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A Mollicutes Metagenome-Assembled Genome from the Gut of

the Pteropod Limacina rangii
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ABSTRACT A nearly complete genome of an uncultured Mollicutes sp. was obtained from
the metagenome of the gut of Limacina rangii (open-ocean snail), an important grazer
and prey for higher trophic animals along the rapidly warming region of the western
Antarctic Peninsula.

recent metabarcoding study of Limacina rangii, a dominant grazer among zooplankton

and an important prey along the western Antarctic Peninsula (WAP), revealed that
Mollicutes bacteria are a cosmopolitan and dominant component of the gut micro-
biome (1, 2). Here, we report a nearly complete metagenome-assembled genome
(MAG) of the class Mollicutes from the L. rangii gut obtained along the WAP, contribut-
ing to the growing number of genomic resources available for host-associated marine
Mollicutes (3-8).

L. rangii organisms were collected at selected stations along the WAP (600.200, 300.200,
and 100.040) in January 2017 (9). Gut samples were dissected onboard and immediately frozen
at —80°C. Total DNA was extracted from three gut samples per station (9), using the Qiagen
DNeasy blood and tissue kit, and then pooled to create a single extract for sequencing.
Libraries were prepared with 30 to 50 ng DNA per sample using the Nextera DNA sample
preparation kit (Illumina).

Sequencing was performed at a read length of 2 x 150 bp by MR DNA (Molecular
Research LP) on the Illumina HiSeq 2500 platform. Raw read quality was visualized with
FASTQC version 0.111.14 (10). A total of 31,260,228 read pairs across three samples
underwent quality filtering with Trimmomatic version 0.38 (11) with the following pa-
rameters: minimum length of 90 bp, 4-bp sliding window with an average quality score
of 15, and leading/trailing bases with quality scores less than 3 were removed. Quality-
filtered reads were coassembled using default parameters with MEGAHIT version 1.1.1
(12). The coassembly was indexed with bowtie2 version 2.2.9, and the quality-filtered
reads from each sample were mapped to the coassembly (13). SAM files were converted
to BAM format and ordered using SAMtools release 1.5 (14). MetaBAT2 version 2.12.1
(15) was used to bin the coassembled contigs with default parameters. The lineage_wf
function in CheckM version 1.0.5 (16) estimated completeness and contamination. Gene
prediction and annotation were completed with PGAP (17). Conserved single-copy genes
(CSCGs) were identified through analysis of bidirectional best BLAST hits between the MAG,
Mycoplasma reference genomes, and outgroup Firmicutes genomes. Each CSCG cluster was
aligned with MUSCLE version 3.8.3, and a phylogenetic reconstruction was performed with
RAXML version 8.2.10 using the JTT substitution model and the GAMMA model of rate hetero-
geneity as previously described (3).

In total, 637,502 contigs were coassembled, but only one MAG, taxonomically assigned
to the class Mollicutes, was obtained with high estimated completeness. The mean depth of
coverage was highest at the most northern site (600.200) at 22.9%, while it was less than 2x
at the other sites (300.200 and 100.040). The Mollicutes MAG contained 85 contigs and a
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FIG 1 Maximum-likelihood phylogeny based on conserved single-copy genes between the Mollicutes MAG
from this study (PWAP), reference Mycoplasma genomes, and four genomes from the Firmicutes used as an
outgroup. One hundred iterations were used to compute bootstrap values. The GenBank accession
numbers for the genomes in the phylogenetic reconstruction are included in Table 1.

genome size of 0.55 Mb, with an Ns, of 7,347 bp, estimated completeness of 88.16%, con-
tamination and strain heterogeneity of 0%, and GC content of 25.1%. The Mollicutes MAG
included 527 protein-coding genes and contained multiple rRNA genes (one each of 16S, 23S,
and 5S). The MAG was most closely related to Mycoplasma marinum and Mycoplasma todaro-
dis, which were isolated from an octopus and squid, respectively, based on a phylogenetic
reconstruction from 63 CSCGs (Fig. 1; Table 1).

Data availability. The raw reads were deposited in the NCBI SRA database with
accession numbers SRR12228976, SRR12228977, and SRR12228978, and the MAG assembly
is available under ASM1966174v1, all attached to BioProject PRINA646234.

TABLE 1 NCBI accession numbers for bacterial genomes included in the phylogenetic
reconstruction

NCBI RefSeq

Organism

accession no.

Mycoplasma pneumoniae M129

Mycoplasma gallisepticum

“Candidatus Mycoplasma liparidae”
Mycoplasma sp. (ex Biomphalaria glabrata)
Mycoplasma hyopneumoniae

“Candidatus Hepatoplasma crinochetorum” Av
Mycoplasma mycoides subsp. capri

Mycoplasma alligatoris A21JP2

Mycoplasma capricolum subsp. capripneumoniae 87001
Mycoplasma crocodyli MP145

Mycoplasma hyorhinis

Mycoplasma hominis

Mycoplasma phocicerebrale

Mycoplasma todarodis

Mycoplasma mobile 163K

Mycoplasma marinum

Lactobacillus plantarum WCFS1

Listeria monocytogenes EGD-e

Enterococcus faecalis V583

Staphylococcus aureus subsp. aureus NCTC 8325

GCF_000027345.1
GCF_001676495.1
GCA_009884515.1
GCF_001484045.1
GCF_002257505.1
GCF_000582535.1
GCF_900489525.1
GCF_000178375.1
GCF_000835085.1
GCF_000025845.1
GCF_001705605.1
GCF_000759375.2
GCF_003383595.3
GCF_004335995.1
GCF_000008365.1
GCF_004335975.1
GCF_000203855.3
GCF_000196035.1
GCF_000007785.1
GCF_000013425.1
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