 1 I -1
G-—G15—<(0 —1>’2<—1—i —1+i>’ﬂ<—1 —1>>’

where we use the conventions in [14, Chapter 3] and the given matrices describe the action
of G on V*. We will write the reflection generators of this non-well-generated reflection
group G as s, t and u, in the order they appear above. The degrees of G are d§ =12 and
d§ = 24, with corresponding invariant generators of S(V*)¢ given by

Gi(z,y) = (z°y—2y°)>  and  Go(z,y) = («® + Uty +45)%

We then have the following normal reflection subgroup N < G generated by the
reflections u, sus™! and tsus 't~ L

N:G12<\1ﬁ(_11 _1)\1&(1 —11>’<<§1 %8>>

where again the above matrices describe the acion of N on its dual reflection representa-
tion V*. The degrees of N are d)¥ =6 and d2’ =8, with corresponding invariant generators
of S(V*)N given by

Ni(z,y) = 25y — x3® and Ny (z,y) = 28 + 14z*y* +4/5.

Then the quotient group H := G/N ~ Cy x C5, and by Theorem 1.2 H acts in a reflection
representation on E, where E* = spans{Ny,Na}, because

s(N7) = =Ny, s(Nz) = N
t(N1)=N1,  t(N2) =GN,
u(Ny) = Ny, u(Nz) = No.
Compatible with the choices of invariant generators G; and G5 for G and Ny and N for

N, we find invariant generators of S(E*) that are N-homogeneous of degrees dif =2
and di = 3:

Hy(N1,N2) = N} = Gi(zy) and H3(N1,Nz) = N3 = Ga(x,y),

and also x-homogeneous of degrees d =12 =d¥ -d¥ and d§ =24 = dY - d¥.

As we can see from the explicit matrices above, the reflection representation of G is
actually defined over (o4. For s coprime to 24 we write o, for the Galois automorphism
os € Gal(Q(¢24)/Q) defined by o5 : (24 — (54. The complete data for every Galois twist
V7 for G = G15 and N = (12 appear in Table 2. Code for computing similar examples
using Sage can be found at [2].
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TABLE 2. Data for G = G15, N =G12 and H =G /N = C3 x C3 computed using [2]. The rows are indexed
by the Galois twists o : {24 — (5, (for s coprime to 24). The columns contain the degrees of N multiplied
by the E“-exponents of H to obtain the E?-exponents of G and the V7-exponents of N added to the
UN-exponents of G to obtain the V7-exponents of G, indexed according to Theorem 1.3. The final
column lists the corresponding product sides of the weighted sums over G according to Theorem 1.4.

s | dN-ef(E7) =eF(E7) | eN(Vo) +ef(UN) =S (V) product side

1168 12 6.16 5,7 6,16 11,23 | (¢t +5t16)(qt + 71+ 16)
5 168 1,1 6.8 1,11 68 719 (qt+1+6)(qt + 11t +8)
7168 1.2 6,16 11,1 6,16 17,17 | (gt +11t+6)(qt +t+16)
168 1,1 6.8 7.5 6,8 13,13 | (qt+7t+6)(qt+5t+8)
1368 1,2 6,16 11,1 0,22 11,23 (qt + 118) (gt + +22)
1768 1,1 6,8 7.5 0,14 7,19 (qt +7t)(qt + 5t + 14)
19068 1,2 616 5,7 0,22 5,29 (qt +5¢)(qt + Tt +22)
23168 1,1 6,8 1,11 0,14 1,25 (gt +1)(gt + 11t + 14)

Let us work out the case o = 013 in detail; the other cases are similar. Writing x and
y? for the basis vectors of (V7)* as before, we find bases {u{,u§'} for (US)* and {ud¥,ul}
for (UN)* given by

uf = (21t — 2227yt —1123y8) @ 2
+( 11_22x4 7—11.%'8 3)®yo"
u2G (($21y2 )+27( 17 6 )+170( 13 10 9 14))®$

+ (222 — 22y) +27(a0y 17 18 y®) +170(z'0 13 14 V) @y
ul =uf; and

uév =yRz’—zrRy°.

Writing uf = aG @27 +a% @y and u = aZl ®x° +aly ®y, as above, let us verify that

E Cg and a ' ¢ Cy. Tt is clear that a$,a$}, € Cg, because deg(alj) =11 < df,dS, and
every polynomlal of degree smaller than every degree of G belongs to Cg. Similarly, we
see that ayy,ad) € Ci, because deg(aj;) =1 < di,dY. We observe that u§ = Ny N3 -ul
(we discuss the meaning of this observation in more detail below), and therefore u§' €
Co®(V7)* ~Cx®Cyn®(V7)* by Proposition 3.3. To see that u} € Cy ® (V)* also,
suppose that wi,ud is a homogeneous basis for (UN)*, and let p1,p2 € S(V¥)N be
homogeneous such that ul = p1w1 + p2u2 But then ps =0, because no homogeneous N-
invariant polynomial has degree 10, which implies that al’ ; 1s divisible by a homogeneous
N-invariant polynomial p; with deg(p;) < 11. But the only nonconstant choices are
p1 =N or p; = Ny, none of which d1v1de the coeﬂiments al above, and therefore p; € C*.
This concludes the proof that the u$ and ul¥ specified above are indeed bases for (US)*
and (UN)*, respectively, as clalmed.
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Hence, the V7-exponents of G are e§(V7) =11 and e§ (V) = 23, and the V7-exponents
of N are el (V) =11 and e} (V?) = 1. We compute the action of G on (UY)* and obtain

g(u) =ul for all g € G,
s(up') = —uy,
t(uy) = Zud and

N N

u(uy ) =uy .
The resulting G-module structure on UZX yields the direct sum of the trivial
representation with the unique 1-dimensional representation of G with fake degree ¢2

which is G-isomorphic to the C-span of the G-harmonic semi-invariant homogeneous
polynomial

a;—IQ (x y— azy )+27( 17 5_ 45 17)+170( 13 9 29 13)€CGCS( )

so that a basis for (Co® (UN)*)€ is given by {1®@ul,af, @ ul'}.

On the other hand, the H-module structure on U} yields the direct sum of the trivial
representation with the 1-dimensional representation of H with fake degree ¢° given by
the C-span of the H-harmonic semi-invariant N-homogeneous polynomial

alh, = NIN2 € Cy C S(E),

so that a basis for (Cx ® (UN)*)H is given by {1®@ul, NyNZ@ud'}.
Thus, we witness the general isomorphism

(Ca®(V))¢ = (CreUy))"

from the proof of Corollary 3.7 in this example, because we obtain afl @ ul +— u$ by
collapsing the first tensor in

afh @u) = (2y—2y°)(2® + 1aty* + ¥’ @ (y@ 27 —z®y”) € (Cyp @ (UN ) )
= (2Py —2y®) (2% + 1ty + 52 (y® 27 —2®y7) =uf € (Ca @ (V7)*)C.
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