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Abstract— Complementarity plays a significant role in the
synergistic effect created by different components of a complex
data object. Complementarity learning on multimodal data has
fundamental challenges of representation learning because the
complementarity exists along with multiple modalities and one
or multiple items of each modality. Also, an appropriate metric is
needed for measuring the complementarity in the representation
space. Existing methods that rely on similarity-based metrics
cannot adequately capture the complementarity. In this work,
we propose a novel deep architecture for systematically learning
the complementarity of components from multimodal multi-item
data. The proposed model consists of three major modules:
1) unimodal aggregation for extracting the intramodal comple-
mentarity; 2) cross-modal fusion for extracting the intermodal
complementarity at the modality level; and 3) interactive aggre-
gation for extracting the intermodal complementarity at the item
level. To quantify complementarity, we utilize the TUBE distance
metric to measure the difference between the composited data
object and its label in the representation space. Experiments on
three real datasets show that our model outperforms the state-
of-the-art by +6.8% of mean reciprocal rank (MRR) on object
classification and +3.0% of MRR on hold-out item prediction.
Qualitative analyses reveal that complementarity is significantly
different from similarity.

Index Terms— Complementarity modeling, deep learning, mul-
timodal machine learning.

I. INTRODUCTION

COMPLEMENTARITY describes the synergistic effect
created by different components of a complex data

object [1], [2]. The characteristics of being complementary
to each other refer to the potential of stimulating synergis-
tic interactions to create additional utilities by incorporating
the target component [3]. For example, the profile image(s)
and description text for a product displayed on e-commerce
platforms are all critical, affecting its exposure and popularity
level. Therefore, experienced sellers create a set of comple-
mentary images (e.g., different angles and occasions) and
complementary textual descriptions (e.g., different features
and specifications) instead of similar ones to maximize the
probability of receiving wider public attention. Take a research
project team as another example. Each researcher makes a
certain amount of contributions to the work when considered
alone. In addition, when two or more researchers have com-
plementary expertise and skillsets, they can create additional
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value and improve the success rate for the team. Song et al. [4]
and [5] and Lin et al. [6] and suggesting materials for effective
learning [7], and discovering complementary medicine for
multimorbidity [8].

Real-world data objects exhibit complex structural char-
acteristics, which can be a fertile source for learning the
complementarity information [9]–[11]. On one hand, data
objects around us involve multiple perceivable modalities.
Modality refers to the form in which the data object is
presented [12], [13]. For example, a product description con-
sists of modalities such as image and text; and, a project team
has multiple modalities like researcher, engineer, and hard-
ware resource. Such data is therefore defined as multimodal
data when it contains multiple modalities [14], [15]. On the
other hand, each modality shows a set structure composed
of one or more items. For example, a word or phrase in the
product description can be considered an item of the text
modality. Likewise, a researcher (author) is an item of the
corresponding modality in a project team (research paper).
A multimodal multi-item data object may have multiple items
of different modalities. In real world, it is often accompanied
by label information. The label can be either a class label [16]
(e.g., category of a product or venue of a paper) or a numerical
label [17] (e.g., product sales or number of paper citations).
Moreover, the label serves as the condition for measuring the
complementarity of the object’s items. For example, a product
description’s image and text items are highly complementary
if they mutually qualify the category or increase the product’s
sales. Similarly, the items of a research paper (e.g., coauthors,
references, keywords) are complementary toward publishing
the paper at the target venue or receiving many citations. The
target label is an indispensable part of the multimodal multi-
item data object [18]. Overall, these structural characteristics
of multimodal multi-item data provide an excellent opportunity
to study complementarity.

Learning the complementarity of multimodal multi-item
data faces fundamental challenges. First, the complementary
relationships exist in three different kinds of interactions inside
a multimodal multi-item data object, and they all need to be
carefully considered during the learning process: 1) modality-
level intermodal interactions, i.e., the complementary relation-
ship among a variety of modalities; 2) item-level intramodal
interactions, i.e., the complementary relationship among items
of the same modality; and 3) item-level intermodal inter-
actions, i.e., the complementary relationship among items
across different modalities. How to systematically model the
complementarity information in both the intra- and intermodal
perspectives and how to jointly capture the intermodal com-
plementarity at both the modality level and item level largely
remain an open problem.
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Second, the metric used for measuring complementarity
in the representation space plays a crucial role in preserv-
ing such a relationship from multimodal multi-item data.
Most existing work [6], [19] relied on the Bayesian person-
alized ranking (BPR) [20], which was originally proposed
as a generic optimization criterion for personalized ranking
from implicit feedback. It essentially measured the similarity
between (positive and negative) pairs of items and organized
the relative position of items in a returned user-specific rank-
ing list. However, this similarity-based metric could not be
adequately used for precisely modeling the complementarity.
Although being complementary with others is likely to be
similar to some extent, similarity does not fully indicate
complementarity because the synergistic effect is created by
the unique value of each component. One recent work by
Wang et al. [21] modeled the success of project teaming
composed of multiple team members. However, it did not
consider the complex structure of multimodal multi-item data
objects and ignored the conditional impact from the object’s
label. Correctly measuring the complementarity and fully
considering the structure of multimodal multi-item data are
needed for effective complementarity learning.

In this work, we propose a deep representation learning
model, called multimodal and multi-item TUBE (M2TUBE),
for systematically learning the complementary relationships
from multimodal multi-item data. M2TUBE has three major
modules: 1) unimodal aggregation; 2) cross-modal fusion; and
3) interactive aggregation. Specifically, the unimodal aggrega-
tion module uses items of the same modality to summarize
the modality’s representations. It has an attentive process that
captures the intramodal complementarity at the item level.
Then, the cross-modal fusion module combines the modalities’
representations into the multimodal object’s representations.
This design allows the model to capture the intermodal
complementarity at the modality level. Next, the interactive
aggregation module enhances the unimodal aggregation by
conditioning the modality representation compared with item
representations of other modalities and the object’s label. This
interactive attention architecture enables the model to capture
the intermodal complementarity at the item level.

To quantify the complementarity in the vector space, we uti-
lize the metric called TUBE distance [22] to measure the
difference between the composited data object and its label.
In particular, the label is represented as a ray starting from a
point in the space that stands for the minimum qualification of
belonging to the class. Intuitively, the ε-TUBE distance assigns
the same distance value ε for data objects’ representation
vectors around the label’s ray. Recall that in our running
example of the product description, images and texts are
considered multimodal items, and the product’s category is the
data object’s label. Fig. 1 visualizes two labels (“accessories”
and “electronics”) as red/blue rays and two multimodal multi-
item data objects (product descriptions of headphone and
backpack) as paths of the items’ representation vectors. The
dotted path visualizes the deep aggregation of the items’
vectors as the addition of the vectors. The product categories’
rays reflect their characteristics. If the product’s representation
vectors align close to their corresponding category’s rays

Fig. 1. Two data object examples of learning item complementarity in
the vector space. A black dashed arrow denotes an item’s representation.
The object’s vector is obtained via deep multimodal aggregations (simply
illustrated as additions) of its items. Each item is a part of the aggregation
instead of an independent vector. The red/blue dots stand for the “minimum”
vectors of labels, and a label is represented as a ray starting from the dot. The
tube-shaped region (not traditionally a sphere) shows the distance between the
object’s point and the label’s ray, allowing the model to explore the possibility
of going beyond the minimum.

in terms of TUBE distance, the product description items
are complementary to each other to describe the product’s
characteristics. Based on the TUBE distance, we derive the
pairwise item complementarity metric in the representation
space conditioning on: 1) representations of the items of the
pair in a data object; 2) representations of other items in the
object; and 3) representation of the data object’s label.

We use real datasets from three domains such as acad-
emic publication, social media, and e-commerce to evaluate
the proposed model. Experiments demonstrate that M2TUBE
outperforms the state-of-the-art by +6.8% of mean reciprocal
rank (MRR) on the task of data object classification and
by +3.0% of MRR on the task of hold-out item prediction.
Additionally, qualitative analyses reveal that the learned intra-
and intermodal complementarities are significantly different
from similarity.

Here we summarize the main contributions of this work.
1) We propose to model the complementarity of multi-

modal multi-item data from: 1) intramodal interactions
of items; 2) intermodal interactions of modalities; and
3) intermodal interactions of items across modalities.

2) We design a novel model that consists of three deep
modules to learn complementarity from data. We quan-
tify complementarity in the vector space by TUBE
distance.

3) We conduct extensive experiments on datasets from
three domains to demonstrate the effectiveness of the
proposed model. Also, we provide a suite of case studies
to illustrate the captured complementarity.

II. RELATED WORK

A. Complementarity Modeling

Complementarity has been studied in recommender sys-
tems to discriminate products between substitute and com-
plement [23]–[26]. McAuley et al. [27] proposed to combine
topic modeling and supervised link prediction for inferring
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product graph representations. Wang et al. [28] incorporated
path constraints in pairwise relational modeling and adopted
additional relation-aware parameters to model multi-item rela-
tions. Hao et al. [29] proposed first to predict complementary
product types and then predict the products of each type based
on the distant supervision labels. These methods explicitly rely
on product items’ profile and category information. Comple-
mentarity has also been widely studied in the fashion domain
as the compatibility for matching different items in an outfit.
Cui et al. [30] modeled the relations of fashion items into a
graph to learn the compatibility embedding. Lin et al. [6]
proposed a two-stage model to capture the compatibility and
user preference among a various number of fashion items for
recommendation. The major drawback of these methods is that
their latent spaces were built on BPR [20] that measured the
relative similarity between item pairs in a user-specific ranking
list. Being complementary with others is likely to be similar
to some extent. However, similarity does not fully indicate
complementarity.

B. Multimodal Learning

A task or dataset can be characterized as multimodal when
it includes multiple modalities such as image, audio signal,
and text [14], [31]. Conventional multimodal learning tasks
such as audio-visual speech recognition have been studied for
decades [32]–[34]. Zhu et al. [35] proposed to leverage group
convolutions in the generator and progressively decreased the
group numbers of the convolutions in the decoder for generat-
ing multimodal images. Peng et al. [36] proposed a self-guided
word relation attention scheme and two question adaptive
visual relation attention modules for VQA. There is a line
of work exploring the opportunity of leveraging external data
to improve multimodal learning. Kumar et al. [37] proposed
a privacy-preserving method which establishes ad hoc social
networks to augment speech intelligibility. Su et al. [38] pro-
posed to use images for disambiguation in unsupervised neural
machine translation. Recently, Huang et al. [39] proposed
an approach utilizing the visual space as the approximate
pivot to align the multilingual multimodal embedding space
for unsupervised multimodal machine translation. We refer
readers to a survey by Baltrušaitis et al. [14] on multimodal
learning methods and their applications.

C. Multiple Instance Learning

Classic supervised learning discovers hidden relationships
between data objects and labels. However, a class label is
assigned to a bag (or set) of instances in multiple instance
learning, and the instance-level label is not (or partially)
known. Murphy et al. [40] proposed Janossy pooling express-
ing a permutation-invariant function as the average of a
permutation-sensitive function applied to all rearrangement of
the input sequence. By contrast, in our work, a class label is
assigned to a multi-item data object where the label at modality
or item level is not applicable. Some efforts simultaneously
tackle multimodal learning and multiple instance learning.
Meng et al. [41] presented a hierarchical sequence-attention
model for learning set-of-sets embeddings, which essentially

is a multimodal and multiple instance learning method. None
of the work can model the complementarity among multiple
modalities and one or multiple items of each modality.

III. PROBLEM DEFINITION

This section introduces basic concepts and formally defines
the research problem.

Definition (Multimodal and Multi-Item Data Object): A
multimodal multi-item data object Xi can be characterized by
its features of multiple modalities, i.e., Xi := {X1

i , . . . , X K
i }

where K is the number of modalities. And, each one of its
modality Xk

i (1 ≤ k ≤ K ) is composed of a set of one or

multiple items, i.e., Xk
i := {vk,1

i , . . . , v
k,Sk

i
i } where Sk

i is the
number of items in the kth modality of Xi .

For brevity, we refer to a multimodal multi-item data object
as a multimodal object throughout this article. We use Vk =⋃N

i=1 Xk
i to denote the set of all items in the kth modality.

We denote the raw feature vector of an item vk ∈ Vk by
vk ∈ RDk where Dk is the dimensions of the kth modality. For
example, we can use pre-trained word embeddings to represent
the semantics of word tokens in the product description.
In case of no prior knowledge is available, the one-hot encod-
ing scheme can be used to indicate the identification of the
item (Dk = |Vk |). We use the matrix Xk

i := [vk,1
i , . . . , vk,Sk

i
i ] ∈

RSk
i ×Dk to represent the feature vectors of all items in the kth

modality of Xi . The j th row of Xk
i contains the feature vector

of item vk, j
i (1 ≤ j ≤ Sk

i ). All vectors in this article are treated
as row-vectors.

Each multimodal object Xi is also accompanied with a
specific label yi ∈ T := {1, . . . , T } where T is the number
of classes. For a product, its label can be the category it
belongs to, and, for a research project, the label could be
its venue, such as the target conference. Note that different
from the classical multiclass classification setting where the
label is often treated as a nominal variable for regression,
the label yi of the multimodal object Xi can also be seen as
a generalized item complementary to other items/modalities
of Xi in our case. We denote label yi ’s initial features as
yi ∈ RDT where DT is the dimensions for label. In analogous
to items, if represented in the one-hot encoding scheme,
the number of dimensions of the label’s representation vector
equals the number of classes, i.e., DT = T .

Now, we formally define the problem of learning comple-
mentarity from multimodal multi-item data.

Problem: Given a large dataset D of N multimodal objects
with their paired labels, i.e., D := {(X1, y1), . . . , (X N , yN )},
we aim to learn: 1) an item embedding function fv (D) :
{Vk}K

k=1 → RDM that maps each item vk ∈ Vk into a
DM -dim hidden representation hk and 2) a label embedding
function fl(D) : T → RDM that maps each label yi into
a hidden representation gi , where DM % min ({|Vk |}K

k=1)
is the number of dimensions. The output item embeddings
{hk | vk ∈ Vk}K

k=1 and label embeddings {gi | yi ∈ T } capture
the complementarity of each multimodal object Xi ∈ D in
both the intra and intermodal perspectives.

For obtaining the multimodal object Xi ’s hidden repre-
sentation pi , existing methods rely on the linear dependence
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Fig. 2. Framework of M2TUBE for learning complementarity from multimodal multi-item data: 1) unimodal aggregation module for generating representations
for each modality individually; 2) cross-modal fusion architecture for summarizing modality embeddings into the multimodal object embedding; and
3) interactive aggregation module for considering interactions between items of different modalities and the condition of labels. The novel metric of TUBE
distance [22] between the object and label embeddings is calculated for quantifying complementarity in the latent space.

assumption that pi equals the weighted sum of its item embed-
dings [21], [22]. However, this oversimplified assumption no
longer holds in our multimodal multi-item data setting since
there is potentially rich complementarity along with multiple
modalities and one or multiple items of each modality. In this
work, we also want to find a deep nonlinear mapping fo which
can effectively transform item embeddings into the multimodal
object’s latent representations.

IV. METHODOLOGY

In this section, we present a novel approach M2TUBE for
modeling the complementarity from multimodal multi-item
data in both the intra- and intermodal perspectives. A prelim-
inary version of our work proposed an algorithm TUBE [22]
for quantifying complementarity. This article makes one sig-
nificant step to tell: 1) difference between complementarity
and similarity and 2) model design of aggregations on items
and modalities to learn complementarity from complex data
objects of multimodal items. The proposed framework consists
of three major components: 1) unimodal aggregation module
for generating representations for each modality individually;
2) cross-modal fusion architecture for summarizing various
modality embeddings into the holistic, multimodal object
embedding; and 3) interactive aggregation module for con-
sidering interactions between items of different modalities
and the condition of labels. We leverage the novel metric of
TUBE distance [22] between the object and label embeddings
as the training objective for extracting the complementarity
information. Fig. 2 illustrates the overall framework.

A. Unimodal Aggregation

Given an input multimodal object Xi ∈ D, we first aggre-
gate its items’ information inside each modality to uncover
complementarity in the intramodal perspective. It is natural to
assume that different modalities have variable sizes and each
item is of varying importance grade, we propose an adapted

self-attention method to generate a fixed-length embedding
by attentively combining item features. Formally, for the kth
modality of object Xi , we first calculate the importance values
of its items

!k
i = softmax

(
σ
(
Xk

i · Wk
x

) · Wk
v

)
(1)

where σ is the nonlinear function of tanh, Wk
x ∈ RDk ×Dx is the

parameter matrix that transforms item features into Dx -dim
query vectors, which are further transformed by parameter
matrix Wk

v ∈ RDx ×1 into attention energies. Then, the softmax
function squashes all unbounded energy values into attention
weights !k

i ∈ RSk
i ×1 summing up to 1. The summarized

modality embedding Mk
i can be generated by multiplying !k

i
with the item feature matrix Xk

i

Mk
i = !k

i
& · Xk

i (2)

where & is the matrix transpose operator and Mk
i ∈ R1×Dk .

However, this transformation only provides us a single view
of the multimodal object attending on its items inside each
modality. To generalize into multiple views and stabilize the
attention mechanism [42], we can easily generate multihead
attention weights !k

i ∈ RSk
i ×H where H is the number of

heads by adjusting the size of Wk
v ∈ RDx ×H in (1). Thus, the

result modality embedding matrix Mk
i ∈ RH×Dk contains H

summarized embedding vectors. We can further treat them as
the input and stack L layers to extract a highly expressive
summarizing modality vector

!k(l)

i = softmax
(
σ
(

Mk(l−1)

i · Wk(l)

x

)
· Wk(l)

v

)
(3)

Mk(l)

i =
(
!k(l)

i

)&
· Mk(l−1)

i (4)

where the superscript (l) indicates the lth layer (1 ≤ l ≤ L).
The initial input includes all raw item feature vectors, i.e.,
Mk(0)

i = Xk
i , and the parameter matrix at last layer is fixed at

Wk(L)

v ∈ RDx ×1 so that the final output is a single modality
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embedding vector Mk(L)

i ∈ R1×Dk summarizing all information
of Xk

i . For brevity, we omit the superscript (l) and use Mk
i

to denote the summarized modality embedding of Xk
i after L

stacking layers. In practice, we use L = H = 3.
Note that there exists some connections between the encoder

layer of transformer [42] and our proposed unimodal aggre-
gation and because they are stackable and contain multiple
attention views. One critical difference is that the former
method is originally designed for natural language with posi-
tion embeddings enforcing sequence format, which cannot be
directly applied to items in a modality of a set structure.
In contrast, our method is carefully designed for aggregating a
set of items in a modality with an easy extension on additional
conditions from other modalities (see Section IV-C).

B. Cross-Modal Fusion

After aggregations on single modalities, we now have Xi ’s
K modality embedding vectors, i.e., {Mk

i }K
k=1. Each one of

these embeddings Mk
i ∈ RDk captures the complementary

relations of items inside the corresponding modality.
For modeling the intermodal complementarity information,

the next step is to fuse all modality embeddings into a holistic
latent representation of the multimodal object Xi . A straight-
forward way is treating {Mk

i }K
k=1 as the item embeddings of

a “unified” modality, and again apply our proposed unimodal
aggregation module (see Section IV-A). Here, we use matrix
Xi ∈ RK×DM to denote Xi ’s modality embeddings transformed
to the same size. Each row of Xi contains the mapped DM -dim
embedding through a linear layer σ (Mk

i · Wk
m) where Wk

m ∈
RDk ×DM is the parameter matrix. The final latent representation
pi ∈ R1×DM of Xi can be generated as

"i = softmax(Xi · Wc), pi = "i
& · Xi (5)

where Wc ∈ RDM ×1 is the parameter matrix to transform
Xi into the importance values of all modalities "i ∈ RK×1.
But this overlooks the critical impact from the label yi on
modalities. In other words, the significance of each modality
should be conditioned on the multimodal object label yi .
Therefore, we inject the label information by transforming the
label feature vector yi to attend on all modalities of Xi

Wc = σ
(
Wt · yi

&)
(6)

where Wt ∈ RDM×DT is the parameter matrix to map
yi ∈ R1×DT into a DM -dim query over all modality embed-
dings. By substituting (6) into (5), we can fuse all modality
embeddings into the final multimodal object embedding pi ,
conditioned on the multimodal object label. And, in analogous
to the unimodal aggregation module [see (3) and (4)], we can
achieve multiple views of cross-modal fusion by replacing the
label embedding yi in (6) with matrix ŷi ∈ RH×DT stacking
H row duplicates of yi . So, the multimodal object embedding
pi captures the intermodal complementarity between different
modalities of Xi .

C. Interactive Aggregation

So far, we have attentively aggregated the information
of items within each modality and fused their summariz-
ing modality embeddings based on the multimodal object

Fig. 3. Interactive aggregation module for generating modality embeddings
fully considers the intermodal complementarity information on the item level,
as well as the conditional impact of the object label.

label. However, there are two limitations for capturing the
rich complementarity information across different modalities.
First, the cross-modal fusion only considers the intermodal
complementarity on the upper modality level but ignores the
interaction across modalities on the lower item level. There
could be rich complementary interactions between items of
different modalities. For example, in a research project with
modalities of researchers, topics, methods, and datasets, the
same researcher could take variable levels of importance for
different topics. Second, the unimodal aggregations of items
inside each modality are independent of each other, and the
multimodal object label should be taken into consideration.

These valuable intermodal complementarity information on
the item level which conditions on the object label should also
be carefully modeled. To this end, we propose an interactive
aggregation module (see Fig. 3) to augment the power of
M2TUBE for capturing complementarity across modalities.
It fully considers the interactions between items of different
modalities and the conditional impact of the label when
generating the summarized modality embedding. Particularly,
for the kth modality of Xi , we first calculate a pseudo modality
embedding M̃k′

i ∈ R1×Dk′ for each one of its other modality
{k ′ | 1 ≤ k ′ ≤ K , k )= k ′} by applying the mean pooling
operator on their item embeddings

M̃k′
i =

∑
vk′ , j

i ∈X k′
i

vk′, j
i

/
Sk′

i . (7)

These pseudomodality embeddings are then transformed via a
bilinear mapping together with the label feature vector

W̃k
r =

K∥∥∥
k′=1,k′ )=k

M̃k′
i · W〈k,k′ 〉

r · yi
& (8)

where W〈k,k′ 〉
r ∈ RDk′ ×DT is the parameter matrix and ‖

is the row-wise concatenation operator. The result matrix
W̃k

r ∈ R(K−1)×1 contains all interactive information from other
modalities and the label. And, it is further transformed into the
query vector Wk

r ∈ RDx ×1 over all items of Xk
i

Wk
r = σ

(
We · W̃k

r

)
(9)
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Fig. 4. Metric of TUBE distance for measuring the difference between
representations of the multimodal object Xi and its label yi . Solid vector pi
(and pi′ ) refers to the object embedding of Xi and vector gi positions the label
embedding of yi . The γ -value demonstrates the achievement of Xi w.r.t. yi ,
and the ε value reflects the TUBE distance.

where We ∈ RDx ×(K−1) is the parameter matrix. Thus, we con-
structed an interactive query Wk

r capturing the complementary
relations between Xk

i ’s items and other modalities’, as well
as the condition of label. By substituting (9) into (1) as the
Wk

v matrix, we achieved the goal of modeling the intermodal
complementarity on both the upper modality level and the
lower item level.

D. Modeling Complementarity via TUBE Distance

Now, we have generated the multimodal object hidden
representation pi ∈ RDM . For calculating the complementarity
of items in multimodal object Xi with respect to its label yi ,
we leverage the metric of TUBE distance [22]. This method
deviates from previous methods using the BPR objective,
which constructs the latent space via the pairwise similarity
property. We derive the complementarity metric for capturing
the synergistic effects between items of multimodal object
conditioned on the label based on the TUBE distance, which
shapes like a test-tube in the latent space.

We transform the label features into a vector gi ∈ RDM

of the same size as multimodal object embedding pi through
a liner layer gi = σ (yi · Wy) where Wy ∈ RDT ×DM is
the parameter matrix. We define the relative achievement of
multimodal object Xi with respect to its label yi as follows:

γ (Xi | yi) = ‖pi‖ cos θi

‖gi‖
(10)

where θi refers to the angle between the object Xi ’s embedding
vector pi and the label yi ’s embedding gi vector

cos θi = pi · gi

‖pi‖‖gi‖
(11)

and γ ∈ (−∞,∞). When the achievement value γ ≥ 1, the
projection of the object embedding pi on the label’s direction
locates on the ray starting from gi (see Fig. 4).

Next, we define the ε-region of multimodal object Xi with
respect to its label yi in the latent space as follows:

ε(Xi | yi) =
{

‖pi‖ sin θi , for γ (Xi | yi) ≥ 1
‖pi − gi‖, for γ (Xi | yi) < 1

(12)

where ε ∈ [0,+∞). As shown in Fig. 4, the distance from
an object embedding to the corresponding label embedding

depends on the relative achievement γ (Xi | yi): 1) for a multi-
modal object of low achievement value γ < 1 (e.g., pi ′ in the
figure), the value of ε equals to the normal Euclidean distance
between the object’s embedding pi ′ and label’s embedding
gi and 2) for an object of high achievement value γ ≥ 1
(e.g., pi in the figure), the value of ε is defined as the distance
from the multimodal object embedding pi to the ray starting
from the label’s embedding vector gi .

Intuitively, given a fixed value of ε, each label yi can deter-
mine a region in which any multimodal object embedding has
a not-larger-than-ε distance to it, which is called the ε-region
of the label yi . The shape of ε-region in the embedding space
looks like a test tube, as shown in Fig. 4.

We then normalize the value of ε as follows:

p(Xi | yi) = tanh
(

1
ε(Xi | yi)

)
∈ (0, 1]. (13)

It transforms the value of ε into a (0, 1]-space for learning so
that we can define p(Xi | yi) = 1 when ε(Xi | yi) = 0; and,
p(Xi | yi) → 0 when ε(Xi | yi) → +∞. Thus, the model can
output a bounded scalar value p, which can be interpreted as
the probability of object Xi being close to its label yi in the
latent space in terms of the TUBE distance.

Based on this normalized TUBE distance p, we derive the
item pairwise complementarity as the extent that these two
items together being in a specific multimodal object increase
the p-value over either one of them being included. That is,
given two items vi and ui of a multimodal object Xi (assuming
|Xi | ≥ 3) with label yi , the complementarity between item vi

and item ui of multimodal object Xi can be defined as

c(vi , ui | Xi) = p(Xi | yi) − max{p(Xi \ {vi } | yi),

p(Xi \ {ui} | yi)} (14)

where Xi \ {vi }, or Xi \ {ui }, means item vi , or ui , is excluded
from the multimodal object Xi , respectively. In a trivial case
when Xi = {vi , ui} we can get c(vi , ui | Xi) = p(Xi | yi) −
max {p(vi | yi), p(ui | yi)}. Then, the pairwise complementar-
ity between items vi , ui can be taken as the average over the
entire dataset of multimodal objects

c(vi , ui ) = 1
| D{vi ,ui } |

∑

Xi ∈D{vi ,ui }
c(vi , ui | Xi) (15)

where D{vi ,ui } is the subset of multimodal objects in D which
contains both item vi and item ui . By substituting (13)
and (14) into (15), we can see this novel complementarity
metric is calculated via the TUBE distance conditioning on:
1) representations of the pair of items; 2) representations of
other items of the same multimodal multi-item data object;
and 3) representation of the label.

E. Optimization and Negative Sampling

For learning the model and preserving the complementarity
of all multimodal objects in the dataset D, the optimization
process aims at minimizing the following objective:

O = d( p̂(· | ·), p(· | ·)) (16)
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where d( · , · ) is the distance between two distributions.
We choose to use the KL-divergence of the observed
and estimated distributions, and by replacing d( · , · ) with
the KL-divergence, we get the following objective for
optimization:

O = −
∑

(Xi ,yi )∈D
p̂(Xi | yi) log p(Xi | yi). (17)

We adopt the asynchronous stochastic gradient algorithm
(ASGD) [43] for optimizing the objective. In each step, the
ASGD algorithm samples one positive example and t negative
examples and updates the model parameters, where t is the
rate of negative sampling (t ≥ 1). We presented the objective
functions for positive examples O+ in (17). If a sampled
multimodal object Xi ′ and label yi ′ make a negative example
(Xi ′ , yi ′) that does not exist in dataset D, the objective O− is

O− = −
∑

(Xi′ ,yi′ )/∈D
log tanh(ε(Xi ′ | yi ′)) (18)

and the final optimization objective is to minimize the overall
loss function O ′ = O+ + t × O−. On one hand, the first term
of the overall objective [see (17)] pushes the embedding pi

of multimodal object Xi and the embedding gi of label yi to
have a smaller TUBE distance indicating the items in Xi are
highly complementary to each other with respect to the label
yi ; on the other hand, the second term of the overall objective
[see (18)] pulls pi of multimodal object Xi and gi of label yi

to have a larger TUBE distance indicating items of the object
are of low complementarity.

During negative sampling, the label of negative example
yi ′ is sampled from the set of all labels T , which is the
same as positive examples. However, the negative multimodal
object Xi ′ does not necessarily come from the set of positive
multimodal objects {Xi}N

i=1. The space for sampling negative
multimodal object contains the combination (with replace-
ment) of all items {Vk}K

k=1 of arbitrary size.
In practice, we find three strategies that are useful.
1) S1: Keep the multimodal object fixed, i.e., Xi ′ = Xi , and

randomly sample a different label yi ′ )= yi (yi ′ ∈ T ).
2) S2: Keep the label fixed, i.e., yi ′ = yi , and randomly

drop an item from a random modality of Xi , i.e., Xi ′ =
Xi \ {vk′ , j ′

i } (k ′ )= k, 1 ≤ k ′ ≤ K , 1 ≤ j ′ ≤ Sk′
i ).

3) S3: Keep the label fixed yi ′ = yi , and randomly sample
a modal-distribution-constrained multimodal object Xi ′

based on the negative sampling strategy of [21].
Intuitively, the S1 strategy indicates the positive multimodal

object Xi should be tailored for the positive label yi instead
of any other label yi ′ )= yi . The S2 strategy emphasizes that
any item in the positive multimodal object vk, j

i ∈ Xi should
be indispensable and critical for the complementarity based on
the label. The S3 strategy contrasts the positive multimodal
object Xi with a randomly assembled multimodal object Xi ′

of the same modal size distribution.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of M2TUBE
against competitive baselines on three real large multimodal
datasets. We aim at answering these research questions.

TABLE I

STATISTICS ON THREE MULTIMODAL MULTI-ITEM DATASETS

1) RQ1: How does the proposed method perform compared
against the state-of-the-art methods for complementarity
learning on multimodal multi-item data?

2) RQ2: How do the unimodal aggregation, cross-modal
fusion, and interactive aggregation modules of the pro-
posed framework affect the overall performance?

3) RQ3: Is the metric of TUBE distance leveraged by the
proposed model more effective for quantifying comple-
mentarity in latent space compared with other metrics?

4) RQ4: What are some concrete examples of the learned
complementarity and their differences with similarity?

5) RQ5: What are the recommended setting of hyper-
parameters for applying the model in practical cases?

A. Datasets

We conduct experiments on three large multimodal datasets
from different domains. Statistics are given in Table I.

1) Academic Publication Dataset Dp: We collected 1.3M
academic papers published in 13 081 venues from the
Microsoft Academic Graph. We built a dataset by limiting the
number of venues to 2000. The publication venue is treated as
the label of the paper. On average, each paper has 2.8 authors,
5.4 keywords, and 9.2 references (17.4 items in total).

2) Social Media Dataset Dt : We extracted 37M tweets from
the public COVID-19-TweetIDs dataset. After preprocessing,
we built a dataset of 2 293 560 tweets and 270 529 items of
3 modalities: 1) word; 2) hashtag; and 3) URL. Each tweet
has at least one word, one hashtag, and an arbitrary number
of URLs. For tweets, we use the number of their retweets in
logarithmic scale (and round it) as class label. This can be
interpreted as the popularity level. On average, each tweet has
4.7 words, 2.4 hashtags, and 0.8 URLs (7.9 items in total).

3) E-Commerce Dataset De: We utilized the dataset of
KDD Cup 2020 Challenges for Modern E-Commerce Plat-
form. For each product image, the pre-extracted features
and locations of one or more minimum bounding rectan-
gles (MBRs) are provided, along with the classification cate-
gory of the detected object in the MBR. For assigning the label
of product category, we first link each non-phrase with its most
frequent object category and then take the majority vote of
object category from all non-phrases and MBRs. On average,
each product has 2.3 MBRs and 2.4 words (4.7 items in total).

B. Experimental Settings

1) Baseline Methods: We compare M2TUBE against the
state-of-the-art models that handle either or both of the
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TABLE II

MODEL’S CAPABILITY ON: 1) MULTIMODAL DATA; 2) MULTI-ITEM DATA;
AND 3) COMPLEMENTARITY. (!": PARTIAL SUPPORT,#:

FULL SUPPORT)

multimodal and multi-item data: ATTNMIL [44], HATS [41],
and OUTFITNET [6]. Also, we consider these methods that are
specifically designed for modeling complementarity informa-
tion with partial support on multimodal or multi-item data:
PMSC [28], GP-BPR [5], CTO-NET [45], and LEARN-
SUC [21]. A summary of each model’s capability is shown in
Table II. We follow the recommended setup guideline for all
baseline methods whenever possible. For models that cannot
fully handle multimodal data, we merge items into a unified
modality (two modalities for GP-BPR); and, we only retain
the first item of each modality (and drop others) for models
that cannot handle multi-item data. We cast the co-occurrence
of items inside or across modalities as multirelations for
PMSC, and we ignore the preference factor of GP-BPR since
the user-item interactions are out of the scope of this work.
We implemented CTO-NET following the given guidance.

We set L = H = 3 for both the unimodal aggregation
and cross-modal fusion modules, and use the default S3
negative sampling strategy for M2TUBE and its variants.
When applicable, we use the same embedding dimensions of
256 for all items, modalities, multimodal objects, and object
labels. For fair comparisons, we use the same random split of
80%/10%/10% for training/validation/test at each round across
methods and report the average performance of five runs.
We set a constant learning rate of 1e-4 for the optimizer ASGD
with zero momentum factor and weight decay for optimizing
the model’s parameters. All models are trained for a maximum
of 100 epochs with early stopping patience of 5, and the saved
best model on the validation set is used for evaluation on the
test dataset.

2) Evaluation Protocols: We evaluate the proposed method
and baselines through a suite of experiments on two tasks:
(T1) label prediction and (T2) hold-out item recommendation.
For task T1, we are given a multimodal object Xi ∈ D, and
we aim to predict its correct label yi from T . And, for T2,
we are given a pair of multimodal object and label but with an
arbitrary item masked out, i.e., (Xi \ {vk, j

i }, yi) where vk, j
i ∈

Xi , and we aim to recover the masked item vk, j
i from modality

Vk . We use a fully-connected layer with sigmoid nonlinearity
as the predictive model for all methods and both tasks. And,
we adopt two sets of evaluation metrics.

(a)

(b)

Fig. 5. Performance of M2TUBE and baselines on task T2 for recovering
a masked item (author for Dp , hashtag for Dt , and word for De) on three
datasets in terms of (a) Acc. and (b) MRR.

1) Accuracy (Acc.) and Hit@k: There is one true label
for T1 (masked item for T2). These two metrics check
whether the top-K predictions can find the ground
truth (K = 1 for Acc.). Higher values indicate better
performance.

2) MRR and Harmonic Mean of Ranks (HMR) [21]: These
two ranking-based metrics check whether the method
ranks the ground truth at the top of the returned list.
A higher MRR value or a lower HMR value indicates
better model performance.

For calculating MRR and HMR, it is time-consuming to enu-
merate through the candidate space during inference. We adopt
the conventional strategy in practice of truncating the returned
list to include 10 000 randomly sampled candidates plus the
ground truth if the number of candidates is larger.

C. Overall Performance (RQ1)

The performance of M2TUBE and baselines on task T1 for
predicting the object label is presented in Table III, and the
results on T2 of hold-out item recovery is shown in Fig. 5.

First, we can see baselines ATTNMIL and HATS which do
not consider any form of complementarity information of the
multimodal object perform inferior to other baselines. HATS
generally outperforms ATTNMIL on T1 across metrics and
datasets (except for Acc. and Hit Ratio at Top 20 (Hit@20) on
De) because it can capture both of the multimodal and multi-
item composition information. We exclude their results on T2
from Fig. 5 due to their performance being lower than 0.850 of
Acc. and MRR. Moreover, there is a large margin between
the performance of HATS and any other method that is able
to capture complementarity (e.g., −10.1% of MRR relatively
over PMSC on Dt ). This observation verifies the importance
of modeling the complementarity for object label prediction
and hold-out item recovery given the multimodal object.
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TABLE III

PERFORMANCE OF THE PROPOSED M2TUBE AND BASELINES ON TASK T1 FOR PREDICTING THE LABEL GIVEN THE MULTIMODAL OBJECT, IN TERMS
OF ACC., HIT@20, MRR, AND HMR, ON THREE DATASETS. HIGHER VALUES OF ACC., HIT@20, AND MRR INDICATE BETTER MODEL

PERFORMANCE. FOR HMR, LOWER VALUES ARE BETTER. BOLD AND UNDERLINE HIGHLIGHT THE BEST AND THE SECOND BEST VALUES

TABLE IV

PERFORMANCE OF THE PROPOSED M2TUBE AND ITS VARIANTS ON TASK T1 FOR PREDICTING THE LABEL GIVEN THE MULTIMODAL OBJECT,
IN TERMS OF ACC., HIT@20, MRR, AND HMR, ON THREE DATASETS. HIGHER VALUES OF ACC., HIT@20, AND MRR INDICATE BETTER

MODEL PERFORMANCE. FOR HMR, LOWER VALUES ARE BETTER. BOLD AND UNDERLINE HIGHLIGHT THE BEST AND THE SECOND
BEST VALUES

Secondly, among baselines OUTFITNET, PMSC, GP-BPR,
and CTO-NET that are designed for complementarity model-
ing but can only partially handle the multimodal data or multi-
item data, OUTFITNET generally has a better performance.
Compared with PMSC’s partial support on multi-item data (by
constructing an item graph), OUTFITNET effectively considers
the complementary relation between multiple items utilizing
an attention layer, thus can score an MRR of 0.880 for task T1
on Dp (+20.1% relatively over PMSC). GP-BPR does not
support multi-item data but can partially handle multimodal
data by capturing the complementarity within a fixed bi-
modalities formulation. It underperforms OUTFITNET on task
T1 across datasets and metrics, but can sometimes generate
better performance on T2 (e.g., an MRR of 0.917 on Dt which
is +2.8% relatively over OUTFITNET). CTO-NET is the state-
of-the-art method for modeling compatibility by formulating
items graph to support multi-item data and can partially handle
multimodal data by assigning weight values. It is based on a
disentangled graph learning scheme and performs on par with
GP-BPR. It underperforms OUTFITNET on task T1 and can
generate slightly better performance on T2 (e.g., an MRR of
0.920 on Dt which is +3.1% relatively over OUTFITNET).
This observation indicates the existence of complementarity
information between multiple items of the same modality and
complementary relations between items across modalities. So,
models must learn the complementarity information in both
the intra- and intermodal perspectives.

Thirdly, the best baseline method LEARNSUC can mainly
outperform all other baselines, which can be probably

attributed to two major reasons. On the one hand, it is
the only baseline that supports complementarity learning
on multimodal and multi-item data. Although it is limited
to consider multimodalities by manually assigning modality
weights. On the other hand, unlike other baselines capturing
complementarity via BPR, it models the behavior success as a
proxy of the complementary information inside the behavior of
a multitype itemset structure. It can score MRRs of 0.895 for
T1 on Dt (which is the global best value) and 0.912 for T2
on Dp (+2.1% relatively over GP-BPR). This observation
justifies the effectiveness of complementarity learning from the
complex multimodal and multi-item data and emphasizes the
necessity of constructing the latent space of complementarity
via an appropriate metric other than similarity-based BPR.

M2TUBE achieves the best performance on both tasks
across datasets and metrics (except MRR for T1 on Dt ).
By utilizing the unimodal aggregations, cross-modal fusion,
and interactive aggregations, it fully considers intra- and
intermodal complementary relation between multimodal items.
It scores MRRs of 0.936 for task T1 on De and 0.943 for task
T2 on Dt (+z6.5% and +5.7% relatively over OUTFITNET).
Moreover, by regulating the latent space of complementarity
via the metric of TUBE distance [22] conditioning on the
label, M2TUBE is highly effective in preserving the captured
multimodal complementarity in the latent representations. So,
it can score +6.2% higher MRR for T1 on De, and +2.9%
higher MRR for T2 on Dt , relatively over LEARNSUC. This
validates our goal for M2TUBE to model the complementarity
in both the intra- and intermodal perspectives.
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D. Ablation Studies (RQ2)

We dive deeper into the underlying rationale of M2TUBE’s
effectiveness by examining the contribution of each one of its
components. In particular, we set up controlled experiments
on: 1) the unimodal aggregation module (see Section IV-A);
2) the cross-modal fusion module (see Section IV-B); and
3) the interactive aggregation module (see Section IV-C),
by building ablated versions of the model and compare
M2TUBE against them. Specifically, we test on the following
model versions.

1) M2TUBE-Intra(m): We remove the unimodal aggre-
gation module and apply mean pooling on item
embeddings of each modality, i.e., Mk

i = mean(Xk
i ).

This model only considers complementarity across
modalities.

2) M2TUBE-Inter(m): We replace the cross-modal fusion
module with a mean pooling operator on summarizing
modality embeddings, i.e., pi = mean(Xi ). This version
ignores the intermodal complementarity and only con-
siders it in the intramodal perspective.

3) M2TUBE-Indp: We disable the interactive aggregation
module so this version does not model the intermodal
complementarity on the item level.

We focus on task T1 of object label prediction and present the
results of M2TUBE and its various versions in Table IV.

First, it is clear to see that the variants of M2TUBE-intra(m)
and M2TUBE-inter(m) underperform other model variants.
Intuitively, removing the unimodal aggregation module is
essentially squashing each modality into an item and casting
the multimodal object into a single modality. Similarly, the
removal of the cross-modal fusion module can be seen as
averaging out all modalities into a unified modality. As a
result, both methods failed in “losslessly” extracting the com-
plementarity from the multimodal object. And, they can only
perform on par with the baseline method OUTFITNET (see
Table III) which learns complementarity solely from multi-
item data. M2TUBE-inter(m) performs slightly better than
M2TUBE-intra(m) (on Dt and De) probably because there
are less number of labels and the intramodal complementarity
captured by the the former model plays a more important
role. Nevertheless, both these variants are incompetent for
fully modeling the complementarity of a multimodal object.
In contrast, by leveraging the modules for unimodal aggre-
gation and cross-modal fusion, M2TUBE shows noticeable
improvements. This observation demonstrates the effectiveness
of the unimodal aggregation module and the cross-modal
fusion module in M2TUBE for learning the multimodal object.

Second, we see M2TUBE-indp can produce very compet-
itive performance compared with the former two variants.
It scores an MRR of 0.942 on De (the global best) which
is +6.8% and +6.2% relatively over M2TUBE-intra(m) and
M2TUBE-inter(m). In fact, it can generally outperform the best
baseline LEARNSUC (see Table III) except for MRR on Dt ,
although it does not model the intermodal complementarity of
items. In contrast, the proposed model M2TUBE consistently
improves the performance on Dp and Dt by utilizing the
interactive aggregation module. It can produce MRRs of

Fig. 6. Case study on the complementarity learned by M2TUBE. Top similar
and complementary results are returned according to the query. First two
queries show learned intra-modal complementarity in Dp and Dt . And, last
two queries show the learned intermodal complementarity in De.

0.932 and 0.892 on two datasets which are +1.2% and +1.4%
relatively over M2TUBE-indp. We also note the improvements
of M2TUBE on De is not as stable as expected: it scores the
exact value of HMR and slightly lower MRR. Because there
are only two modalities and the items of the image modality,
i.e., bounding boxes, shows weaker connections to noun
phrases of the word modality, the intermodal complementarity
on the item level may not be salient. Nevertheless, we verify
the contribution of complementary interactions between items
across modalities. M2TUBE shows effectiveness in extracting
the complementarity on both the modality and item levels.

E. Metrics of Measuring Complementarity (RQ3)

This section further considers the factor of different met-
rics for quantifying complementarity in the latent space.
We replace the metric of TUBE distance for measuring com-
plementarity (see Section IV-D) in M2TUBE with other tradi-
tionally used metrics and build the following model variants.

1) M2TUBE-BPR: We replace the metric of TUBE dis-
tance (see Section IV-D) with the conventionally used
BPR [20] for measuring the complementarity informa-
tion in the latent embedding space.

2) M2TUBE-SUC: We replace the metric of TUBE dis-
tance (see Section IV-D) with the unconditioned behav-
ior success metric LEARNSUC [21] for measuring
complementarity.

We test the effectiveness of these variants equipped with
different metrics, and the results are also presented in Table IV.
We can see that M2TUBE-SUC consistently outperforms
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M2TUBE-BPR across datasets. This observation can be eas-
ily explained because BPR is a similarity-based metric that
pulls similar embeddings closer in the hidden space. While
being similar is likely to indicate being complementary, fully
modeling the complementarity also needs to consider the
uniqueness of each item, as well as the condition of label [22].
M2TUBE-SUC utilizes the distance metric of LEARNSUC [21]
learning the unconditional composition of the multimodal
object and produces a better performance. However, it has lim-
ited capability in handling multimodalities and label conditions
and performs on par with the best baseline method LEARNSUC

(see Table III). In contrast, the proposed M2TUBE leverages
the metric of TUBE distance [22] in the latent space for
quantifying the complementarity, which enhances the metric
of LEARNSUC by explicitly conditioning the multimodal
object on its label. In this way, M2TUBE outperforms all its
ablated variants, and it scores MRRs of 0.932 and 0.936 on
Dp and De which are +3.0% and +3.1% relatively over
M2TUBE-SUC. This observation justifies the importance of
measuring complementarity via TUBE.

F. Qualitative Analysis (RQ4)

In Fig. 6, we provide data examples for illustrating the char-
acteristics of complementarity learned by the M2TUBE, and
highlight its differences with similarity in both the intra- and
intermodal perspectives. First, our preliminary work in [22]
gives a comprehensive qualitative analysis on the intra-modal
complementarity on academic data. Second, we similarly
illustrate the learned intra-modal complementarity on social
media data by using the hashtag #FlattenTheCurve as a query
to look up its most similar and complementary hashtags.
We can see most of the top eight similar hashtags are popular
and general ones that are likely to be included in any ran-
dom covid-related tweet: 1) #Covid19, #CoronavirusOutbreak,
#CoronavirusUpdate, and #CoronaAlert are overused hashtags
with limited discriminative power and 2) #BattlingCovid19
and #StopCovid19 serve more like the general covid morale
slogans. By contrast, we can perceive much more information
from the top eight complementary hashtags covering specific
measures implemented for the goal of #FlattenTheCurve:
1) #StayAtHome and #MentalHealth are related to the urgent
lockdown across countries and cities; 2) #SocialDistancing
and #WearAMask reflect the specific countermeasures recom-
mended by the government; and 3) #ProtectOurHeroes shows
people’s sympathy and support on the front line workers.
A good choice of complementary hashtags to be used in a
tweet can effectively convey valuable content and potentially
receive wider public attention.

Third, we demonstrate the learned intermodal complemen-
tarity at the modality level by using a short query sentence
of words to find the most similar and complementary images
in De since each image naturally contains multiple items
of bounding boxes (red rectangles in the figure). We can
see that each most similar image of the query “Korean-
style fashion girl scarf” includes multiple scarfs of identical
style but different colors. By contrast, the second and the
fourth images ranked by the complementarity of the query
include products that are indeed complementary to the scarf,

Fig. 7. Parameter sensitivity of the proposed M2TUBE on (a) negative
sampling strategy and (b) number of attention heads H and layers L .

e.g., paired hats in the second image and gloves in the fourth
image. The third complementary image is a try-on of the query
scarf. This verifies that the proposed model can effectively
capture intermodal complementarity at the modality level.

Finally, for demonstrating the learned intermodal comple-
mentarity at the item level, we use a bounding box from a
product image depicting a pair of kids’ shoes in De as a
query to look up the most similar and complementary items
of the other modality, i.e., word tokens. We can see all the top
eight words ranked by the similarity metric generally describe
the identity of the query product: 1) “shoes,” “sneakers,”
“running,” and “workout” refer to the basic functionality of
sports shoes and 2) “children,” “toddler,” and “kids” indicate
the product is designed for children. By contrast, the top
eight complementary words cover more aspects of the product
characteristic besides its functionality: 1) “comfortable” and
“breathable” are valuable properties of sports shoes that most
users are willing to pay for and 2) “nonslip,” “protect,”
“lightweight” are product features that parents especially pay
attention to when buying shoes for their kids. We conclude that
M2TUBE is highly effective in learning the complementarity
in both the intra- and intermodal perspectives.

G. Parameter Sensitivity (RQ5)

We test the sensitivity of M2TUBE on hyper-parameters:
1) negative sampling strategies and 2) number of attention
heads H and layers L. In Fig. 7(a), we report the MRR
of M2TUBE and its variant on T1 in Dp. We can see
the S3 strategy of sampling modal-distribution-constrained
multimodal object produces better performance; S1 works
betters for M2TUBE, and S2 is better for the model variant.
In Fig. 7(b), we report the MRR of M2TUBE on T1 by varying
the values of H and L. We observe that M2TUBE can achieve
optimal performance when H and L is at 3 or 4. Setting these
values smaller limit the model’s expressiveness, and larger
values will introduce additional noise. We recommend setting
H and L within a reasonable range of [2, 5] in practice.

VI. CONCLUSION

In this work, we proposed to learn complementarity from
complex multimodal data. We designed a novel approach
to model the complementarity of: 1) intramodal interac-
tions of items; 2) intermodal interactions of modalities; and
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3) intermodal interactions of items across different modalities.
Our approach has three deep modules: unimodal aggregation,
cross-modal fusion, and interactive aggregation. It uses the
novel metric of TUBE distance to quantify the complementar-
ity. Extensive experiments demonstrated the effectiveness of
the proposed model. Future directions include: 1) examining
the decay factor of complementarity when modalities are
of large sizes and 2) leveraging free external data to align
modalities.
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