2110.00697v1 [cs.CL] 2 Oct 2021

.
.

arxiv

Clustering and Network Analysis for the
Embedding Spaces of Sentences and Sub-Sentences

Yuan An
Metadata Research Center
College of Computing and Informatics
Drexel University, Philadelphia, PA
ya45 @drexel.edu

Abstract—Sentence embedding methods offer a powerful ap-
proach for working with short textual constructs or sequences
of words. By representing sentences as dense numerical vectors,
many natural language processing (NLP) applications have im-
proved their performance. However, relatively little is understood
about the latent structure of sentence embeddings. Specifically,
research has not addressed whether the length and structure of
sentences impact the sentence embedding space and topology.
This paper reports research on a set of comprehensive cluster-
ing and network analyses targeting sentence and sub-sentence
embedding spaces. Results show that one method generates the
most clusterable embeddings. In general, the embeddings of span
sub-sentences have better clustering properties than the original
sentences. The results have implications for future sentence
embedding models and applications.

Index Terms—Sentence Embedding, Embedding Space Analy-
sis, Clustering Analysis, Network Analysis

I. INTRODUCTION

The good properties of word embeddings [1], [2] have
inspired the development of various methods [3]-[8] for
sentence embeddings which represent short text or sentences,
i.e., sequences of words and symbols, as dense numerical
vectors. Many downstream natural language processing (NLP)
applications such as semantic textual similarity (STS) [3],
sentiment analysis [9], service recommendation [10], and
relation extraction [11] have utilized sentence embeddings
for improving their performance. However, relatively little is
understood about the latent structure of sentence embeddings.
There are two main reasons. First, sentences have variable
lengths, composed of innumerable combinations of individual
words with ambiguous boundaries. Second, there are a variety
of sentence embedding methods guided by different principles.
In particular, sentence embedding methods range from simple
word embedding aggregation to sophisticated deep encoder-
decoder neural networks [5]. More recent techniques include
transformer-based BERT-like models [3]. Consequently, the
resultant sentence embedding vectors encode different types
of information for different purposes.

Past effort has been made to explore properties of sentence
embeddings. The work in [12] evaluates the predictive ability
of sentence embeddings through predictive tasks. Another
work in [13] performs a sentence analogy task by evaluating
the degree to which lexical analogies are reflected in sentence
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embeddings. A significant issue in the current studies is that
the sentences are mostly simple sentences. It remains to be
answered whether lengths and structures of sentences have
any impacts on the topology of sentence embedding spaces.

In this paper, we explore the latent structure of the em-
bedding spaces of complex sentences and their sub-sentences
with regard to capturing semantic regularities. We leverage
the widely-used dataset for the study of relation extraction
[14]-[16]. The dataset was constructed by distantly aligning
relations in Freebase [17] with sentences from the New York
Times (NYT) corpus of years 2005-2006. Each sentence in the
dataset is labeled by a semantic relation between two entity
mentions in the sentence. The data set is well-suited for our
study because we can use the entity mentions as anchors to
study the embeddings of various sub-sentences. We collect a
set of representative sentence embedding methods and apply
these methods to the original NYT sentences and various sub-
sentences containing the entity mentions. Our goal is to exam-
ine whether the embeddings of (sub-)sentences expressing the
same semantic relation cluster together. If the clustering signal
in the latent structure is strong, unsupervised methods can
recognize relations by simply measuring the distances between
embedding vectors, which will greatly reduce the bottleneck
of collecting labeled training data.

The work we present in this paper shows some meth-
ods generate more clusterable embeddings than others. The
sentence structures also have effects on the clusterability of
resultant embeddings. As an illustration, Figure 1 shows a
2-D visualization of the embedding spaces generated by the
SentenceBERT method on the test set of the NYT dataset. The
embedding space of the span sub-sentences in Figure 1(b) has
better clustering structures than that of the original sentences
in Figure 1(a). For reproducibility, all the data and code of the
study in this paper are put in a public repository’.

The rest of the paper is structured as follows. Section II
discusses related work. Section III describes the technical
background of the sentence embedding methods. Section IV
presents the methods for extracting sub-sentences. Section
V describes the analytic methods and experimental process.

Uhttps://github.com/sent-subsent-embs/clustering-network-analysis
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(b) Embeddings of the Spanning Sub-Sentences

Fig. 1: A 2-D visualization of the embeddings generated by SentenceBERT on the test set of the NYT dataset. The shapes
represent the embeddings of sentences in (a) and sub-sentences in (b). Different shapes correspond to different relations used
to label the sentences and sub-sentences. A cluster of the same shapes indicates the embeddings of the sentences and sub-
sentences expressing the same relation are located close to each other. The clearer boundaries between the clusters of shapes
in (b) indicate a better clusterability than the embeddings in (a) in terms of relation labels.

Section VI presents the experimental results. Section VII
discusses the study. Finally, Section VIII concludes the paper.

II. RELATED WORK

There is an extensive body of research on exploring prop-
erties of word embeddings [1], [18], [19]. The work in [19]
applied graph theoretic tools on the semantic networks induced
by word embeddings. The study demonstrated that network
analysis on word embeddings could draw interesting structures
about semantic similarity between words. In contrast, explor-
ing the properties of sentence embeddings has been much more
limited. A common approach is to compare the performance
of sentence embeddings in various downstream NLP tasks as
in [12]. The first task of SemEval 2014 [20], [21] applied and
evaluated sentence embeddings in a semantic relatedness task.
The authors in [22] evaluated sentence embeddings using a
semantic classification task. The RepEval 2017 Shared Task
[23], [24] compared seven sentence embedding methods on
shared sentence entailment task. The work in [9] performed
a comprehensive evaluation of sentence embedding methods
using a wide variety of downstream and linguistic feature
probing tasks. Another work [25] evaluated several sentence
embedding methods, including BERT, InferSent, semantic nets
and corpus statistics (SNCS), and Skipthought, by performing
a paraphrasing task. All the work attempted to discover the
relationships between the geometric structures of embedding
spaces and NLP applications.

Our work is closely related to the study of sentence analogy
in [13]. Differing from the work, our work evaluates and
explores the clustering properies of sentence embeddings with
regard to expressing semantic relations between entities. More
importantly, our work explores the latent structures of the
embeddings of complex sentences and their sub-sentences.

III. SENTENCE EMBEDDING METHODS

In this study, we select a set of representative methods
that can be classified into 3 categories: word-embedding-
aggregation approach, from-scratch-sentence-embedding ap-
proach, and pre-trained-fine-tune approach. The classification
is based on the guiding principles and algorithms employed by
the methods. Here, we briefly describes the technical details of
the methods in each category. The public repository contains
all implementation code and pointers to the original sources.
Category 1: word-embedding-aggregation:

Method 1. GloVe-Mean [26]: GloVe-Mean takes the arithmetic
average of the word embeddings in a sentence as the sentence
embedding. As its name indicates, GloVe-Mean uses the pre-
trained word embeddings generated by the GloVe method
[2]. Let s = {wy,ws,...,w,} be a sentence consisting of a
sequence of words, w1, wa, ..., wy. Let v(w;) € RY be the d-
dimensional embedding vector of a word w;. The GloVe-Mean
generates the embedding vector v(s) € R? for the sentence s

as:
Dy V(wi)

n

v(s) =

GloVe-Mean is one of the simplest ways to convert the
embeddings of a sequence of words to a single sentence
embedding. In our study, we use our own home-grown code
for GloVe-Mean.

Method 2. GloVe-DCT [27]: GloVe-Mean treats the words in
a sentence as in a bag, ignoring their ordering. To address
this, GloVe-DCT stacks individual GloVe word vectors v (w1 ),
v(ws),... , v(wy,) into a n X d matrix. It then applies a discrete
cosine transformation (DCT) on the columns. Given a vector
of real numbers cy,...,cny, DCT calculates a sequence of
coefficients as follows:



and

[2 & 1
coeflk] = N chcosﬁ(n—i— §)k
n=0

The choice of k typically ranges from 1 to 6, where a choice
of zero is essentially similar to GloVe-Mean. To get a fixed-
length and consistent sentence vector, GloVe-DCT extracts and
concatenates the first K DCT coefficients and discards higher-
order coefficients. The size of sentence embeddings is Kd. In
our study, we use our own home-grown code for GloVe-DCT.
Method 3. GloVe-GEM [4]: For a sentence s =
{wy,ws, ..., w,}, GloVe-GEM takes the word embeddings
{v(w;) € R% i = 1..n} as input. It generates the sentence
embedding v(s) by a weighted sum

n
v(s) = Zaiv(wi) st. o =a, +as+ay
i=1

where the weights «;,7 = 1..n come from three scores: a
novelty score «,,, a significance score a,, and a corpus-wise
uniqueness score . To compute the three scores, GloVe-
GEM applies the Gram-Schmidt Process (also known as QR
factorization) to the context matrices of the words in the
sentence. For each word, its context matrix is made up with the
word embeddings in its surrounding context. The method then
builds an orthogonal basis of the context matrix. The scores of
the word are computed based on principled measures using the
bases. Finally, GloVe-GEM removes the sentence-dependent
principle components from the weighted sum. In our study,
we use our own home-grown code for GloVe-GEM too.
Category 2: from-scratch-sentence-embedding:

Method 4. Skipthought [6]: Inspired by the skip-gram model
of word2vec, Skipthought generates sentence embeddings via
the task of predicting neighboring sentences. Skipthought
depends on a training corpus of contiguous text. It thus
uses a large collection of novels, the BookCorpus unlabeled
dataset, for training its model. The model is in the encoder-
decoder framework. An encoder maps words to a sentence
vector and a decoder is used to generate the surrounding
sentences. Several choices of encoder-decoder pairs have been
explored, including ConvNet-RNN, RNN-RNN, and LSTM-
LSTM. In our study, we use the open source implementation
of Skipthought?.

Method 5. Quickthought [7]: Quickthought also uses the
unlabeled BookCorpus for training its model. Instead of re-
constructing the surface form of the input sentence or its
neighbors, Quickthought uses the embedding of the current
sentence to predict the embeddings of neighboring sentences.
In particular, given a sentence, Quickthought’s model chooses

Zhttps://github.com/ryankiros/skip-thoughts

the correct target sentence from a set of candidate sentences.
The model achieves this by replacing the generative objectives
with a discriminative approximation. In our study, we use the
open source implementation of Quickthought?.

Method 6. InferSentVI1 and Method 7. InferSentV2 [5]: In-
ferSent uses a three-way classifier to predict the degree of
sentence similarity (similar, not similar, neutral). It builds a
bi-directional LSTM model pre-trained on natural language
inference (NLI) tasks. InferSent comes in two flavors, a V1
model using the pre-trained GloVe vectors and a V2 model
using the pre-trained FastText [26] vectors. Individually, we
refer to them as InferSentVI and InferSentV2. In our study,
we use the open source implementation of InferSent*.
Method 8. LASER [28]: LASER trains a Bi-directional LSTM
model on a massive scale, multilingual corpus. It uses parallel
sentences accross 93 input languages. LASER is able to focus
on mapping semantically similar sentences to close areas of
the embedding space. It allows the model to focus more on
meaning and less on syntactic features. Each layer of the
LASER model is 512 dimensional. By concatenating both the
forward and backward representations, LASER generates a
final sentence embedding of dimension 1024. In our study,
we use the open source implementation of LASER’.
Category 3: pre-trained-fine-tune:

Method 9. SentenceBERT [3]: BERT [29] like pre-trained
language models have helped many NLP tasks achieve state-
of-the-art results. One issue of BERT is that it does not
directly generate sentence embeddings. SentenceBERT [3]
is a modification of the pre-trained BERT network. It uses
siamese and triplet network structures to derive semantically
meaningful sentence embeddings. Specifically, SentenceBERT
derives a fixed sized sentence embedding by adding a pooling
operation to the output of BERT / RoBERTa. The network
structure depends on the available training data. A variety of
structures and objective functions are tested, including Clas-
sification Objective Function, Regression Objective Function,
and Triplet Objective Function. In our study, we use the open
source implementation of SentenceBERT®. In particular, we
use the base model “bert-base-nli-mean-tokens™’. The model
computes the mean of all output vectors of the BERT.

IV. SENTENCE AND SUB-SENTENCE

Sentence segmentation [30] is a non-trivial NLP task that
aims to divide text into meaningful component sentences.
Automatic sentence segmentation typically divides text based
on syntactic structures such as punctuation. The resultant
sentences often express multiple ideas with variable lengths.
In this study, we examine the strengths and weaknesses of
different methods for encoding all valid (sub-)sentences for
relation extraction. The validity of a (sub-)sentence means the
(sub-)sentence must cover the identified entity mentions.

3https://github.com/lajanugen/S2V
“https://github.com/facebookresearch/InferSent
Shttps://github.com/facebookresearch/LASER
Shttps://github.com/UKPLab/sentence-transformers
7https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens



An entity mention is defined as a span of tokens in a
sentence. The following sentence is an example in the NYT
dataset. We refer to the sentence as S1:

S1: “But that spasm of irritation by a
master intimidator was minor compared

with what Bobby Fischer, the erratic
former world chess champion, dished out in
March at a news conference in Reykjavik,
Iceland.”

The sentence is labeled with the ‘contains’ relation between
two geographical locations. The two underlined spans,
Reykjavik and Iceland, are identified as the two entity
mentions representing two locations.

There are simple sentences such as "Rechard Levine
was born in Manhattan.” It is labeled with the rela-
tion ‘place_of_birth’ between the two underlined entity men-
tions. There are also compound-complex sentences consisting
of multiple independent and dependent clauses. The NYT
data set contains 372,853 sentences. Out of them, 111,610
sentences are labeled with 24 relations defined in FreeBase
[17]. For the labeled sentences, the longest sentence has 265
words, while the shortest sentence has 4 words. The mean
length is 39 words. Since we will extract valid sub-sentences
to compare to the original sentences, we aimed to make sure
that the original sentences are statistically long enough such
that the extracted valid sub-sentences are significantly different
from the original ones. To this extent, we extracted sub-
sentences consisting of the sequence of tokens between the
two entity mentions (including the two mentions.) We call
such a sub-sentence span. Examining the lengths of spans,
we find the longest span has 99 words, while the shortest
span has 2 words. The mean length of spans is 11 words.
The standard deviation of the sentence lengths is 15 words
while the standard deviation of the span lengths is 9 words.
The dataset allows us to conduct the study on examining the
embedding spaces of sentences and valid sub-sentences with
significantly different lengths.

TABLE I summarizes the extraction methods. Since all valid
sub-sentences must contain the identified entity mentions, the
extractions anchor on the entity mentions. We also apply
extraction of sub-sentences up to length 40, based on the
average NYT sentence length of 39 tokens. Starting with the
entity mentions, the first method, X:span, extracts the sub-
sentence spanning from the first entity mention to the second
entity mention. The second method, X;:spanBAl, extracts
the sub-sentence extending the span with one token before
and after the entity mentions. Likewise, X;:spanBA:, for
1 = 2...20, extend the span with ¢ tokens before and after the
entity mentions. For instance, from the example sentence S1,
Xop:span extracts “Reykjavik, Iceland”, Xj:spanBAl
extracts “in Reykjavik, Iceland .”, Xs:spanBA2
extracts “conference in Reykjavik, Iceland .7,
and so on. The next group of methods, Y;:surroundingsj,
for j = 1...20, extract the entity mentions and j tokens sur-
rounding the entity mentions. The method Y} :surroundings;
differs from X;:spanBA¢ in that Y :surroundings; starts from

entity mentions and extends on both sides of each mention,
while X;:spanBA: starts from a span and extends on both
sides of the span. The method Y;:surroundings; may extract
discontinuous chunks from a sentence if the two mentions
are located far way from each other in the sentence, and
will concatenate the discontinuous chunks as a single sub-
sentence. Finally, the methods extract all valid sub-sentences
up to length around 40, though the sub-sentences may have
duplicates extracted from short original sentences.

V. ANALYTIC DESIGN AND EXPERIMENTAL PROCESS

There are 9 embedding methods, and 42 sets of original sen-
tences, spans, spanBA1-20, and surroundings1-20. We conduct
clustering and network analyses on 9 x 42 = 378 embedding
spaces generated by the combinations of embedding and sub-
sentence extraction methods.

A. Clustering Analysis

Clustering analysis [31] evaluates the extent to which the
sentences expressing the same relations are located in the same
partitions. The analysis encompasses two main tasks [32]: (1)
clustering tendency assesses whether it is suitable to apply
clustering on the embedding spaces in first place, and (2)
clustering evaluation seeks to assess the goodness or quality
of the clustering given data labels.

Clustering Tendency: The metric we implemented for
clustering tendency is Spatial Histogram (SpatHist) [32]-[34].
Given a dataset D with d dimensions, we create b equi-
width bins along each dimension, and count how many points
lie in each of the b? d-dimensional cell. We can obtain the
empirical joint probability mass function (EPMF) of D based
on the binned data. Next, we generate ¢ random samples, each
comprising n uniformly generated points within the same d-
dimensional space as the input data D. We can compute the
EPMF for each sample too. Finally, we can measure how much
the EPMF of the input data D differs from the EPMF of each
random sample using the Kullback-Leibler (KL) divergence
which is non-negative. The KL divergence is zero when the
input data behaves the same as the random sample. The
SpatHist is the average of ¢ KL divergences between D and
the ¢ random samples. The larger the SpatHist is, the more
clusterable the data should be.

Clustering Evaluation. Given a dataset D with partitions
P = {Py,..., P, } each of which has a label, a metric of
clustering evaluation measures the extent to which points from
the same partition appear in the same cluster, and the extent to
which points from different partitions are grouped in different
clusters. The higher the metric value is, the better the quality
of the clustering. For example, homogeneity [35] quantifies
the extent to which a cluster contains entities from only one
partition. Suppose the data D is clustered into & groups C' =
{C1,Cs, ..., Ci}. Let N;; be the number of members in group
C; with partition label j. The homogeneity of the clustering
is defined in terms of entropy as: h = 1 — ngﬂf;), where
H(C|P) is the conditional entropy of the clustering C' given
the partition P and H(P) is the entropy of the original data




Method Name Definition

X10:spanBA10:
X15:spanBA15:
X20:spanBA20:

Xo:span: extracts the sub-sentence starting from the first mention and ending at the second mention.
X1:spanBA1l: extracts the sub-sentence extending 1 token before the span and 1 word after the span.
Xo:spanBA2: extracts the sub-sentence extending 2 tokens before the span and 2 words after the span.

extracts the sub-sentence extending 10 tokens before the span and 10 words after the span.
extracts the sub-sentence extending 15 tokens before the span and 15 word after the span.
extracts the sub-sentence extending 20 tokens before the span and 20 words after the span.

Y7 :surroundingsl1:
Y5 :surroundings2:
Y10:surroundings10:
Y15:surroundings15:
Y50:surroundings20:

extracts the concatenation of the sub-sentences each of which containing 1 token surrounding a mention.
extracts the concatenation of the sub-sentences each of which containing 2 tokens surrounding a mention.

extracts the concatenation of the sub-sentences each of which containing 10 tokens surrounding a mention.
extracts the concatenation of the sub-sentences each of which containing 15 tokens surrounding a mention.
extracts the concatenation of the sub-sentences each of which containing 20 tokens surrounding a mention.

TABLE I: Sub-Sentence Extraction Methods

partitioning. Other metrics apply the same principle but use
different ways to measure cluster memberships. We tested the
following metrics: purity, fMeasure, Rand Index, homogeneity,
mutual information, completeness, vMeasure, and Fowlkes-
Mallows measure®.

For all the metrics, the higher the value is, the better the
clustering quality. Our experiments show that these metrics
are consistent in terms of measuring the quality of clustering,
though they may be at different value scales.

B. Network Analysis

For a set of sentence embeddings, we build a Sentence
Embedding Similarity Graph (SESG) based on the Euclidean
distances between embedding vectors. Given a set of sentences
S = {51,52,...,5} let W = {v(51),v(S2),...,v(Sp)} be
the set of sentence embeddings. We build the SESG graph
corresponding to the sentence embeddings as follows. Let
G = (V, E) be the SESG grpah, where V = {vy,va,....,0,}
is the set of vertices, and E = {ey,ea,...,e,,} is the set of
edges. Initially, the graph G is empty. For a pair of embeddings
v(8;),v(S;) € W, we add two vertices v;,v; € V and an
edge e, = (v;,v;) € E between them, if the distance between
the embeddings of corresponding sentences is smaller than a
threshold, i.e., ||v(S;) — v(S;)|| < thresh. In this study, we
choose the threshold as the mean Euclidean distance between
the embedding vectors of the sentences that are labeled with
the same relations. It should be noted that by cutting off pairs
of sentences with larger distances, not every sentence will have
a corresponding vertex in the SESG graph.

C. Experimental Process

Each embedding spaces has 111,160 embedding vectors.
We ran the experiments in multiple local and remote compute
instances, including 2 local machines each with 16G RAM, 2
virtual machines each with 322G RAM and 8 vCPU in an on-
premises cloud, and a Google Colab Pro account. We ran the
network analyses using Apache Spark on a Databricks cluster
with 8 worker nodes of Amazon m4.large instance.

The sentences in the NYT dataset are labeled by 24 Freebase
relations. The sentences labeled with the same relation are

8https:/scikit-learn.org/stable/modules/classes.html#module-
sklearn.metrics.cluster

considered in the same cluster. To recover the 24 clusters, we
apply the K-Means implementation in Scikit-Learn package
with n_clusters = 24 and other options with the default
values. For clustering tendency, we use 500 random samples
to average KL divergences for the final SpatHist values. The
dimensions of embeddings generated by the 9 embedding
methods range from 300 to 4096. The main limitation of the
spatial histogram is when we bin each dimension to create cells
for computing the EPMF, the number of cells is exponentially
large and most of the cells will be empty. To mitigate the
problem, we apply a PCA (n_component = 2) dimensionality
reduction on embedding vectors before we compute the KL
divergences.
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Fig. 2: Clustering tendency analysis: Each line represents an
embedding method. The x-axis lists the sets of sentences
and sub-sentences used to generate the embeddings. The y-
axis indicates the values of the metrics (spatial histogram)
measuring the clusterability of the embeddings. The higher the
y values, the more clusterable the embeddings corresponding
to the sets of sentences and sub-sentences on the x-axis.

VI. EXPERIMENTAL RESULTS
A. Clustering Tendency

Figure 2 shows the results of clustering tendency analysis
for the embedding spaces. Each value of the metric (spatial
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Fig. 3: Clustering evaluation analysis: This figure illustrates the clustering evaluation results measured by the homogeneity score
metric. It shows the embeddings of the span sub-sentences are more clusterable than that of the original sentences. All metrics
demonstrated the same property on different types of sub-sentences. The entire data are available in the github repository.

histogram) is computed by averaging 500 KL divergences.
Their standard deviations are between [0.005, 0.2] with a mean
0.02. Here are some observations:

¢ GloVe-GEM generates the most clusterable embeddings
on the original sentences and spans with up to 5 extra
tokens. The clusterability of the embeddings generated
by GloVe-GEM is better than most of the other methods.

« Skipthought generates the most clusterable embeddings
on the sub-sentences based on the tokens surrounding
entity mentions.

o SentenceBERT and Quickthought generate more cluster-
able embeddings on spans than on original sentences (the
lower-left corner area on the figure).

B. Clustering Evaluation

Figure 3 illustrates the clustering evaluation results mea-
sured by the homogeneity score metric for the embedding
spaces of sentences and spans. It shows the embeddings of
the span sub-sentences are more clusterable than that of the
original sentences. All metrics demonstrated the same property
on different types of sub-sentences. Looking into the entire
data set, we have the following key observations:

o Quickthought, GloVe-DCT, GloVe-GEM, and Skip-
thought generate the embeddings with better clustering
quality on spans than on all other types of sentences.

o SentenceBERT, InferSentV1, InferSentV2, and LASER
generate the embeddings with better clustering quality
on surroundings! than on all other types of sentences.

o All of the embeddings generated by the methods from the
original sentences are of low clustering quality. Some of
them are with the worst clustering quality.

C. Network Analysis

The potential size of a Sentence Embedding Similarity
Graph (SESGQG) is astronomically large. The number of undi-
rected pairs of sentences is about 1116102 /2 ~ 6.228 x 10°. It
is infeasible to analyze the SESG graphs for all sets of (sub-
)sentences. Because GloVe-GEM has the best performance
shown by the clustering analyses, we choose the embed-
dings generated by GloVe-GEM on the original sentences
and spans. We call these two representative SESG graphs
GEM-sentence and GEM-span, respectively. Our primary
goal is to enrich the findings of clustering analysis through
a more focused case study. The final GEM-sentence graph
has 94,473 vertices and about 87 million edges, and the final
GEM-span graph has 91,318 vertices and about 104 million
edges. The first observation is that the SESG graph built on
span embeddings has more similar pairs than the graph built
on sentence embeddings. We measures the density of a graph
by the ratio numberﬁZﬁ?Z:;(l)fp_:igi?lge_edges' The density of
GEM-span is 25% more than the density of GEM-sentence.

The first network analysis is on degree distributions. In
both graphs, the degree distributions display a heavy tail.
However, there are 543 vertices in GEM-span having the
highest degree (=31620), while there are only 25 vertices
in GEM-sentence having degrees greater than 31620. It
indicates the similarity space of sentences is dominated by a
few sentences. We randomly picked up two sentences with the
highest degrees. They are “Of Bronxvill, New York.”
and “Of Plandome, New York.” Both sentences closely
mirror our definition of a span.

The second analysis is about connected components. Both
GEM-sentence and GEM-span have a large connected
component (CC) with 60% of vertices and more than
99% of edges. About 40% of their vertices fall into other
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sentences in (b). Each vertex is labeled by the relation which is used to label the sentences and sub-sentences. Each neighborhood
graph is built around two hubs, i.e., nodes with the highest degree. According to the construction of SESG graph, a hub is
close to its neighbors. If the neighbors are also close to each other, we should see dense connection in the neighborhood. The
denser the neighborhood graph, the better the clusterability of the embeddings.

12,400 in GEM-sentence and 11,500 in GEM-span smaller
connected components. The density of the largest CC in
GEM-span is 35% more than the density of the largest CC
in GEM-sentence. Connected component density increases
in comparison to the whole graph.

The third analysis is aimed at the diameter of connected
components. It is infeasible to compute the shortest paths
between all pairs of vertices in these big graphs (~ 10%). We
randomly select 0.1% of the vertices and compute the shortest
paths. The longest distance is 8. However, in the random sets
from both graphs, more than 87% of the distances are shorter
than 3. SESG graphs exhibit small world behavior:

The fourth analysis focuses on the relation distributions in
the largest CC. There are 24 relations in the NYT dataset.
About 48% of the sentences are labeled as the ‘contains’
relation between two geographical locations. In the largest
CC of GEM-sentence, 50% of the vertices corresponding
to ‘contains’. In the largest CC of GEM-span, 55% of the
vertices corresponding to ‘contains’. This shows that X:span
improves the quality of the largest cluster of the embeddings.

Finally, we visualize small neighborhoods of the vertices
with highest degree in Figure 4. From each graph, we ran-
domly select two vertices (the big dots) with the highest
degree. For each selected vertex, we randomly choose about
20 neighbors. The density of the small neighborhood graph
from GEM-span in Figure 4 (b) is 16%, while the density of
the small neighborhood graph from GEM-sentence in Figure
4 (a) is 10%. The former is denser than the latter one.

VII. DISCUSSION

We are motivated by the application of recognizing semantic
relations between two entities in a textural sentence. Therefore,

using the widely-used data set for relation extraction research
in the literature is well-suited for our purpose. Given a set of
embedding vectors as a metric space, the distance between any
two members, which are usually called points, characterizes
the geometric structures of the space. Our analytical methods,
specifically clustering and network analyses based on pair-wise
distances, reveal a diversity of underlying geometric structures.
Unlike word embedding methods, sentence embedding
methods are guided by different underlying principles. How-
ever, experimental results show the guiding principles may
or may not converge on generating embeddings with similar
properties. For example, the embedding spaces generated by
SentenceBERT and Quickthought on spans or short segments
containing two entity mentions are more clusterable than on
the original sentences. It is interesting to note that Sentence-
BERT and Quickthought share little in terms of their modeling
and training processes. It is important to note, however, that
both Quickthought and Skipthought share the same principle
that uses embeddings to predict the neighboring sentences.
But the embedding spaces generated by them exhibit different
geometric structures. The values of the clusterability metric in
Figure 2 indicate that the methods GloVe-GEM, Skipthought,
and GloVe-DCT are the candidates for generating embeddings
with better clustering properties in real-world applications.

VIII. CONCLUSION

In this study, we investigate the clusterability of embedding
spaces generated by various sentence embedding methods on
sentences and different sub-sentences. The primary motivation
of the study is that more clusterable embeddings with better
clustering quality capture more syntactic and semantic reg-
ularities. As a result, downstream NLP applications such as



relation extraction would benefit from the embeddings with
better clustering quality. We conduct a set of comprehensive
clustering and network analyses on the embeddings generated
by 9 main embedding methods. The results show that the
method GloVe-GEM stands out when applied to the original
sentences and spans up to a certain length. Other methods
have different strengths on different types of sub-sentences.
In most cases, the embeddings generated from the original
sentences are of low clustering quality. It signifies the impacts
of sentence structures on the quality of embeddings when used
by downstream applications. The outcomes of our analysis can
be used to aid and direct future sentence embedding models
and applications, for example, combining the strengths of
different embedding methods.
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