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Abstract—In this position paper, we describe research on
knowledge graph-empowered materials science prediction and
discovery. The research consists of several key components
including ontology mapping, materials data annotation, and
information extraction from unstructured scholarly articles. We
argue that although big data generated by simulations and exper-
iments have motivated and accelerated the data-driven science,
the distribution and heterogeneity of materials science-related
big data hinders major advancements in the field. Knowledge
graphs, as semantic hubs, integrate disparate data and provide
a feasible solution to addressing this challenge. We design a
knowledge-graph based approach for data discovery, extraction,
and integration in materials science.

Index Terms—Knowledge Graph, Materials Discovery, Infor-
mation Extraction, Ontology, Natural Language Processing

I. INTRODUCTION

Simulations and advanced experiments in materials science
research have generated unprecedented big data [1], [2].
Recently, data-driven machine learning methods have shown
great potential to accelerate materials discovery [30], [31].
However, significant amounts of the big data remain under-
utilized due to data isolation, distribution, and heterogeneity.
Example data sources include curated structured databases,
such as Inorganic Crystal Structure Database (ICSD) [3], the
databases in Materials Project [4], Material Genome Initiative
[8], and unstructured text containing much more extensive
data, such as over millions of published peer-reviewed re-
search articles and patent documents [5]. It is imperative to
develop semantic approaches for unifying the distributed and
disparate big data to empower data-driven materials science.
In this paper, we present our position in applying knowledge
graph techniques for semantic data discovery, extraction, and
integration in materials science. The workflow of our ongoing
research is presented in Figure 1.
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II. DATA ISSUES IN CURRENT DATA-DRIVEN MATERIALS
SCIENCE

Materials scientists aim to design and discover new materi-
als. They combine chemistry, physics, mathematics, and engi-
neering methods through experimental, theoretical, and com-
putational approaches. Prior to the big data era, the conven-
tional materials discovery process was time-consuming, and
inefficient. With the advances in machine learning algorithms,
data-driven approaches define the fourth paradigm of materials
study, following earlier paradigms shaped by experiment, the-
ory and computation [2], [6]. In data-driven materials science,
researchers systematically extract new knowledge by analyzing
large-scale materials datasets and predict properties of new
materials by building sophisticated machine learning systems
[7]. Rich data sources have brought out salient opportunities
for data-driven materials research. However, how to efficiently
use these data becomes a significant research gap. Many
challenging issues are related to the FAIR principles (Findable,
Accessible, Interoperable, Reusable) [9]. In particular, data
heterogeneity and volume stand as two main barriers to data-
driven materials research [10].

The first challenge is data heterogeneity. Materials data are
heterogeneous in terms of source and format. As proposed
by [34], although current materials informatics greatly benefit
from existing data sharing infrastructures, these resources are
disconnected with each other and hence can result in the loss of
inherent interconnections between data. In addition, material
data can appear in many different forms such as texts, numeric
values, or coordinates. These heterogeneities hinder materials
data analytics from reaching higher potential performance.

The second challenge is data volume. As mentioned by [2],
researchers’ ability to collect data has surpassed the capacity
to analyze it. However, given this volume, manually searching
for valuable data by reading possibly related articles seems no
longer efficient enough.

Based on the above challenges, materials science re-
searchers are overwhelmed by the large amount of data in
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Fig. 1. An overview of the research on empowering materials science discovery with knowledge graphs: the top box describes the research on materials
ontology mapping and integration. In the middle layer, there are two key tasks: annotating materials science data with the terms in the integrated ontology
and extracting structured knowledge from unstructured text in materials science. On the right-bottom lies the knowledge graph constructed from the tasks on
higher layers. Finally, the knowledge graph provides additional semantic data and explanations to the AI/ML models for data-driven materials prediction and
discovery.

various forms. To address this research gap, we propose a
framework design to integrate and structure heterogeneous
data by domain-specific knowledge graph construction. We
describe our in-progress research on constructing knowledge
graph-empowered approach for semantic materials knowledge
discovery, extraction and integration in this position paper.

III. KNOWLEDGE GRAPH-EMPOWERED APPROACH

Knowledge graphs have emerged as a promising solution to
addressing data heterogeneity problems. A knowledge graph
consists of a set of triples called (subject, predicate, object)
or (head, relation, tail) , which comprise a labeled graph.
Both structured data and unstructured text are automatically
converted to triples by data annotation and information ex-
traction techniques. To represent the semantics of the triples,
a knowledge graph links the elements in triples to the concepts
and relationships defined in a domain ontology or several
related ontologies. Thus, our approach involves three key com-
ponents: materials science ontology mapping and integration,
semantic annotation of materials science data, and information
extraction from unstructured scholarly articles.

A. Materials Science Ontology Mapping and Integration

Several materials science ontologies have been developed
including Ashino’s Materials Ontology [12], ChEBI (Chemical

Entities of Biological Interest) [13], European Materials and
Modelling Ontology (EMMO), Materials Design Ontology
(MDO) [14], and the NIST controlled vocabulary [15]. Figure
2 shows a visualization of several concepts defined in the
MDO, in which materials Structure, Composition, Occupancy,
and Calculation are linked through various relationships (Ob-
ject Properties). With the proliferation of domain ontologies
in chemistry, biology, and materials science, it is necessary
to discover the linkages between semantically similar terms
in different ontologies for interoperability. To this end, we
have developed an ontology matching system, OTMapOnto
[16], which applies Optimal Transport ontology embeddings.
Our experimental results showed OTMapOnto could achieve
mappings with higher recall compared to several state-of-the-
art tools. We are improving the OTMapOnto on both precision
and recall for the Material Sciences and Engineering (MSE)
ontology matching Benchmark [17].

B. Semantic Annotation of Materials Science Data

Semantic interoperability refers to an agreement between
the schemas and data items in multiple disparate data sources
for data exchange. With the availability of ontologies and
mappings between them, different data sources can annotate
their data with concepts and relationships in ontologies which
clarifies their meaning, and an exchange of information can
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Fig. 2. A visualization of several concepts defined in the Materials Design Ontology (MDO).

rely on standardized semantics. Mapping databases to ontolo-
gies is a long-standing problem and various methods have
been developed for relational and XML data [18], [19]. We
extend the existing methods to structured data in a variety
of formats including CSV, JSON, relational, and XML. An
embedding-based method is under development where both
database and ontology are converted to low-dimensional, dense
numerical vectors and semantic mappings are discovered by
aligning embedding spaces. For example, the Virtual Excited
State Reference for the Discovery of Electronic Materials
Database (VERDE materials DB) [20] is an open and search-
able database containing ground and excited state properties
of organic molecules. We can annotate the molecules in the
VERDE DB with concepts such as “Organic Molecule” from
the ChEBI ontology. If there are other databases annotated
with the same concepts, a knowledge graph will be built by
the triples representing data from different databases.

C. Information Extraction from Unstructured Scholarly Arti-
cles in Materials Science

Scholarly literature is a major knowledge source to learn
from frontier research works. Materials science is no excep-
tion; materials researchers usually include valuable knowledge
in their published articles, such as material structures, prop-
erties with their numerical measures, synthesis methods, and
other features. However, unlike structured relational datasets,
this important knowledge is often embedded in unstructured
text data, which is neither machine-readable nor can it be used
directly in machine learning approaches.

The large volume of literature greatly hinders researchers
from manually discovering key knowledge. This motivates
researchers to explore natural language processing (NLP)
techniques to automatically extract important information from
text [22]–[24], [26]–[29]. These studies have been conducted
across various domains; most of them applied rule-based meth-
ods for text extraction, which have less adaptability since pre-
designed rules may not work on other corpora. [5] used a deep
learning model with static word representations (Word2Vec) to
address the above limitation. More recently, attention-based
pre-trained language models [32], [33] have achieved superior
performance in various NLP tasks. These pre-trained language
models have great potential to push materials knowledge
extraction studies further. In our study, we propose deep-
learning enhanced information extraction as a sound direction
toward structuring knowledge from unstructured data, and we
formulate IE as a sequence-to-sequence labeling problem.

Information Extraction (IE) is one of the fundamental tasks
in the field of NLP and can be divided into two main
substeps: (1) Named entity recognition (NER), and (2) relation
extraction (RE). Then we merge entity-relation-entity triples
extracted from the IE process to form the material domain
knowledge graph. A demonstration is presented in Figure 3
and described below.

1) Named Entity Recognition: As the first step in the infor-
mation extraction process, NER aims to recognize important
entity mentions in texts that fall into a predefined entity type.
We formulate this problem as a sequence labeling task.

Formally, given a natural sentence S consisting of a se-
quence of N tokens S =< t1, t2, t3, ..., tN > and we have the
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Fig. 3. A demonstration of constructing a knowledge graph from unstructured texts. There are four main components: (1) the overall process takes natural
sentences as input, then (2) important entity mentions are extracted with their type, (3) their relations are predicted during the relation extraction step, and
finally (4) we merge extracted triples together to obtain a materials domain knowledge graph. The piece of research article used in the example originally
from [35].

corresponding labels of each token L =< l1, l2, l3, ..., lN >,
our goal is to recognize the list of tuples (ti, lk), where ti is
a named entity mention and its label lk falls into one of the
predefined entity types.

2) Relation Extraction: Based on the extracted entities from
the previous step, the goal of RE is to determine whether
a relation exists between an entity pair and classify the
relation type if it exists. Based on the problem formulation
above, the goal of RE is to recognize any entity relation pair
< ti, tk, rj > in S where ti, tk are extracted entity mentions
and rj is one of the designated relation types.

IV. CONCLUSION

We have developed preliminary prototypes for each of
the three components for the knowledge graph-empowered
materials discovery. We are integrating the components into
the HIVE (Helping Interdisciplinary Vocabulary Engineering)
[21] platform which will become a powerful assistant to
researchers and practitioners in materials science. HIVE cur-
rently addresses interoperability and cost challenges associated
with using multiple ontologies, as researchers often seek to
work with multiple systems, but HIVE currently requires
human interaction. Our knowledge graph-empowered design
will transform this technology to a more machine-driven
innovation. Finally, our IE component which aims to extract
knowledge from unstructured scholarly literature will de-
tect/structure an extensive amount of material knowledge and
enrich the knowledge graph enabling expert system/knowledge
discovery.
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