
Graph Rationalization with Environment-based Augmentations

Gang Liu
University of Notre Dame
Notre Dame, IN, USA

gliu7@nd.edu

Tong Zhao
University of Notre Dame
Notre Dame, IN, USA

tzhao2@nd.edu

Jiaxin Xu
University of Notre Dame
Notre Dame, IN, USA

jxu24@nd.edu

Tengfei Luo
University of Notre Dame
Notre Dame, IN, USA

tluo@nd.edu

Meng Jiang
University of Notre Dame
Notre Dame, IN, USA
mjiang2@nd.edu

ABSTRACT
Rationale is de!ned as a subset of input features that best explains
or supports the prediction by machine learning models. Rationale
identi!cation has improved the generalizability and interpretability
of neural networks on vision and language data. In graph applica-
tions such as molecule and polymer property prediction, identifying
representative subgraph structures named as graph rationales plays
an essential role in the performance of graph neural networks. Exist-
ing graph pooling and/or distribution intervention methods su"er
from the lack of examples to learn to identify optimal graph ratio-
nales. In this work, we introduce a new augmentation operation
called environment replacement that automatically creates virtual
data examples to improve rationale identi!cation. We propose an ef-
!cient framework that performs rationale-environment separation
and representation learning on the real and augmented examples in
latent spaces to avoid the high complexity of explicit graph decoding
and encoding. Comparing against recent techniques, experiments
on seven molecular and four polymer datasets demonstrate the
e"ectiveness and e#ciency of the proposed augmentation-based
graph rationalization framework. Data and the implementation of
the proposed framework are publicly available1.

CCS CONCEPTS
• Applied computing → Chemistry; • Computing methodolo-
gies → Learning latent representations.

KEYWORDS
Graph Learning, Graph Neural Network, Molecule Property, Data
Augmentation, Rationalization

ACM Reference Format:
Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. 2022. Graph
Rationalization with Environment-based Augmentations. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

1https://github.com/liugangcode/GREA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539347

(KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3534678.3539347

1 INTRODUCTION
Graph property prediction has attracted attention in di"erent re-
search !elds like chemoinformatics and bioinformatics where small
molecules are represented as labelled graphs of atoms [7, 9, 48].
Besides, materials informatics for polymers has emerged in recent
years from property prediction to inverse design [4, 11]. Polymer
are materials consisting of macromolecules, composed of many
repeating units. They are ubiquitous in applications ranging from
plastic cups and electronics to aerospace structures. New engineer-
ing and environmental challenges demand that polymers possess
unconventional properties such as high-temperature stability, excel-
lent thermal conductivity, and biodegradability [16, 33]. It’s impor-
tant to integrate data science and machine learning into polymer
informatics on the tasks of graph classi!cation and regression.

To automate feature extraction from graph data, graph neural
network (GNN) models learn node representations through non-
linear functions and layers that aggregate information from node
neighborhood [8, 12, 26, 35, 42]. Graph pooling is a central com-
ponent of the GNN architecture that learns a cluster assignment
for nodes and passes cluster nodes and their representations to the
next layer [14, 40]. The !nal layer returns the representations of
entire graphs. Despite the advances of various GNN models, the
limitation of data size makes them easily fall into over-!tting and
poor generalizability. For example, the number of graphs in mole-
cule benchmark datasets is usually in the range of 1,000 and 10,000;
and the size of polymer datasets is even smaller (e.g., ∼600) [17].

Rationalization techniques have been designed to solve the above
problem in vision and language data, where the rationale is de!ned
as a subset of input features that best explains or supports the
prediction by machine learning models [1, 2, 23]. However, graph
rationalization has not been extensively studied, which aims at
identifying representative subgraph structures for accurate and in-
terpretable graph property prediction. Related work mainly focused
on advancing graph pooling methods, but cluster assignment could
not re$ect the most essential part that led to accurate prediction
[6, 19]. A very recent technique named DIR [34] employed two
GNN modules to discover invariant graph rationales: one module
separates each input graph into a rationale subgraph and an envi-
ronment subgraph; the other is a graph property predictor based
on the rationale subgraph. As shown at the top in Figure 1, given

1069

https://github.com/liugangcode/GREA
https://doi.org/10.1145/3534678.3539347
https://doi.org/10.1145/3534678.3539347
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3534678.3539347&domain=pdf&date_stamp=2022-08-14

KDD ’22, August 14–18, 2022, Washington, DC, USA Gang Liu et al.

Rationale-
Environment
Separator
!!"#(#)

*

*

*
*

* *

*
*

*

*

*
*

* *

*
*

*

*

Graph !% Rationale !%
(&)

Environment '$
(")

Graph !(

")*+($) Rationale ''
(()

Environment !(
(*)

…

")*+($)

")*+($)

Graph
Property
Predictor
!#(")(#)

&'%
(&)

* *

!(%,() = !%
(&) ∪ !(

(*)

"+&*-($) &'(%,()

'$
(()

'$
(()

…

…

Augmented example
by environment removal

Augmented examples
by environment replacement

ℒ&*.(&'% & , '%)

ℒ&*+(&' %,(, '%)

!!

Figure 1: Graph rationalization identi!es a rationale subgraph that best explains or supports the prediction of graph property.
Our work makes the !rst attempt to improve graph rationalization by graph data augmentations with environment subgraphs
which are the remaining parts after rationale identi!cation. It proposes new augmentation operations, designs and develops a
novel graph rationalization framework, and conducts experiments on a large set of molecule and polymer data.

graph !! , the separator ""#$ identi!es rationale ! (%)! , and the pre-

dictor "$%#& gives label #̂ (%)! based on the rationale. DIR conducted
interventions on training distribution to improve the invariance.
Unfortunately, when the data size was small, ""#$ could hardly !nd
good rationales, as reported in our later experiments.

In this work, we make the !rst attempt to enhance graph ratio-
nalization by graph data augmentations. Existing augmentation
methods were mainly heuristic modi!cation of graph structure,
which could not directly support the identi!cation of graph ratio-
nales [22, 31, 32, 46]. We present two augmentation methods based
on environment subgraphs that are the remaining parts in the graph
after rationale identi!cation. First, rationales are used to train the
property predictor, which can be considered as graph examples
augmented by environment removal. Second, we replace the envi-
ronment of input graph with the environment of another graph
in the batch: to generate an augmented example: this augmenta-
tion method is called environment replacement. The idea is that the
rationale can be accurately identi!ed and/or separated from the
input graph when the augmented examples are expected to have
the same label of the input graph example.

Figure 1 presents the idea of generating virtual data for small

datasets via data augmentations. Suppose we have rationale ! (%)!
separated from input graph !! . We use the same GNN-based sepa-

rator to !nd environment subgraph ! (#)' from another graph ! ' in

the batch. The example augmented by environment replacement is

denoted by!(!, ') = !
(%)
! ∪!

(#)
' . The model is trained on this example

to predict label #̂!, ' to be the same as #! that is the observed label of
!! . We compute two losses on the augmented examples, L%#(and

L%#$ (“rem” for removal and “rep” for replacement), and jointly
optimize ""#$ and "$%#& by their combination.

The key challenge in the idea implementation is the high com-
putational complexity of decoding for explicit graph forms of ratio-
nales, environment subgraphs, and augmented examples, as well as
encoding them for representation learning and property prediction.
Moreover, it is scienti!cally and technically di#cult to explicitly

combine rationale ! (%)! and environment ! (#)' from di"erent graphs,

as shown in the three augmented examples !(!, ') in Figure 1. To
address these challenges, we hypothesize that the contextualized
representations of nodes play a signi!cant role in rationales, envi-
ronment subgraphs, and augmented graphs. Thus, we create the
representations of all these objects from one latent space.

In this paper, we propose a novel, e#cient framework of Graph
Rationalization enhanced by Environment-based Augmentations
(GREA). It performs rationale-environment separation and repre-
sentation learning on the real and augmented examples in one
latent space to avoid the high complexity of explicit subgraph de-
coding and encoding. Figure 2 presents the architecture of GREA
with a few steps. First, it employs GNN1 and MLP1 models to infer
the probability of nodes being classi!ed into rationale subgraph
m. Second, it employs GNN2 to create contextualized node repre-
sentations H. Then, it directly creates the representation vectors
of rationales, environment subgraphs and environment-replaced

examples, denoted by h
(%)
! , h(#)! , and h(!, ') , respectively. Note that

DIR [34] used a GNN to generate a matrix of masks that indicate
the importance of edges and then select the top-$ edges with the
highest masks to construct the rationale. Then it had to run GNNs

1070

Graph Rationalization with Environment-based Augmentations KDD ’22, August 14–18, 2022, Washington, DC, USA

on all the explicit graph objects. Instead, our GREA uses m and H

to compute the representation vectors of the arti!cial graphs.
We conduct experiments on seven molecule and four polymer

datasets. Results demonstrate the advantages of GREA over base-
lines. For example, it signi!cantly reduces the prediction error on
oxygen permeability of polymer membrane with only 595 train-
ing examples. The oxygen permeability de!nes how easily oxygen
passes through a particular material. Accurate prediction will speed
up material discovery for healthcare and energy utilization.

The main contributions of this work are summarized below:
• the !rst attempt to improve graph rationale identi!cation us-
ing data augmentations, including environment replacement,
for accurate and interpretable property prediction;

• a novel and e#cient framework that performs rationale-
environment separation and representation learning on real
and augmented examples in one latent space;

• extensive experiments on more than ten molecule and poly-
mer datasets to demonstrate the e"ectiveness and e#ciency
of the proposed framework.

2 RELATEDWORK
There are four research topics related to the proposed work. We
brie$y present their recent studies and compare with ours.

2.1 Graph Property Prediction
Learning representations and predicting properties of entire graphs
is important for chemistry, biology, and material sciences, where
molecule and polymer data can be structured as graphs [9]. When
RDKit is widely used to generate molecular !ngerprints [13], graph
neural networks (GNNs) such as Graph Convolutional Network
(GCN) [12], Graph Attention Networks (GAT) [26], and Graph-

SAGE [8] have automated representation learning with nonlinear
functions from graph data [10, 18, 27–30, 35, 42, 43].

In the GNN models, graph pooling is a central component of
their architectures as a cluster assignment function to !nd local
patches in graphs [19]. For example, DiffPool presented a di"eren-
tiable graph pooling module that learned a di"erentiable soft cluster
assignment for nodes at each layer of a deep GNN, mapped nodes to
a set of clusters, and then formed the coarsened input for the next
GNN layer [40]. Lee et al. proposed self-attention graph convolution
that allows graph pooling to consider both node features and graph
topology [14]. Gao and Ji proposed graph pooling and unpooling
operations in Graph U-Nets [6]. Xu et al. presented a theoreti-
cal framework for analyzing the representational power of GNNs
through the graph pooling functions [37]. While graph pooling
identi!es soft clusters that e"ectively aggregate information from
nodes [39], our work identi!es representative subgraph structures
for accurate and interpretable predictions of GNN models.

2.2 Graph Rationalization
Most rationalization techniques identify the small subset of input
features by maximizing the predictive performance based only on
the subset itself, called rationale. To rule out spurious correlation
between the input features and the output, Chang et al. proposed
the concept of invariant rationalization by modeling di"erent envi-
ronments as non-causal input to train predictors [2]. Rosefeld et al.

o"ered formal guarantees for improvement of the invariant causal
prediction on out-of-distribution generalization [1, 23].

By introducing causal modeling into GNN optimization, Fan et
al. presented a causal representation framework for GNN models
to perform on out-of-distribution graphs [5]. Li et al. proposed
OOD-GNN that employed a novel nonlinear graph representation
decorrelation method that used random Fourier features to encour-
age GNNs to eliminate the statistical dependence between relevant
and irrelevant graph representations [15]. Very recently, Wu et al.
proposed the !rst work called DIR to approach causal rationales for
GNNs to improve the interpretability and predictive performance
on out-of-distribution data [34]. DIR conducted interventions on
the training distribution to create multiple distributions. Unfortu-
nately, distribution intervention might not be the optimal solution
to graph rationale identi!cation. Also, the edge selection method
su"ers from high computational complexity for rationale creation.
Moreover, the studies were mainly performed on synthetic data. In
this paper, we make the !rst attempt to de!ne “environment” in
graph data, augment data examples by environment replacement,
develop an e#cient framework, and conduct experiments on a large
set of real molecule and polymer data. We !nd that augmentation-
enhanced graph rationalization is more e"ective than DIR.

2.3 Graph Data Augmentation
Graph data augmentation (GDA) techniques [3, 44, 45, 47] have
improved the performance on semi-supervised node classi!cation,
such as DropEdge [22], NodeAug [32], and GAug [46]. Besides,
many GDA techniques have been designed for graph-level tasks,
aiming at creating new training examples by modifying input graph
data examples. For example, GraphCrop regularized GNN models
for better generalization by cropping subgraphs or motifs to sim-
ulate real-world noise of sub-structure omission [31]. M-Evolve

presented two heuristic algorithms including random mapping and
motif-similarity mapping to generate weakly labeled data for small
datasets [48]. MH-Aug adopted the Metropolis-Hastings algorithm
to create augmented graphs from an explicit target distribution for
semi-supervised learning [21]. Meanwhile, graph contrastive learn-
ing learned unsupervised representations of graphs using graph
data augmentations to incorporate various priors [41]. Zhu et al.
[49] proposed adaptive augmentation that incorporated various
priors for topological and semantic aspects of graphs. Speci!cally,
it designed augmentation schemes based on node centrality mea-
sures to highlight important connective structures and corrupted
node features by adding noise to unimportant node features. A
comprehensive survey of GDA is given by Zhao et al. [44].

2.4 Graph Learning on Polymer Data
Material informatics uses machine learning approaches to fast
screen material candidates or generate new materials meeting cer-
tain criteria, so as to reduce the time of material development.When
most related research performed on molecule data [7], polymer re-
searchers have developed a benchmark database and developed
machine learning techniques for polymer data, called polymer em-
beddings [4, 11]. They can be used to perform several polymer
informatics regression tasks for density, glass transition tempera-
ture, melting temperature, and dielectric constants [16, 17, 33].

1071

KDD ’22, August 14–18, 2022, Washington, DC, USA Gang Liu et al.

…

*
*

GNN1(·) MLP1(·)

…

GNN2(·)

Graph !!

""
($): Environment !"

($)

#$!
(&)

#$(!,")AGG(·, ·)

MLP2(·)

MLP2(·)

"!
(&): Rationale !!

(&)

(environment-removed example)

"!
($): Environment !!

($)

"(!,"): Environment-replaced
example !(!,") = !!

(&) ∪ !"
($)

Graph !" …

': Node representations

!: Node probability of being
classified into Rationale

!!" ⋅ #×%

!!" ⋅ (!# −#)×%

Figure 2: The architecture of the proposed graph rationalization framework: It performs the creation and representation
learning of environment-based augmented examples in a latent space, instead of decoding every example into a graph form
and running a GNN encoder on it. This design aligns graph representation spaces and avoids high computational complexity.

3 PROBLEM DEFINITION
Graph Property Prediction. Let ! = (V, E) be a graph of % nodes

and & edges, where V is the set of nodes (e.g., atoms) and E ⊆
V × V is the set of edges (e.g., bonds between atoms). We use
∈ Y to denote the graph-level property of !, whereY is the value
space. It can have a categorical or numerical value, corresponding
to the task of classi!cation or regression, respectively.

A graph property predictor "$%#& takes a graph ! as input and
predicts its label #̂. Speci!cally, a GNN-based predictor employs a
GNN encoder to generate node representations H from !:

H =

[

· · · , 'ℎ), · · ·
](

)∈V
= GNN(!) ∈ R*×& , (1)

where 'ℎ) ∈ R& is the representation vector of node (in graph !.
GNN encoder GNN(·) can be chosen as GCN [12] or GIN [37].

Once the node representations are ready, a multilayer perceptron
(MLP) can project them into a one-dimensional space to obtain a

scalar for each node as)) = MLP('ℎ)) . As we are more interested
in graph-level classi!cation or regression, we !rst use a readout
operator (e.g., average pooling) to get the graph representation h

and then apply a MLP to project it to a graph label:

h = READOUT(H) ∈ R& , #̂ = MLP(h) ∈ Y . (2)

Graph Rationalization. Following the existing literature on graph
rationalization [5, 6, 14, 34, 40] and GNN explanation [39], we use
rationale ! (%) = (V (%) , E(%)) to indicate the causal subgraph of
the property #, where ! (%) is a subgraph of ! such thatV(%) ⊆ V

and E(%) ⊆ E. We use ! (#) to denote the environment subgraph,
which is the complementary subgraph of ! (%) in !. In contrast
with the rationale subgraph ! (%) , the environment subgraph ! (#)

corresponds to the non-causal part of the graph data, which has no
causal relationship with the target graph property [2, 34].

Let ""#$ be a GNN-based graph rationalization model that splits

an input graph ! into a rationale subgraph ! (%) and an environment
subgraph! (#) . Existing graph rationalizationmethods used only the

rationale subgraph as input for property prediction [6, 14, 34, 40]:

#̂ = #̂ (%) = "$%#&
(

! (%)
)

, (3)

where "$%#& (·) = MLP(READOUT(GNN(·))) and #̂ (%) denotes the

predicted property of the rationale subgraph ! (%) .
Unfortunately, when su"ering from lack of training examples,

these methods chose to discard environment subgraphs at the train-
ing stage. In the next section, we present a novel framework show-
ing our idea that environment subgraphs can provide natural noise
through data augmentation to improve graph rationalization.

4 PROPOSED FRAMEWORK
In this section, we introduce a novel graph rationalization frame-
work GREA. The key idea is to augment the rationale subgraph
by removing its own environment subgraph and/or combining it
with di"erent environment subgraphs. Figure 2 shows the overall
architecture of GREA: GNN1 and MLP1 !rst separate input graph !
into rationale subgraph! (%) and environment subgraph! (#) ; GNN2

next generates node representations H using Eq.(1); the rationale

subgraph’s representation h
(%)
! is then combined with di"erent

environment subgraph’s representations h(#)' for the augmented

graph’s representations h(!, ') ; !nally, both h
(%)
! and h(!, ') are fed

into MLP2 for the prediction of #! during training as Eq.(2).

4.1 Rationale-Environment Separation

To separate input graph ! into rationale subgraph ! (%) and environ-
ment subgraph ! (#) , the rationale-environment separator consists
of two components: a GNN encoder (GNN1) that generates latent
node representations and a MLP decoder (MLP1) that maps the
node representations to a mask vector m ∈ (0, 1)* on the nodes in
the setV .)) = *+ ((∈ V(%)) is the node-level mask that indicates
the probability of node (∈ V being classi!ed into the rationale
subgraph. The mask can be on either a node or an edge [34]. we
choose to learn masks on the nodes to avoid the computational

1072

Graph Rationalization with Environment-based Augmentations KDD ’22, August 14–18, 2022, Washington, DC, USA

complexity of edge selection. Hence, m can be calculated as

m = , (MLP1 (GNN1 (!))), (4)

where , denotes the sigmoid function. Based on m, we have (1* −
m) that indicates the probability of nodes being classi!ed into the
environment subgraph. GNN1 and MLP1 make up the GNN-based
graph rationalization model ""#$ mentioned in Section 3.

GREA uses another GNN encoder to generate contextualized
node representationsH:H = GNN2 (!). Withm andH, the rationale
subgraph and environment subgraph can be easily separated in the
latent space. Using sum pooling, we have

h
(%)

= 1
(
* · (m × H), h

(#)
= 1

(
* · ((1* −m) × H), (5)

where 1* denotes the % -size column vector with all entries as 1,
and h(%) , h(#) ∈ R& are the representation vectors of graph ! (%)

and ! (#) , respectively.

4.2 Environment-based Augmentations
Suppose !1,!2, . . . ,!+ are the input graphs in one batch for train-
ing, where - is known as batch size. The rationale-environment
separator has generated the graph representations of rationale
and environment subgraphs for each graph !! . That is, we have

{(h
(%)
1 , h

(#)
1), (h

(%)
2 , h

(#)
2), . . . , (h

(%)
+ , h

(#)
+)}.We design environment-

based augmentations in the latent space of graph representations.

4.2.1 Environment Removal Augmentation. As graph rationaliza-
tion aims to !nd the rationale subgraph which is regarded as the
causal factor of graph property, the rationale itself should be good
for property prediction. As in the graph pooling methods [6, 14]
and the graph rationalization as de!ned in Eq. (3), the environment
removal augmentation uses the rationale subgraph only for training
the graph property predictor. That is, given the rationale subgraph

representation h
(%)
! of graph !! , the predicted label is

#̂
(%)
! = MLP2

(

h
(%)
!

)

. (6)

4.2.2 Environment Replacement Augmentation. As aforementioned
in Section 3, the environment subgraphs can be viewed as nat-
ural noises on the rationale subgraphs. Hence, in order to en-
hance the model’s robustness against the noise signal brought by
the environment subgraphs, for each graph !! , we combine its

rationale subgraph ! (%)! not only with its own environment sub-

graph ! (#)! , but also with all other environment subgraphs ! (#)' , . ∈

{1, 2, . . . ,-} \ {/} in the batch. By replacing the environment sub-
graph with other environment subgraphs in the batch, the envi-
ronment replacement augmentation generates - − 1 augmented
data samples for each graph during training. As the environment
replacement happens on the latent space, an aggregation function
AGG(·, ·) is used to combine the rationale subgraph representation

h
(%)
! and environment subgraph representation h

(#)
' . The aggre-

gation function can be any combining/pooling functions such as
concatenation, sum pooling, and max pooling. Taking the element-
wise sum pooling as an example, the graph representation h(!, ')

of a combined graph of rationale subgraph ! (%)! and environment

subgraph ! (#)' can be calculated as below:

h(!, ') = AGG
(

h
(%)
! , h

(#)
'

)

= h
(%)
! + h

(#)
' . (7)

Table 1: Statistics of eleven datasets for graph property predic-
tion: The four top rows are polymer datasets. The prediction
tasks are graph regression. The seven bottom rows are mole-
cule datasets. Their tasks are graph classi!cation.

Dataset # Graphs Avg./Max # Nodes Avg./Max # Edges

GlassTemp 7,174 36.7 / 166 79.3 / 362
MeltingTemp 3,651 26.9 / 102 55.4 / 212
PolyDensity 1,694 27.3 / 93 57.6 / 210
O2Perm 595 37.3 / 103 82.1 / 234

ogbg-HIV 41,127 25.5 / 222 54.9 / 502
ogbg-ToxCast 8,576 18.8 / 124 38.5 / 268
ogbg-Tox21 7,831 18.6 / 132 38.6 / 290
ogbg-BBBP 2,039 24.1 / 132 51.9 / 290
ogbg-BACE 1,513 34.1 / 97 73.7 / 202
ogbg-ClinTox 1,477 26.2 / 136 55.8 / 286
ogbg-SIDER 1,427 33.6 / 492 70.7 / 1010

For the graph representations h(!, ') generated by the environ-
ment replacement augmentation, the MLP property predictor is
trained to predict #! . That is,

#̂ (!, ') = MLP2
(

h(!, ')
)

. (8)

The graph representations generated by both environment re-
moval augmentation and environment replacement augmentation

(i.e., h(%)! and h(!, ')) are fed into the same property predictor MLP2.
The GNN-based property predictor "$%#& de!ned in Section 3 in-
cludes MLP2 and GNN2 that generates the contextualized node
representation H.

4.2.3 Optimization. During training, the type of loss function on

the observed graph property (#!) and predicted labels (#̂ (%)! and
#̂ (!, ')) depends on the type of the property label. For example, when
the graph property # has binary values in the binary classi!cation
task, we use the standard binary cross-entropy loss.When the graph
property # has real values in the graph regression task, we use the
mean squared error (MSE) loss. Without loss of generality, suppose
we focus on the binary classi!cation task. Given a batch of - graphs
!1,!2, . . . ,!+ , the loss functions for each graph example !! and its
label #! are de!ned as

L%#(= #! · log #̂
(%)
! + (1 − #!) · log

(

1 − #̂
(%)
!

)

, (9)

L%#$ =

1

-

+
∑

'=1

(

#! · log #̂ (!, ') + (1 − #!) · log(1 − #̂ (!, '))
)

, (10)

where L%#(is the loss for the examples created by environment
removal augmentation, andL%#$ is the loss for the examples created
by the environment replacement augmentation.

Moreover, the following regularization term is used to control
the size of the selected rationale subgraph:

L%#, =

(1(*m

%
− 0

)

+
(

∑

- :m!>0 1

%
− 0

)

, (11)

where 0 ∈ [0, 1] is a hyperparamter to control the expected size of
the rationale subgraph ! (%) . The node probabilities classi!ed as the
rationale should only exist on certain nodes with the expected size.
Therefore, we use the !rst term to penalize the number of nodes

1073

KDD ’22, August 14–18, 2022, Washington, DC, USA Gang Liu et al.

in the rationale when it deviates from our expectations and the
second term to encourage an uneven distribution for m.

We use the alternate training schema in Chang et al. [2] to train
GREA. That is, we iteratively train ""#$ (GNN1 and MLP1) and
"$%#& (GNN2 and MLP2) for a !xed number of epochs 1"#$ and
1$%#& , respectively. The loss functions for training GREA are

L$%#& = L%#(+ 2 · L%#$, (12)

L"#$ = L%#(+ 2 · L%#$ + 3 · L%#,, (13)

where L$%#& in Eq. (12) and L"#$ in Eq. (13) are used to train ""#$
(GNN1 and MLP1) and "$%#& (GNN2 and MLP2), respectively. 2 and
3 are hyperparameters that control the weights of L%#$ and L%#, ,

respectively. During inference, #̂ (%)! is used as the !nal predicted
property of input graph !! .

5 EXPERIMENTS
We conduct experiments to answer the following questions:

• Q1) E"ectiveness: Does the proposed GREA make more
accurate prediction on molecule and polymer properties
than existing graph classi!cation/regression methods?

• Q2) Ablation study: Do the environment-based augmenta-
tions make positive e"ect on the performance?

• Q3) Case study: Based on domain expertise, are the polymer
rationale examples identi!ed by GREA representative?

• Q4) E#ciency: Does the latent space-based design for aug-
mentations perform faster than explicit graph decoding and
encoding? Can we empirically analyze the complexity?

• Q5) Sensitivity analysis: Is the performance of GREA sensi-
tive to hyperparameters such as 2 , 3 , and AGG(·)?

5.1 Experimental Settings
5.1.1 Datasets. We conduct experiments on four polymer datasets
and seven molecule datasets. The statistics of the datasets are
given in Table 1, such as number of graphs and average size of
graphs. The four datasets GlassTemp, MeltingTemp, PolyDensity,
and O2Perm are used to predict di"erent properties of polymers
such as glass transition temperature (◦C), polymer density g/cm3,
melting temperature (◦C), and oxygen permeability (Barrer). For
all the polymer datasets, we randomly split by 60%/10%/30% for
training, validation, and test. Besides polymer datasets, we use
seven molecule datasets from the graph property prediction task
on Open Graph Benchmark or known as OGBG. For all molecule
datasets, we use the sca"old splitting procedure as OGBG adopted
[9]. It attempts to separate structurally di"erent molecules into
di"erent subsets, which provides a more realistic estimate of model
performance in experiments [36]. Dataset descriptions with details
are presented in the Appendix A.

5.1.2 Evaluation Metrics. On the polymer datasets, we perform the
tasks of graph regression. We use the coe#cient of determination
(R2) and Root Mean Square Error (RMSE) as evaluation metrics
according to previous works [9, 17]. On the molecule datasets, we
perform the tasks of graph binary classi!cation using the Area un-
der the ROC curve (AUC) as themetric. To evaluatemodel e#ciency,
we use the computational time per training batch (in seconds).

5.1.3 Baseline Methods. There are three categories of related meth-
ods that we can compare GREA with. The !rst category is graph

pooling methods that aim at !nding (soft) cluster assignment of
nodes towards aggregated representations of graph. They are U-
NetsPool [6] and SelfAttnPool [14]. The second category im-
proves the optimization and generalization of learned representa-
tions. They include StableGNN [5], OOD-GNN [15], and IRM [1].
The third is DIR for graph rationale identi!cation that was proposed
in a very recent work by Wu et al. [34]. To investigate the e"ect of
environment replacement augmentation (denoted by RepAug as a
module that may be used or not in the methods), we implement two
method variants: (1) DIR+RepAug: We add environment-replaced
augmentation to DIR [34] to identify rationales, however, it has to
explicitly decode and encode the rationales; (2) GREA−RepAug: We
disable the environment replacement augmentation and use only
the environment removal augmentation, i.e., rationale subgraphs
in GREA. In the experiments, we study two types of GNN models
(GCN [12] and GIN [37]) as graph encoders for all the methods.
Please refer to Appendix B for details of implementation.

5.2 Results on E"ectiveness (Q1)
Table 2 presents the results on polymer property regression with
R2 and RMSE metrics. Table 3 presents the results on molecule
property classi!cation using AUC. Underlined are for the best base-
line(s). The best baseline is OOD-GNN for its elimination of the
statistical dependence between property-relevant graph representa-
tion and property-irrelevant graph representation. The !rst graph
rationalization method DIR was evaluated on synthetic data [34];
unfortunately, it performs poorly on real polymer and molecule
datasets because it selects edges to create rationale subgraphs and
thus loses the original contextual information of atoms in the the
rationale representations. Compared to them, ourGREAwith either
GCN or GIN consistently achieves the best performance on all the
polymer and molecule datasets. On the PolyDensity dataset, GREA
with GCN improves R2 over OOD-GNN relatively by +3.91%. On
MeltingTemp, GREA with GIN produces 1.56× R2 over DIR.

5.3 Ablation Study on GREA (Q2)
Tables 2 and 3 have presented the results of DIR+RepAug and
GREA−RepAug. DIR+RepAug is a variant of baseline method DIR

by enabling environment replacement augmentations for training.
GREA−RepAug is a variant of our GREA that disables the replace-
ment augmentations and uses environment removal only for train-
ing. Clearly, DIR+RepAug outperforms DIR, showing positive ef-
fect of the replacement augmentations. And the performance of
GREA−RepAug is not satisfactory. Environment replacement aug-
mentations are e"ective for training graph rationalization methods.

5.4 Case Study on Polymer Data (Q3)
Given test polymer examples in the O2Perm dataset, we visualize
and compare the rationale subgraphs that are identi!ed by from
DIR [34] and our GREA in Figure 3. We have three observations.

First, the rationales identi!ed by GREA have more coherent struc-
tures of atom nodes than those identi!ed by DIR. The red boxes
show that quite a few edges in the rationales by DIR are far sep-
arated. This is because DIR explicitly decodes the subgraphs by
selecting edges. Our GREA estimates the probability of nodes being

1074

Graph Rationalization with Environment-based Augmentations KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 2: Results on polymer property prediction: GREA consistently achieves the highest R2 and smallest RMSE.

GlassTemp MeltingTemp PolyDensity O2Perm
R2 ↑ RMSE ↓ R2 ↑ RMSE ↓ R2 ↑ RMSE ↓ R2 ↑ RMSE ↓

G
C
N
[1
2]

as
en
co
de
r

U-NetsPool [6] 0.839±0.005 44.9±0.7 0.685±0.012 63.4±1.2 0.615±0.053 0.100±0.007 0.833±0.084 865±214
SelfAttnPool [14] 0.848±0.007 43.5±1.0 0.709±0.008 61.0±0.9 0.688±0.019 0.090±0.003 0.656±0.135 1251±266
StableGNN [5] 0.809±0.013 48.8±1.6 0.635±0.033 70.0±4.5 0.667±0.070 0.093±0.009 0.676±0.127 1219±241
OOD-GNN [15] 0.852±0.006 43.0±0.9 0.714±0.025 60.4±2.6 0.676±0.010 0.092±0.001 0.921±0.059 576±212
IRM [1] 0.830±0.008 46.1±1.1 0.677±0.006 64.2±0.6 0.690±0.016 0.090±0.002 0.871±0.043 770±141
DIR [34] 0.697±0.061 61.2±6.0 0.380±0.214 87.8±14. 0.656±0.036 0.094±0.005 0.135±0.068 2028±80
DIR+RepAug 0.800±0.006 56.5±3.2 0.520±0.101 77.8±8.2 0.671±0.033 0.092±0.005 0.915±0.031 626±115
GREA−RepAug 0.685±0.172 60.6±16.5 0.679±0.034 64.0±3.3 0.686±0.007 0.090±0.001 0.459±0.254 1556±395
GREA (ours) 0.855±0.003 42.6±0.5 0.716±0.016 60.2±1.6 0.717±0.023 0.086±0.003 0.941±0.018 524±91

G
IN

[3
7]

as
en
co
de
r

U-NetsPool [6] 0.852±0.006 42.9±0.9 0.703±0.009 61.6±0.9 0.635±0.029 0.097±0.004 0.868±0.085 753±250
SelfAttnPool [14] 0.848±0.003 43.5±0.4 0.726±0.009 59.2±1.0 0.654±0.024 0.095±0.003 0.601±0.267 1265±546
StableGNN [5] 0.794±0.007 50.8±0.9 0.535±0.061 76.9±5.0 0.642±0.045 0.096±0.006 0.501±0.266 1487±404
OOD-GNN [15] 0.862±0.007 41.6±1.1 0.721±0.006 59.7±0.6 0.666±0.025 0.093±0.003 0.917±0.029 620±109
IRM [1] 0.842±0.004 44.5±0.5 0.681±0.008 63.8±0.8 0.682±0.031 0.091±0.004 0.890±0.042 709±146
DIR [34] 0.594±0.070 71.0±6.0 0.287±0.121 95.1±7.9 0.617±0.045 0.099±0.006 0.501±0.309 1446±537
DIR+RepAug 0.744±0.029 56.4±3.2 0.542±0.083 76.2±7.0 0.647±0.058 0.095±0.008 0.743±0.150 1054±338
GREA−RepAug 0.494±0.110 79.0±9.3 0.660±0.107 65.2±9.5 0.717±0.022 0.086±0.003 0.400±0.286 1623±474
GREA (ours) 0.864±0.005 41.2±0.8 0.736±0.012 58.0±1.2 0.723±0.030 0.085±0.005 0.930±0.020 569±86

Table 3: Results on molecule property prediction: GREA consistently achieves the highest AUC (↑).

ogbg-HIV ogbg-ToxCast ogbg-Tox21 ogbg-BBBP ogbg-BACE ogbg-ClinTox ogbg-SIDER

G
C
N
[1
2]

as
en
co
de
r

U-NetsPool [6] 0.7527±0.0104 0.6507±0.0086 0.7492±0.0093 0.6709±0.0176 0.7757±0.0173 0.8450±0.0403 0.6181±0.0121
SelfAttnPool [14] 0.7733±0.0187 0.6510±0.0076 0.7563±0.0080 0.6602±0.0220 0.7383±0.0541 0.8291±0.0791 0.5718±0.0219
StableGNN [5] 0.7218±0.0099 0.6520±0.0109 0.7454±0.0059 0.6552±0.0184 0.6607±0.0500 0.7681±0.0778 0.5644±0.0274
OOD-GNN [15] 0.7580±0.0176 0.6613±0.0046 0.7673±0.0109 0.6795±0.0165 0.8096±0.0132 0.8874±0.0143 0.6133±0.0095
IRM [1] 0.7702±0.0107 0.6599±0.0063 0.7654±0.0072 0.6892±0.0053 0.7947±0.0186 0.8819±0.0231 0.6035±0.0195
DIR [34] 0.7466±0.0093 0.5954±0.0154 0.4727±0.0129 0.6559±0.0298 0.6751±0.0323 0.6251±0.0956 0.5331±0.0216
DIR+RepAug 0.7494±0.0225 0.6632±0.0098 0.7437±0.0054 0.6630±0.0118 0.7677±0.0226 0.8606±0.0144 0.5934±0.0170
GREA−RepAug 0.7377±0.0210 0.6614±0.0048 0.7808±0.0061 0.6736±0.0077 0.7655±0.0529 0.8708±0.0514 0.6222±0.0166
GREA (ours) 0.7794±0.0065 0.6662±0.0041 0.7822±0.0093 0.6986±0.0175 0.8191±0.0240 0.8961±0.0150 0.6316±0.0151

G
IN

[3
7]

as
en
co
de
r

U-NetsPool [6] 0.7375±0.0362 0.6524±0.0126 0.7560±0.0093 0.6809±0.0163 0.8026±0.0105 0.8146±0.0703 0.5929±0.0114
SelfAttnPool [14] 0.7533±0.0247 0.6351±0.0137 0.7507±0.0110 0.6624±0.0167 0.7348±0.0194 0.7912±0.0995 0.5702±0.0137
StableGNN [5] 0.7218±0.0078 0.6485±0.0025 0.7381±0.0123 0.6695±0.0120 0.7229±0.0122 0.8559±0.0224 0.5593±0.0172
OOD-GNN [15] 0.7799±0.0078 0.6697±0.0051 0.7646±0.0038 0.6710±0.0188 0.7800±0.0228 0.8416±0.0496 0.5916±0.0169
IRM [1] 0.7817±0.0120 0.6641±0.0065 0.7542±0.0084 0.6835±0.0071 0.7977±0.0208 0.8485±0.0215 0.5778±0.0206
DIR [34] 0.7533±0.0117 0.5927±0.0097 0.5078±0.0313 0.5843±0.0443 0.6115±0.0587 0.6911±0.0810 0.5406±0.0127
DIR+RepAug 0.7725±0.0249 0.6454±0.0061 0.7453±0.0080 0.6813±0.0203 0.7590±0.0642 0.8561±0.0159 0.5730±0.0115
GREA−RepAug 0.7770±0.0178 0.6681±0.0066 0.7690±0.0117 0.6737±0.0235 0.7997±0.0380 0.8574±0.0442 0.5988±0.0169
GREA (ours) 0.7932±0.0092 0.6750±0.0067 0.7723±0.0119 0.6970±0.0128 0.8237±0.0237 0.8789±0.0368 0.6014±0.0204

Table 4: E"ect of AGG
(

h
(%)
! , h

(#)
'

)

in Eq. (7). We use Sum Pool-

ing by default because it generally performs the best.

MeltingTemp (R2) O2Perm (R2) ogbg-HIV (AUC)

Sum Pooling 0.7362±0.0115 0.9304±0.0202 0.7932±0.0092
Mean Pooling 0.7328±0.0068 0.9288±0.0331 0.7810±0.0117
Max Pooling 0.7164±0.0094 0.8984±0.0494 0.7809±0.0137
Concatenation 0.7145±0.0127 0.9240±0.0143 0.7771±0.0096

included in the rationales and uses the contextualized representa-
tions of atoms in the input graphs to create the representations of
rationales. So the rationales have coherent structures of nodes.

Second, the rationales from GREA are more interpretable and
bene!cial than the ones from DIR, based on domain expertise in
polymer science. Take a look at the !rst polymer example in Figure 3.
The rationale from GREA includes non-aromatic rings and methyl
groups. The former group allows larger free volume elements and
lower densities (i.e., enlarge microporousity) in the polymer’s re-
peating units, which positively contributes to the gas permeability
[24, 38]. The latter group is hydrophobic and contributes to steric
frustration between polymer chains [38], inducing a positive corre-
lation to the permeability. On the other hand, the rationale fromDIR

would make property predictor overestimate the oxygen permeabil-
ity, because it suggests that the double-bonded oxygens, ethers, and

1075

Graph Rationalization with Environment-based Augmentations KDD ’22, August 14–18, 2022, Washington, DC, USA

performance of GREA in terms of R2 is insensitive to the hyper-
parameters 2 and 3 in Eq. (13). Second, Figure 5 shows that the
performance is insensitive to rationale size 0 in Eq. (11). Third, on
two polymer datasets and one of themost popularmolecule datasets,
Table 4 compares the e"ects of di"erent choices of AGG(·) function
that aggregates the representations of rationale and environment
subgraphs. Sum pooling is generally the best choice.

6 CONCLUSIONS
In this work, we made the !rst attempt to improve graph rationale
identi!cation using data augmentations, including environment
replacement, for accurate and interpretable graph property predic-
tion. We proposed an e#cient framework that performs rationale-
environment separation and representation learning on real and
augmented examples in one latent space. Experiments on molecule
and polymer datasets demonstrated its e"ectiveness and e#ciency.

ACKNOWLEDGMENTS
This research was supported in part by NSF Grants IIS-1849816,
IIS-2142827, IIS-2146761, and CBET-2102592.

REFERENCES
[1] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019.

Invariant risk minimization. In arXiv:1907.02893.
[2] Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. 2020. Invariant rational-

ization. In ICML. 1448–1458.
[3] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the
topological view. In AAAI, Vol. 34. 3438–3445.

[4] Lihua Chen, Ghanshyam Pilania, Rohit Batra, Tran Doan Huan, Chiho Kim,
Christopher Kuenneth, and Rampi Ramprasad. 2021. Polymer informatics: Cur-
rent status and critical next steps. Materials Science and Engineering: R: Reports
144 (2021), 100595.

[5] Shaohua Fan, XiaoWang, Chuan Shi, Peng Cui, and Bai Wang. 2021. Generalizing
Graph Neural Networks on Out-Of-Distribution Graphs. In arXiv:2111.10657.

[6] Hongyang Gao and Shuiwang Ji. 2021. Graph U-Nets. IEEE TPAMI (2021).
[7] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang,

and Nitesh V Chawla. 2021. Few-Shot Graph Learning for Molecular Property
Prediction. InWWW. 2559–2567.

[8] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1025–1035.

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NeurIPS.

[10] Meng Jiang, Taeho Jung, Ryan Karl, and Tong Zhao. 2022. Federated Dynamic
Graph Neural Networks with Secure Aggregation for Video-based Distributed
Surveillance. TIST 13, 4 (2022), 1–23.

[11] Chiho Kim, Anand Chandrasekaran, Tran Doan Huan, Deya Das, and Rampi
Ramprasad. 2018. Polymer genome: a data-powered polymer informatics platform
for property predictions. The Journal of Physical Chemistry C 122, 31 (2018),
17575–17585.

[12] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classi!cation with graph
convolutional networks. In ICLR.

[13] Greg Landrum. 2013. RDKit: A software suite for cheminformatics, computational
chemistry, and predictive modeling.

[14] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.
In ICML. 3734–3743.

[15] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. 2021. OOD-GNN: Out-
of-Distribution Generalized Graph Neural Network. In arXiv:2112.03806.

[16] Ruimin Ma, Zeyu Liu, Quanwei Zhang, Zhiyu Liu, and Tengfei Luo. 2019. Evalu-
ating polymer representations via quantifying structure–property relationships.
Journal of chemical information and modeling 59, 7 (2019), 3110–3119.

[17] Ruimin Ma and Tengfei Luo. 2020. PI1M: a benchmark database for polymer
informatics. Journal of Chemical Information and Modeling 60, 10 (2020), 4684.

[18] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. 2021.
A uni!ed view on graph neural networks as graph signal denoising. In CIKM.
1202–1211.

[19] Diego Mesquita, Amauri Souza, and Samuel Kaski. 2020. Rethinking pooling in
graph neural networks. In NeurIPS.

[20] Shingo Otsuka, Isao Kuwajima, JunkoHosoya, Yibin Xu, andMasayoshi Yamazaki.
2011. PoLyInfo: Polymer database for polymeric materials design. In International
Conference on Emerging Intelligent Data and Web Technologies. 22.

[21] Hyeonjin Park, Seunghun Lee, Sihyeon Kim, Jinyoung Park, Jisu Jeong, Kyung-
Min Kim, Jung-Woo Ha, and Hyunwoo J Kim. 2021. Metropolis-Hastings Data
Augmentation for Graph Neural Networks. In NeurIPS.

[22] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classi!cation. In ICLR.

[23] Elan Rosenfeld, Pradeep Kumar Ravikumar, and Andrej Risteski. 2021. The Risks
of Invariant Risk Minimization. In ICLR.

[24] David F Sanders, Zachary P Smith, Ruilan Guo, Lloyd M Robeson, James E
McGrath, Donald R Paul, and Benny D Freeman. 2013. Energy-e#cient polymeric
gas separation membranes for a sustainable future: A review. Polymer 54, 18
(2013), 4729–4761.

[25] A Thornton, L Robeson, B Freeman, and D Uhlmann. 2012. Polymer Gas Separa-
tion Membrane Database.

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[27] Daheng Wang, Meng Jiang, Munira Syed, Oliver Conway, Vishal Juneja, Sriram
Subramanian, and Nitesh V Chawla. 2020. Calendar graph neural networks for
modeling time structures in spatiotemporal user behaviors. In KDD. 2581–2589.

[28] Daheng Wang, Zhihan Zhang, Yihong Ma, Tong Zhao, Tianwen Jiang, Nitesh
Chawla, andMeng Jiang. 2021. Modeling co-evolution of attributed and structural
information in graph sequence. IEEE TKDE (2021).

[29] Daheng Wang, Zhihan Zhang, Yihong Ma, Tong Zhao, Tianwen Jiang, Nitesh
Chawla, andMeng Jiang. 2021. Modeling co-evolution of attributed and structural
information in graph sequence. IEEE TKDE (2021).

[30] Daheng Wang, Tong Zhao, Nitesh V Chawla, and Meng Jiang. 2021. Dynamic
Attributed Graph Prediction with Conditional Normalizing Flows. In ICDM. IEEE,
1385–1390.

[31] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2020.
Graphcrop: Subgraph cropping for graph classi!cation. In arXiv:2009.10564.

[32] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi.
2020. Nodeaug: Semi-supervised node classi!cation with data augmentation. In
KDD. 207–217.

[33] Xingfei Wei, Zhi Wang, Zhiting Tian, and Tengfei Luo. 2021. Thermal Transport
in Polymers: A Review. Journal of Heat Transfer 143, 7 (2021), 072101.

[34] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. 2022.
Discovering Invariant Rationales for Graph Neural Networks. In ICLR.

[35] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
TNNLS 32, 1 (2020), 4–24.

[36] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-
niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science (2018), 513–530.

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[38] Jason Yang, Lei Tao, Jinlong He, Je"rey McCutcheon, and Ying Li. 2021. Discovery
of Innovative Polymers for Next-Generation Gas-Separation Membranes using
Interpretable Machine Learning. In chemrxiv-2021-p4g7z.

[39] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.
Gnnexplainer: Generating explanations for graph neural networks. In NeurIPS.

[40] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and
Jure Leskovec. 2018. Hierarchical graph representation learning with di"eren-
tiable pooling. In NeurIPS. 4805–4815.

[41] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. In NeurIPS.
5812–5823.

[42] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A
survey. IEEE TKDE (2020).

[43] Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. 2021. A synergistic
approach for graph anomaly detection with pattern mining and feature learning.
IEEE TNNLS (2021).

[44] Tong Zhao, Gang Liu, Stephan Günnemann, and Meng Jiang. 2022. Graph
Data Augmentation for Graph Machine Learning: A Survey. arXiv preprint
arXiv:2202.08871 (2022).

[45] Tong Zhao, Gang Liu, DahengWang,Wenhao Yu, andMeng Jiang. 2022. Learning
from Counterfactual Links for Link Prediction. ICML (2022).

[46] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil
Shah. 2021. Data Augmentation for Graph Neural Networks. In AAAI. 11015.

[47] Tong Zhao, Bo Ni, Wenhao Yu, Zhichun Guo, Neil Shah, and Meng Jiang. 2021.
Action Sequence Augmentation for Early Graph-based Anomaly Detection. In
CIKM. 2668–2678.

[48] Jiajun Zhou, Jie Shen, and Qi Xuan. 2020. Data Augmentation for Graph Classi!-
cation. In CIKM. 2341–2344.

[49] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. InWWW. 2069–2080.

1077

KDD ’22, August 14–18, 2022, Washington, DC, USA Gang Liu et al.

A DATASET DETAILS
Polymer datasets. The four datasets GlassTemp, MeltingTemp,

PolyDensity, and O2Perm are used to predict di"erent properties of
polymers such as glass transition temperature (◦C), polymer density
g/cm3, melting temperature (◦C), and oxygen permeability (Barrer).
GlassTemp, MeltingTemp, and PolyDensity are collected from Poly-
Info, which is the largest web-based polymer database [20]. The
O2Perm dataset is created from the Membrane Society of Australa-
sia portal, consisting of a variety of gas permeability data [25].
However, the limited size (i.e., 595 polymers) brings great chal-
lenges to rationale identi!cation and property prediction. Since
a polymer is built from repeated monomer units, researchers use
monomers as polymer graphs to predict properties. Di"erent from
molecular graphs, the monomer graphs have two special nodes (see
“∗” in the molecular structures in Figure 1), indicating the polymer-
ization points of monomers [17]. For all the polymer datasets, we
randomly split by 60%/10%/30% for training, validation, and test.

Molecule datasets. Besides polymer datasets, we use seven mol-
ecule datasets from the graph property prediction task on Open
Graph Benchmark or known as OGBG. They were originally col-
lected by MoleculeNet [36] and used to predict the properties of
molecules, including (1) inhibition to HIV virus replication in ogbg-
HIV, (2) toxicological properties of 617 types in ogbg-ToxCast, (3)
toxicity measurements such as nuclear receptors and stress re-
sponse in ogbg-Tox21, (4) blood–brain barrier permeability in ogbg-
BBBP, (5) inhibition to human 3-secretase 1 in ogbg-BACE, (6) FDA
approval status or failed clinical trial in ogbg-ClinTox, and (7) hav-
ing drug side e"ects of 27 system organ classes in ogbg-SIDER. For
all molecule datasets, we use the sca"old splitting procedure as
OGBG adopted [9]. It attempts to separate structurally di"erent
molecules into di"erent subsets, which provides a more realistic
estimate of model performance in experiments [36].

B IMPLEMENTATION DETAILS
All the experiments in this work are conducted on an Linux server
with Intel Xeon Gold 6130 Processor (16 Cores @2.1Ghz), 96 GB of
RAM, and a single RTX 2080Ti card (11 GB of RAM). Our method
is implemented with Python 3.9.9 and PyTorch 1.10.1. We
manually tune the hyperparameters over the following ranges:

• 0 ∈ {0.05, 0.1, 0.15, . . . , 0.75, 0.8},
• 1"#$ ∈ {1, 2},
• 1$%#& ∈ {2, 3},
• Learning rate ∈ {0.001, 0.005, 0.01},
• Batch size ∈ {32, 128, 256, 512},
• Representation dimensions 41, 42 ∈ {64, 128, 300},
• Number of GNN1 layer 51 = {2},
• Number of GNN2 layers 52 ∈ {2, 3, 4, 5}.

We use sum pooling as the default AGG(·) in GREA for the ex-
periments in Tables 2 and 3. We set GIN as the default encoder
for all ablation studies, case studies, and e#ciency analysis. We
employ the virtual node trick [9] for all methods on the ogbg-HIV,
ogbg-Tox21, ogbg-BBBP, and all polymer datasets. For PolyDensity,
we train and evaluate the models using the logarithm of the prop-
erty [17]. We report the mean and standard deviation of the test
performance over 10 runs with di"erent random initialization of
the parameters.

Our code and data are available on the GitHub2. To implement
the baseline methods, we use the o#cial code package3 from the
authors for DIR [34]. For U-NetsPool [6] and SelfAttnPool [14],
we use the public implementation provided by the PyG4 package.
For IRM [1], we implement it’s graph version based on its o#cial
repository.5 As source codes of OOD-GNN [15] and StableGNN [5]
are not publically available, we implement then with the o#cial
code package of StableNet6 and the PyG package.
2https://github.com/liugangcode/GREA
3https://github.com/Wuyxin/DIR-GNN
4https://github.com/pyg-team/pytorch_geometric
5https://github.com/facebookresearch/InvariantRiskMinimization
6https://github.com/xxgege/StableNet

1078

https://github.com/liugangcode/GREA
https://github.com/Wuyxin/DIR-GNN
https://github.com/pyg-team/pytorch_geometric
https://github.com/facebookresearch/InvariantRiskMinimization
https://github.com/xxgege/StableNet

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Property Prediction
	2.2 Graph Rationalization
	2.3 Graph Data Augmentation
	2.4 Graph Learning on Polymer Data

	3 Problem Definition
	4 Proposed Framework
	4.1 Rationale-Environment Separation
	4.2 Environment-based Augmentations

	5 Experiments
	5.1 Experimental Settings
	5.2 Results on Effectiveness (Q1)
	5.3 Ablation Study on GREA (Q2)
	5.4 Case Study on Polymer Data (Q3)
	5.5 Results on Efficiency (Q4)
	5.6 Sensitivity Analysis (Q5)

	6 Conclusions
	Acknowledgments
	References
	A Dataset Details
	B Implementation Details

