Check for
Updates

Graph Rationalization with Environment-based Augmentations

Gang Liu
University of Notre Dame
Notre Dame, IN, USA
gliuv7@nd.edu

Tengfei Luo
University of Notre Dame
Notre Dame, IN, USA
tluo@nd.edu

ABSTRACT

Rationale is defined as a subset of input features that best explains
or supports the prediction by machine learning models. Rationale
identification has improved the generalizability and interpretability
of neural networks on vision and language data. In graph applica-
tions such as molecule and polymer property prediction, identifying
representative subgraph structures named as graph rationales plays
an essential role in the performance of graph neural networks. Exist-
ing graph pooling and/or distribution intervention methods suffer
from the lack of examples to learn to identify optimal graph ratio-
nales. In this work, we introduce a new augmentation operation
called environment replacement that automatically creates virtual
data examples to improve rationale identification. We propose an ef-
ficient framework that performs rationale-environment separation
and representation learning on the real and augmented examples in
latent spaces to avoid the high complexity of explicit graph decoding
and encoding. Comparing against recent techniques, experiments
on seven molecular and four polymer datasets demonstrate the
effectiveness and efficiency of the proposed augmentation-based
graph rationalization framework. Data and the implementation of
the proposed framework are publicly available!.
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1 INTRODUCTION

Graph property prediction has attracted attention in different re-
search fields like chemoinformatics and bioinformatics where small
molecules are represented as labelled graphs of atoms [7, 9, 48].
Besides, materials informatics for polymers has emerged in recent
years from property prediction to inverse design [4, 11]. Polymer
are materials consisting of macromolecules, composed of many
repeating units. They are ubiquitous in applications ranging from
plastic cups and electronics to aerospace structures. New engineer-
ing and environmental challenges demand that polymers possess
unconventional properties such as high-temperature stability, excel-
lent thermal conductivity, and biodegradability [16, 33]. It’s impor-
tant to integrate data science and machine learning into polymer
informatics on the tasks of graph classification and regression.

To automate feature extraction from graph data, graph neural
network (GNN) models learn node representations through non-
linear functions and layers that aggregate information from node
neighborhood [8, 12, 26, 35, 42]. Graph pooling is a central com-
ponent of the GNN architecture that learns a cluster assignment
for nodes and passes cluster nodes and their representations to the
next layer [14, 40]. The final layer returns the representations of
entire graphs. Despite the advances of various GNN models, the
limitation of data size makes them easily fall into over-fitting and
poor generalizability. For example, the number of graphs in mole-
cule benchmark datasets is usually in the range of 1,000 and 10,000;
and the size of polymer datasets is even smaller (e.g., ~600) [17].

Rationalization techniques have been designed to solve the above
problem in vision and language data, where the rationale is defined
as a subset of input features that best explains or supports the
prediction by machine learning models [1, 2, 23]. However, graph
rationalization has not been extensively studied, which aims at
identifying representative subgraph structures for accurate and in-
terpretable graph property prediction. Related work mainly focused
on advancing graph pooling methods, but cluster assignment could
not reflect the most essential part that led to accurate prediction
[6, 19]. A very recent technique named DIR [34] employed two
GNN modules to discover invariant graph rationales: one module
separates each input graph into a rationale subgraph and an envi-
ronment subgraph; the other is a graph property predictor based
on the rationale subgraph. As shown at the top in Figure 1, given
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Figure 1: Graph rationalization identifies a rationale subgraph that best explains or supports the prediction of graph property.
Our work makes the first attempt to improve graph rationalization by graph data augmentations with environment subgraphs
which are the remaining parts after rationale identification. It proposes new augmentation operations, designs and develops a
novel graph rationalization framework, and conducts experiments on a large set of molecule and polymer data.

(r)

graph g;, the separator fsep identifies rationale g; ’, and the pre-

dictor fpreq gives label g)l.(r) based on the rationale. DIR conducted
interventions on training distribution to improve the invariance.
Unfortunately, when the data size was small, fs¢p could hardly find
good rationales, as reported in our later experiments.

In this work, we make the first attempt to enhance graph ratio-
nalization by graph data augmentations. Existing augmentation
methods were mainly heuristic modification of graph structure,
which could not directly support the identification of graph ratio-
nales [22, 31, 32, 46]. We present two augmentation methods based
on environment subgraphs that are the remaining parts in the graph
after rationale identification. First, rationales are used to train the
property predictor, which can be considered as graph examples
augmented by environment removal. Second, we replace the envi-
ronment of input graph with the environment of another graph
in the batch: to generate an augmented example: this augmenta-
tion method is called environment replacement. The idea is that the
rationale can be accurately identified and/or separated from the
input graph when the augmented examples are expected to have
the same label of the input graph example.

Figure 1 presents the idea of generating virtual data for small
datasets via data augmentations. Suppose we have rationale gfr)
separated from input graph g;. We use the same GNN-based sepa-
rator to find environment subgraph g](.e) from another graph g; in
the batch. The example augmented by environment replacement is
denoted by g; j) = gi(r) U g;e). The model is trained on this example
to predict label §j; j to be the same as y; that is the observed label of
gi- We compute two losses on the augmented examples, L,¢, and
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Lyrep (“rem” for removal and “rep” for replacement), and jointly
optimize fsep and fpeq by their combination.

The key challenge in the idea implementation is the high com-
putational complexity of decoding for explicit graph forms of ratio-
nales, environment subgraphs, and augmented examples, as well as
encoding them for representation learning and property prediction.
Moreover, it is scientifically and technically difficult to explicitly
combine rationale glm
as shown in the three augmented examples g; ;) in Figure 1. To
address these challenges, we hypothesize that the contextualized
representations of nodes play a significant role in rationales, envi-
ronment subgraphs, and augmented graphs. Thus, we create the
representations of all these objects from one latent space.

In this paper, we propose a novel, efficient framework of Graph
Rationalization enhanced by Environment-based Augmentations
(GREA). It performs rationale-environment separation and repre-
sentation learning on the real and augmented examples in one
latent space to avoid the high complexity of explicit subgraph de-
coding and encoding. Figure 2 presents the architecture of GREA
with a few steps. First, it employs GNN; and MLP; models to infer
the probability of nodes being classified into rationale subgraph
m. Second, it employs GNN3 to create contextualized node repre-
sentations H. Then, it directly creates the representation vectors
of rationales, environment subgraphs and environment-replaced

and environment g(.e) from different graphs,

examples, denoted by h;r), hge), and h; j), respectively. Note that
DIR [34] used a GNN to generate a matrix of masks that indicate
the importance of edges and then select the top-K edges with the
highest masks to construct the rationale. Then it had to run GNNs
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on all the explicit graph objects. Instead, our GREA uses m and H
to compute the representation vectors of the artificial graphs.

We conduct experiments on seven molecule and four polymer
datasets. Results demonstrate the advantages of GREA over base-
lines. For example, it significantly reduces the prediction error on
oxygen permeability of polymer membrane with only 595 train-
ing examples. The oxygen permeability defines how easily oxygen
passes through a particular material. Accurate prediction will speed
up material discovery for healthcare and energy utilization.

The main contributions of this work are summarized below:

o the first attempt to improve graph rationale identification us-
ing data augmentations, including environment replacement,
for accurate and interpretable property prediction;

e a novel and efficient framework that performs rationale-
environment separation and representation learning on real
and augmented examples in one latent space;

e extensive experiments on more than ten molecule and poly-
mer datasets to demonstrate the effectiveness and efficiency
of the proposed framework.

2 RELATED WORK

There are four research topics related to the proposed work. We
briefly present their recent studies and compare with ours.

2.1 Graph Property Prediction

Learning representations and predicting properties of entire graphs
is important for chemistry, biology, and material sciences, where
molecule and polymer data can be structured as graphs [9]. When
RDKit is widely used to generate molecular fingerprints [13], graph
neural networks (GNNs) such as Graph Convolutional Network
(GCN) [12], Graph Attention Networks (GAT) [26], and GrRaPH-
SAGE [8] have automated representation learning with nonlinear
functions from graph data [10, 18, 27-30, 35, 42, 43].

In the GNN models, graph pooling is a central component of
their architectures as a cluster assignment function to find local
patches in graphs [19]. For example, DirrPooL presented a differen-
tiable graph pooling module that learned a differentiable soft cluster
assignment for nodes at each layer of a deep GNN, mapped nodes to
a set of clusters, and then formed the coarsened input for the next
GNN layer [40]. Lee et al. proposed self-attention graph convolution
that allows graph pooling to consider both node features and graph
topology [14]. Gao and Ji proposed graph pooling and unpooling
operations in Graph U-NETs [6]. Xu et al. presented a theoreti-
cal framework for analyzing the representational power of GNNs
through the graph pooling functions [37]. While graph pooling
identifies soft clusters that effectively aggregate information from
nodes [39], our work identifies representative subgraph structures
for accurate and interpretable predictions of GNN models.

2.2 Graph Rationalization

Most rationalization techniques identify the small subset of input
features by maximizing the predictive performance based only on
the subset itself, called rationale. To rule out spurious correlation
between the input features and the output, Chang et al. proposed
the concept of invariant rationalization by modeling different envi-
ronments as non-causal input to train predictors [2]. Rosefeld et al.
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offered formal guarantees for improvement of the invariant causal
prediction on out-of-distribution generalization [1, 23].

By introducing causal modeling into GNN optimization, Fan et
al. presented a causal representation framework for GNN models
to perform on out-of-distribution graphs [5]. Li et al. proposed
OOD-GNN that employed a novel nonlinear graph representation
decorrelation method that used random Fourier features to encour-
age GNNss to eliminate the statistical dependence between relevant
and irrelevant graph representations [15]. Very recently, Wu et al.
proposed the first work called DIR to approach causal rationales for
GNNs to improve the interpretability and predictive performance
on out-of-distribution data [34]. DIR conducted interventions on
the training distribution to create multiple distributions. Unfortu-
nately, distribution intervention might not be the optimal solution
to graph rationale identification. Also, the edge selection method
suffers from high computational complexity for rationale creation.
Moreover, the studies were mainly performed on synthetic data. In
this paper, we make the first attempt to define “environment” in
graph data, augment data examples by environment replacement,
develop an efficient framework, and conduct experiments on a large
set of real molecule and polymer data. We find that augmentation-
enhanced graph rationalization is more effective than DIR.

2.3 Graph Data Augmentation

Graph data augmentation (GDA) techniques [3, 44, 45, 47] have
improved the performance on semi-supervised node classification,
such as DROPEDGE [22], NODEAUG [32], and GAUG [46]. Besides,
many GDA techniques have been designed for graph-level tasks,
aiming at creating new training examples by modifying input graph
data examples. For example, GRAPHCROP regularized GNN models
for better generalization by cropping subgraphs or motifs to sim-
ulate real-world noise of sub-structure omission [31]. M-EVOLVE
presented two heuristic algorithms including random mapping and
motif-similarity mapping to generate weakly labeled data for small
datasets [48]. MH-AUG adopted the Metropolis-Hastings algorithm
to create augmented graphs from an explicit target distribution for
semi-supervised learning [21]. Meanwhile, graph contrastive learn-
ing learned unsupervised representations of graphs using graph
data augmentations to incorporate various priors [41]. Zhu et al.
[49] proposed adaptive augmentation that incorporated various
priors for topological and semantic aspects of graphs. Specifically,
it designed augmentation schemes based on node centrality mea-
sures to highlight important connective structures and corrupted
node features by adding noise to unimportant node features. A
comprehensive survey of GDA is given by Zhao et al. [44].

2.4 Graph Learning on Polymer Data

Material informatics uses machine learning approaches to fast
screen material candidates or generate new materials meeting cer-
tain criteria, so as to reduce the time of material development. When
most related research performed on molecule data [7], polymer re-
searchers have developed a benchmark database and developed
machine learning techniques for polymer data, called polymer em-
beddings [4, 11]. They can be used to perform several polymer
informatics regression tasks for density, glass transition tempera-
ture, melting temperature, and dielectric constants [16, 17, 33].
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Figure 2: The architecture of the proposed graph rationalization framework: It performs the creation and representation
learning of environment-based augmented examples in a latent space, instead of decoding every example into a graph form
and running a GNN encoder on it. This design aligns graph representation spaces and avoids high computational complexity.

3 PROBLEM DEFINITION

Graph Property Prediction. Let g = (V, &) be a graph of N nodes
and M edges, where V is the set of nodes (e.g., atoms) and & C
V x V is the set of edges (e.g., bonds between atoms). We use
y € Y to denote the graph-level property of g, where Y is the value
space. It can have a categorical or numerical value, corresponding
to the task of classification or regression, respectively.

A graph property predictor f},,.q takes a graph g as input and
predicts its label ¢. Specifically, a GNN-based predictor employs a
GNN encoder to generate node representations H from g:

_ - T _ Nxd
H_[...’hu,...]verv_GNN(g)eR : 1

where I_{v € RY is the representation vector of node v in graph g.
GNN encoder GNN(+) can be chosen as GCN [12] or GIN [37].

Once the node representations are ready, a multilayer perceptron
(MLP) can project them into a one-dimensional space to obtain a
scalar for each node as m, = MLP(I;U). As we are more interested
in graph-level classification or regression, we first use a readout
operator (e.g., average pooling) to get the graph representation h
and then apply a MLP to project it to a graph label:

h = READOUT(H) € R%, §=MLP(h) € Y. )

Graph Rationalization. Following the existing literature on graph
rationalization [5, 6, 14, 34, 40] and GNN explanation [39], we use
rationale g = (V) &) to indicate the causal subgraph of
the property y, where ¢(") is a subgraph of g such that V ) ¢
and 8" C &. We use g(e) to denote the environment subgraph,
which is the complementary subgraph of ¢(") in g. In contrast
with the rationale subgraph g(r ), the environment subgraph ¢(¢)
corresponds to the non-causal part of the graph data, which has no
causal relationship with the target graph property [2, 34].

Let fsep be a GNN-based graph rationalization model that splits
an input graph ¢ into a rationale subgraph ¢(") and an environment
subgraph g(“’) . Existing graph rationalization methods used only the
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rationale subgraph as input for property prediction [6, 14, 34, 40]:

§=9" = fyrealg"”), (3)

where f,¢q(-) = MLP(READOUT(GNN(-))) and §(*) denotes the

predicted property of the rationale subgraph g(r ).

Unfortunately, when suffering from lack of training examples,
these methods chose to discard environment subgraphs at the train-
ing stage. In the next section, we present a novel framework show-
ing our idea that environment subgraphs can provide natural noise
through data augmentation to improve graph rationalization.

4 PROPOSED FRAMEWORK

In this section, we introduce a novel graph rationalization frame-
work GREA. The key idea is to augment the rationale subgraph
by removing its own environment subgraph and/or combining it
with different environment subgraphs. Figure 2 shows the overall
architecture of GREA: GNN; and MLP; first separate input graph g
into rationale subgraph ¢(") and environment subgraph ¢(¢); GNNj
next generates node representations H using Eq.(1); the rationale
subgraph’s representation h;r) is then combined with different
environment subgraph’s representations h;e) for the augmented

graph’s representations h; ;); finally, both hl(r) and h; j are fed
into MLP; for the prediction of y; during training as Eq.(2).

4.1 Rationale-Environment Separation

To separate input graph g into rationale subgraph g(r) and environ-
ment subgraph ¢(¢), the rationale-environment separator consists
of two components: a GNN encoder (GNN) that generates latent
node representations and a MLP decoder (MLP;) that maps the
node representations to a mask vector m € (0, 1) on the nodes in
the set V. my, = Pr(v € (V(r)) is the node-level mask that indicates
the probability of node v € V being classified into the rationale
subgraph. The mask can be on either a node or an edge [34]. we
choose to learn masks on the nodes to avoid the computational
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complexity of edge selection. Hence, m can be calculated as
m = ¢(MLP; (GNNi(g))). ©

where o denotes the sigmoid function. Based on m, we have (15 —
m) that indicates the probability of nodes being classified into the
environment subgraph. GNN; and MLP; make up the GNN-based
graph rationalization model fsep mentioned in Section 3.

GREA uses another GNN encoder to generate contextualized
node representations H: H = GNN3(g). With m and H, the rationale
subgraph and environment subgraph can be easily separated in the
latent space. Using sum pooling, we have

bW =17 - (mxH), h® =1} -(1y-m)xH), (5

where 15 denotes the N-size column vector with all entries as 1,
and h"), h(¢) € R¥ are the representation vectors of graph (")
and ¢(©), respectively.

4.2 Environment-based Augmentations

Suppose g1, 92, . . ., gp are the input graphs in one batch for train-
ing, where B is known as batch size. The rationale-environment
separator has generated the graph representations of rationale
and environment subgraphs for each graph g;. That is, we have
(0,0, 0 0, ... (0, 1)} We design environment-
based augmentations in the latent space of graph representations.

4.2.1  Environment Removal Augmentation. As graph rationaliza-
tion aims to find the rationale subgraph which is regarded as the
causal factor of graph property, the rationale itself should be good
for property prediction. As in the graph pooling methods [6, 14]
and the graph rationalization as defined in Eq. (3), the environment
removal augmentation uses the rationale subgraph only for training
the graph property predictor. That is, given the rationale subgraph

representation h;r) of graph g;, the predicted label is

(" = MLP,(h"). ©)
4.2.2  Environment Replacement Augmentation. As aforementioned
in Section 3, the environment subgraphs can be viewed as nat-
ural noises on the rationale subgraphs. Hence, in order to en-
hance the model’s robustness against the noise signal brought by

the environment subgraphs, for each graph g;, we combine its
(r)

rationale subgraph g;"’ not only with its own environment sub-

graph 91@, but also with all other environment subgraphs gj(.e), JjE€
{1,2,..., B} \ {i} in the batch. By replacing the environment sub-
graph with other environment subgraphs in the batch, the envi-
ronment replacement augmentation generates B — 1 augmented
data samples for each graph during training. As the environment
replacement happens on the latent space, an aggregation function
AGG(.,-) is used to combine the rationale subgraph representation

(r) ; ; (e)
h;"’ and environment subgraph representation h i The aggre-

gation function can be any combining/pooling functions such as
concatenation, sum pooling, and max pooling. Taking the element-

wise sum pooling as an example, the graph representation h(; ;)
(r)

of a combined graph of rationale subgraph g;* and environment

(e)

subgraph g;  can be calculated as below:

h(j) = AGG(h{”,h{) =h{” +h®. %)
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Table 1: Statistics of eleven datasets for graph property predic-
tion: The four top rows are polymer datasets. The prediction
tasks are graph regression. The seven bottom rows are mole-
cule datasets. Their tasks are graph classification.

Dataset # Graphs Avg./Max # Nodes Avg./Max # Edges
GlassTemp 7,174 36.7 / 166 79.3 /362
MeltingTemp 3,651 26.9/102 55.4 /212
PolyDensity 1,694 27.3/93 57.6 / 210
OzPerm 595 37.3/103 82.1/234
ogbg-HIV 41,127 255/ 222 54.9 / 502
ogbg-ToxCast 8,576 18.8 / 124 38.5/ 268
ogbg-Tox21 7,831 18.6 /132 38.6 /290
ogbg-BBBP 2,039 24.1/132 51.9 /290
ogbg-BACE 1,513 34.1/97 73.7 / 202
ogbg-ClinTox 1,477 26.2 /136 55.8 / 286
ogbg-SIDER 1,427 33.6 /492 70.7 / 1010

For the graph representations h(; j) generated by the environ-
ment replacement augmentation, the MLP property predictor is
trained to predict y;. That is,

9(i,j) = MLPz (h; ;). ®)

The graph representations generated by both environment re-
moval augmentation and environment replacement augmentation

(ie., hlm and h(; ;)) are fed into the same property predictor MLP3.
The GNN-based property predictor fp,¢q defined in Section 3 in-
cludes MLP; and GNNj that generates the contextualized node
representation H.

4.2.3 Optimization. During training, the type of loss function on
the observed graph property (y;) and predicted labels (ﬁi(r) and
7(;,j)) depends on the type of the property label. For example, when
the graph property y has binary values in the binary classification
task, we use the standard binary cross-entropy loss. When the graph
property y has real values in the graph regression task, we use the
mean squared error (MSE) loss. Without loss of generality, suppose
we focus on the binary classification task. Given a batch of B graphs
91,92, - - -, 9B, the loss functions for each graph example g; and its
label y; are defined as

Lrem =yi 'loggi(r) +(1-y;) -log (1_95”)’ ©)
1 B

Lrep =5 > (wi-log g + (1= u0) log(1 = i), (10)
Jj=1

where L;¢pm, is the loss for the examples created by environment
removal augmentation, and Lye is the loss for the examples created
by the environment replacement augmentation.

Moreover, the following regularization term is used to control
the size of the selected rationale subgraph:

L= (5o (B2 ) o

where y € [0,1] is a hyperparamter to control the expected size of
the rationale subgraph g(r ). The node probabilities classified as the
rationale should only exist on certain nodes with the expected size.
Therefore, we use the first term to penalize the number of nodes
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in the rationale when it deviates from our expectations and the
second term to encourage an uneven distribution for m.

We use the alternate training schema in Chang et al. [2] to train
GREA. That is, we iteratively train fsep (GNN; and MLP;) and
ﬁ,red (GNN; and MLP;) for a fixed number of epochs Ts.p and
Tpreas respectively. The loss functions for training GREA are

Lored = Lrem +a - Lrep, (12)
Lsep =Lrem+a- Lrep +p- Lregs (13)

where £,,.4 in Eq. (12) and Lsep in Eq. (13) are used to train fsep
(GNN; and MLP1) and f,,q (GNN; and MLP3), respectively. o and

 are hyperparameters that control the weights of Lyep and Lyeg,

A(r)

respectively. During inference, §;

property of input graph g;.

is used as the final predicted

5 EXPERIMENTS

We conduct experiments to answer the following questions:

e Q1) Effectiveness: Does the proposed GREA make more
accurate prediction on molecule and polymer properties
than existing graph classification/regression methods?

Q2) Ablation study: Do the environment-based augmenta-
tions make positive effect on the performance?

Q3) Case study: Based on domain expertise, are the polymer
rationale examples identified by GREA representative?

Q4) Efficiency: Does the latent space-based design for aug-
mentations perform faster than explicit graph decoding and
encoding? Can we empirically analyze the complexity?
Q5) Sensitivity analysis: Is the performance of GREA sensi-
tive to hyperparameters such as a, 5, and AGG(-)?

5.1

5.1.1 Datasets. We conduct experiments on four polymer datasets
and seven molecule datasets. The statistics of the datasets are
given in Table 1, such as number of graphs and average size of
graphs. The four datasets GlassTemp, MeltingTemp, PolyDensity,
and OzPerm are used to predict different properties of polymers
such as glass transition temperature (°C), polymer density g/cm3,
melting temperature (°C), and oxygen permeability (Barrer). For
all the polymer datasets, we randomly split by 60%/10%/30% for
training, validation, and test. Besides polymer datasets, we use
seven molecule datasets from the graph property prediction task
on Open Graph Benchmark or known as OGBG. For all molecule
datasets, we use the scaffold splitting procedure as OGBG adopted
[9]. It attempts to separate structurally different molecules into
different subsets, which provides a more realistic estimate of model
performance in experiments [36]. Dataset descriptions with details
are presented in the Appendix A.

Experimental Settings

5.1.2  Evaluation Metrics. On the polymer datasets, we perform the
tasks of graph regression. We use the coefficient of determination
(R?) and Root Mean Square Error (RMSE) as evaluation metrics
according to previous works [9, 17]. On the molecule datasets, we
perform the tasks of graph binary classification using the Area un-
der the ROC curve (AUC) as the metric. To evaluate model efficiency,
we use the computational time per training batch (in seconds).

5.1.3 Baseline Methods. There are three categories of related meth-
ods that we can compare GREA with. The first category is graph
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pooling methods that aim at finding (soft) cluster assignment of
nodes towards aggregated representations of graph. They are U-
NEeTsPooL [6] and SELFATTNPOOL [14]. The second category im-
proves the optimization and generalization of learned representa-
tions. They include STABLEGNN [5], OOD-GNN [15], and IRM [1].
The third is DIR for graph rationale identification that was proposed
in a very recent work by Wu et al. [34]. To investigate the effect of
environment replacement augmentation (denoted by REPAUG as a
module that may be used or not in the methods), we implement two
method variants: (1) DIR+REPAUG: We add environment-replaced
augmentation to DIR [34] to identify rationales, however, it has to
explicitly decode and encode the rationales; (2) GREA-REPAuG: We
disable the environment replacement augmentation and use only
the environment removal augmentation, i.e., rationale subgraphs
in GREA. In the experiments, we study two types of GNN models
(GCN [12] and GIN [37]) as graph encoders for all the methods.
Please refer to Appendix B for details of implementation.

5.2 Results on Effectiveness (Q1)

Table 2 presents the results on polymer property regression with
R? and RMSE metrics. Table 3 presents the results on molecule
property classification using AUC. Underlined are for the best base-
line(s). The best baseline is OOD-GNN for its elimination of the
statistical dependence between property-relevant graph representa-
tion and property-irrelevant graph representation. The first graph
rationalization method DIR was evaluated on synthetic data [34];
unfortunately, it performs poorly on real polymer and molecule
datasets because it selects edges to create rationale subgraphs and
thus loses the original contextual information of atoms in the the
rationale representations. Compared to them, our GREA with either
GCN or GIN consistently achieves the best performance on all the
polymer and molecule datasets. On the PolyDensity dataset, GREA
with GCN improves R? over OOD-GNN relatively by +3.91%. On
MeltingTemp, GREA with GIN produces 1.56x R? over DIR.

5.3 Ablation Study on GREA (Q2)

Tables 2 and 3 have presented the results of DIR+REPAUG and
GREA-REPAUG. DIR+REPAUG is a variant of baseline method DIR
by enabling environment replacement augmentations for training.
GREA—-REPAUG is a variant of our GREA that disables the replace-
ment augmentations and uses environment removal only for train-
ing. Clearly, DIR+REPAUG outperforms DIR, showing positive ef-
fect of the replacement augmentations. And the performance of
GREA-REPAUG is not satisfactory. Environment replacement aug-
mentations are effective for training graph rationalization methods.

5.4 Case Study on Polymer Data (Q3)

Given test polymer examples in the OzPerm dataset, we visualize
and compare the rationale subgraphs that are identified by from
DIR [34] and our GREA in Figure 3. We have three observations.
First, the rationales identified by GREA have more coherent struc-
tures of atom nodes than those identified by DIR. The red boxes
show that quite a few edges in the rationales by DIR are far sep-
arated. This is because DIR explicitly decodes the subgraphs by
selecting edges. Our GREA estimates the probability of nodes being
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Table 2: Results on polymer property prediction: GREA consistently achieves the highest R? and smallest RMSE.

GlassTemp MeltingTemp PolyDensity OzPerm
R%17 RMSE | R%17 RMSE | R%1 RMSE | R%1 RMSE |

U-NEeTsPooL [6] 0.839+0.005 44.9+0.7 | 0.685+0.012 63.4+1.2 | 0.615+0.053  0.100+0.007 | 0.833+0.084 865+214
_g SELFATTNPOOL [14] | 0.848+0.007 43.5x1.0 | 0.709£0.008 61.0+£0.9 | 0.688+0.019  0.090+0.003 | 0.656%+0.135 1251266
S | STABLEGNN [5] 0.809+0.013 48.8+1.6 | 0.635+0.033  70.0+4.5 | 0.667+0.070  0.093+0.009 | 0.676+0.127 1219+241
| OOD-GNN [15] 0.852+0.006  43.0+0.9 | 0.714+0.025 60.4+2.6 | 0.676+£0.010  0.092+0.001 | 0.921+0.059 5764212
E IRM [1] 0.830+0.008 46.1x1.1 | 0.677£0.006 64.2+0.6 | 0.690+0.016  0.090+0.002 | 0.871+0.043 770141
E DIR [34] 0.697+0.061 61.2+6.0 | 0.380+0.214 87.8+14. | 0.656+0.036  0.094+0.005 | 0.135+0.068 2028+80
z. | DIR+REPAUG 0.800+0.006 56.5+3.2 | 0.520+0.101 77.8+8.2 | 0.671+0.033  0.092+0.005 | 0.915+0.031 626+115
8 GREA-REPAUG 0.685+0.172  60.6+16.5 | 0.679+£0.034  64.0+3.3 | 0.686+0.007  0.090+0.001 | 0.459+0.254 1556+395

GREA (ours) 0.855+0.003  42.6+0.5 | 0.716+0.016 60.2+1.6 | 0.717+0.023 0.086+0.003 | 0.941+0.018 524+91

U-NeTsPooL [6] 0.852+0.006 42.9+£0.9 | 0.703+£0.009 61.6+0.9 | 0.635%+0.029  0.097+0.004 | 0.868+0.085 753+250
g SELFATTNPOOL [14] | 0.848+0.003  43.5+0.4 | 0.726+0.009 59.2+1.0 | 0.654+0.024  0.095+0.003 | 0.601+0.267 1265+546
S STABLEGNN [5] 0.794+0.007 50.8+0.9 | 0.535+0.061 76.9+£5.0 | 0.642+0.045 0.096+0.006 | 0.501+0.266 1487+404
S| OOD-GNN [15] 0.862+0.007  41.6+1.1 | 0.721%£0.006  59.7+0.6 | 0.666+0.025  0.093+0.003 | 0.917+0.029  620+109
& | IRM [1] 0.842+0.004 44.5+£0.5 | 0.681+0.008 63.8+0.8 | 0.682+0.031 0.091+0.004 | 0.890+0.042 709+146
E DIR [34] 0.594+0.070 71.0+£6.0 | 0.287+0.121 95.1£7.9 | 0.617+0.045 0.099+0.006 | 0.501+0.309 1446+537
E DIR+REPAUG 0.744+0.029 56.4+3.2 | 0.542+0.083 76.2+£7.0 | 0.647+0.058  0.095+0.008 | 0.743+0.150 1054+338
O | GREA-REPAUG 0.494+0.110 79.0£9.3 | 0.660£0.107  65.2+£9.5 | 0.717+£0.022  0.086+0.003 | 0.400+0.286 1623+474

GREA (ours) 0.864+0.005 41.2+0.8 | 0.736+0.012 58.0+1.2 | 0.723+0.030 0.085+0.005 | 0.930+0.020 569+86

Table 3: Results on molecule property prediction: GREA consistently achieves the highest AUC (T).

ogbg-HIV

ogbg-ToxCast

ogbg-Tox21

ogbg-BBBP

ogbg-BACE

ogbg-ClinTox

ogbg-SIDER

U-NEeTsPoor [6]

0.7527+0.0104

0.6507+0.0086

0.7492+0.0093

0.6709+0.0176

0.7757+0.0173

0.8450+0.0403

0.6181+0.0121

_g SELFATTNPOOL [14]  0.7733+0.0187  0.6510+0.0076  0.7563£0.0080  0.6602+0.0220  0.7383+0.0541  0.8291+0.0791  0.5718+0.0219
S  StaBLEGNN [5] 0.7218+0.0099  0.6520+0.0109  0.7454+0.0059  0.6552+0.0184  0.6607+0.0500  0.7681+0.0778  0.5644+0.0274
§ OOD-GNN [15] 0.7580+0.0176  0.6613+0.0046  0.7673+£0.0109  0.6795+0.0165  0.8096+0.0132  0.8874+0.0143  0.6133+0.0095
E‘ IRM [1] 0.7702+0.0107  0.6599+0.0063  0.7654+0.0072  0.6892+0.0053  0.7947+0.0186  0.8819+0.0231  0.6035+0.0195
E DIR [34] 0.7466+0.0093  0.5954+0.0154  0.4727+0.0129  0.6559+0.0298  0.6751+0.0323  0.6251+0.0956  0.5331+0.0216
z DIR+REPAUG 0.7494+0.0225  0.6632+0.0098  0.7437+0.0054  0.6630+0.0118  0.7677+0.0226  0.8606+0.0144  0.5934+0.0170
8 GREA-REPAUG 0.7377+0.0210  0.6614+0.0048  0.7808+0.0061  0.6736+0.0077  0.7655+0.0529  0.8708+0.0514  0.6222+0.0166

GREA (ours) 0.7794+0.0065 0.6662+0.0041 0.7822+0.0093 0.6986+0.0175 0.8191+0.0240 0.8961+0.0150 0.6316=+0.0151

U-NeTsPoor [6]

0.7375+0.0362

0.6524+0.0126

0.7560+0.0093

0.6809+0.0163

0.8026+0.0105

0.8146+0.0703

0.5929+0.0114

_q;j SELFATTNPOOL [14]  0.7533+0.0247  0.6351+0.0137  0.7507+0.0110  0.6624+0.0167  0.7348+0.0194  0.7912+0.0995  0.5702+0.0137
g STABLEGNN [5] 0.7218+0.0078  0.6485+0.0025  0.7381+0.0123  0.6695+0.0120  0.7229+0.0122  0.8559+0.0224  0.5593+0.0172
§ OOD-GNN [15] 0.7799+0.0078  0.6697+0.0051  0.7646+0.0038  0.6710+0.0188  0.7800+0.0228  0.8416+0.0496  0.5916+0.0169
& IRM[1] 0.7817+0.0120  0.6641+0.0065  0.7542+0.0084  0.6835+0.0071  0.7977+0.0208  0.8485+0.0215  0.5778+0.0206
E' DIR [34] 0.7533+0.0117  0.5927+0.0097  0.5078+0.0313  0.5843+0.0443  0.6115+0.0587  0.6911+0.0810  0.5406+0.0127
E DIR+REPAUG 0.7725+0.0249  0.6454+0.0061  0.7453+0.0080  0.6813+0.0203  0.7590+0.0642  0.8561+0.0159  0.5730+0.0115
O GREA-RerAuG 0.7770£0.0178  0.6681+0.0066  0.7690+0.0117  0.6737+0.0235  0.7997+0.0380  0.8574+0.0442  0.5988+0.0169

GREA (ours) 0.7932+0.0092 0.6750+0.0067 0.7723+0.0119 0.6970+0.0128 0.8237+0.0237 0.8789+0.0368 0.6014+0.0204

Second, the rationales from GREA are more interpretable and
beneficial than the ones from DIR, based on domain expertise in
polymer science. Take a look at the first polymer example in Figure 3.

Table 4: Effect of AGG(hlm, h](.e)) in Eq. (7). We use Sum Pool-
ing by default because it generally performs the best.

|| MeltingTemp (R?) | OzPerm (R?) || ogbg-HIV (AUC)

Sum Pooling
Mean Pooling
Max Pooling
Concatenation

0.7362+0.0115
0.7328+0.0068
0.7164+0.0094
0.7145+0.0127

0.9288+0.0331
0.8984+0.0494
0.9240+0.0143

0.7932+0.0092
0.7810+0.0117
0.7809+0.0137
0.7771+0.0096

The rationale from GREA includes non-aromatic rings and methyl
groups. The former group allows larger free volume elements and
lower densities (i.e., enlarge microporousity) in the polymer’s re-
peating units, which positively contributes to the gas permeability

0.9304+0.0202

[24, 38]. The latter group is hydrophobic and contributes to steric
frustration between polymer chains [38], inducing a positive corre-
lation to the permeability. On the other hand, the rationale from DIR
would make property predictor overestimate the oxygen permeabil-
ity, because it suggests that the double-bonded oxygens, ethers, and

included in the rationales and