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Abstract—Sentence embedding methods offer a powerful ap-
proach for working with short textual constructs or sequences
of words. By representing sentences as dense numerical vectors,
many natural language processing (NLP) applications have im-
proved their performance. However, relatively little is understood
about the latent structure of sentence embeddings. Specifically,
research has not addressed whether the length and structure of
sentences impact the sentence embedding space and topology.
This paper reports research on a set of comprehensive cluster-
ing and network analyses targeting sentence and sub-sentence
embedding spaces. Results show that one method generates the
most clusterable embeddings. In general, the embeddings of span
sub-sentences have better clustering properties than the original
sentences. The results have implications for future sentence
embedding models and applications.

Index Terms—Sentence Embedding, Embedding Space Analy-
sis, Clustering Analysis, Network Analysis

I. INTRODUCTION

The good properties of word embeddings [1], [2] have

inspired the development of various methods [3]–[8] for

sentence embeddings which represent short text or sentences,

i.e., sequences of words and symbols, as dense numerical

vectors. Many downstream natural language processing (NLP)

applications such as semantic textual similarity (STS) [3],

sentiment analysis [9], service recommendation [10], and

relation extraction [11] have utilized sentence embeddings

for improving their performance. However, relatively little is

understood about the latent structure of sentence embeddings.

There are two main reasons. First, sentences have variable

lengths, composed of innumerable combinations of individual

words with ambiguous boundaries. Second, there are a variety

of sentence embedding methods guided by different principles.

In particular, sentence embedding methods range from simple

word embedding aggregation to sophisticated deep encoder-

decoder neural networks [5]. More recent techniques include

transformer-based BERT-like models [3]. Consequently, the

resultant sentence embedding vectors encode different types

of information for different purposes.

Past effort has been made to explore properties of sentence

embeddings. The work in [12] evaluates the predictive ability

of sentence embeddings through predictive tasks. Another

work in [13] performs a sentence analogy task by evaluating

the degree to which lexical analogies are reflected in sentence

embeddings. A significant issue in the current studies is that

the sentences are mostly simple sentences. It remains to be

answered whether lengths and structures of sentences have

any impacts on the topology of sentence embedding spaces.

In this paper, we explore the latent structure of the em-

bedding spaces of complex sentences and their sub-sentences

with regard to capturing semantic regularities. We leverage

the widely-used dataset for the study of relation extraction

[14]–[16]. The dataset was constructed by distantly aligning

relations in Freebase [17] with sentences from the New York

Times (NYT) corpus of years 2005-2006. Each sentence in the

dataset is labeled by a semantic relation between two entity

mentions in the sentence. The data set is well-suited for our

study because we can use the entity mentions as anchors to

study the embeddings of various sub-sentences. We collect a

set of representative sentence embedding methods and apply

these methods to the original NYT sentences and various sub-

sentences containing the entity mentions. Our goal is to exam-

ine whether the embeddings of (sub-)sentences expressing the

same semantic relation cluster together. If the clustering signal

in the latent structure is strong, unsupervised methods can

recognize relations by simply measuring the distances between

embedding vectors, which will greatly reduce the bottleneck

of collecting labeled training data.

The work we present in this paper shows some meth-

ods generate more clusterable embeddings than others. The

sentence structures also have effects on the clusterability of

resultant embeddings. As an illustration, Figure 1 shows a

2-D visualization of the embedding spaces generated by the

SentenceBERT method on the test set of the NYT dataset. The

embedding space of the span sub-sentences in Figure 1(b) has

better clustering structures than that of the original sentences

in Figure 1(a). For reproducibility, all the data and code of the

study in this paper are put in a public repository1.

The rest of the paper is structured as follows. Section II

discusses related work. Section III describes the technical

background of the sentence embedding methods. Section IV

presents the methods for extracting sub-sentences. Section

V describes the analytic methods and experimental process.

1https://github.com/sent-subsent-embs/clustering-network-analysis

a
rX

iv
:2

1
1
0
.0

0
6
9
7
v
1
  
[c

s.
C

L
] 

 2
 O

c
t 

2
0
2
1





coef [0] =

√

1

N

N
∑

n=0

cn

and

coef [k] =

√

2

N

N
∑

n=0

cn cos
π

N
(n+

1

2
)k

The choice of k typically ranges from 1 to 6, where a choice

of zero is essentially similar to GloVe-Mean. To get a fixed-

length and consistent sentence vector, GloVe-DCT extracts and

concatenates the first K DCT coefficients and discards higher-

order coefficients. The size of sentence embeddings is Kd. In

our study, we use our own home-grown code for GloVe-DCT.

Method 3. GloVe-GEM [4]: For a sentence s =
{w1, w2, ..., wn}, GloVe-GEM takes the word embeddings

{v(wi) ∈ R
d, i = 1..n} as input. It generates the sentence

embedding v(s) by a weighted sum

v(s) =

n
∑

i=1

αiv(wi) s.t. αi = αn + αs + αu

where the weights αi, i = 1..n come from three scores: a

novelty score αn, a significance score αs, and a corpus-wise

uniqueness score αu. To compute the three scores, GloVe-

GEM applies the Gram-Schmidt Process (also known as QR

factorization) to the context matrices of the words in the

sentence. For each word, its context matrix is made up with the

word embeddings in its surrounding context. The method then

builds an orthogonal basis of the context matrix. The scores of

the word are computed based on principled measures using the

bases. Finally, GloVe-GEM removes the sentence-dependent

principle components from the weighted sum. In our study,

we use our own home-grown code for GloVe-GEM too.

Category 2: from-scratch-sentence-embedding:

Method 4. Skipthought [6]: Inspired by the skip-gram model

of word2vec, Skipthought generates sentence embeddings via

the task of predicting neighboring sentences. Skipthought

depends on a training corpus of contiguous text. It thus

uses a large collection of novels, the BookCorpus unlabeled

dataset, for training its model. The model is in the encoder-

decoder framework. An encoder maps words to a sentence

vector and a decoder is used to generate the surrounding

sentences. Several choices of encoder-decoder pairs have been

explored, including ConvNet-RNN, RNN-RNN, and LSTM-

LSTM. In our study, we use the open source implementation

of Skipthought2.

Method 5. Quickthought [7]: Quickthought also uses the

unlabeled BookCorpus for training its model. Instead of re-

constructing the surface form of the input sentence or its

neighbors, Quickthought uses the embedding of the current

sentence to predict the embeddings of neighboring sentences.

In particular, given a sentence, Quickthought’s model chooses

2https://github.com/ryankiros/skip-thoughts

the correct target sentence from a set of candidate sentences.

The model achieves this by replacing the generative objectives

with a discriminative approximation. In our study, we use the

open source implementation of Quickthought3.

Method 6. InferSentV1 and Method 7. InferSentV2 [5]: In-

ferSent uses a three-way classifier to predict the degree of

sentence similarity (similar, not similar, neutral). It builds a

bi-directional LSTM model pre-trained on natural language

inference (NLI) tasks. InferSent comes in two flavors, a V1

model using the pre-trained GloVe vectors and a V2 model

using the pre-trained FastText [26] vectors. Individually, we

refer to them as InferSentV1 and InferSentV2. In our study,

we use the open source implementation of InferSent4.

Method 8. LASER [28]: LASER trains a Bi-directional LSTM

model on a massive scale, multilingual corpus. It uses parallel

sentences accross 93 input languages. LASER is able to focus

on mapping semantically similar sentences to close areas of

the embedding space. It allows the model to focus more on

meaning and less on syntactic features. Each layer of the

LASER model is 512 dimensional. By concatenating both the

forward and backward representations, LASER generates a

final sentence embedding of dimension 1024. In our study,

we use the open source implementation of LASER5.

Category 3: pre-trained-fine-tune:

Method 9. SentenceBERT [3]: BERT [29] like pre-trained

language models have helped many NLP tasks achieve state-

of-the-art results. One issue of BERT is that it does not

directly generate sentence embeddings. SentenceBERT [3]

is a modification of the pre-trained BERT network. It uses

siamese and triplet network structures to derive semantically

meaningful sentence embeddings. Specifically, SentenceBERT

derives a fixed sized sentence embedding by adding a pooling

operation to the output of BERT / RoBERTa. The network

structure depends on the available training data. A variety of

structures and objective functions are tested, including Clas-

sification Objective Function, Regression Objective Function,

and Triplet Objective Function. In our study, we use the open

source implementation of SentenceBERT6. In particular, we

use the base model “bert-base-nli-mean-tokens”7. The model

computes the mean of all output vectors of the BERT.

IV. SENTENCE AND SUB-SENTENCE

Sentence segmentation [30] is a non-trivial NLP task that

aims to divide text into meaningful component sentences.

Automatic sentence segmentation typically divides text based

on syntactic structures such as punctuation. The resultant

sentences often express multiple ideas with variable lengths.

In this study, we examine the strengths and weaknesses of

different methods for encoding all valid (sub-)sentences for

relation extraction. The validity of a (sub-)sentence means the

(sub-)sentence must cover the identified entity mentions.

3https://github.com/lajanugen/S2V
4https://github.com/facebookresearch/InferSent
5https://github.com/facebookresearch/LASER
6https://github.com/UKPLab/sentence-transformers
7https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens



An entity mention is defined as a span of tokens in a

sentence. The following sentence is an example in the NYT

dataset. We refer to the sentence as S1:

S1: “But that spasm of irritation by a

master intimidator was minor compared

with what Bobby Fischer, the erratic

former world chess champion, dished out in

March at a news conference in Reykjavik,

Iceland.”

The sentence is labeled with the ‘contains’ relation between

two geographical locations. The two underlined spans,

Reykjavik and Iceland, are identified as the two entity

mentions representing two locations.

There are simple sentences such as ”Rechard Levine

was born in Manhattan.” It is labeled with the rela-

tion ‘place of birth’ between the two underlined entity men-

tions. There are also compound-complex sentences consisting

of multiple independent and dependent clauses. The NYT

data set contains 372,853 sentences. Out of them, 111,610

sentences are labeled with 24 relations defined in FreeBase

[17]. For the labeled sentences, the longest sentence has 265

words, while the shortest sentence has 4 words. The mean

length is 39 words. Since we will extract valid sub-sentences

to compare to the original sentences, we aimed to make sure

that the original sentences are statistically long enough such

that the extracted valid sub-sentences are significantly different

from the original ones. To this extent, we extracted sub-

sentences consisting of the sequence of tokens between the

two entity mentions (including the two mentions.) We call

such a sub-sentence span. Examining the lengths of spans,

we find the longest span has 99 words, while the shortest

span has 2 words. The mean length of spans is 11 words.

The standard deviation of the sentence lengths is 15 words

while the standard deviation of the span lengths is 9 words.

The dataset allows us to conduct the study on examining the

embedding spaces of sentences and valid sub-sentences with

significantly different lengths.

TABLE I summarizes the extraction methods. Since all valid

sub-sentences must contain the identified entity mentions, the

extractions anchor on the entity mentions. We also apply

extraction of sub-sentences up to length 40, based on the

average NYT sentence length of 39 tokens. Starting with the

entity mentions, the first method, X0:span, extracts the sub-

sentence spanning from the first entity mention to the second

entity mention. The second method, X1:spanBA1, extracts

the sub-sentence extending the span with one token before

and after the entity mentions. Likewise, Xi:spanBAi, for

i = 2...20, extend the span with i tokens before and after the

entity mentions. For instance, from the example sentence S1,

X0:span extracts “Reykjavik, Iceland”, X1:spanBA1

extracts “in Reykjavik, Iceland .”, X2:spanBA2

extracts “conference in Reykjavik, Iceland .”,

and so on. The next group of methods, Yj :surroundingsj,

for j = 1...20, extract the entity mentions and j tokens sur-

rounding the entity mentions. The method Yj :surroundingsj

differs from Xi:spanBAi in that Yj :surroundingsj starts from

entity mentions and extends on both sides of each mention,

while Xi:spanBAi starts from a span and extends on both

sides of the span. The method Yj :surroundingsj may extract

discontinuous chunks from a sentence if the two mentions

are located far way from each other in the sentence, and

will concatenate the discontinuous chunks as a single sub-

sentence. Finally, the methods extract all valid sub-sentences

up to length around 40, though the sub-sentences may have

duplicates extracted from short original sentences.

V. ANALYTIC DESIGN AND EXPERIMENTAL PROCESS

There are 9 embedding methods, and 42 sets of original sen-

tences, spans, spanBA1-20, and surroundings1-20. We conduct

clustering and network analyses on 9× 42 = 378 embedding

spaces generated by the combinations of embedding and sub-

sentence extraction methods.

A. Clustering Analysis

Clustering analysis [31] evaluates the extent to which the

sentences expressing the same relations are located in the same

partitions. The analysis encompasses two main tasks [32]: (1)

clustering tendency assesses whether it is suitable to apply

clustering on the embedding spaces in first place, and (2)

clustering evaluation seeks to assess the goodness or quality

of the clustering given data labels.

Clustering Tendency: The metric we implemented for

clustering tendency is Spatial Histogram (SpatHist) [32]–[34].

Given a dataset D with d dimensions, we create b equi-

width bins along each dimension, and count how many points

lie in each of the bd d-dimensional cell. We can obtain the

empirical joint probability mass function (EPMF) of D based

on the binned data. Next, we generate t random samples, each

comprising n uniformly generated points within the same d-

dimensional space as the input data D. We can compute the

EPMF for each sample too. Finally, we can measure how much

the EPMF of the input data D differs from the EPMF of each

random sample using the Kullback-Leibler (KL) divergence

which is non-negative. The KL divergence is zero when the

input data behaves the same as the random sample. The

SpatHist is the average of t KL divergences between D and

the t random samples. The larger the SpatHist is, the more

clusterable the data should be.

Clustering Evaluation. Given a dataset D with partitions

P = {P1, ..., Pm} each of which has a label, a metric of

clustering evaluation measures the extent to which points from

the same partition appear in the same cluster, and the extent to

which points from different partitions are grouped in different

clusters. The higher the metric value is, the better the quality

of the clustering. For example, homogeneity [35] quantifies

the extent to which a cluster contains entities from only one

partition. Suppose the data D is clustered into k groups C =
{C1, C2, ..., Ck}. Let Nij be the number of members in group

Ci with partition label j. The homogeneity of the clustering

is defined in terms of entropy as: h = 1 − H(C|P )
H(P ) , where

H(C|P ) is the conditional entropy of the clustering C given

the partition P and H(P ) is the entropy of the original data









relation extraction would benefit from the embeddings with

better clustering quality. We conduct a set of comprehensive

clustering and network analyses on the embeddings generated

by 9 main embedding methods. The results show that the

method GloVe-GEM stands out when applied to the original

sentences and spans up to a certain length. Other methods

have different strengths on different types of sub-sentences.

In most cases, the embeddings generated from the original

sentences are of low clustering quality. It signifies the impacts

of sentence structures on the quality of embeddings when used

by downstream applications. The outcomes of our analysis can

be used to aid and direct future sentence embedding models

and applications, for example, combining the strengths of

different embedding methods.
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