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Abstract

We introduce a notion called entropic independence that is an entropic analog of spectral notions of
high-dimensional expansion. Informally, entropic independence of a background distribution p on k-sized
subsets of a ground set of elements says that for any (possibly randomly chosen) set S, the relative entropy
of a single element of S drawn uniformly at random carries at most O(1/k) fraction of the relative entropy
of S. Entropic independence is the analog of the notion of spectral independence, if one replaces variance
by entropy. We use entropic independence to derive tight mixing time bounds, overcoming the lossy
nature of spectral analysis of Markov chains on exponential-sized state spaces.

In our main technical result, we show a general way of deriving entropy contraction, a.k.a. modified
log-Sobolev inequalities, for down-up random walks from spectral notions. We show that spectral
independence of a distribution under arbitrary external fields automatically implies entropic independence.
We furthermore extend our theory to the case where spectral independence does not hold under arbitrary
external fields. To do this, we introduce a framework for obtaining tight mixing time bounds for Markov
chains based on what we call restricted modified log-Sobolev inequalities, which guarantee entropy
contraction not for all distributions, but for those in a sufficiently large neighborhood of the stationary
distribution. To derive our results, we relate entropic independence to properties of polynomials: y is
entropically independent exactly when a transformed version of the generating polynomial of y is upper
bounded by its linear tangent; this property is implied by concavity of the said transformation, which was
shown by prior work to be locally equivalent to spectral independence.

We apply our results to obtain (1) tight modified log-Sobolev inequalities and mixing times for multi-
step down-up walks on fractionally log-concave distributions, (2) the tight mixing time of O(nlogn) for
Glauber dynamics on Ising models whose interaction matrix has eigenspectrum lying within an interval
of length smaller than 1, improving upon the prior quadratic dependence on 7, and (3) nearly-linear
time O (1) samplers for the hardcore and Ising models on n-node graphs that have J-relative gap to the
tree-uniqueness threshold. In the last application, our bound on the running time does not depend on
the maximum degree A of the graph, and is therefore optimal even for high-degree graphs, and in fact, is
sublinear in the size of the graph for high-degree graphs.

1 Introduction

TR ([Z]) — R>¢ be a non-negative density on the k-subsets of the ground set [n] = {1,...,n}. Such a
density naturally defines a distribution on the k-subsets of [n] given by

P[S] < u(S).
We study a family of local Markov chains that can be used to approximately sample from such a distribution.

Definition 1 (Down-up random walks). For a density y : ([z]) — R>p, and an integer ¢ < k, we define
the k <+ ¢ down-up random walk as the sequence of random sets Sy, Sy, ... generated by the following
algorithm:
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fort=20,1,... do
Select T; uniformly at random from /¢-sized subsets of S;.
Select S;1 with probability o« p(S;+1) from supersets of size k of T;.

This random walk is time-reversible and always has y as its stationary distribution [see, e.g., ]. The
special case of £ = k — 1 has received the most attention, especially in the literature on high-dimensional
expanders [see, e.g., ; ; ; ]. Recent works have established the utility of down-up
random walks in capturing and analyzing widely studied Markov chains such as Glauber dynamics on
graphical models or basis-exchange random walks on matroids [ ; ; ; ; ;
; ; ; ; ; 1

Each step of the down-up random walk can be efficiently implemented w1th oracle access to y as long as
k — ¢ = O(1). This is because the number of supersets of T; is at most n¥~* = poly(n), so we can enumerate
over all of them in polynomial time. Even though the k <+ ¢ random walk is interesting algorithmically
only when ¢ = k — O(1), the entire range of down-up random walks is useful as an analysis tool. In fact,
analyzing down-up walks where ¢ = 1, and concluding mixing time of k <+ k — O(1) random walks, is
the key technique behind most of the high-dimensional-expanders-based breakthroughs in Markov chain
analysis [see, e.g., ; ; ].

In this work, we introduce the notion of entropic independence as a tool to establish tight bounds on
the mixing time of the down-up random walks via lower bounding the modified log-Sobolev constant

[ ] (see Definition 23). Entropic independence is an entropy-based analog of spectral notions of high-
dimensional expansion such as local spectral expansion [ ; ; ] and spectral independence
[ ]. The motivation behind considering entropy-based notions is that Markov chain mixing time

analysis via spectral techniques is often lossy, by polynomially large factors on exponential-sized state
spaces. On the other hand, entropy-based analysis of Markov chains can often yield tight mixing time
bounds [ ].

Our work introduces a novel technique to get optimal mixing time bounds using the rapidly growing
literature on high-dimensional-expanders-based Markov chain analysis. Related prior works in this area
fall into two categories:

Prior work on matroids and log-concave polynomials. Cryan, Guo, and Mousa [ ] established
nearly-linear mixing time of O(k)! for the k <+ k — 1 down-up random walk whenever y has a log-concave
generating polynomial and the walk is started from a good point. This improved upon the earlier bound of
O(k?) established via spectral analysis by Anari, Liu, Oveis Gharan, and Vinzant [ ]. Matroids are
extremely good high-dimensional expanders [ |; unfortunately the techniques of Cryan, Guo, and
Mousa [ ] appear to be limited to just matroids and matroid-related distributions, since they crucially
use a specific threshold of high-dimensional expansion that can only be achieved by these distributions.

Prior work on bounded-degree graphical models. Chen, Liu, and Vigoda [ ] and Blanca, Caputo,
Chen, Parisi, Stefankovic, and Vigoda [ ] showed that under certain assumptions, spectral indepen-
dence, a condition weaker than the extremely good high-dimensional expansion of matroids [ 1,
implies nearly-linear mixing time of O(k) for down-up walks. This yielded breakthrough tight mixing time
bounds for a wide range of distributions originating mostly from statistical physics. However, these results
need some key assumptions, most of which do not appear to be inherently necessary, and seem to be just
needed for the proof to work. The main assumption behind these works is that i captures a graphical model
on a bounded degree graph; that is y is the joint distribution of a collection of k random variables arranged
as nodes of a O(1)-degree graph, and that any two regions of the graph are conditionally independent of
each other, conditioning on a set of nodes separating them. The bounded degree assumption together with
the conditional independence assumption allows for y to shatter into small independent pieces of size
~ log k after conditioning on linearly many variables. A further assumption is that each random variable

IThe notation O(-) suppresses logarithmic factors in both k and 7. To keep the exposition simple in the introduction, we assume
the random walks are started from a starting point with large enough of a probability mass; there always exists a point S where
P,[S] > 1/(;) and we assume our starting point approximately has this mass in the reported mixing times.



has domain of size at most O(1) and that each element in the domain has marginal > (1) according to u
and conditionings of ;1. None of the assumptions, being graphical, being constant-degree, or having large
marginals, appear to be inherently necessary, but are crucial to the proof.

This work. In this work we show that good high-dimensional expansion under external fields (see Defi-
nition 3) automatically implies entropy contraction inequalities, and in particular modified log-Sobolev
inequalities for down-up random walks. Unlike mentioned prior works, we do not require extreme high-
dimensional expansion, we do not assume conditional independence (being graphical), we do not require a
lower bound on the marginals of y, or even in the case of graphical models for the degrees of the graph
to be O(1); instead we require good high-dimensional expansion under external fields. This assumption is
strictly weaker than the extreme high-dimensional expansion assumption of [ ], so our results give
a proper generalization of the main result of [ ]. A distinguishing feature of our techniques is the
ability to derive the optimal mixing time when it is not nearly-linear (see Section 1.1). Another feature of
our techniques is the ability to handle lopsided distributions, where min {u(S) | #(S) > 0} is extremely
small. Lopsided distributions provably cannot have a large (non-modified) log-Sobolev constant [ 1,
but they can possibly have a large modified log-Sobolev constant. This distinction between modified and
non-modified log-Sobolev inequalities is a barrier for the prior techniques of [ ; ], since they
yield roughly the same log-Sobolev and modified log-Sobolev constants in the settings where they can be
applied.

Informally, we call a background measure y : ([ ]) — R>( entropically independent if for any (possibly
randomly chosen) set S, the relative entropy of an element of S drawn uniformly at random carries at most
O(1/k) fraction of the relative entropy of S, a constant multiple of its “share of entropy.” More precisely,
entropic independence can be defined as entropy contraction of the Dy_,; operator, where Dj_,, is the first

part of the k <+ ¢ random walk, i.e., it operates on a set S € ([Z}) by uniformly sampling a size-¢ subset of S.

Note that Dy_,, sends a distribution y over ([Z}) to the distribution uDj_,, over ([Z]).

Definition 2 (Entropic independence). A probability distribution y on ([Z]) is said to be (1/«)-entropically
independent, for a € (0, 1], if for all probability distributions v on ([Z]),

1
Dy (vDg—1 || pDg—s1) < ﬁDKL(V | ).

Entropic independence is a natural analog for spectral independence, another recently established notion

by Anari, Liu, and Oveis Gharan [ 1, if one replaces variance by entropy. For the special case where

u is defined via a graphical model, notions like entropic independence have been studied in prior works

(although mostly as an interesting corollary, and not as the main tool to establish mixing times). See [e.g.,
] for the notion of approximate subadditivity of entropy.

Spectral vs. entropic independence. In [ ], spectral independence is defined as an upper bound
on the spectral norm of the pairwise correlation matrix of y, or equivalently, an upper bound on the
second largest eigenvalue of the simple (non-lazy) random walk on the 1-skeleton of y, when viewing
u as a weighted high-dimensional expander [ ; ].> The simple random walk on the 1-skeleton
of y samples from uDy_,q by transitioning from {i} to {j} with probability proportional to #Dy_,»({7,j}).
An upper bound on the second largest eigenvalue of this random walk is equivalent (up to a simple
linear transformation) to an upper bound on the second largest eigenvalue of the k <+ 1-down-up walk to
sample from y. One walk is simply a lazier version of the other. Standard results about the relationship
between second largest eigenvalue and variance contraction then imply that variance contraction of Dy_,;
with respect to 4 Dy_,; is equivalent to variance contraction of Dy_,; with respect to y. However, such an

%In the original definition [ ; ; ], such a requirement is imposed for both y and all links of y, where the link of u
w.r.t. a set T is the distribution of S — T glven that S is sampled from u conditioned on T C S. For the sake of clarity, and to avoid
unnecessary assumptions on uniformity over links, we take the lone term “spectral independence” to only refer to the link of T = @,
with the understanding that one usually requires spectral independence for all links; similarly, to derive mixing time bounds for
down-up walks, we require entropic independence for all links.



equivalence does not hold when we replace variance with entropy: entropy contraction of D,_,; with
respect to uDj_,, is a stronger assumption than entropic independence; it is easy to come up with natural
distributions that do not have good D;_,; entropy contraction. This introduces an inherent difficulty
in establishing entropic independence. While spectral independence is about an n X n matrix, or the
expansion of a simple graph on n nodes (whose edges are given by uDj._,,), there is no such compact object
determining entropic independence; one has to look at all the k-sized sets and the full distribution p.

We connect entropic independence to the geometry of the generating polynomial of the distribution u. The
multivariate generating polynomial g, € R|zy,...,z,] associated to y : ([Z]) — R is given by

B2 = o) [T

ieS

>0”
denotes the distribution y tilted by external field A, which is a distribution on ([z]) given by

Py [S] o u(S) - T T

ieS

Definition 3 (External field). For a distribution y on ([z]) and A = (Aq,...,A,) € R?,, the notation A * u

Note that for any (z1,...,zx) € R,
g/\*y(zl,...,zn) o« gu(Mz1,. .., Anzn).

In Theorem 4, we show that a distribution u is entropically independent exactly when a transformed
version of the generating polynomial of u can be upper bounded by its linear tangent, a property implied
by concavity of the said transformation. We further show that this concavity is equivalent to fractional
log-concavity [ ], which is in turn equivalent to spectral independence under arbitrary external fields.

We recall the definition of a-fractional-log-concavity [ 1.

For a € (0,1], a distribution y on ([l’:]) is said to be a-fractionally log-concave (abbreviated as a-FLC)
if log g, (24, ...,25) is concave, viewed as a function on R%,. We note that 1-FLC is equivalent to com-
plete/strong log-concavity [ ; I B

Theorem 4. Let y be a probability distribution on (['Z]) and let p = (p1,...,Pn) := UDy_s1. Then, for « € (0,1],
wis (1/w)-entropically independent
n
& V(z1,...,2z0) € RY, gy(z’i‘,...,z%)l/k“ < Zpizi.
i=1
In particular, if y is a-fractionally log-concave, then w is (1/w)-entropically independent. Moreover,

A sy is (1/a)-entropically independent YA = (Aq,...,A,) € RY,
<= u is a-fractionally log-concave.

Figure 1 shows a comparison of the notions in terms of the transformed generating polynomial

o

g},(zl, .. .,z‘;‘l)l/k”‘.

Spectral independence is equivalent to local concavity of this function around the point (1,...,1) [ I
Theorem 4 shows that entropic independence is equivalent to the linear tangent at (1,...,1) upper bounding
the function. Fractional log-concavity is equivalent to concavity of the entire function at all points in the
positive orthant; roughly speaking, external fields allow us to replace the (1,...,1) point by any other point
in the positive orthant.



spectral independence entropic independence fractional log-concavity

Figure 1: The axes are z1, z, etc. The highlighted area is a level set of the transformed generating
polynomial, e.g., where g,(z{,...,z};) > 1. For a degree ka-homogeneous function like g, (z{,...,z}),

log-concavity, concavity of g}/ ke and quasi-concavity, that is convexity of the level sets, are all equivalent

(folklore, see Lemma 34). Notions get stronger from left to right. Spectral independence means that around
the point (1,...,1), the level set is locally convex. Entropic independence means that the entire level set is
globally above its tangent at (1,...,1). Fractional log-concavity means that the level set is globally convex.

The importance of the external fields assumption. One might a priori wish for entropy contraction or
optimal mixing times from just spectral independence with no extra assumptions. In fact, Liu [ ]
conjectured that if y is an O(1)-spectrally independent distribution, the down-up walk for sampling from
1 has modified log-Sobolev constant )(1/k). We refute this conjecture. Any a-fractionally-log-concave
distribution is also O(1/«)-spectrally independent | , Remark 68]. However, there are examples of
Q(1)-fractionally-log-concave distributions for which the down-up walk is not even irreducible — see
Remark 6. Even ignoring the ergodicity issue of the walk, it is well-known that the spectral gap of a Markov
chain does not automatically translate into a modified log-Sobolev inequality [see, e.g., ]. A classical
example is the random walk on a constant-degree expander graph. If G is an n-node constant degree
expander, then the random walk on G has (1) spectral gap, but its mixing time is ~ log(n); a constant
factor entropy contraction of this random walk would imply a mixing time of ~ loglog(n) which is clearly
wrong. One can view (the lazy version of) this random walk as a special case of down-up random walks.

Let u : ([g]) — R>( be the uniform distribution on the edges of the expander. Then the 2 <+ 1 down-up
walk is the same as the lazy random walk on G itself. This shows that even for down-up random walks,
one cannot obtain entropic independence from spectral independence with no extra assumptions.

As mentioned above, for general spectrally independent distributions, the k <+ k — 1 down-up walk might
not even be ergodic. We can fix the lack of ergodicity in the k <+ k — 1 down-up walk by considering the more
general k <+ ¢ down-up walk for smaller values of . For this more general walk, we establish a modified
log-Sobolev inequality for all fractionally log-concave distributions via entropic independence. More

precisely, in Theorem 5, we show that for a-fractionally-log-concave y : ([Z]) — R, the k <> (k— [1/a])
down-up walk [ ; ], has modified log-Sobolev constant Q(k~'/%). The dependence on « is
optimal — again, see Remark 6.

Theorem 5 is a natural generalization of a recent result of Cryan, Guo, and Mousa [ , Theorem 1],
which shows that the modified log-Sobolev constant of the k <+ (k — 1)-down-up walk for sampling from

a log-concave (i.e.,, & = 1) distribution y : ([Z]) — R is at least Q(%) We remark that our proof for
Theorem 5 is shorter and less “mysterious” than that of [ , Theorem 1].

Theorem 5. Suppose i : ([2’]) — R>q is a-fractionally log-concave, or more generally (1/a)-entropically independent

for all links. Let ¢ < k — [1/a]. For all probability distributions v on ([Z]),

DxL(vDg—¢ || #Dg—¢) < (1 —x) D (v || p)-

Consequently, the k < £ down-up walk w.r.t. y has modified log-Sobolev constant > Q)(x) where ) hides an absolute
constant and /w1
(k+1—€—1/a)V/* Vel T2 ™ (k- € — )

(k+1)1/« '




For 1/a € Z we can obtain a simpler looking alternative bound of

- k—+¢ k
- \1/a 1/a) "
Remark 6. Theorem 5 is tight up to a constant. For a = 1, it is easy to come up with a log-concave

distribution y for which the one-step down-up walk has modified log-Sobolev constant @(%), eg., U
uniformly supported on {[k], [k — 1] U {k+1}}. For « = 1/r with r € N1, we can consider the following

example. Let i be the uniform distribution on ([]?,]), and we will define a corresponding r-fold distribution

1) supported on

(s 0115 e suppr < ("7 1),

The probability mass function on its support is given by

u (S x [1]) = u(S),

where S x [r] is the set {(a,i) | a € S,i € [r]}. Since the generating polynomial of 4#(") is determined by that
of i, which is 1-FLC, we can check that this distribution is indeed a = 1/r fractionally log-concave.

Let k = kK'r. Clearly, the k ¢+ (k — 1')-down-up walk w.r.t u") with 7’ < r is not even irreducible, because
the down-up walk always stays at the same place. On the other hand, by comparing the k <+ k — r-down-up

walk w.r.t 4" with the ¥ ++ (K — 1)-down-up walk w.r.t 11, we can show that the former has modified

log-Sobolev constant ® (1 / (k;’ )) =0 (k{%)

1.1 Application: Fractionally Log-Concave Polynomials

The most straightforward application of our techniques is to establish modified log-Sobolev inequalities
and tight mixing times for distributions that are spectrally independent under arbitrary external fields,
a.k.a. fractionally log-concave distributions [ ]. In Sections 1.2 and 1.3, we demonstrate applications
beyond this setting, where one has to combine our techniques with others to establish tight mixing time
bounds.

Theorem 5 is a generalization of the main results of Cryan, Guo, and Mousa [ ], so as a special case
we recover the tight mixing time and MLSI constants established previously for all distributions with a
log-concave generating polynomial [see , for examples]. Here we highlight two important examples
of fractionally log-concave distributions that go beyond simple log-concavity. We obtain, for the first time,
tight mixing time bounds and MLSI constants for these examples; for further examples of fractionally
log-concave distributions see [ ]. We emphasize that in both examples, the tight mixing time is near-
quadratic and notably not near-linear. As a result, none of the previous high-dimensional-expanders-based
frameworks could obtain the tight mixing time in these examples.

Definition 7 (Monomer-Dimer Systems). Suppose that a graph G = (V, E) is given together with node
weights z : V — R>( and edge weights w : E — R>g. Then the monomer-dimer system is the distribution
on matchings M of the graph where

IP[matching M] o< [ w(e) - 11 z(v).
eeM v not matched by M

For a matching M, the edges in the matching are called dimers, and the nodes outside of the matching are

V><{0,1}) s Reg

called monomers. For an arbitrary monomer-dimer system, we can define a measure y : ( v

capturing the distribution of monomers

(S) = 0 FoveV:|ISn{(v0),(v,1)} #1,
M) = Y- {weight(M) | monomers of M = SN (V x {1})} otherwise.
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Figure 2: 2-site Glauber dynamics on monomers. A Figure 3: Example of a matrix L with quadratic mix-
configuration consists of an assignment of binary ing time for down-up walks. Note that L + LT =
labels indicating monomer/non-monomer to the ver- 0 = 0. L is block-diagonal with 2 x 2 blocks. The
tices. In each step, two uniformly randomly picked nonsymmetric determinantal point process selects
vertices have their labels resampled conditioned on independently and uniformly at random between
all other labels, with probabilities dictated by the including/excluding both elements {2i,2i + 1} for
monomer distribution. each 7.

In [ ], the authors showed that the distribution of monomers y is & = 1/2-fractionally-log-concave
and proceeded to use the |V| <+ |V| — 2 down-up random walk, a.k.a. the 2-site Glauber dynamics (see
Fig. 2), to show polynomial-time sampling algorithms for monomer-dimer systems on planar graphs.
Alimohammadi, Anari, Shiragur, and Vuong [ ] showed a spectral gap of Q(1/ |V|?), and as a result
a mixing time of O(|V|*) assuming a good starting point, for this random walk. As a direct corollary of
Theorem 5, we obtain the following result:

Corollary 8. The 2-site Glauber dynamics on the monomer distribution of a k vertex graph has MLSI constant
Q(1/k?). As a result it mixes in time O(k?), assuming the walk is started from a configuration with probability mass
> 1/2poly(k),

Note that the requirement on the starting point is fairly weak (and can even be weakened further to

1/ 22P°1y10g(k)). In particular, if we find the matching M that has the maximum monomer-dimer weight
using a maximum weighted matching algorithm, and start the random walk from monomers of M, that
automatically satisfies the initial condition.

It is not hard to see that Corollary 8 is tight. Consider the case where the graph G itself is a perfect
matching. Then, each step of the 2-site Glauber dynamics has only a 1/k chance of picking two endpoints
of the same edge; if that does not happen, the resampling of the two vertices does not change anything and
a turn is “wasted.” It is also not hard to see that roughly speaking all of the Q(k) pairs of endpoints of
edges need to be resampled once before mixing. So clearly, the mixing time of this chain is Q(k?).

Our next application involves nonsymmetric determinantal point processes, a generalization of determi-
nantal point processes which have found many uses in machine learning, recommender systems, and
randomized linear algebra [see, e.g., I

Definition 9 (Nonsymmetric Determinantal Point Process). Suppose that L € RF*¥ is such that L+ LT =
0. The distribution on subsets T of {1,...,k}, giving a weight of det(Lt 1) to each set, is called the
(nonsymmetric) determinantal point process. We view this distribution as y : ([k] xéo,l}) — R0, where

(5) = 0 Ji: SN {(i,0),(i,1)} #1,
=)= det(Ltr) otherwise, where T = {i | (i,1) € S}.

Alimohammadi, Anari, Shiragur, and Vuong [ ] showed that the above distribution is also & =1 /2-
fractionally log-concave, and as a result established a spectral gap of Q)(1/k?) and a mixing time of O(k?)
with a good choice of the starting point, for the k <+ k — 2 down-up random walk.

Corollary 10. The k <> k — 2 down-up random walk on nonsymmetric determinantal point processes has MLSI
constant Q(1/k?). As a result, it mixes in time O(k?), assuming the walk is started from a set with probability mass
> 1,/2poly(k),



Again, finding a starting point satisfying the initial condition is not difficult; for example, it can be achieved
by a simple local search [ ]. Once again, it is not difficult to see that this quadratic mixing time is
tight. The matrix L realizing a mixing time of Q)(k?) can be seen in Fig. 3. The distribution defined by this
particular L in Fig. 3 is the same as the one described by the tight example of monomer distributions; we
leave this as an exercise to the reader.

Remark 11. Both examples mentioned above stem from the so-called Hurwitz-stable polynomials [see

]. Theorem 5 can be applied more generally to get tight mixing time bounds for arbitrary fractionally
log-concave polynomials, and as a special case, the so-called sector-stable polynomials [ ]. However,
there currently seems to be a loss in the analysis of Alimohammadi, Anari, Shiragur, and Vuong [ ]
when going from sector-stability to fractional log-concavity for general sector-stable polynomials (this loss
is avoided in the case of Hurwitz-stability though). As a result, while we get improved mixing time bounds
in other examples of fractionally log-concave polynomials, the bounds do not always seem to be tight. If the
analysis of [ ] is improved in future works, and one can establish that homogeneous &-sector-stable
polynomials are indeed a-fractionally log-concave, then combined with our results we would get a tight
mixing time bound for all sector-stable polynomials.

1.2 Application: High-Temperature Ising Models
An Ising model is a probability distribution on the discrete hypercube {£1}" given by

pa) cexp (33 13) + (h,x) )

where | € R"*" is a symmetric matrix (known as the interaction matrix) and & € R" is known as the
external field. These models are of fundamental importance in statistical physics and other areas; see e.g.
[ ; ; ; 1

The Glauber dynamics (or Gibbs sampler) is a simple and very popular discrete time Markov chain to
sample from pj,. Its transitions may be described as follows: at each step, given the current state o,
a coordinate i is chosen uniformly at random from [#] and its value is resampled from the conditional
distribution (- | 0—;); it can also be viewed as a down-up walk on a homogenized version of y, see
Definition 26. The study of the Glauber dynamics for the Ising model is a classical topic with numerous
results: see e.g. [ ; ] for an introduction. Rapid mixing of the Glauber chain is interconnected
with other structural properties of the Gibbs measure. In particular, it is well-known that the Dobrushin
uniqueness condition - ||| < 1 (equivalently, max;c[,) X |Jij| < 1) — implies that the Glauber dynamics
mixes in time O(nlogn).

Although Dobrushin’s condition is a tight condition for rapid mixing in certain cases (e.g. the Curie-Weiss
model, which is the Ising model on the complete graph), there are many interesting cases where Dobrushin’s
condition is extremely restrictive. An important example is the famous Sherrington-Kirkpatrick (SK) model
from spin glass theory [ ; 1, where J;; ~ N(O, p%/n) is a GOE random matrix. In this case,
Dobrushin’s condition implies rapid mixing only if the inverse temperature B is O(1/+/n), even though it
is widely believed that the Glauber dynamics mixes rapidly for all 8 < c for an absolute constant ¢ > 0,
even conjecturally with ¢ =1 [Var].

Polynomial time mixing in the SK model was recently established with ¢ = 1/4 in recent work of Eldan,
Koehler, and Zeitouni [ ] as a consequence of the following general result: if the interaction matrix
] is positive semidefinite, then the spectral gap of the Glauber dynamics for the Ising model is at least

%, where ||]||op denotes the 2 operator norm, which, since | is symmetric, coincides with the

largest eigenvalue of |. The interaction matrix | can always be assumed to be positive semidefinite without
loss of generality, because adding a multiple of the identity matrix to ] does not change the measure i .
By the well-known relationship between the spectral gap and the mixing time, the result of [ ] implies
that the mixing time of the Glauber dynamics is O (m “(n+|h Hl)>/ i.e. quadratic in n. However, it

seemed plausible that the true mixing time was faster than this.



Here, as an application of our theory, we establish an optimal O(nlogn) bound on the mixing time and
also show that the modified log-Sobolev inequality holds:

Theorem 12. Let iy denote an Ising measure on {£1}" with 0 < ] = ||]|lopl and let P denote the transition
matrix of the the Glauber dynamics. Then,

(a) The modified log-Sobolev constant py(P) of P satisfies po(P) > 1=Ullor.

n

(b) The Glauber dynamics mixes in time O ( AL )

1={Jllor
The MLSI is used in the proof of mixing, but it also has many other useful direct consequences, such as
concentration of measure and reverse hypercontractive estimates [ ; 1.

Theorem 12 can be applied to a number of other models of interest. For example, a d-regular version of the
diluted SK model can be formed by taking a random d-regular graph and assigning edge weights i.i.d. from
Uni(£p). Combining the above result with a version of Friedman’s theorem (see [ ] for details and
references) proves the optimal O(nlog(n)) mixing time of Glauber dynamics for all § < ; \/,lify whereas
Dobrushin’s uniqueness condition, or the more precise tree uniqueness criterion (see e.g. [ 1), holds
only when g = O(1/d). The reason for the discrepancy is that for these spin glass models, the uniqueness
threshold is not the relevant phase transition on the infinite d-ary tree. Instead, the properly analogous
phase transition concerns the tree with spin-glass boundary conditions [ ; ] or the purity of the
limiting Gibbs measure with free boundary conditions [ ; ; ], otherwise known as the
reconstruction threshold, which is well past the uniqueness threshold.

Comparison to previous work. Although sampling from Ising models is a classical topic, only recently
in the breakthrough work of Bauerschmidt and Bodineau [ ] was a polynomial time sampling result
established for the SK model with constant . Under the same condition 0 < | < I as above, they showed
how to draw a sample from the Ising model by sampling from a related log-concave distribution in IR”
and applying an additional rounding step. They also proved a version of the log-Sobolev inequality, but
their version only implies ¢?(vV™) time mixing bounds for the Glauber dynamics in the SK model — see
discussion in [ ].

Later, in the work [ ] it was proved that the Glauber dynamics indeed mix in polynomial time. Their
result established a reduction for proving functional inequalities to the case where ] is rank one, and the
O(n?) mixing time guarantee was established using the Poincaré inequality of [ ; ]. However,
there was no analogous way to establish the MLSI for the class of rank-one Ising models based on existing
results. For example, directly applying a state of the art result such as [ ] gives an MLSI with constant
e~ V") The issue is that in these models, like the SK model itself, the conditional marginals can be very
tiny and existing methods are unable to handle this efficiently. In contrast, our approach based on entropic
independence requires no assumption on boundedness of the conditional marginals and enables us to
prove the MLSIL.

1.3 Application: Mixing up to the Uniqueness Threshold

Our final collection of applications are to the Ising and hardcore models in the so-called tree uniqueness
regime. In this subsection, for consistency with existing literature, we will slightly change our notation
compared to Section 1.2 and define an Ising model on a graph G = (V, E) to be the probability measure
over spins ¢ € {£1}V with probability mass function

(o) o ANiloi=+1}| H ﬁﬂ(m:tfj)
{ij}€E
parameterized by external field A and edge activity B, where the parameter B controls whether the spins like

to align with (8 > 1, ferromagnetic) or opposite to (8 < 1, antiferromagnetic) their neighbors on the graph. In
particular, the Ising model with external field A and edge activity B on a graph G can be recovered as the

1°§A, where Ag is the

Ising model in Section 1.2 with interaction matrix | = 10%’SAG and external field i =



adjacency matrix of G. Similarly, the hardcore model is the probability measure on independent sets o C 2V
given by
H(@) o< A,

i.e., weighted by the size of the independent set, where the parameter A is conventionally referred to as the
fugacity. The study of these two models has been closely linked; in some cases the hardcore model can even
be recovered as a limit of the Ising model with strongly antiferromagnetic interactions (8 — 0,A — 0).

There has been an intense interest in understanding the sharp thresholds for mixing in the hardcore
and Ising models on the class of graphs of maximum degree A based on connections to the unlqueness
threshold on the infinite A- regular tree. After a long line of work including [ ; ; ;

; ; ; ; ; ] we know that in the particular case of the hardcore
model, sampling is Computatlonally hard above the uniqueness threshold on graphs of degree at most A
[ ], and below the uniqueness threshold sampling can be done in O(n?) steps of the Glauber dynamics
[ ] or 6(CAn) steps if the maximum degree A is fixed [ ; I; Ca is an exponentially
large function of the maximum degree A. The picture is similar for the Ising model, with Cp being instead
a polynomially large function of A whose exponent depends on the gap to the uniqueness threshold
[ ; ]. Nevertheless, it has been generally expected that the mixing time of Glauber dynamics
is always O(nlogn) within the uniqueness regime, regardless of the degree of the graph. Chen, Liu, and
Vigoda [ ] raised the challenge of proving even a weaker bound with near-linear dependence on n
and polynomial dependence on A, i.e., O(n - poly(A)), on the mixing time of Glauber dynamics for the
tree-unique hardcore model. Chen, Feng, Yin, and Zhang [ ] also raised the open problem of
proving O(n) mixing time in the high-degree setting.

Optimal mixing of the (balanced) Glauber dynamics. For sampling from the hardcore model, we
consider a variant of Glauber dynamics which we call the balanced Glauber dynamics. In this variation, the
update site is chosen in a slightly non-uniform fashion, effectively introducing a small number of additional
“balancing” updates into the usual Glauber chain. We explain the motivation for this small modification in
Section 1.4 below.

Theorem 13. Suppose y is the é-unique hardcore model on G = (V,E) with |V| = n. The balanced Glauber
dynamics with Os(nlog n) many steps approximately samples from .

Theorem 14. Suppose y is the 5-unique Ising model on G = (V, E) with |V| = n. The (standard) Glauber dynamics
with Os(nlogn) many steps approximately samples from .

Remark 15. The uniqueness region defined for the Ising model has a strange peculiarity: Theorem 14
in its exact form, that is nearly-linear mixing for all degrees, can actually be derived without appealing
to the techniques of this work or even the prior work of Chen, Feng, Yin, and Zhang [ ] who
studied spectral gap for high-degree regimes. The reason is that /-unique Ising models with high enough
degree A > Ay () satisfy the Dobrushin uniqueness condition! And complementing that, all small degrees
A = O(1) are covered by the earlier work of Chen, Liu, and Vigoda [ I

To see why high-degree cases fall under Dobrushin’s regime, note that each entry of the Dobrushin
influence matrix (see [ ] for definition) can be bounded by |log(pB)|/2. Be aware that the notation g is
not consistent between our work and [ |; one can translate g — log(B)/2 to go from our notation
to that of [ ]. This means the norm of the Dobrushin influence matrix is bounded by A - |log(B)|/2
which is asymptotically

% : (2—A®(5) n o(1/A2)) =1-0(5) +0(1/A).

Fixing ¢, for large enough A, this norm gets smaller than a constant < 1, which entails Dobrushin
uniqueness and hence nearly-linear mixing time [ ; 1.

We remark that “asymptotic Dorbushin uniqueness” does not happen for the hardcore model or slight
variants of the tree-unique Ising model (see Remark 16 for details).
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Remark 16. Note that in the limit A — oo, the endpoints of the uniqueness region for the Ising model are
essentially of the form g = 1+2/A. For antiferromagnetic Ising models, even if § is outside of this region
(e.g. B~1—a/A for a > 2), there is a critical external field A, € (0,1) below which the Ising model is in
the tree uniqueness region [ ]: we also establish an analogous result covering this two-dimensional
uniqueness region in (B, A) space using the balanced Glauber dynamics. The sublinear time sampling
result (Theorem 18) and concentration result (Theorem 21) below also extend to this setting.

Sublinear time sampling algorithms. Supposing that the graph G is represented using the standard
data structure of adjacency arrays, i.e., each vertex has an array of neighbors so that sampling a random
neighbor of a vertex can be performed in O(1) time. We show how to sample from both the hardcore
model and the Ising model in runtime nearly linear in the output length 7, and so in sublinear time for
graphs of at least polylogarithmic average degree.

Theorem 17. Suppose y is the 5-unique hardcore model on G = (V,E) with |V| = n, and G is represented by
adjacency arrays. Then, there is a randomized algorithm to approximately sample from yu which can be implemented
in expected time Og(nlog®(n)).

Theorem 18. Suppose y is the 6-unique Ising model on G = (V, E) with |V| = n and G is represented by adjacency
arrays. Then a step of the Glauber dynamics can be implemented by a randomized algorithm with expected running
time O(1). Combined with Theorem 14, this implies that approximate sampling can be performed in expected runtime
Os(nlogn).

Sharp concentration of measure and transport-entropy inequalities. Using our restricted modified log-
Sobolev inequalities, we show via the Herbst argument that sub-Gaussian concentration bounds hold for all
Lipschitz functions in both the hardcore and Ising model in the uniqueness region. By the celebrated result
of Bobkov and Gotze [ ], concentration of Lipschitz functions is equivalent to a W; transport-entropy
inequality, i.e. Wy (v, u)? < C Dk (v || 1) for all measures v where W; denotes the Wasserstein-1 distance
with the Hamming metric.

Theorem 19. Suppose y is the 5-unique hardcore model on a graph with n vertices, and let f be so that |f (o) —
f(o-)| < « for all adjacent states (0—,04.), i.e. f is x-Lipschitz with respect to the Hamming metric. For all t > 0,
we have for some ¢ = c(6) > 0 that

Pulf —Eulf] > f] < e/,

Remark 20. In the hardcore model with small fugacity, sites are much more likely to be unoccupied than
occupied, which can lead to even better concentration. To reflect this, we establish (see the full version
[ , Proposition 71]) a more precise two-level Bernstein-type inequality for monotone functionals,
such as the number of occupied sites in the hardcore model.

Theorem 21. Suppose y is the 5-unique Ising model on a graph with n vertices, and let f be so that |f (o) —
f(o-)| < « for all adjacent states (0—,04), i.e. f is k-Lipschitz with respect to the Hamming metric. For all t > 0
we have )

Pylf —Eulf] > ] < e e/xn

for some ¢ = ¢(5) > 0.

1.4 Techniques

First, we discuss the idea behind Theorem 4, which in particular establishes entropic independence of
the probability distribution u given fractional log-concavity of the generating polynomial g,. Recall that
(1/a)-entropic independence holds for y if the inequality

1
Dx1.(VDg1 || pDgs1) < @DKL(V | )

is true for all probability measures v. The connection with the generating polynomial appears when we fix
the left hand side, or more precisely fix the marginal g = (q1,...,qx) := vDk_,1, and ask for the worst-case
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choice of v given this constraint: the measure v minimizing the rhs. This is a minimum relative entropy
problem, so based on convex duality (Lemma 35, cf. [ 1), we get a formula in terms of “dual” variables
logzy,...,logz, corresponding to the constraints; concretely, we have

. . Qu(z1, ..., zn)
inf {Dy (v | 1) | vDg 1 = 4} = — log ( 12f>ow> |
JeerZn Zl S Zy

The factor of k in the exponent of each z; appears because the down operator Dy_,1 has a 1/k chance of
picking any particular element of its input set S. Note that the rhs can now be lower bounded by making
any choice of the variables zy, ...,z, > 0. By choosing z related to g and p := uDj_,1, we can then show
that the right hand side can be lower bounded in terms of Dk (g || p) = Dxvr(vDx_1 || uDy_1) if an
appropriate convexity inequality holds, and in particular if we have a-fractional log-concavity; we leave the
details to Section 4.

Next, we discuss the techniques underlying our results in Section 1.3. A classic approach to the analysis of
Markov chain mixing times consists of establishing functional inequalities, where roughly speaking, one
shows that a measure of distance to the stationary measure y multiplicatively contracts at every step. Two
popular measures of distance to stationarity for a distribution v are the x-divergence, a.k.a. the variance of
v’s density w.r.t. u:

dv 2]
Er (dy 1) '

and the relative entropy, a.k.a. the Kullback-Leibler divergence:

v V]
A 8]

=

E,

Contraction of these “divergences” are related to Poincare and modified log-Sobolev inequalities respectively
[see, e.g., ]. Contraction of variance is often easier to establish, because of its relation to the spectral
gap of the Markov chain which enables a host of techniques for spectral analysis, but often it leads to a
suboptimal (with a polynomial factor loss) bound on the mixing time; in contrast, modified log-Sobolev
inequalities are notoriously difficult to establish, especially since there is no equivalent spectral connection,
but they can lead to optimal mixing time bounds.

It is well-known that entropy contraction is strictly stronger than variance contraction [ ]. Moreover,
for distributions v that are infinitesimally close to y, entropy contraction and variance contraction become
equivalent. Roughly speaking, this is because the functional x — xlogx can be approximated by its
quadratic Taylor expansion near x = 1, with the second degree term giving us the variance.

Restricted modified log-Sobolev inequalities. Motivated by the observation that entropy contraction and
variance contraction are equivalent in infinitesmially small neighborhoods of the stationary distribution, we
propose studying an intermediate form of functional inequality that we call a restricted modified log-Sobolev
inequality. Roughly speaking, this is an inequality which guarantees entropy contraction in one step of
the Markov chain for a restricted class of distribtuions v. Intuitively, one should think of this as entropy
contraction in a (sufficiently) large neighborhood of the stationary distribution. Our work shows that, in well-
studied settings, restricted modified log-Sobolev inequalities can be considerably easier to establish than
(full) modified log-Sobolev inequalities, while at the same time, yielding essentially the same consequences
for mixing times and concentration of measure.

Restricted entropic independence. In order to establish restricted modified log-Sobolev inequalities we
use a generalization of the notion of entropic independence (Definition 2). In Theorem 4, we show that
spectral independence [ ], a form of variance contraction, for not just the distribution y, but rather all
external fields applied to y, automatically entails entropic independence, a form of entropy contraction. The
main barrier in applying this framework to the hardcore model, is that arbitrary external fields can easily
take us outside the uniqueness regime where there is no hope of mixing, let alone spectral independence;

12



this is because an external field can change the parameter A (the fugacity) to an arbitrarily large positive
number. Nevertheless, we employ the fact that a restricted class of external fields keep the distribution in
the spectral independence regime [ ], and generalize the entropic independence machinery to show
entropy contraction for a restricted class of distributions v, which includes all of the distributions necessary
for analyzing the mixing time of Markov chains and concentration of Lipschitz functions.

Boosting contraction results using field dynamics. We follow the footsteps of the prior work of Chen,
Feng, Yin, and Zhang [ ] who invented a new Markov chain called field dynamics, and showed
its utility in establishing a spectral gap, both for the field dynamics itself, and by a comparison argument,
for the Glauber dynamics. Field dynamics allows one to combine a loose bound on variance contraction
near the uniqueness threshold together with an optimal bound for variance contraction far away from the
threshold, to get a boosted optimal bound on variance contraction near the threshold. Our arguments follow
the same high-level plan but with variance replaced with entropy. That is, we establish restricted modified
log-Sobolev inequalities for the field dynamics first, and use optimal entropy contraction inequalities far
away from the uniqueness threshold, to get a boosted optimal entropy contraction near the threshold. We
then use comparison arguments to translate the results to a variant of Glauber dynamics.

A challenging part of using restricted modified log-Sobolev inequalities to establish mixing times is that a
priori there is no reason that the evolution of the Markov chain will keep the distribution in the restricted
class where we have entropy contraction, even if we initially start from a distribution within this class. We
show that in the case of tree-unique hardcore and Ising models, simple modifications of the well-studied
Glauber dynamics Markov chain and the field dynamics guarantee that the distribution at time t never
escapes the restricted class of distributions.

Balanced Glauber dynamics, and field dynamics interleaved with systematic scans. As noted above,
in our analysis of the hardcore model, we consider a variant of Glauber dynamics. In this variation,
the update site is chosen in a slightly non-uniform fashion, effectively introducing a small number of
additional “balancing” updates into the usual Glauber chain. Similarly, for another Markov chain called
field dynamics that was introduced by Chen, Feng, Yin, and Zhang [ ], we sometimes add an
additional interleaving systematic scan step to keep the distribution within the restricted region of entropy
contraction.

The introduction of these additional steps is very analogous to the use of projections in optimization
algorithms such as projected gradient descent. In our case, these steps serve as projection operators in the
following sense: they guarantee that the density of the resulting distribution lies in a restricted class of
measures where we have contraction of entropy, while ensuring that the projection itself does not increase
the relative entropy. The projection step enables us to show that the Glauber/field dynamics step makes a
large amount of progress. In the optimization literature, such projection steps are sometimes crucial: the
Iterative Hard Thresholding algorithm [ ] alternates between a projection onto the set of sparse vectors
and a gradient step on the squared loss, where the sparsity generated by the projection step is needed
to argue that the gradient step makes progress (enabling appeal to the “Restricted Isometry Property”).
Somewhat similarly, the Nash-Moser iteration (see, e.g., [ 1) combines the Newton step with a step
which improves regularity.

We leave it as an interesting open question to investigate whether for the hardcore model, the balancing
steps added to Glauber dynamics are actually needed. Stated differently, does vanilla Glauber dynamics
(potentially started from a judicious choice of starting point) automatically remain in the C-bounded region
of entropy contraction?

Concentration inequalities. MLSIs have other applications beyond mixing time of Markov chains; for
example, they can be used to establish concentration inequalities using a technique known as the Herbst
argument [see, e.g., ]. We show that for the Ising model and the hardcore model in the uniqueness
region, restricted modified log-Sobolev inequalities are enough to establish the same optimal concentration
inequalities (as would be obtained by conjectured modified log-Sobolev inequalities), by demonstrating that
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the Herbst argument essentially only needs entropy contraction for functionals within the “good restricted
class” of C-bounded measures.

Sublinear time sampling algorithms. Our results improve the mixing time bounds for the high-degree
regime of the Ising and hardcore models. One concern might be that mixing time could be a misleading
indicator of algorithmic tractability; after all, it is easy to construct Markov chains that mix in one step,
but whose steps take exponential time to implement. This concern is moot for Glauber dynamics in
bounded-degree graphical models, as the steps of Glauber dynamics can be easily implemented in constant
time. We show that this concern is moot even for the high-degree regime, by introducing new tricks to
implement Glauber dynamics updates of the tree-unique Ising and hardcore models in amortized O(1)
time per step, improving on the naive implementation which takes O(A) time per update. For the Ising
model, we assume the ability to sample uniformly random neighbors of any desired node in the graph,
and show that a trick based on Bernoulli factories can achieve the desired O(1) update time. As far as we
know, this trick has not been studied before, and it might be of independent interest.
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2 Organization

The remainder of this extended abstract is organized as follows. In Section 4, we prove Theorem 4. The
proof of this result relies on several preliminary notions, which we record in Section 3. The proofs of the
results in Sections 1.1 and 1.2 may be found in the full version [ ], and the proofs of the results in
Section 1.3 may be found in the full version [ ].

3 Preliminaries

3.1 Markov Chains and Functional Inequalities

Let u and v be probability measures on a finite set (). The Kullback-Liebler divergence (or relative entropy)
between v and y is given by

v(x)
Dxr(v | u) =) v(x)lo ( ),
0= o8 ()
with the convention that this is oo if v is not absolutely continuous with respect to . By Jensen’s inequality,
Dxr(v || #) > 0 for any probability measures y, v. The total variation distance between y and v is given by

dy(v) = 5 T ()~ v(x)l.

xeQ)

A Markov chain on Q) is specified by a row-stochastic non-negative transition matrix P € R®*. We refer
the reader to [ ] for a detailed introduction to the analysis of Markov chains. As is common, we will
view probability distributions on () as row vectors. Recall that a transition matrix P is said to be reversible
with respect to a distribution y if for all x,y € Q, u(x)P(x,y) = u(y)P(y,x). In this case, it follows
immediately that u is a stationary distribution for P i.e. uP = p. If P is further assumed to be ergodic,
then y is its unique stationary distribution, and for any probability distribution v on Q, dty (vP!, ) — 0 as
t — co. The goal of this paper is to investigate the rate of this convergence.
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Definition 22. Let P be an ergodic Markov chain on a finite state space () and let i denote its (unique)
stationary distribution. For any probability distribution v on ) and € € (0,1), we define

tmix(P,v,€) = min{t > 0 | dry(vP', p) < €},
and
tmix(P,€) = max {min {t > 0 | drv(1.P", p) < e} | x € Q},
where 1 is the point mass supported at x.

We will drop P and v if they are clear from context. Moreover, if we do not specify €, then it is set to 1/4.
This is because the growth of fnix (P, €) is at most logarithmic in 1/€ (cf. [ 1.

The modified log-Sobolev constant of a Markov chain, defined next, provides control on its mixing time.

Definition 23. Let P denote the transition matrix of an ergodic, reversible Markov chain on () with
stationary distribution .

¢ The Dirichlet form of P is defined for f,g: (3 — R by

Ep(f,8) =(f,(I-P)g)y=(I-P)f,gu

¢ The modified log-Sobolev constant of P is defined to be

00(P) = inf{ém ‘ 10 - Rog, Ent,[f] £ o},

where
Ent,[f] = E,[flog f] — E,[f]log E,[f].

Note that, by rescaling, the infimum may be restricted to functions f: () — R satisfying Ent,[f] # 0
and E,[f] = 1.

The relationship between the modified log-Sobolev constant and mixing times is captured by the following
well-known lemma.

Lemma 24 ([see, e.g., I). Let P denote the transition matrix of an ergodic, reversible Markov chain on Q) with
stationary distribution y and let po(P) denote its modified log-Sobolev constant. Then, for any probability distribution

von Qand for any e € (0,1)
} : (1 )ﬂ
2¢2 '

S R e

The next lemma, which shows that contraction of relative entropy under P implies a modified log-Sobolev
inequality, is standard.

tmix (P, v,€) < [PO(P)_1 : (IOglogmax{(%)

In particular,

Lemma 25. Let y be a probability measure on the finite set (). Let P denote the transition matrix of an ergodic,
reversible Markov chain on Q) with stationary distribution u. Suppose there exists some « € (0, 1] such that for all
probability measures v on Q) which are absolutely continuous with respect to u, we have

D (vP || uP) < (1 —a) Dxr(v || ).

Then,
po(P) >2-a.
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3.2 Down-Up Random Walks

Let0 <k <nandlet u: ([Z]) — R> be a non-negative function on the size-k subsets of [n]. Note that u is

naturally associated to a probability distribution on ([Z}). We will find it useful to view the Ising model
with # spins as a distribution over the size-n subsets of [2n]. For a set Q = {iy, ..., i}, we define the set
Q = {i,...,in}, which is disjoint from Q, and each of whose elements is naturally paired with an element
of 0.

Definition 26. For ¢ € {£1}?, let ghom ¢ (Q%O) be theset {ic Q|o;=1}U{icQ|o;=—1}.Fora
distribution y on {:I:l}Q with |Q| = n, let the homogenization of y, denoted by u"'°™, be the distribution
on {ahom ’ e {jzl}n} defined by pho™(ghom) o u (o).

We will also find it useful to interpret the Glauber dynamics as the n <+ (n — 1) down-up walk on (Q;JQ)
Recall that the down-up walk is given by the composition of two row-stochastic operators, known as the
down and up operators.

Definition 27 (Down operator). For a ground set (), and Q)] > k > /, define the down operator Dy, €
RO () s

Ao W TCS,
Dy—(S, T) =)

0 otherwise.

Note that Dk%ZDéﬁm = Dk~>m-

Definition 28 (Up operator). For a ground set Q), |Q > k > ¢, and density y : () — Rxo, define the up
operator U, € R(?)*(%) as

1) ifTCS
Uy (T,S) = {ZS'DTP‘(S’) =

0 otherwise.

If we define iy = p and more generally let yy be ypDy_,y, then the down and up operators satisfy

#k(S) Do (S, T) = pe(T)Uy1 (T, S).

This property ensures that the composition of the down and up operators have the appropriate y as a
stationary distribution, are reversible, and have nonnegative real eigenvalues.

Proposition 29 ([see, e.g., ; ; 1). The operators Dy_, Uy, and Uy_;Dy_,¢ both define Markov
chains that are time-reversible and have nonnegative eigenvalues. Moreover yuy and y, are respectively their stationary
distributions.

Definition 30 (Down-up walk). For a ground set (), |Q)] > k > ¢, and density y : ((k)) — R>q, thek < ¢
down-up walk is defined by the row-stochastic matrix Uy_,xDy_,.
3.3 Polynomials

Definition 31. The multivariate generating polynomial g, associated to a density y: ([’Z]) — R is the
element of R(zy,...,z,] given by

Su(z1,. .. 20) = ;;4(5) Hzi = ;;4(5)25,

i€S

Here we have used the standard notation that for S C [n], z° = [T;cs zi-

In [ ], the notion of fractional log-concavity of the multivariate generating polynomial was developed.
We will need a slight generalization of this notion.
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Definition 32 (Non-uniform fractional log-concavity). Consider a homogeneous distribution y : ([Z]) — R
and let g, (z1,...,z,) be its multivariate generating polynomial. For & = («y,...,a,) € [0,1]", we say that
y is @-fractionally log-concave (abbreviated as 4-FLC) if log g, (2, . .., zy") is concave, viewed as a function
over RZ .

Remark 33. If the distribution y on ([Z]) is &-FLC, then the same is true for the conditional distributions pr

forall T C ([fl]c) Here, pr is the distribution on (,En_]‘\TT‘ ) with p7(S) &< u(TUS). This is because

Sur Algrc}o AT -gu({Azitier {zi}igr)

and operations of scaling the variables or the polynomial and taking limits preserve #-FLC.

We will use the following characterization of log-concavity for homogeneous functions. Recall that a
function f : R%; — Rx is said to be d-homogeneous if f(cx) = ¢ f(x) for all ¢ > 0.

Lemma 34 (Folklore). Let C C RZ, denote a convex cone. For a d-homogeneous function f : C — Rxq the
following are all equivalent: -

1. f is quasi-concave.
2. f is log-concave.
3. f is d-th-root-concave, i.e., f1/% is concave.

We will also need the following characterization of the solution of the minimum relative entropy problem
with prescribed marginals which can be obtained by writing down the dual program and verifying Slater’s
condition.

Lemma 35 ([see, e.g., , Appendix B]). Consider a homogeneous distribution y : ([';]) — Rx>q and let
8u(z1, ..., zn) be its multivariate generating polynomial. Then, for any q € RY with Z?:q q; = 1, we have

inf {Dxr(v || 4) | vDr—1 = 9} = —log < inf M) '

21,20 >0 Z];ql e Z]:lq"

4 Fractional log-concavity and entropic independence

We now prove Theorem 4. Given this result, Theorem 5 follows from a version of the local-to-global
argument, as discussed earlier; the proof is given in the Appendix in the full version [ I

Proof of Theorem 4. Let & € (0,1] and let

. ak
t:V(z1,...,z0) € Ry, gu(z1, .-, 20) < (Z pl-zil/“>
i—1

be the condition appearing in the statement of the theorem.

We first show that a-FLC implies (1). Let y be an arbitrary «-FLC distribution on ([Z]) and let p := uDy_,1 €
RY,. Note that
Lsoi H(S)

Since gy (z{, ..., z}) is ak-homogeneous and log-concave as a function of zy, ..., z, over RZ, it follows that

o

flz1,...,zn) == gy(zllmlzz)l/lxk
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is 1-homogeneous and quasi-concave, hence, concave (Lemma 34). In particular,
n
Vzi,.,20 > 00 f(z1,.z0) < F(L, 1) + Y 0if(1,..., 1) (2 — 1).
i=1

By 1-homogeneity of f, Y1 ;0;f(1,...,1) = f(1,...,1), so that

n
Vzl,...,zn > Oif(Zl,...,Zn) < Zaif(l,...,l)zi.

i=1

Moreover, since

1 ke
3if(L,...,1) = (a-9igu(L,...,1)) - (lxk-g},(l,...,l)l/ k 1) = p;,

we get that
Vz1,.o20 > 0 f(z1,..0,20) <) pizi.
i

Rewriting this in terms of g, yields

ak
Vz1,..zn > 0:gu(z1, ..., zn) < (Z:p,-z}/"‘) ,
i

and now, (1) follows by continuity.

Next, we show that (1) implies (1/«)-entropic independence. Let v be an arbitrary distribution on ([Z}) and
let g := vDy_,q, so that g € RY; with Y1 9i = 1. We have from Lemma 35 that

Dxp(v || ) > inf {Dxr(v || #) | vDrs1 = q}
- —log< inf g”(zl""’z”)> .

210020 >0 Z’Iql . Z’:ﬂ"

By (1),
1/a ak
8u(z1, .-, 2n) ) (Zi piz; )

210002 >0 Zlql Ce an" 21002 >0 Zlql Ce an”

Plugging in z; = (g;/ p;)", we obtain

< ['T(pi/q0) .
i=1

Taking log and negating gives

D (v || u) > ak)_ gilog(qi/ pi) = ak - Dxp.(vDr—q || #Dy—s1)-
7

Since v is arbitrary, we obtain (1/«)-entropic independence.

Now, we show that (1/«)-entropic independence implies (1). By induction on the lower-dimensional faces
of the positive orthant and homogeneity, it suffices to show that

ok
Uz1,...,20) = (Zpﬂ}”‘) >1 Vz=(z1,...,24) €C,
i

where
C=1{(z1,--rzn) : gu(z1,...,20n) = 1AV (L/gu)(z1,...,2zu) = O}.
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Let z* = (27,...,z;) € C. Then, v = z* x i is a distribution on ([Z]) with g = (q1,...,qn) := vDj_1
(p1(z)V%, ..., pu(2z5)V/%). Now, examining the first order condition shows that

Dy (v || p) = —log < inf W)

21,0020 >0 leﬂh . Z’:lq”

RN CA RN T

so that by (1/«)-entropic independence,

1 n , 0(zs,...,25)
- <[ T(pi/g™ = =t
(zl)k‘h con(z5)kan P v (zl)k'h oo (z5)kan

from which we get that £(z],...,z};) > 1, as desired.

Finally, we establish the equivalence between entropic independence under arbitrary external fields and
fractional log-concavity. In one direction, we note that a-fractional log-concavity of # immediately implies
a-fractional log-concavity of A * p forany A = (A4,...,A,) € R, which as we have just seen, implies (1/«)-
entropic independence of A  p. In the other direction, suppose that A * y is (1/«)-entropic independent for
all A = (Ay,...,Ay) € RY,. Then, using (1) for all A * i, we see that

Y2y, .o, zn > 00 gu(2, ..., 28 = Aé%fn ZP(A)iZi-

Since a pointwise infimum of linear functions is concave, it follows that g, (z{, ..., z}y) is ak-root-concave,
and hence, log-concave (Lemma 34). This completes the proof. O
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