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Abstract

While differential privacy (DP) offers strong theoretical privacy guarantees, implementations of DP
mechanisms may be vulnerable to side-channel attacks, such as timing attacks. When sampling
methods such as MCMC or rejection sampling are used to implement a privacy mechanism, the
runtime can leak private information. We characterize the additional privacy cost due to the
runtime of a rejection sampler in terms of both (ǫ, δ)-DP as well as f -DP. We also show that
unless the acceptance probability is constant across databases, the runtime of a rejection sampler
does not satisfy ǫ-DP for any ǫ. We show that there is a similar breakdown in privacy with
adaptive rejection samplers. We propose three modifications to the rejection sampling algorithm,
with varying assumptions, to protect against timing attacks by making the runtime independent of
the data. The modification with the weakest assumptions is an approximate sampler, introducing
a small increase in the privacy cost, whereas the other modifications give perfect samplers. We also
use our techniques to develop an adaptive rejection sampler for log-Hölder densities, which also has
data-independent runtime. We give several examples of DP mechanisms that fit the assumptions
of our methods and can thus be implemented using our samplers.

Keywords: differential privacy, side-channel, timing attack, perfect sampler, exponential mecha-
nism

1. Introduction

As more data is collected, analyzed, and published by researchers, companies, and government
agencies, concerns about the privacy of the participating individuals have become more prominent
(Lane et al., 2014). While there have been many methods of statistical disclosure control to combat
this problem (Hundepool et al., 2012), differential privacy (DP) (Dwork et al., 2006) has arisen
as the state-of-the-art framework for privacy protection, and is currently being implemented by
Google (Erlingsson et al., 2014), Apple (Tang et al., 2017), Microsoft (Ding et al., 2017), and the
US Census (Abowd, 2018). Differential privacy is based on a notion of plausible deniability, and
requires the introduction of additional noise, beyond sampling, into the analysis procedure. Given
the output of a DP mechanism, an adversary cannot determine with high probability whether any
particular individual participated in the dataset (Wasserman and Zhou, 2010).

Because of the formal nature of DP, implementations of the mechanisms must be very careful to
prevent unintentional privacy leaks through side-channels. Side-channel attacks have been a long-
standing problem in computer systems, and may consist of the execution time, power consumption,
or memory usage of the system, to name a few (Joy Persial et al., 2011; Nilizadeh et al., 2019). With
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differential privacy, the system can be made black-box to remove some of these side-channels, but
may still be susceptible to timing attacks. Such a side-channel may be present if the DP mechanism
is part of a query-response framework, where users submit queries and the curator replies with a
DP response; in this model, the adversary may measure the time between submitting the query
and receiving the answer, and use this information as part of their attack. PINQ (McSherry, 2009)
and Airavat (Roy et al., 2010) were two of the earliest DP implementations, but were shown by
Haeberlen et al. (2011) to be vulnerable to timing attacks. FUZZ (Haeberlen et al., 2011) and
GUPT (Mohan et al., 2012) avoid timing attacks by working with simple queries for which the
worst-case computational time can be determined. This solution works for simple DP tasks, but is
nontrivial for complex DP mechanisms.

One of the most common and powerful DP mechanisms is the exponential mechanism (McSh-
erry and Talwar, 2007) which results in an unnormalized density of the form exp(gD(x)) that must
be sampled from, where gD is some function that depends on the database D. The exponential
mechanism has been widely used to tackle problems such as principal component analysis (Chaud-
huri et al., 2013; Kapralov and Talwar, 2013; Awan et al., 2019), K-means clustering, (Feldman
et al., 2009), convex optimization (Bassily et al., 2014a,b), robust regression (Asi and Duchi, 2020b),
linear and quantile regression (Reimherr and Awan, 2019), synthetic data (Snoke and Slavković,
2018), and Bayesian data analysis (Wang et al., 2015; Minami et al., 2016; Zhang et al., 2016;
Dimitrakakis et al., 2017) to name a few.

A challenge however is that for functions gD(x) encountered in practice, the unnormalized den-
sity exp(gD(x)) is often difficult to sample from. In statistics and machine learning, there are many
computational techniques to produce either exact or approximate samples from such distributions,
including Markov chain Monte Carlo (MCMC), rejection sampling, and approximate Bayesian com-
puting. However, there are two sources of privacy leaks when using these computational sampling
methods: 1) when using approximate samplers, the resulting sample does not exactly follow the tar-
get distribution, with the error in the approximation resulting in an increased privacy risk, 2) with
either an approximate or exact sampler, if the runtime of the algorithm depends on the database,
then this side-channel may leak private information (Haeberlen et al., 2011).

We will consider the runtime of the algorithm as an additional output accessible to an adversary,
and we will require that both the official output and the runtime jointly satisfy differential privacy.
As Haeberlen et al. (2011) point out, the simplest solution is to make the runtime independent of
the dataset. In this paper we propose different modifications, under different assumptions, which
produce rejection samplers with data-independent runtime, and are thus immune to timing attacks.

Contributions First, we quantify the privacy risk of rejection and adaptive rejection sampling
without any privacy-preserving modifications. As a properly implemented rejection sampler results
in samples with distribution equal to the target, the only privacy concern is the runtime, which
varies for different databases. We characterize the privacy risk due to the runtime of a simple
rejection sampler in terms of both (ǫ, δ)-DP and f -DP (Dong et al., 2022). We also show that the
runtime of a simple rejection sampler does not satisfy ǫ-DP for any finite ǫ unless the acceptance
rate is constant across databases. We similarly show that the runtime of an adaptive rejection
sampler does not satisfy ǫ-DP unless acceptance probabilities across databases converge in terms
of a certain series.

Given the increased privacy risk due to the runtime, we propose several modifications to rejection
samplers, which make the runtime independent of the database: 1) choose the number of iterations
to run the sampler ahead of time, based on a lower bound on the acceptance probability, 2)
introduce an additive wait-time based on a worst-case dataset, 3) use squeeze functions to add an
implicit wait-time. We also propose an adaptive rejection sampler with data-independent runtime,
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which can be applied to any log-Hölder density. The adaptive sampler is a modification of the
(nearly) minimax optimal sampler from Achddou et al. (2019), using the technique of squeeze
functions. Finally, we give examples of the exponential mechanism which satisfy the assumptions
of our methods.

Related work Often side-channels are handled using more relaxed metrics than DP, such as min-
entropy (Smith, 2009). However, the point of view of this paper is that if the dataset in question is
judged to require the protection of differential privacy, then we must ensure that all channels are
protected in the DP framework. Thus, while for other applications it may be appropriate to use
a weaker protection for side channels, in DP applications, the runtime must also satisfy DP. See
Haeberlen et al. (2011) for a similar discussion.

Besides timing side-channels, there are other notable side-channel attacks that have been effec-
tive against DP implementations. Haeberlen et al. (2011) showed that when the privacy budget is
chosen based on the database, that the budget is another side-channel. Wagh et al. (2018) consider
the privacy cost of RAM access, and propose a differential privacy regime to formally protect the
RAM access. Dodis et al. (2012) and Garfinkel and Leclerc (2020) explore the concerns of using
pseudo-random number generators in the implementation of DP systems. Mironov (2012) showed
that when implementing DP mechanisms with floating point arithmetic, privacy can be arbitrarily
compromised by the artifacts in the least significant bit. Ilvento (2020) provide an implementation
of the exponential mechanism on finite state spaces that is immune to the floating point attacks,
but which is admitted to be susceptible to timing attacks.

A different approach to sampling the exponential mechanism is using MCMC techniques, and
there have been some prior works characterizing the additional privacy cost of these approximate
samplers. Usually convergence of MCMC methods is characterized in terms of total variation
distance, and Minami et al. (2016) showed that these guarantees can be imported to produce ap-
proximate DP samples with an increased ‘delta’ in a fixed number of iterations. Ganesh and Talwar
(2020) expanded upon the results of Vempala and Wibisono (2019) to show that Langevin MCMC
converges in Rényi divergence, which allows for the quantification of the privacy loss by sampling
in terms of Rényi DP. Rényi divergences are much stronger than total variation, and have been
used in various definitions of DP (Mironov, 2017; Bun and Steinke, 2016; Bun et al., 2018). Minami
et al. (2016) also study Langevin MCMC, but characterize the privacy cost in terms of (ǫ, δ)-DP.
Seeman et al. (2021) develop an exact sampler for the exponential mechanism based on an MCMC
procedure with artificial atoms, however, they acknowledge that their approach does not protect
against timing side-channels. To our knowledge, there has been no prior work quantifying the
privacy risk of rejection sampling, or proposing rejection samplers with data-independent runtime.

2. Background and notation

In this section, we review the necessary background on differential privacy and rejection sampling.
We also set the notation for the rest of the paper.

Let X and Y be random variables on a measurable space (Y ,F ), with corresponding prob-
ability measures µX and µY . The max-divergence of Y with respect to X is D∞(Y ||X) =

supB∈F log
(

µY (B)
µX(B)

)
. If µX dominates µY , then D∞(Y ||X) = supy∈Y log dµY

dµX
(y), where dµY

dµX
is

the Radon-Nikodym derivative of µY with respect to µX . The symmetric max-divergence is
DS

∞(X,Y ) := max{D∞(X||Y ), D∞(Y ||X)}.

For a distribution M , we typically write π̃(x) for an unnormalized density of M , π(x) =
π̃(x)/

∫
π̃(x) dx, and g = log(π̃) (equivalently, π̃(x) = exp(g(x)). We write U(x) to denote a
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density that upper bounds π̃ as π̃(x) ≤ cUU(x) for some constant cU . Similarly, we write L(x) for a
density that lower bounds π̃ as cLL(x) ≤ π̃(x) for a constant cL. In rejection sampling, U is called
the proposal distribution, and L is the squeeze function.

2.1 Differential privacy

Differential privacy (DP), introduced in Dwork et al. (2006), is a framework to characterize the
privacy risk of a given algorithm, and offers techniques to design mechanisms which limit privacy
loss. DP methods require the introduction of additional randomness, beyond sampling, in order to
offer a notion of plausible deniability. Given the output of a DP mechanism, it is difficult for an
adversary to determine whether a particular individual participated in the dataset or not. While
an idealized algorithm may be proven to be differentially private, to characterize the actual privacy
cost of a given implementation, one must consider all side-channels such as the runtime as part of
the DP output (Haeberlen et al., 2011).

Definition 1 (Privacy mechanism) Given a metric space (D , d), which represents the set of
possible databases, a set of probability measures {MD | D ∈ D} on a common space Y is called a
privacy mechanism.

The space D represents the space of possible databases, and it is common to take D = X n for
some set X , with X representing the possible contributions of one individual in the database. In
that case, the metric d is often chosen to be the Hamming distance, so that d(D,D′) ≤ 1 represents
that D and D′ are adjacent databases, differing in only one individual’s contribution.

When implementing a privacy mechanism, we publish one sample from MD, which satisfies
some form of privacy.

Definition 2 ((ǫ, δ)-DP:Dwork et al., 2006) Given a metric space (D , d), ǫ ≥ 0 and δ ∈ [0, 1],
a privacy mechanism {MD} on the space Y satisfies (ǫ, δ)-differential privacy if for all measurable
sets B ∈ Y and all d(D,D′) ≤ 1,

MD(B) ≤ exp(ǫ)MD′(B) + δ.

The values ǫ and δ are called the privacy parameters, which capture the privacy risk for the
given mechanism. Smaller values of ǫ and δ give stronger privacy guarantees. Typically, ǫ is chosen
to be a small constant such as 1 or 0.1, whereas usually δ ≪ 1/n. In the case where δ = 0, we
call (ǫ, 0)-DP “pure differential privacy,” and write ǫ-DP. A privacy mechanism satisfying ǫ-DP is
equivalent to requiring that DS

∞(MD||MD′) ≤ ǫ for all d(D,D′) ≤ 1, where DS
∞ is the symmetric

max-divergence.

While we phrase most of our results in terms of (ǫ, δ)-DP, another useful formulation of DP
is f -DP (Dong et al., 2022), which is expressed in terms of hypothesis tests. f -DP is based on
bounding the receiver-operator curve (ROC) or tradeoff function when testing between two adjacent
databases, given the output of a privacy mechanism. For two probability distributions P and Q, the
tradeoff function is the smallest type-II error as a function of the type-I error. Formally, the tradeoff
function for P and Q is T (P,Q) : [0, 1] → [0, 1], which is defined as T (P,Q)(α) = infφ{1− EQ(φ) |
EP (φ) ≤ α}, where the infinimum is over all possible tests φ. Being equivalent to ROC, the tradeoff
function captures the difficulty of distinguishing between P and Q. A function f : [0, 1] → [0, 1]
is a tradeoff function if and only if f is convex, continuous, decreasing, and f(x) ≤ 1 − x for all
x ∈ [0, 1] (Dong et al., 2022, Proposition 1).
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(a) A plot of three examples of T (M(D),M(D′)).
Only the red, dashed tradeoff curve satisfies f -DP.
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(b) A tradeoff function, as well as its conversion to
(1, δ)-DP, where δ ≈ 0.127.

Figure 1: Examples of tradeoff functions, and the relation between f -DP and (ǫ, δ)-DP.

Definition 3 (f-DP: Dong et al., 2022) Let f be a tradeoff function. A privacy mechanism M
on the metric space (D , d) satisfies f -DP if

T (MD,MD′)(α) ≥ f(α) ∀α ∈ [0, 1],

for all D,D′ ∈ D such that d(D,D′) ≤ 1.

See Figure 1a for examples of tradeoff functions which do and do not satisfy f -DP for a particular
f . Without loss of generality we can assume that f is symmetric: f(α) = f−1(α), where f−1(α) =
inf{t ∈ [0, 1] | f(t) ≤ α}. This is due to Dong et al. (2022, Proposition 2), which states that for a
given f and a mechanism M that is f -DP, there exists a symmetric f∗ ≥ f such that M is f∗-DP.

It turns out that (ǫ, δ)-DP is a special case of f -DP, where f is taken to be a particular
piecewise linear function. Specifically, let ǫ ≥ 0 and δ ∈ [0, 1], and define fǫ,δ(α) = max{0, 1− δ −
exp(ǫ)α, exp(−ǫ)(1 − δ − α)}. Then a privacy mechanism M satisfies (ǫ, δ)-DP if and only if it
satisfies fǫ,δ-DP (Dong et al., 2022, Proposition 3). The following proposition, based on Dong et al.
(2022, Propositions 5 and 6), gives a simple conversion between f -DP and (ǫ, δ)-DP, by determining
the linear functions which lower bound f .

Proposition 4 Let f be a symmetric tradeoff function. If a privacy mechanism satisfies f -DP,
then it satisfies (ǫ, δ)-DP provided that (1− δ)− exp(ǫ)α ≤ f(α) for all α ∈ [0, 1].

Proof We need to show that fǫ,δ(α) ≤ f(α) for all α ∈ [0, 1]. By symmetry of f and fǫ,δ, the
condition stated is sufficient.

If the tradeoff function f makes the inequalities of Definition 3 tight, then by Proposition 4 the
tightest (ǫ, δ)-DP guarantee takes a tangent line of f and sets (1 − δ) to be the y-intercept and
− exp(ǫ) to be its slope. This approach gives a precise conversion from f -DP to (ǫ, δ)-DP, which we
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use in Theorem 10. In fact, there is a stronger duality between f -DP and a family of (ǫ, δ(ǫ))-DP
characterizations, described in Dong et al. (2022, Propositions 5 and 6). Figure 1b illustrates the
conversion from f -DP to (ǫ, δ)-DP.

An important property of both (ǫ, δ)-DP and f -DP is that it is robust to post-processing. That
is, if a privacy mechanism satisfies DP, then applying any deterministic or randomized algorithm
to the output cannot degrade the DP guarantee. This property is related to data processing
inequalities.

Proposition 5 (Post-processing: Dwork et al., 2014; Dong et al., 2022) Let M be a pri-
vacy mechanism with output space Y , f a tradeoff function, ǫ ≥ 0, and δ ∈ [0, 1]. Let Proc be a
potentially randomized mapping from Y to Z . Then

1. if M satisfies (ǫ, δ)-DP, then Proc ◦M satisfies (ǫ, δ)-DP;

2. if M satisfies f -DP, then Proc ◦M satisfies f -DP.

2.2 Exponential mechanism

Having established the definitions of both (ǫ, δ)-DP and f -DP, there remains the question of how
to construct a privacy mechanism for a given statistical task. A general and powerful technique,
and one that will be the focus of this paper, is the exponential mechanism (McSherry and Talwar,
2007). Given a utility function gD, where large values of gD indicate higher utility, the exponential
mechanism samples from the unnormalized density π̃D(x) = exp(gD(x))π0(x), where π0 is a base
measure. This mechanism satisfies (2/∆, 0)-DP where ∆ is the sensitivity of gD:

∆ ≥ sup
d(D,D′)≤1

sup
x

|gD(x)− gD′(x)|.

Often π0 is chosen to be Lebesgue measure, but it can also be chosen to be a probability measure
similar to a prior (Wang et al., 2015; Minami et al., 2016; Dimitrakakis et al., 2017). In infinite-
dimensional function spaces, there is no translation-invariant measure, so a nontrivial base measure
must be used (Awan et al., 2019). Many statistical tasks can be expressed as finding the solution to
a minimization or maximization problem of some objective function (e.g., log-likelihood function,
sum of squared error, or a general empirical risk function). For these tasks, it is natural to choose
the utility function in the exponential mechanism to be some transformation of such an objective
function. For example, Reimherr and Awan (2019) show that when an objective function ξD(x) is
strongly convex, sampling from the exponential mechanism with utility function g(x) = −‖∇ξD(x)‖
results in an estimator which satisfies x∗ = argminx ξD(x) + Op(n

−1). Though the exponential
mechanism was designed with (ǫ, 0)-DP in mind, it has been shown that when the utility function
satisfies additional assumptions such as concavity, Lipschitz continuity, or strong concavity, the
exponential mechanism may satisfy (ǫ, δ)-DP (Minami et al., 2016; Dimitrakakis et al., 2017), even
when the sensitivity ∆ is infinite.

While the exponential mechanism is very flexible and offers high utility guarantees, sampling
exp(gD(x)) exactly is generally very challenging. While specific implementations of the exponential
mechanism sometimes have efficient sampling schemes (e.g., Bassily et al., 2014a,b; Asi and Duchi,
2020a,b), in general, more sophisticated computational sampling techniques are needed. For exam-
ple, Chaudhuri et al. (2012, 2013) and Awan et al. (2019) use a Gibbs sampler to implement the
exponential mechanism in the application of principal component analysis, using heuristics to argue
convergence. Reimherr and Awan (2019) use MCMC implementations of their proposed K-norm
gradient (KNG) mechanism, but leave considerations of the cost of the implementation for future
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work. Snoke and Slavković (2018) propose an instance of the exponential mechanism for synthetic
data, which they sample using the Metropolis algorithm, without considering the privacy cost of
the sampler.

2.3 Rejection sampling

Given the structure of the unnormalized density, sampling from exp(gD(x)) is often well suited
to rejection sampling. Given an unnormalized target density π(x) ∝ π̃(x) = exp(g(x)), which is
difficult to sample from, and a simpler proposal density U(x) which satisfies π̃(x) ≤ cU(x) for
some c and all x, a rejection sampler draws X ∼ U(x) and accepts the sample with probability
π̃(X)/(cU(X)). This process is repeated until a sample is accepted, and it is easy to show that the
accepted sample is distributed as X ∼ π(x). The requirements to implement a rejection sampler
are that we can evaluate π̃(x), and determine U(x) and c which satisfy the above inequality. We
will call these samplers simple rejection samplers when we need to distinguish these from adaptive
rejection samplers, which we introduce later in this section. See Martino (2018) for an extensive
introduction to rejection samplers.

The marginal probability of accepting a sample at any particular iteration from a simple rejec-
tion sampler is p = c−1

∫
π̃(x) dx, so that the number of iterations T needed to obtain an accepted

sample follows a geometric distribution: T ∼ Geom(p). In this paper we assume that the geometric
distribution has support 1, 2, 3, . . ., with pmf P (T = k) = (1− p)k−1(p) for k = 1, 2, 3, . . ..

While rejection samplers allow exact samples to be drawn from an intractable target distri-
bution, the acceptance probability p typically decays exponentially with dimension, making them
suitable only for low-dimensional problems. Adaptive rejection samplers attempt to address this
shortcoming, and proceed by producing a sequence of upper bounds Un(x) and constants cn such
that π̃(x) ≤ cnUn(x) and such that the acceptance probability increases with n. Just like a
simple rejection sampler, conditional on acceptance, adaptive rejection samplers produce samples
X ∼ π(x). Typically, the upper bounds are updated stochastically, using the information from the
previously rejected samples. While this minimizes the number of evaluations of π, the acceptance
probabilities update in a manner depending on the target π, making the runtime difficult to ana-
lyze. Alternatively, the upper bound can be updated in a deterministic manner such as in Leydold
et al. (2002), which makes understanding the runtime much simpler. While deterministic updates
require more evaluations of π, they can potentially result in upper bounds that converge to π much
faster, resulting in a tradeoff.

With adaptive rejection sampling, the marginal probability of accepting a sample at iteration
n is pn = 1

cn

∫
π(x) dx. However, as the acceptance probability changes over time, the runtime

T to accept one sample is no longer geometric, but has pmf P (T = k) = pt
∏k−1

i=1 (1 − pi), for
k = 1, 2, 3, . . ..

3. Privacy risk of rejection sampling

In this section, we characterize the privacy cost of a rejection sampler when we allow the adversary
to have access to both the accepted sample as well as the runtime. Recall that if a rejection sampler
is run until acceptance, then the accepted sample is an exact sample from the target distribution.
Thus, the only increased privacy risk from using this algorithm is due to the runtime. We will
measure the privacy risk of this side-channel in terms of ǫ-DP, (ǫ, δ)-DP, and f -DP. We show that
for the exponential mechanism, the privacy cost of a rejection sampler’s runtime is non-negligible.

Assumption 6 For a rejection sampler, we assume that along with the published accepted sample,
the runtime is also available to an attacker. We assume that for all databases D and for all x in the
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domain, the evaluations gD(x) take the same time to evaluate. As such, the runtime is proportional
to the number of iterations in the sampler. Thus for the rest of the paper, the runtime will simply
refer to the number of iterations in the sampler.

Note that while the proposal distribution UD(x), target exp(gD(x)), and threshold cD may all
depend on D, none are directly available to the attacker.

Remark 7 Many utility functions used in the exponential mechanism can be expressed as empirical
risks (Bassily et al., 2014a,b; Reimherr and Awan, 2019; Wang et al., 2019). In this case, assuming
that the database size n is fixed, ensuring that the time to evaluate gD(x) is constant is equivalent to
ensuring that the contributions to the empirical risk from each individual take constant time. This
is in line with the techniques used in Haeberlen et al. (2011) who split each query into sub-queries
which are evaluated on each member of the dataset.

First we will study the privacy cost of the rejection sampling runtime in terms of ǫ-DP. Propo-
sition 9 states that the runtime of a rejection sampler violates ǫ-DP unless the probability of
acceptance is constant across databases. To prove this, recall that ǫ-DP is measured by the max-
divergence. Lemma 8 shows that the symmetric max-divergence between two geometric random
variables is unbounded whenever the parameters differ, and the proposition follows easily from this.

Lemma 8 Let p, q ∈ (0, 1) and let X ∼ Geom(p) and Y ∼ Geom(q). Then

D∞(X||Y ) =

{
log(p/q) if p ≥ q

∞ if p < q.

Thus, DS
∞(X,Y ) = ∞ whenever p 6= q.

Proof As all geometric random variables, with parameter in (0, 1), are equivalent measures on

the positive integers, it suffices to determine an upper bound on log P (X=k)
P (Y=k) for k ∈ {1, 2, . . .}. This

quantity can be expressed as

log
P (X = k)

P (Y = k)
= log

(1− p)k−1p

(1− q)k−1q
= log

(
p(1− q)

q(1− p)

)
+ k log

(
1− p

1− q

)
.

We see that this quantity is linear in k. The slope is non-positive if and only if p ≥ q, in which
case the maximum value is achieved at k = 1, giving the value log(p/q). When p < q, the slope is
positive, and as k → ∞, the quantity is unbounded.

Proposition 9 Let {MD | D ∈ D} be a privacy mechanism, let pD be the probability of acceptance
for a rejection sampler run on MD, call TD the runtime of the rejection sampler which is distributed
Geom(pD), and call X the accepted sample. If there exists D,D′ ∈ D such that d(D,D′) ≤ 1 and
pD 6= pD′, then the mechanism that releases (X,T ) does not satisfy ǫ-DP for any ǫ > 0.

Proof By post-processing (Proposition 5), we get a lower bound on the privacy cost by only
considering T . If there exists D and D′ such that d(D,D′) ≤ 1 and pD ≤ pD′ , then by Lemma 8
the symmetric max-divergence is unbounded, and the result follows.

Theorem 10 gives a more precise characterization of the privacy loss due to rejection sampling
as measured by f -DP and (ǫ, δ)-DP. For the former, we bound the tradeoff function of the geometric
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Figure 2: The tradeoff functions of T (Geom(p),Geom(q)) and T (Geom(q),Geom(p)), along with fR
from Theorem 10. We fix R = 2. In the left plot q = .1 and in the right q = .6. p = 1−(1−q)R > q.
We see that the approximation fR is more accurate for smaller q.

variables with the tradeoff function for exponential variables, which allows for a simpler formula.
This bound is tighter for small acceptance probabilities. We use the likelihood ratio property of
the exponential distribution along with some properties of convex functions to get the formula in
equation (1). We then use Proposition 5 to convert the f -DP guarantee to (ǫ, δ)-DP guarantees.

Theorem 10 Let (D , d) be a metric space of databases, and let TD be the runtime of a rejection
sampler for database D which has acceptance probability pD. Note that TD ∼ Geom(pD). Call

R = supd(D,D′)≤1
log(1−pD)
log(1−pD′ )

. The mechanism that releases the runtime TD

1. satisfies fR-DP, where

fR(α) =





1− α1/R α ≤ RR/(1−R)

−α+RR/(1−R) + 1−R1/(1−R) RR/(1−R) < α < 1−R1/(1−R)

(1− α)R α ≥ 1−R1/(1−R),

(1)

2. satisfies (ǫ, δ(ǫ))-DP for all ǫ ≥ 0, where δ(ǫ) = (1− 1/R) exp
(
−ǫ−log(R)

R−1

)
,

3. satisfies (ǫ(δ), δ)-DP for all 0 < δ ≤ (R − 1)RR/(1−R), where ǫ(δ) = log(1/R) + (R −
1)(log(1/δ) + log(1− 1/R)).

Proof We begin by establishing the form of fR, and then use Proposition 4 to produce (ǫ, δ)-DP
guarantees. We first show that by bounding the tradeoff function of the exponential distribution,
we get bounds for geometric variables as well. Call λD = − log(1 − pD). Recall that if XD ∼
Exp(λD), then ⌊XD⌋ + 1 ∼ Geom(pD). By Proposition 5, we have that T (Exp(λD),Exp(λD′)) =
T (XD, XD′) ≤ T (⌊XD⌋ + 1, ⌊XD′⌋ + 1) = T (Geom(pD),Geom(pD′)), where T (·, ·) represents the
tradeoff function.

9
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Next, we will derive the tradeoff function T (Exp(λD),Exp(λD′)) assuming that λD > λD′ . Let
pλD

(x) be the pdf of Exp(λD). Note that (pλD′
(x)/pλD

(x)) = (λD′/λD) exp(x(λD − λD′)) is an
increasing function of x. By the Neyman Pearson Lemma, the most powerful test has a rejection
region of the form x ≥ τ . The type I error is α = exp(−λDτ) and type II is β = 1− exp(−λD′τ).
Expressing β as a function of α gives β = 1−αλD′/λD ≥ 1−α1/R. Thus, we have that T (XD, XD′) ≥
1 − α1/R. We also need a lower bound on T (XD′ , XD). Note that T (XD′ , XD) is the inverse of
T (XD, XD′). By taking the inverse of 1− α1/R, we have T (XD′ , XD) ≥ (1− α)R.

To get a single bound on both T (XD, XD′) and T (XD′ , XD), we take the convex hull of min{1−
α1/R, (1−α)R}, which we claim has the form fR(α) as stated in 1. To this end, we first verify that

1− α1/R ≤ 1−Rα ≤ (1− α)R, (2)

for all 0 ≤ α ≤ RR/(1−R), so that over this range of α, the convex hull just equals 1 − α1/R as
required by the first line of Equation (1). To establish the first inequality of Equation (2), note
that f(α) = 1 − α1/R is a convex function; this can be seen either by differentiating it twice, or
from the fact that it is a tradeoff function. The straight line 1−Rα intersects this curve at α = 0
and α = RR/1−R, and for intermediate values of α, forms a chord segment. From convexity, this
chord lies above the curve. For the second inequality of Equation (2), observe that (1−α)R is also
convex. We can easily verify that the line 1 − Rα is the tangent at α = 0. The second inequality
then follows from the fact that a convex function is lower bounded by its tangent. This justifies
the first line of fR(α) in Equation (1). By symmetry, we also have that the third line is correct.

For the middle inequality, we note that the curves 1 − α1/R and (1 − α)R have slope −1
at the points RR/(1−R) and 1 − R1/(1−R) respectively. It is easily verified that the straight line
g(α) = −α+RR/(1−R) + 1−R1/(1−R) intersects the two curves at these two points, and has slope
−1. It is thus tangent to both curves, and from convexity, lies below both of them. Altogether, we
conclude that fR(α) is the appropriate convex hull.

To get the formulas in 2. and 3., recall that the mechanism satisfies (ǫ, δ)-DP if the line (1−δ)−
exp(ǫ)α is a lower bound for the tradeoff function fR(α). To get the tightest (ǫ, δ)-DP guarantees, we
characterize the supporting linear functions. By symmetry, it suffices to determine the tangent lines
of 1−α1/R for values 0 ≤ α ≤ RR/(1−R). We calculate the derivative as d

dα(1−α1/R) = −1
R α

1/R−1.

Set − exp(ǫ) = −1
R α

1/R−1, which has the solution ǫ = log(1/R) + (1/R− 1) logα.

The line with slope − exp(ǫ) = −1
R α

1/R−1 that passes through (α, 1− α1/R) is y− (1− α1/R) =
−1
R α

1/R−1(x − α), which has y-intercept 1 − δ = 1 − α1/R(1 − 1/R), giving δ = α1/R(1 − 1/R).

Eliminating α from the equations ǫ = log(1/R) + (1/R− 1) logα and δ = α1/R(1− 1/R) gives the
expressions in parts 2. and 3. in the theorem statement. Note that δ(0) = (R − 1)RR/(1−R), so
for any δ > δ(0), the mechanism satisfies (0, δ)-DP, but this is a strictly weaker guarantee than
(0, δ(0))-DP.

The approximation in Theorem 10 improves for smaller probabilities of acceptance, as seen in
Figure 2. Intuitively, this is because the approximation of a geometric variable as an exponen-
tial is more accurate for smaller probabilities of acceptance. As rejection samplers typically have
small rejection probabilities, the privacy guarantees of Theorem 10 are quite accurate for rejection
samplers of interest. In Table 1, we give a few examples converting the quantity R to (ǫ, δ)-DP
guarantees. We see that even with a small R of 1.1, there is a nontrivial privacy cost. In Example
13, we explore what values of R we may expect in practice.

Corollary 11 Let (D , d) be a metric space of databases, MD a privacy mechanism which satisfies
f -DP and TD the runtime of a rejection sampler for MD which has acceptance probability pD. Call

10
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δ = .1 .01 .001 10−4 10−5 10−6

R = 2 .916 3.22 5.52 7.82 10.13 12.43
R = 1.1 0 .125 .356 .59 .82 1.05

Table 1: The (ǫ(δ), δ)-DP guarantee for a simple rejection sampler, where R (defined in Theorem
10) is either 2 or 1.1. The values ǫ(δ) appear in the table for each combination of δ and R.

R = supd(D,D′)≤1
log(1−pD)
log(1−pD′ )

. Then the privacy cost of MD along with the runtime is fR ⊗ f , where

fR is defined in Theorem 10 and ⊗ is the tensor product of two tradeoff functions (Dong et al.,
2022, Definition 5).

In Corollary 11, the tensor product f ⊗ g, where f = T (P,Q) and g = T (P ′, Q′) is defined as
f ⊗ g = T (P ×P ′, Q×Q′), where P ×P ′ is the product distribution (Dong et al., 2022, Definition
5). In general, it is challenging to derive a closed form of f ⊗ g.

Remark 12 (Rejection sampling is trivial for location-scale) For some distributions, it is
easy to build a rejection sampler, with constant acceptance probability. For example, suppose that the
mechanism {MD | D ∈ D} is location-scale (e.g., K-norm mechanisms: Hardt and Talwar, 2010;
Awan and Slavković, 2020). In this case, we build a rejection sampler for a default distribution in
the family, and transform after sampling. Then we have a rejection sampler where the acceptance
rate is independent of the dataset.

While Theorem 10 describes the privacy cost of a rejection sampler’s runtime, it is phrased in
terms of the quantity R, which may be unintuitive. In the following example, we show that for a
generic exponential mechanism, with an arbitrary set of proposal distributions, R is lower bounded
by exp(ǫ), and may even be infinite.

Example 13 (Exponential mechanism) As shown in McSherry and Talwar (2007), the expo-
nential mechanism results in a target distribution of the form π̃D = exp(gD(x)), which usually

satisfies exp(−ǫ/2) ≤
π̃D′ (x)
π̃D(x) ≤ exp(ǫ/2) for adjacent databases D and D′ (the integrating constants

may also differ by a factor of at most exp(±ǫ/2)). Let U be a family of proposal distributions,
and for each database D, let cD and UD be the optimal proposal distribution from U such that

π̃D ≤ cDUD(x), where by optimal, we mean that the acceptance probability pD =
∫
π̃D(x) dx

cD
is

maximized; or equivalently cD is minimized. Then, from the following inequality,

π̃D′(x) ≤ exp(ǫ/2)π̃D(x) ≤ exp(ǫ/2)cDUD(x),

we see that exp(ǫ/2)cD and UD offer a (potentially inferior) proposal distribution for π̃D′. Using this
relationship between the proposal distributions of D and D′, we can give a bound for the acceptance
probability for D′ based on the acceptance probability for D:

pD′ =

∫
π̃D′(x) dx

cD′

≥

∫
π̃D′ dx

exp(ǫ/2)cD
≥

exp(−ǫ/2)
∫
π̃D dx

exp(ǫ/2)cD
= exp(−ǫ)pD.

Call p∗ the highest acceptance probability over all possible databases D. Then the quantity R that
appears in Theorem 10 can be expressed as

R =
log(1− p∗)

log(1− exp(−ǫ)p∗)
. (3)

11
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Note that as p∗ → 1 in Equation (3), R diverges to infinity. We can also get a lower bound on R:

R =
log(1− p∗)

log(1− exp(−ǫ)p∗)
≥ lim

p→0

log(1− p)

log(1− exp(−ǫ)p)

L′H
= lim

p→0

1− exp(−ǫ)p

exp(−ǫ)(1− p)
= exp(ǫ), (4)

where
L′H
= indicates the use of L’Hôpital’s rule, and we used the fact that log(1−p)/ log(1−exp(−ǫ)p)

is increasing in p for all p ∈ (0, 1) and ǫ > 0; to see this, we compute the derivative with respect to
p:

(1− p) log(1− p)− (exp(ǫ)− p) log(1− p exp(−ǫ))

(exp(ǫ− p)(1− p)(log(1− p exp(−ǫ)))2
. (5)

We see in (5) that the denominator is positive so long as 0 < p < 1. The numerator of (5) can be
expressed as

∞∑

n=2

pn
(

1

n(n− 1)

)
(1− exp(−ǫ(n− 1))) ,

which we can see is positive and finite for all ǫ > 0 and p ∈ (0, 1).

Remark 14 (Parallelization and batching) Suppose that we have a simple rejection sampler
targeting π̃D with acceptance probability pD. We could consider a parallelized implementation as
follows: run the sampler on k nodes; when the first sample is accepted, return the sample and the
runtime and abort the other instances of the sampler. In this scheme, the runtime is distributed as
min{G1, . . . , Gk} ∼ Geom(1− (1− pD)

k), where Gi are independent Geom(pD) random variables.
Now, suppose for two adjacent databases D and D′ that

log(1− pD)

log(1− pD′)
= R,

which is the quantity in Theorem 10 that governs the privacy cost of the runtime. Then, in the
parallelized scheme, we have

log(1− [1− (1− pD)
k])

log(1− [1− (1− pD′)k])
=

log((1− pD)
k)

log((1− pD′)k)
=
k log(1− pD)

k log(1− pD′)
= R.

We see that parallelization does not affect the privacy cost of the runtime.
Similarly, one could decide to run the rejection sampler for a fixed number of iterations, say m

before checking if one of the samples is accepted, and then repeating if necessary. This may be useful
in combination with parallelization, since communication between the nodes could be a bottleneck.
With batching, the runtime until a sample is accepted is Geom(1− (1− pD)

m), which is the same
runtime as in the parallelization. By the same reasoning, batching also does not affect the privacy
cost of the runtime.

In Section 4, we develop samplers with data-independent runtime. As such, parallelizing or
batching the samplers in the manner described above maintains the property that the runtime is
data-independent, while potentially giving a significant speed up.

3.1 Privacy risk of adaptive rejection sampling

In this section, we analyze the privacy risk of adaptive rejection samplers. Often adaptive rejection
samplers update the proposal in a stochastic manner, based on the target value at previously
rejected samples. In this section, we consider the setting where the proposal is updated in a
deterministic manner, such as in Leydold et al. (2002). We show that unless the acceptance
probabilities converge in a strong sense, an adaptive rejection sampler will not satisfy ǫ-DP for any
finite ǫ.

12
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Proposition 15 Let D be the space of databases and {MD | D ∈ D} a privacy mechanism which
satisfies ǫ-DP. Let (pDi )

∞
i=1 be the weakly-increasing sequence of acceptance probabilities for an

adaptive rejection sampler for MD. Call TD the runtime of the adaptive sampler for MD, which
has pmf P (TD = t) = pDt

∏t−1
i=1(1− pDi ). Then releasing a sample from MD as well as the runtime

TD satisfies (ǫ+ ǫT )-DP, where

ǫT ≥ log(pDt /p
D′

t ) +

t−1∑

i=1

log

(
1− pDi
1− pD

′

i

)
,

for all t ≥ 1 and all d(D,D′) ≤ 1. If there exists a constant c such that pD1 ≥ c > 0 for all D, then

the value ǫT is finite if and only if the sequence

(∑t
i=1 log

1−pDi
1−pD

′

i

)∞

t=1

is universally bounded for all

d(D,D′) ≤ 1.

Proof For readability, we set pi := pDi and qi := pD
′

i . We require that log P (TD=t)
P (TD′=t) ≤ ǫT for all

d(D,D′) ≤ 1 and all t = 1, 2, . . .. A little algebra gives the expression for ǫT .

Next, ǫT is finite if and only if log P (TD=t)
P (TD′=t) is bounded above and below for all d(D,D′) ≤ 1.

Equivalently, this requires log
pt

∏t−1
i=1(1−pi)

qt
∏t−1

i=1(1−qi)
= log

(
pt
qt

∏t−1
i=1

(
1−pi
1−qi

))
be universally bounded above

and below for all t. Since pt
qt

is bounded below by c and above by 1/c, the previous quantity is

bounded if and only if log
(∏t−1

i=1

(
1−pi
1−qi

))
=

∑t−1
i=1 log

(
1−pi
1−qi

)
is bounded for all t. Relabelling t− 1

to t gives the final result.

Proposition 15 shows that unless the acceptance probabilities are very closely related, it is not
guaranteed that an adaptive rejection sampler will satisfy ǫ-DP for any finite ǫ. In the following
example, we explore a few special cases to highlight when we can or cannot expect the condition
in Proposition 15 to hold.

Example 16 • If there exists i such that pi = 1 whereas qi < 1 or vice versa, then ǫT = ∞.

• Suppose that (1− qi) = α(1− pi) where α ∈ (0, 1). Then the above series is
∑t

i=1 log
1−pi
1−qi

=
∑t

i=1 logα→ ∞.

• To see that it is not sufficient for limi→∞
1−pi
1−qi

= 1, consider the following: let (1− pi) be any

decreasing sequence with values in (0, 1). Set (1−qi) = exp(−1/i)(1−pi). Then log
(
1−pi
1−qi

)
=

1/i and so 1−pi
1−qi

→ 1. However, the sequence of partial sums
∑t

i=1 log
(
1−pi
1−qi

)
=

∑t
i=1 1/i

diverges, and so the max-divergence is infinite.

Remark 17 In Proposition 15, convergence of the series
∑∞

i=1 log
1−pi
1−qi

is sufficient but not neces-
sary. It is possible that the sequence of partial sums is bounded but does not converge.

Note that for most adaptive rejection samplers, it is difficult to derive expressions for pi, so
it may not even be possible to verify whether the condition in Proposition 15 holds or not. The
takeaway is that in general, an adaptive rejection sampler is not guaranteed to preserve privacy
unless it is carefully designed to do so.
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4. Rejection samplers with data-independent runtime

The previous section showed that a rejection sampler (either simple or adaptive) can result in an
arbitrary amount of privacy loss through the runtime. The most direct way to avoid this is to
ensure that the runtime does not depend on the dataset. Haeberlen et al. (2011) propose making
the runtime a constant, though this is not strictly necessary. Rather, when the runtime is a random
variable (as with rejection sampling), we simply need that its distribution does not depend on the
dataset.

In this section we propose three modifications of the rejection sampling algorithm to ensure
data-independent runtime. The first method, which requires the weakest assumptions, fixes the
number of iterations independent of the dataset, based on a worst-case acceptance probability. This
method has a constant runtime, but there is a small probability that a sample is not accepted, and
we quantify the additional privacy cost. The second method is based on the memoryless property of
the geometric distribution, and introduces an additive random wait-time. This approach however
requires the integrating constant of the target distribution corresponding to the current database,
as well as the acceptance probability of a worst-case database, which is often not realistic. The
third method avoids this by using instead upper and lower bounds for the target densities of all
databases, chosen so that the ratio of the area for the upper and lower bounds is constant across
databases. Finally, we propose an adaptive rejection sampler with data-independent runtime, which
is a modification of the (nearly) minimax optimal sampler of Achddou et al. (2019). Our adaptive
sampler is entirely automated, and only requires that the family of target densities is log-Hölder
with fixed and known parameters

We show in Section 5 that many commonly studied privacy mechanisms satisfy the assumptions
of our methods allowing for our privacy-preserving rejection samplers to be applied.

4.1 Constant runtime, truncated rejection sampling

One clear way to remove the privacy leak due to the runtime is to choose a number of iterations
independent of the database, based on a worst-case estimate of the acceptance probability across
all databases. We then run the sampler for that many iterations, and publish one of the accepted
samples. In this case, the runtime is fixed, and does not leak any privacy. However, it is not
guaranteed that an accepted sample is found within the pre-determined number of iterations, and
the probability of this event does depend on the database. This probability can be reduced by
increasing the number of iterations, but this also increases the runtime of the algorithm.

Of the methods we propose, the algorithm in Proposition 18 requires the weakest assumptions
in that the only knowledge we require is a lower bound on the acceptance probability across the
databases. However, there is a small probability that no samples are accepted in the prescribed
number of iterations, which negatively impacts both the privacy and the utility of the mechanism.
Proposition 18 characterizes the increased cost to privacy of the truncated sampler in terms of
(ǫ, δ)-DP.

Proposition 18 Let {MD | D ∈ D} be a family of privacy mechanisms satisfying (ǫ0, δ0)-DP
and (UD, cD) be such that π̃D ≤ cDUD where π̃D is an unnormalized density for MD. Assume
that α0 ≤ 1/cD

∫
π̃D(x) dx for all D, that is, α0 is a lower bound on the acceptance probability

in the rejection sampler across all databases. Given δ > 0, run the sampler for N = log(1/δ)
log(1/(1−α0))

iterations. If there is an accepted proposal, publish the first one; if not, publish an arbitrary output
(such as one more draw from the proposal). Releasing the output as well as the runtime of this
algorithm satisfies (ǫ0, δ0 + δ)-DP.
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Proof First note that the runtime is constant for all D, so there is no privacy leak there. Next,
note that conditional on the event that an accepted proposal is found, there is no additional privacy
leak. So, we need to determine the probability that an accepted proposal is not found:

P (none accepted) = (1− P (accept))N ≤ (1− α0)
N = (1− α0)

log(δ)
log(1−α0) = δ.

By itself, simply publishing whether a sample is accepted or not satisfies (0, δ)-DP. By post-
processing (Proposition 5), we can upper bound the privacy cost by instead considering if we
observe both an output from MD as well as whether the algorithm has accepted or rejected a
sample. This is a composition of an (ǫ0, δ0)-DP mechanism with a (0, δ)-DP mechanism. By com-
position (Dwork et al., 2014, Theorem 3.16) the result satisfies (ǫ0, δ0 + δ)-DP.

A benefit of the algorithm in Proposition 18 is that it can be vectorized and is easily parallelized.
Another benefit is that N grows only in the log of 1/δ. By increasing the number of iterations N ,
the increased δ can be reduced exponentially. The two major downsides are that the algorithm must
be run much longer than a simple rejection sampler, and that it is not guaranteed that an accepted
sample is found, which reduces both the privacy and utility. If no samples are accepted, then the
output does not follow the correct distribution, introducing error in the sampling approximation.
We see that we are able to remove the runtime side-channel, but at the cost of a small “delta” and
loss of utility. In the next two subsections, we show that with slightly stronger assumptions, we
are able to obtain both perfect sampling as well as data-independent runtime.

4.2 Additive geometric wait-time

In this section, we use the memoryless property of the geometric distribution to introduce an
additive wait time based on a lower bound on the acceptance probability. The result is that the
runtime of the algorithm is geometric with acceptance rate equal to the worst-case dataset (or a
lower bound on the acceptance probability).

The benefit of this method over the truncated rejection sampler is that a sample from the correct
distribution is guaranteed, and the runtime is still independent of the database. The downside is
that the acceptance probability (or equivalently the integrating constant) for the present database is
required as well as a bound on the worst-case acceptance probability. Typically, rejection samplers
do not assume that the integrating constant is known, however for low dimensional problems (e.g.,
≤ 3), it may be possible to numerically evaluate the integral.

Lemma 19 illustrates the memoryless property of the geometric distribution. Given a simple
rejection sampler with acceptance probability q, we can add a random wait time to result in a total
runtime that is distributed as Geom(p) for p ≤ q. So, across databases, we can make all of the
runtimes equal in distribution, calibrated to a worst-case acceptance probability.

Lemma 19 Let 0 < p ≤ q < 1. Given X2 ∼ Geom(q), set X1 = X2 with probability p/q and
otherwise X1 = X2 +∆, where ∆ ∼ Geom(p). Then X1 ∼ Geom(p).
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Proof Let t ∈ {1, 2, . . . ,∞}. Then

P (X1 = t) =
p

q
P (X2 = t) + (1− p/q)P (X2 +∆ = t)

=
p

q
(1− q)t−1q +

q − p

q

t−1∑

x=1

P (X2 = x)P (∆ = t− x)

= p(1− q)t−1 +
q − p

q

t−1∑

x=1

(1− q)x−1q(1− p)t−x−1p

= p(1− p)t−1,

which is the pmf of Geom(p), as desired. To achieve the last line in the equations, we used the
partial sum formula for a geometric series, and simplified the result.

Theorem 20 Let D ∈ D be a database and {πD | D} be the normalized target densities. Assume
that for each πD, we have normalized densities UD(x) as well as constants cD such that for all x,
πD(x) ≤ cDUD(x). Suppose we know a constant c satisfying c ≥ supD cD. Consider the following
scheme:

1. Run a rejection sampler, proposing from UD(x) and targeting πD(x) until acceptance

2. Call the accepted sample X. Also draw Y ∼ Unif(0, 1).

3. If Y < cD/c, publish X, else wait for Geom(1/c) cycles before publishing X.

Then X ∼ πD, and the wait time follows Geom(1/c), which does not depend on D.

As compared to the truncated rejection sampler of Section 4.1, Theorem 20 offers a perfect
sampler with data independent runtime. This is ideal as there is no loss to either privacy or utility
through either approximate samples or a runtime side-channel. However, the downside of this
method is that the acceptance probability for the current database must be known. Assuming that
the proposal is normalized, this is equivalent to knowing the integrating constant for the target .
While this may not be too cumbersome for low-dimensional settings, it becomes computationally
intractable for high-dimensional distributions. In the next section, we give an alternative set of
assumptions to remove the requirement of the integrating constant.

Remark 21 A similar alternative to Theorem 20 is as follows: during each step of the rejection
sampler, if a sample is accepted, then with probability cD/c report the sample, and with probability
1− cD/c do not report the sample. This results in the same runtime as Theorem 20.

We remark that this alternative algorithm has a similar flavor to the randomized response mech-
anism, one of the oldest privacy mechanisms (Warner, 1965). While beyond the scope of this paper,
it may be worth investigating whether there is any deeper connection between this privacy-aware re-
jection sampler and randomized response.
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Figure 3: Example implementation of Algorithm 1. See Example 25 for details. The sample x2 is
accepted, but not published until x5.

4.3 Implicit wait-time via squeeze function

In this section, we propose another method of producing an exact rejection sampler with data-
independent runtime. Our method, described in Algorithm 1 and Theorem 22, avoids the need for
the normalizing constant as in Theorem 20 by instead using a carefully tailored squeeze function. In
the rejection sampling literature, a squeeze function is a lower bound on the target density which is
assumed to be easy to evaluate, and which is used to speed up the computational time by avoiding
evaluations of the target density when a proposed sample lies under the squeeze function (i.e. is
rejected by the squeeze function, see Example 25). However, in this section, we will use the squeeze
function not to speed up the computational time, but to slow it down; this will enable us to make
the runtime equally distributed as in a worst-case setting.

For this method, we assume that for each unnormalized target density π̃D, we have normalized
densities UD(x) and LD(x) as well as constants cL,D and cU,D such that for all x

cL,DLD(x) ≤ π̃D(x) ≤ cU,DUD(x),

and such that the ratio cL,D/cU,D does not depend on D. Note that the latter condition is easy to
enforce: if cL,D and cU,D are two valid constants, then so are c∗L,D < cL,D and c∗U,D > cU,D. We then
choose the value Xs that we publish based on the rejection sampler that targets π̃D from UD, but
do not publish the sample until a value is accepted from LD (i.e. the proposal lies under the squeeze
function cL,DLD: see Example 25). Because of this modification, the runtime is determined only
by the ratio cL/cU , which is assumed to be constant across databases. Thus, there is no additional
privacy cost to using this sampler, since we get an exact sample with runtime independent of D.
This method is similar to that of Section 4.2 in that there is an additive wait-time, but Algorithm
1 is able to do this implicitly, without knowing the acceptance probability for the current database.
In Proposition 23, we show that the assumptions of Theorem 22 are strictly weaker than those of
Proposition 20.

Theorem 22 Let D ∈ D be a database and {π̃D | D} be the (unnormalized) target densities.
Assume that for each π̃D, we have normalized densities UD(x) and LD(x) as well as constants cL,D
and cU,D such that the ratio cL,D/cU,D does not depend on D and such that for all x cL,DLD(x) ≤
π̃D(x) ≤ cU,DUD(x). Then the output of Algorithm 1 with π̃ = π̃D, U = UD, L = LD, cU = cU,D,
cL = cL,D has distribution πD and runtime Geom(cL,D/cU,D), which does not depend on D.
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Algorithm 1 Privacy-aware rejection sampling via squeeze functions
INPUT: π̃, U , L, cU , and cL such that cLL(x) ≤ π̃(x) ≤ cUU(x) for all x

1: Set anyAccepted=FALSE

2: Sample X ∼ U(x)
3: Sample Y ∼ Unif(0, 1)

4: if Y ≤ π̃(X)
cUU(X)

and anyAccepted==FALSE then

5: Set Xs = X
6: Set anyAccepted=TRUE

7: end if

8: if Y ≤ cLL(X)
cUU(X)

then

9: Publish Xs

10: else

11: Go to 2.
12: end if

OUTPUT: Xs

Proof The published sample is determined by the condition Y ≤ π̃D(X)
cU,DUD(X) , where X ∼ UD(x)

and Y ∼ Unif(0, 1). This is a simple rejection sampler, and so conditional on acceptance, X ∼ πD.

However, a sample is not published until Y ≤
cL,DLD(X)
cU,DUD(X) . This is a rejection sampler targeting

LD(X), using the proposal UD(X) and threshold cU,D/cL,D. As such, the number of iterations is
Geom(cL,D/cU,D), which by assumption does not depend on D.

While the assumption of the squeeze functions in Theorem 22 may seem unintuitive, it is in
fact strictly weaker than knowing the integrating constant for π̃D, as was required in Section 4.2,
as shown in Proposition 23. In Section 4.4 and 5 we show that there are several natural instances
of the exponential mechanism where the assumptions of Theorem 22 are satisfied.

Proposition 23 Let D ∈ D be a database and {πD | D} be the normalized target densities.
Assume that for each πD, we have normalized densities UD(x) and constants cU,D such that
πD(x) ≤ cU,DUD(x). Choose a value c ≥ supD cU,D. Then the squeeze function LD = πD, with
constant cL,D = cU,D/c satisfies the assumptions of Theorem 22, and the output of Algorithm 1 has
distribution πD and runtime Geom(1/c).

Proof Since c ≥ cU,D, we have that cL,D = cU,D/c ≤ 1. So, cU,DLD(x) ≤ πD(x) for all x. Then,
the runtime of Algorithm 1 is geometric with parameter (cL,D/cU,D) = 1/c, and the output of
Algorithm 1 has the appropriate distribution as argued in the proof of Theorem 22.

In fact, the application of Algorithm 1 described in Proposition 23 is very similar to the variation
of Theorem 20 described in Remark 21.

Remark 24 Proposition 23 showed that the assumptions for the squeeze functions in Theorem 22
are actually strictly weaker than the assumptions needed in Section 4.2. Furthermore, it can be
seen that the assumptions of Theorem 22 (assuming that we can evaluate the constant cL,D/cU,D)
are strictly stronger than knowing the worst-case acceptance probability, which is needed for the
truncated sampler of Section 4.1 – this is because the ratio cL,D/cU,D is itself a lower bound on the
worst-case acceptance probability.

Example 25 Figure 3 is an illustration of how Algorithm 1 works. We see an example of a
target π̃, which satisfies cLL(x) ≤ π̃(x) ≤ cUU(x) for constants cL, cU , a proposal function U and
squeeze function L. The points (xi, yi) are sequentially drawn uniformly within the area under cUU ;
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equivalently, xi ∼ U(x) and yi = ui · cUU(x), where ui
iid
∼ Unif(0, 1). Algorithm 1 processes these

samples as follows: For the first pair, y1 > π̃(x1) so the sample is rejected. The second sample
satisfies y2 ≤ π̃(x2) so it is accepted (set Xs = x2), but because y2 > cLL(x2) it is not published yet.
The third sample is rejected since y3 > π̃(x3). The fourth sample satisfies y4 ≤ π̃(x4), but since we
already accepted x2, we do not update Xs. Since y4 > cLL(x4) we still do not publish anything yet.
Finally, y5 ≤ cLL(x5) so we publish Xs = x2.

As noted in Theorem 22, the procedure results in Xs ∼ π, but the runtime is distributed as
Geom(cL/cU ), which does not directly depend on π̃.

4.4 Adaptive rejection sampler for log-Hölder densities

The previous three subsections proposed modifications to simple rejection samplers in order to
remove the runtime side-channel. In this section, we use the squeeze method of Section 4.3 to
develop an adaptive rejection sampler with data-independent runtime for log-Hölder densities. Our
method, outlined in Algorithm 2, is entirely black box, requiring only Hölder parameters (s,H) that
hold for every database, and is a modification of the (nearly) minimax optimal sampler of Achddou
et al. (2019). Let πD(x) ∝ exp(gD(x)) be an unnormalized target density on a bounded convex set
C, where gD is (s,H)-Hölder for all datasets D: |gD(x)− gD(y)| ≤ H‖x− y‖s for all D and for all
x, y ∈ C. This setup differs from Achddou et al. (2019), who assume that the target itself is Hölder,
rather than the log-target. This difference is important in order to derive upper and lower bounds
that satisfy a property similar to Theorem 22. We point out in Remark 29 that the log-Hölder
assumption, with the same s and H across all datasets, is natural for many privacy mechanisms,
and many instances of the exponential mechanism in the literature satisfy this assumption.

At a high-level, given evaluations of gD(x) at a finite set of locations, the log-Hölder assumption
allows us to construct piecewise-constant upper and lower bounds on gD(x) and therefore the
target density. Importantly, these bounds can be constructed so that the ratio of their associated
normalization constants is independent of the database D. Then, in the fashion of Algorithm 1,
by proposing from the upper bound, and stopping only on accepting from the lower bound, we
can have a database-independent runtime. Following each proposal, we add a new location to our
set of evaluations of gD(x), tightening the lower and upper bounds, and ensuring the acceptance
probability increases each iteration. We describe these steps in detail in Algorithm 2.

Theorem 26 Let D be a space of databases and {π̃D = exp(gD) | D} be the unnormalized target
densities, which have support on a bounded convex set C. Suppose that for all D, gD is (s,H)-
Hölder with norm ‖·‖ on C. Then Algorithm 2 results in N i.i.d. samples from π̃ and has runtime
between published samples which does not depend on D. If the mapping PT and the update procedure
to generate Z are chosen in a way that supx∈C‖x− PT (x)‖ → 0, then the probability of publishing
an accepted sample in a given iteration converges to 1.

Proof The quantity r̂ is an upper bound on the maximum difference between gD(x) and ĝ(x), by
the Hölder assumption. So, at any point in the algorithm, since gD is Hölder, and by the definition
of r̂, we have that

exp(ĝ(x)− r̂) ≤ exp(gD(x)) ≤ exp(ĝ(x) + r̂). (6)

Using the notation of Theorem 22, we have that cL,D = exp(−r̂), LD(x) = k exp(ĝ(x)), cU,D =
exp(r̂) and UD(x) = k exp(ĝ(x)), where k = (

∫
C exp(ĝ(x)) dx)−1. Since cL,D/cU,D = exp(−2r̂) does

not depend on D, by Theorem 22 the published samples are drawn independently from πD and
the runtime does not depend on D.
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Algorithm 2 Privacy-aware adaptive rejection
INPUT: g an (s,H)-Hölder function on a bounded convex set C ⊂ R

d for some norm ‖·‖, initial evaluation points
{(x1, g(x1)), . . . , (xn, g(xn))}, and a “nearest neighbor” map PT (·) : C → T for any finite set T ⊂ C, the number N of
i.i.d. samples desired from π(x) ∝ exp(g(x))I(x ∈ C)

1: Set anyAccepted=FALSE, numSamples=0, and publishedSamples= ∅
2: Set S = {(x1, g(x1)), . . . , (xn, g(xn))}, and T = {x | (x, y) ∈ S for some y}
3: while numSamples< N do

4: Define ĝ(x) = g(PT (x)) for all x ∈ C (note that this only requires evaluations of g from S)
5: Set r̂ ≥ supx∈C H‖x− PT (x)‖s

6: Sample X ∼ exp(ĝ(x))/(
∫
C
exp(ĝ(x)) dx)

7: Sample Y ∼ Unif(0, 1)
8: if Y ≤ exp(g(X))/ exp(ĝ(X) + r̂) and anyAccepted=FALSE then

9: Set Xs = X
10: Set anyAccepted=TRUE

11: end if

12: if Y ≤ exp(−2r̂) then

13: Publish Xs and append Xs to publishedSamples

14: Increment numSamples by 1
15: Set anyAccepted=FALSE

16: end if

17: Choose Z ∈ C \ T either randomly or deterministically based on only T , H and s
18: Append (Z, g(Z)) to S
19: Append Z to T
20: end while

OUTPUT: publishedSamples, which can be published in a stream

The probability of publishing a sample is exp(−2r̂). So, as long as ‖x − PT (x)‖ decreases as
more samples Z are appended to T , we have r̂ → 0 and thus the probability of publishing an
accepted sample converges to 1.

Because the update step and the rejection step are separated, we can think about the best way
to update the proposal function. Our goal should be to reduce r̂ as quickly as possible. A simple,
but naive solution would be to sample Z uniformly on C. Another approach would be to choose
a sequence of (xi)

∞
i=1 such that for any N , the subset (x1)

N
i=1 consists of approximately equally

spaced points in C. This could be done intelligently using sequential space-filling experimental
designs (e.g., Crombecq and Dhaene, 2010; Pronzato and Müller, 2012). For example, a greedy
maximin solution would be to choose z = arg supz∈C H‖z − PT (z)‖

s (Pronzato and Müller, 2012),
which maximizes the publishing probability for the next iteration. Computing the maximin solution
may be possible in low-dimensions, but becomes expensive in high dimensional spaces.

As in Achddou et al. (2019), we can make the adaptive sampler much easier to implement by
considering the following special case of Algorithm 2: 1) use the ℓ∞ norm in the Hölder definition,
2) set C = [0, 1]d, 3) approximate the nearest neighbor calculation PT (y) on a grid, as described in
Achddou et al. (2019, Definition 4). These modifications make the construction, evaluation, and
sampling of the proposal exp(ĝ) computationally efficient, even in high dimensions. The accept-
reject steps (lines 6-16) and the update steps (lines 17-19) can be done in batches to avoid updating
the function ĝ too often, when it will not significantly improve the acceptance probability.

Remark 27 (Relative runtime) We consider how the runtime of Algorithm 2 compares to a
similar sampler without the privacy constraint. Recall that the acceptance probability of our sampler
is exp(−2r̂). If we use the same proposal distribution, but base the acceptance criteria solely on
the target, then the acceptance probability depends on the target. For a typical target density, we
expect that the acceptance probability is approximately exp(−r̂). If this is the case, then as r̂ → 0,
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Figure 4: Implementation of Algorithm 2, as explained in Example 28. Plots progress in the normal
reading order.

the ratio of the rejection probabilities is

lim
r̂→0

1− exp(−2r̂)

1− exp(−r̂)
= lim

r̂→0

2r̂

r̂
= 2,

where we use a series expansion of exp(−x) about zero to evaluate the limit. This suggests that the
cost of privacy is that the rejection probability is about double that of the non-private sampler.

Another cost of the privacy-preserving adaptive sampler is the decoupling of the rejection and
update steps. Roughly, we will need to evaluate gD twice as often—one for the update and one for
the accept/reject step—as compared to non-private adaptive samplers, such as in Achddou et al.
(2019). This additional cost is somewhat mitigated by the fact that the update points can be chosen
in a more intelligent manner, potentially improving the rate of convergence of the proposal.

Example 28 We illustrate Algorithm 2 applied to the target π̃ = exp(g(x)), where g is the 7-
Lipschitz function g(x) = −3|x − 1/2| + (1/5) sin(20x), so H = 7 and s = 1. The update and
sampling steps of Algorithm 2 are run in batches. First, 5 equally spaces points are used to approx-
imate exp(g(x)) by a piece-wise linear function exp(ĝ(x)). The upper bound is exp(ĝ(x) + r̂) and
the lower bound is exp(ĝ(x)− r̂). The top left plot of Figure 4, illustrates each of these functions.
Next, five points (xi, yi) for i = 1, . . . , 5 are sampled uniformly within the area under exp(ĝ(x)+ r̂),
as seen in the top right plot of Figure 4. The first value y1 is below exp(g(x1)), but not below
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exp(ĝ(x1) − r̂), so we set Xs = x1 and set anyAccepted = TRUE, but do not publish Xs yet. We
reject x2. Then as y3 ≤ exp(ĝ(x3) − r̂), we publish Xs = x1, and set anyAccepted = FALSE. We
reject both x4 and x5.

After this, we update the approximation ĝ using 15 equally spaced points. This grid is a superset
of the 5-point grid, so we can reuse the previous evaluations. The new approximation and bounds
are shown in the bottom left plot of Figure 4. Then (xi, yi) for i = 6, . . . , 10 are sequentially sampled
uniformly from the area under exp(ĝ(x) + r̂), illustrated in the bottom right plot of Figure 4. As
exp(ĝ(x6)− r̂) < y6 ≤ exp(g(x6)), we set Xs = x6 and anyAccepted = TRUE, but do not publish Xs.
Since y7 ≤ exp(ĝ(x7) − r̂), we publish Xs = x6 at this time and set anyAccepted = FALSE. Then
since y8 ≤ exp(ĝ(x8)− r̂), we immediately publish x8. We reject x9. Last, as y10 ≤ exp(ĝ(x10)− r̂),
we also publish x10.

Note that by using equally spaced points, r̂ converges to zero rapidly, illustrating the benefit of
using deterministically chosen points in the construction of ĝ.

Remark 29 There are several prior DP works on the exponential mechanism, where the utility
function is assumed to be Lipschitz (a special case of Hölder), and where Algorithm 2 can be applied.
Minami et al. (2016) assume Lipschitz and concave utility functions. Bassily et al. (2014a) and
Bassily et al. (2014b) derive optimal DP mechanisms under the assumption of Lipschitz and convex
empirical risk objective functions, as well as a bounded domain, which result in implementations
of the exponential mechanism. In part of their work, Ganesh and Talwar (2020) assume Lipschitz
and L-smooth utility functions in the exponential mechanism.

5. Application to exponential mechanism sampling

In this section, we explore some instances of the exponential mechanism that satisfy the assumptions
of the rejection samplers proposed in Section 4, allowing for a privacy-preserving implementation.

5.1 Strongly concave and L-smooth log-density

We first consider instances of the exponential mechanism where the utility function gD is both
strongly concave and L-smooth. These are the same properties that Ganesh and Talwar (2020)
assume. Both Awan et al. (2019) and Minami et al. (2016) assume strongly concave utility functions
in the exponential mechanism. Other private empirical risk minimization works, while not working
directly with the exponential mechanism, also commonly assume L-smooth and strong concavity
(Kifer et al., 2012; Bassily et al., 2014a,b).

Under the strongly concave and L-smooth assumptions, we are able to derive upper and lower
bounds for the target, which satisfy the requirements of Theorem 22.

Lemma 30 Let π̃D(x) ∝ exp(gD(x)) be the (unnormalized) target density, where gD : R
d →

R is twice-differentiable, α-strongly concave, and L-smooth. Call x∗D := argmaxx gD(x). Using
φd(x;µ,Σ) to denote the pdf of Nd(µ,Σ), we have for all x,

exp(gD(x
∗
D)) (2π/L)

d/2 φd(x;x
∗
D, L

−1I) ≤ exp(gD(x)) ≤ exp(gD(x
∗
D)) (2π/α)

d/2 φd(x;x
∗
D, α

−1I).

Furthermore, calling cL,D = exp(gD(x
∗
D)) (2π/L)

d/2 and cU,D = exp(gD(x
∗
D)) (2π/α)

d/2, we
have that cL,D/cU,D = (α/L)d/2, which does not depend on D.

Proof By strong concavity, we have that

−gD(x) ≥ −gD(x
∗)−∇gD(x

∗
D)

⊤(x− x∗D) +
α

2
‖x∗D − x‖22 = gD(x

∗
D) +

α

2
‖x∗D − x‖22,
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since ∇gD(x
∗
D) = 0. This implies that

exp(gD(x)) ≤ exp(gD(x
∗
D)) exp

(
−
‖x∗D − x‖22
2(1/α)

)
.

Including the integrating constant for a multivariate normal distribution gives the upper bound.
Next, since gD is L-smooth, we have that

−gD(x) = −gD(x
∗
D)−∇gD(x

∗
D)

⊤(x− x∗D) +
1

2
(x∗D − x)⊤∇2gD(x̃)(x

∗
D − x)

≤ −gD(x
∗
D) +

L

2
‖x∗D − x‖22,

where x̃ is between x∗D and x, we used the fact that ∇gD(x
∗
D) = 0, and that the eigenvalues of

∇2gD are upper bounded by L. This implies that

exp(gD(x)) ≥ exp(gD(x
∗
D))

(
2π

L

)d/2

φd
(
x;x∗D, L

−1I
)
,

giving the lower bound.

Given the bounds in Lemma 30, we can now implement the squeeze-function rejection sampler
of Section 4.3, since cL,D/cU,D does not depend on D. As discussed in Proposition 23, generating
these bounds is strictly easier than computing the integrating constant for the target, which is not
needed in Lemma 30.

We could also implement the truncated sampler of Section 4.1, by using the bound (α/L)d/2

on the worst-case acceptance probability. However, since Theorem 22 is applicable, the truncated
sampler is strictly worse as it incurs a price both in privacy as well as utility, whereas the squeeze
sampler produces perfect samples.

There are many natural problem settings that fit the assumptions of Lemma 30, particularly in
empirical risk minimization.

Example 31 (Strongly convex empirical risk minimization) Suppose that the database can
be written as a vector D = (d1, . . . , dn), where di is the contribution of individual i. Take as
our utility function gD(x) = − (

∑n
i=1 ℓ(x; di) + r(x)), where ℓ(x; d) is a twice-differentiable convex

function which is L-smooth and satisfies supd,d′ supx |ℓ(x; d) − ℓ(x; d′)| ≤ ∆, and r(x) is an α-
strongly convex regularizer, which does not depend on the database D. For instance, we could take
r(x) = α

2 ‖x‖
2
2. Then the exponential mechanism samples from πD(x) ∝ exp( ǫ

2∆gD(x)) and satisfies
ǫ-DP.

Note that gD is nL-smooth and α-strongly concave for all D, so it fits the framework of Lemma
30. Such a setup is common in private empirical risk minimization (Kifer et al., 2012; Bassily
et al., 2014a,b), and in particular for private regression problems (Kifer et al., 2012; Reimherr and
Awan, 2019; Awan and Slavković, 2020).

5.2 K-norm gradient mechanism

An alternative to simply applying the exponential mechanism to a strongly concave utility func-
tion is the K-norm gradient mechanism (KNG), proposed in Reimherr and Awan (2019), also
known as the gradient mechanism (Asi and Duchi, 2020a). KNG has been applied to appli-
cations such as geometric median estimation, and linear and quantile regression (Reimherr and
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Awan, 2019; Asi and Duchi, 2020a). Given an objective function gD(x), KNG samples from
πD(x) ∝ exp(− ǫ

2∆‖∇gD(x)‖K), where ∆ ≥ supd(D,D′)≤1 supx‖∇gD(x) − ∇gD′(x)‖K , and where
‖·‖K is a chosen norm.

While the exponential mechanism with a strongly concave utility is naturally approximated by
a Gaussian distribution (Awan et al., 2019), KNG is closely related to the K-norm distributions
(Reimherr and Awan, 2019). The K-norm mechanism was introduced in Hardt and Talwar (2010),
and were also studied in Awan and Slavković (2020).

Definition 32 (K-norm distribution: Hardt and Talwar, 2010) Let ‖·‖K be a norm on R
d,

with associated unit norm ball: K = {x ∈ R
D | ‖x‖K ≤ 1}. The K-norm distribution with location

m and scale s has density

f(x;m, s) = c−1 exp
(
−s−1‖x−m‖K

)
,

where c = (d!)sdVol(K).

Under similar assumptions as those in Reimherr and Awan (2019, Theorem 3.1), Lemma 33
gives upper and lower bounds which satisfy the assumptions required for Theorem 22.

Lemma 33 Let π̃D(x) = exp(−‖∇gD(x)‖2) be the unnormalized target density, where gD : Rd →
R is twice-differentiable, α-strongly convex, and L-smooth. Call x∗D := argminx gD(x). Write
ψd(x;m, s) to denote the pdf of a d-dimensional K-norm distribution with location m, scale s, and

ℓ2 norm. Denote Vold(ℓ2) =
2dΓd(1+1/2)
Γ(1+d/2) the volume of the unit ℓ2 ball in R

d. Then for all x,

(d!)L−dVold(ℓ2)ψd(x;x
∗
D, 1/L) ≤ exp(−‖∇gD(x)‖2) ≤ (d!)α−dVold(ℓ2)ψd(x;x

∗
D, 1/α).

Furthermore, calling cL,D = (d!)L−dVold(ℓ2) and cU,D = (d!)α−dVold(ℓ2), we have that the ratio
cL,D/cU,D = (α/L)d does not depend on D.

Proof By strong convexity, we have that

α‖x− x∗D‖
2
2 ≤ 〈∇gD(x)−∇gD(x

∗
D), x− x∗D〉 = 〈∇gD(x), x− x∗D〉 ≤ ‖∇gD(x)‖2 · ‖x− x∗D‖2,

where we used the fact that ∇gD(x
∗
D) = 0 and Cauchy-Schwartz inequality. This implies that

‖∇gD(x)‖2 ≥ α‖x− x∗D‖2, which gives the upper bound.
Next, as gD is L-smooth, we have that

‖∇gD(x)‖2 = ‖∇gD(x)−∇gD(x
∗
D)‖2 ≤ L‖x− x∗D‖2,

which gives the lower bound.

Lemma 33 provides bounds that can be used to implement the sampler of Section 4.3. The
acceptance probability when targeting the lower bound is (α/L)d, which is independent of D, as
required. While we could implement the sampler of Section 4.1, as (α/L)d is a bound on the worst-
case acceptance probability, this method is strictly worse than the squeeze sampler, as discussed
in Section 5.1. The empirical risk problems of Example 31 are also applicable to KNG, and offer
several natural instances that satisfy the assumptions of Lemma 33.

Finally, note that for the KNG mechanism, if the underlying utility is L-smooth (not neces-
sarily strongly concave), then the log-density is L-Lipschitz. As such, we can apply the adaptive
rejection sampler of Section 4.4. If multiple i.i.d. samples are required, this can provide a very
computationally efficient sampling method, while keeping the runtime data-independent.
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6. Discussion

In this paper, we first characterized the privacy cost due to the runtime of both simple and adaptive
rejection samplers in terms of ǫ-DP, (ǫ, δ)-DP, and f -DP. We found that the runtime of standard
rejection samplers can result in an arbitrary increase in the privacy cost, motivating the need for
privacy-aware samplers. We then proposed three novel modifications to simple rejection samplers
with varying assumptions, which all resulted in data-independent runtime. We also developed a
privacy-aware adaptive rejection sampler for log-Hölder densities.

There are three factors that influence the practicality of our algorithms, (1) the scalability of re-
jection sampling: Typically, the acceptance probability of a rejection samplers decays exponentially
with data dimension, making them impractical for very high dimensional problems. However, im-
posing additional structure like log-concavity or log-Hölder on the target density, adaptive rejection
samplers (like our proposed one) can be applicable to higher-dimensional problems. Such struc-
tural assumptions, as well as low- to moderate-dimensional problems are common in differential
privacy applications. (2) the additional cost of our differentially-private modifications of rejection
sampling: Our algorithms typically result in a reduction in the acceptance probability to match the
worst-case dataset. This is unavoidable. However, our adaptive rejection sampler does not require
any knowledge of this worst-case database. As such, the sample complexity of the runtime is the
same as for a regular rejection sampler, but where the acceptance probability is the worst case. (3)
The additional book-keeping overhead in implementing our differentially private rejection samplers:
All of our algorithms are minor modifications of existing simple or adaptive rejection samplers, and
as such, this overhead is minimal.

Of our proposed modifications to the rejection sampler, the squeeze method of Section 4.3 is
the most powerful. We showed in Section 5 that for many instances of the exponential mechanism,
appropriate upper and lower bounds can be generated. Furthermore, our adaptive sampling scheme
is also built on the squeeze sampler. In a way, Algorithm 1 can be viewed as a coupling of the
sampler applied to the present database and a worst-case database. It is an open question whether
similar couplings could be developed with even weaker assumptions.

An alternative to rejection sampling is coupling from the past (CFP) (Propp and Wilson, 1998),
a modified MCMC approach. The benefit of CFP is that it is another perfect sampler, and could
be a useful technique in designing privacy-aware samplers. The techniques used in this paper may
be useful for determining the privacy cost of timing channel attacks on CFP and developing CFP
algorithms with data-independent runtime. A variation on CFP is perfect tempering, which also
results in perfect samplers (Møller and Nicholls, 1999; Daghofer and von der Linden, 2004; Brooks
et al., 2006), and may be an another approach to developing privacy-aware samplers.

While in this paper we developed samplers whose runtime does not depend on the dataset, one
could instead ask for the runtime to be differentially private by itself. Theorem 10 shows that a
naive rejection sampler does have an inherent privacy cost, but one could also imagine altering
the runtime to give a stronger privacy guarantee. A significant challenge with this approach is
that we can only increase, but not reduce, the runtime. Due to this constraint, many existing DP
techniques are not applicable. We leave it for future research to investigate mechanisms to privatize
the runtime.
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