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Abstract—Scientific literature presents a wellspring of cutting-
edge knowledge for materials science, including valuable data
(e.g., numerical data from experiment results, material properties
and structure). These data are critical for accelerating materials
discovery by data-driven machine learning (ML) methods. The
challenge is, it is impossible for humans to manually extract and
retain this knowledge due to the extensive and growing volume
of publications.

To this end, we explore a fine-tuned BERT model for extracting
knowledge. Our preliminary results show that our fine-tuned
Bert model reaches an f-score of 85% for the materials named
entity recognition task. The paper covers background, related
work, methodology including tuning parameters, and our overall
performance evaluation. Our discussion offers insights into our
results, and points to directions for next steps.

Index Terms—named entity recognition, materials science,
natural language processing, BERT

I. INTRODUCTION

Materials research outputs show an increased interest in
data-driven approaches, drawing on recent advances in ma-
chine learning (ML). The enthusiasm in high-throughput
computational materials study is hampered by the limited
structured materials data for machine learning algorithms.
Weston et al. [3] note that although there are increasingly
examples of successful computationally designed materials,
available structured data is still not sufficient for computational
experiments. One potential solution to address this challenge
is through automatic extraction of material data from peer-
reviewed materials literature by natural language processing
(NLP) techniques.

As a major knowledge source for researchers, materials
literature seems like an under-explored gold mine. Scholarly
literature contains extensive valuable materials knowledge
(e.g., synthesis methods, numerical data from experiment
results, material structure and properties information) stored
in unstructured texts. Even so, materials researchers are only
able to manually search and read a small proportion of
knowledge recorded in previously established literature due
to its extreme volume. According to [4], there are at over
nine millions of English scientific literature in the material
science area. In this case, manually finding important data in
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selected literature becomes time-consuming and less efficient.
To accelerate the materials knowledge discovery process from
literature, we propose automatic knowledge extraction as a
candidate solution.

In this study, we focus on extracting materials named
entities from literature. As an initial step, we build an end-
to-end named entity extraction model by fine-tuning exist-
ing Bidirectional Encoder Representations from Transformer
(BERT) pretrained language models and analyzed its potential
in materials text extraction. Our early phase experiments show
promising result: the fine-tuned BERT model achieved an
overall f-score of 85.0% in entity extraction. This indicates
that the BERT model has significant potential for materials
text mining tasks, and has motivated us to build a new BERT
model specifically for materials science as next step.

Fig. 1. A Visualized Demonstration of Named Entity Recognition task in
materials science. Different entity types are highlighted to different colors,
where MAT stands for Materials, PRO stands for Material Property, DSC
is Descriptor and CMT is Characterization method. The goal of NER is to
automatically detect entities that fall into these pre-defined semantic types.
This example is from [3] and visualized by SpaCy Python library [16].

II. BACKGROUND

As the first step toward extracting structured knowledge
from unstructured text data, named entity recognition (NER)
aims to recognize entity units from input texts to predefined
semantic types - its output serves as the foundation for relation
extraction, as well as many downstream natural language
processing tasks such as information retrieval [17], question
answering [18] and knowledge graph construction [19].

Figure 1 is an example of a material entity extraction
task. For input sentences from materials literature, our goal
is to build an NER model which automatically detects key
entities and assigns specific types to each of them. Essentially,
the manual reading is replaced by automatic text extraction,
expediting the knowledge search process.
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Fig. 2. The model architecture of fine-tuned BERT for named entity recognition.

Various approaches have been developed for NER tasks
in the past two decades. The state-of-the-art has progressed
through multiple phases, starting with rule-based approach,
followed by ML using handcrafted features, to task-specific
deep learning models with word embedding. Currently, deep
learning with transformer-based pretrained language models
(e.g., BERT) achieves superior performance and hence stands
as the new state-of-the-art.

Although the most recent two approaches all involve deep
learning, transformer-based language models have several ad-
vantages over task specific models. BERT models usually have
better adaptability to different NLP tasks with minimal needs
for model modification. This is because BERT can transfer
contextual knowledge learnt from its large training corpora to
solve new tasks. For the same reason, it can achieve a descent
performance with less labeled data compared to task specific
models.

III. RELATED WORK

Over the past 5 years, machine learning enhanced compu-
tational methods have been proven to be effective in various
material research topics. Ward et al. [14] show the high
potential of ML algorithms in materials discovery by ap-
plying multiple ML algorithms (e.g., decision tree, LASSO)
to predict properties of general inorganic materials. [9] use
ML methods to guide high-throughput experiments for new
metallic glass discovery in the Co-V-Zr ternary. ML methods
not only show their potential in inorganic materials design,
but organic materials too. In 2018, [15] find that deep learning
can help synthesis planning for organic materials as well. A
key motivator for applying ML in materials science is the
Material Genome Initiative [10]. Overall, the application of
ML algorithms in materials design is an innovative topic in
the materials science community.

However, machine learning algorithms applied in materials
research are data-driven in general – namely, they all require a
significant amount of structured data as input to achieve their
best performance. This is especially true for deep learning
models, which heavily rely on large amounts of high-quality
labeled data. In 2017, [1] emphasize the limitation of data
for ML-enhanced studies. To address this limitation for data-
driven approaches, many materials researchers try to extract
structured knowledge from unstructured scholarly literature.
Various studies develop rule-based methods that could involve
regular expression, word dependency information, and text
matching to extract either keywords or entity pairs from
materials literature [5]–[7]. Weston et al. [3] built a manually
labeled corpus containing eight-hundred abstracts and applied
a BiLSTM-CRF deep learning model to extract named entities.
The use of ontology is also discussed by materials researchers
[8].

The research studies noted above successfully demonstrate
that datasets can be extracted from literature, but their methods
are not without limitations. Two key limitations are: (1) rule-
based approaches usually have very little adaptability – their
rules are designed for specific topics and scenarios, which
restricts their adaptability to other contexts; and (2) many of
existing word embeddings for material text mining are context-
independent (e.g., Word2Vec, Fasttext), which can limit on
the prediction accuracy. We believe the BERT model has the
potential to address the above limitations.

To the best of our knowledge, there are still no BERT
models trained for materials text mining purposes publicly
available. In this case, we take our initial step to explore
existing BERT models and analyze their potential toward
materials knowledge extraction from text.
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IV. METHODOLOGY

A. Problem Formulation

As the first step toward automatic knowledge extraction, we
formulate named-entity-recognition (NER) as a sequence-to-
sequence labeling problem.

Formally, given a natural sentence S consisting of a se-
quence of N tokens S =< t1, t2, t3, ..., tN > and their own
corresponding labels L =< l1, l2, l3, ..., lN >, the goal is to
predict the list of tuples < ti, li > from input sentences, where
entity types are not given.

B. Fine-Tuning BERT for NER Tasks

We used two existing BERT pretrained language models in
this study: original BERT base model [2] and SciBert [12].
We fine-tuned both models on the training and developing set
from the benchmark dataset (see description in section V).
The original Bert model is trained on 11,308 novel books
and English widipedia content; SciBert is trained on a random
sample of scholarly articles, which consists of 18% computer
science papers and 82% of biomedical research articles.

The overall model architecture is shown in figure 2. In brief,
the model takes natural language sentences as sequences of
tokens as input - each sequence of tokens will be further
divided into sub-tokens such as “no”, “##3”, “##Tl”(which
are originally from the token NO3Tl), then feed into the
BERT transformers architecture for generating context-aware
language representations. A dense layer is added on top of
word representations to predict the entity type (label) of each
input word. The model architecture is built by Pytorch [13],
Python 3.

C. Evaluation Methods

In this study, we use precision, recall and f-score to evaluate
the NER performance of fine-tuned BERT models. These
measures are defined in the equations below.

precision =
True Positive

True Positive + False Positive
(1)

recall =
True Positive

True Positive + False Negative
(2)

f-score = 2× precision × recall
precision + recall

(3)

V. EXPERIMENT DETAILS

A. Dataset

In this study, we select the MatScholar dataset released
by [3], which is a manually annotated corpus consisting of
800 abstracts from literature of inorganic material studies.
The MatScholar corpus have seven(7) predefined entity types
shown in table I below. We lowercased the entire dataset
during our fine-tuning process.

TABLE I
A GLANCE AT MATSCHOLAR DATASET

Entity Type Example(s) Num

Inorganic Material (MAT) Fe4NiO8Zn, NiZn fer-
rite 682

Symmetry / Phase Label
(SPL) cotunnite phases 75

Sample Descriptor (DSC) nanocomposites,
nanotubes surface 437

Material Property (PRO) magnetic properties 772
Material Application
(APL) ethanol sensor 170

Synthesis Method (SMT) acid-assisted hydrother-
mal method, sputtering 171

Characterization Method
(CMT)

electron paramagnetic
resonance 195

B. Hyperparameters

We use the following model hyperparameters values sug-
gested by [2] during fine-tuning process: we set our model
learning rate to 5e-5, warm-up proportion as 0.1, maximum
sequence length as 128. We use Adam as the optimizer and
we enabled GPU acceleration with batch size 16.

C. Performance Evaluation

The detailed performance report is shown in table II.
Overall, both fine-tuned models have achieved total accuracy
over 80%, fine-tuned SciBert model outperforms original Bert
model by 2.1% and reached 85.0%.

TABLE II
PERFORMANCE EVALUATION ON TWO FINE-TUNED BERT NER MODELS

Evaluation Results on Test Set (original Bert/SciBert)

Type Precision Recall F-score Support

MAT 0.875 / 0.880 0.915 / 0.915 0.895 / 0.897 682
SMT 0.760 / 0.770 0.813 / 0.842 0.785 / 0.805 171
APL 0.817 / 0.859 0.788 / 0.824 0.802 / 0.841 170
DSC 0.874 / 0.849 0.922 / 0.911 0.898 / 0.879 437
PRO 0.767 / 0.813 0.792 / 0.811 0.779 / 0.812 772
CMT 0.747 / 0.809 0.846 / 0.867 0.793 / 0.837 195
SPL 0.762 / 0.785 0.853 / 0.827 0.805 / 0.805 75
Total 0.816 / 0.837 0.855 / 0.865 0.835 / 0.850 2502

VI. DISCUSSION AND FUTURE WORK

This research prompts us to ask: What makes the perfor-
mance of BERT models different? One significant factor could
be their different training corpora. As stated in earlier section,
the original BERT model was trained on text in generic
domains such as novels, whereas SciBert was mainly trained
on scientific biomedical research articles. The language used in
corpora from different domains could be very different, which
results in a difference in the vocabularies learnt by model. As
mentioned in [12], there are only 30% common vocabularies
between SciBert and original Bert model.

During our fine-tuning process, we observed that original
Bert model was unable to find a small set of sub-tokens in its
vocabulary (hence labeled as [UNK]); we did not notice any
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unknown sub-tokens marked by Scibert model. SciBert model
outperform the original Bert model in most of entity types on
the highly domain specific Matscholar Dataset. This result is
consistent with our above assessment.

As the result of our early-phase experiment, the fine-tuned
SciBert model result reaches 85% f-score. This is a solid
result, particularly given that neither SciBert nor original
BERT were not trained on materials-related corpora. Based on
our experiment result, we believe a BERT model trained on
solely materials scholarly literature is likely to achieve even
higher performance, and has great potential to contribute to
various NLP tasks toward knowledge discovery from materials
literature. We are aware that previous research [3] using task-
specific model with Word2Vec embedding trained on materials
articles achieved a slightly higher performance (87%). How-
ever, BERT models are more advantageous than task-specific
models, since they can be fine-tuned to adapt different NLP
tasks, such as relation extraction and question-answering [2].
Our early phase work confirms the usefulness of the approach
underlying BERT. A logical next step is to build a brand new
BERT model trained solely on materials research corpora,
which could serve as a foundation of future materials text
mining tasks.

VII. CONCLUSION

Overall, the research presented here analyzes the potential
of BERT models in materials text mining tasks. We performed
our initial exploration on materials named entity recognition.
The fine-tuned Bert model achieved a solid performance with-
out knowing much materials-related contextual knowledge.
Given Bert model is designed to adapt a range of different NLP
tasks instead of focusing on a specific task, we believe this
transformer-based pretrained language model is a promising
direction toward more sophisticated NLP system for materials
knowledge extraction from literature.
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