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Abstract

We design fast algorithms for repeatedly sampling from strongly Rayleigh distributions,
which include as special cases random spanning tree distributions and determinantal point
processes. For a graph G = (V, E), we show how to approximately sample uniformly random
spanning trees from G in ˜︁O(|V|)1 time per sample after an initial ˜︁O(|E|) time preprocessing.
This is the first nearly-linear runtime in the output size, which is clearly optimal. For a
determinantal point process on k-sized subsets of a ground set of n elements, defined via an
n × n kernel matrix, we show how to approximately sample in ˜︁O(kω) time after an initial˜︁O(nkω−1) time preprocessing, where ω < 2.372864 is the matrix multiplication exponent. The
time to compute just the weight of the output set is simply ≃ kω , a natural barrier that suggests
our runtime might be optimal for determinantal point processes as well. As a corollary, we
even improve the state of the art for obtaining a single sample from a determinantal point
process, from the prior runtime of ˜︁O(min{nk2, nω}) to ˜︁O(nkω−1).

In our main technical result, we achieve the optimal limit on domain sparsification for
strongly Rayleigh distributions. In domain sparsification, sampling from a distribution µ

on ([n]k ) is reduced to sampling from related distributions on ([t]k ) for t ≪ n. We show that
for strongly Rayleigh distributions, the domain size can be reduced to nearly linear in the
output size t = ˜︁O(k), improving the state of the art from t = ˜︁O(k2) for general strongly
Rayleigh distributions and the more specialized t = ˜︁O(k1.5) for spanning tree distributions.
Our reduction involves sampling from ˜︁O(1) domain-sparsified distributions, all of which can
be produced efficiently assuming approximate overestimates for marginals of µ are known
and stored in a convenient data structure. Having access to marginals is the discrete analog
of having access to the mean and covariance of a continuous distribution, or equivalently
knowing “isotropy” for the distribution, the key behind optimal samplers in the continuous
setting based on the famous Kannan-Lovász-Simonovits (KLS) conjecture. We view our result
as analogous in spirit to the KLS conjecture and its consequences for sampling, but rather for
discrete strongly Rayleigh measures.

1Throughout, ˜︁O(·) hides polylogarithmic factors in n.
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1 Introduction

Efficiently sampling from probability distributions is a fundamental algorithmic question whose
study has been instrumental in revealing connections between many areas of mathematics and
computer science. Markov chains are perhaps the single most utilized method in designing
sampling algorithms. The study of Markov chains is an active area of research in both high-
dimensional continuous settings and combinatorial/discrete settings [see, e.g., Jer98]. Unlike
many other computational tasks, sampling is not in general “efficiently verifiable.” This motivates
a sharp theoretical understanding of the mixing time of Markov chains, because there is no
general technique for knowing when to stop running Markov chains in practice without an a
priori theoretical bound.

In this work, we study how far we can push the runtime of sampling algorithms for the widely
used class of strongly Rayleigh distributions [BBL09], which are distributions supported on size k
subsets of a ground set [n] = {1, . . . , n}, denoted from here on as ([n]k ), which satisfy strong forms
of negative dependence (see Section 2.2 for a formal definition). Examples of strongly Rayleigh
distributions include uniformly random spanning trees in a graph (where n is the number of
edges and k + 1 is the number of vertices) and determinantal point processes.

Prior works [Der19; DCV19; Gil+19; AD20; CDV20; Ana+21a] discovered that under certain
regularity assumptions on the distribution µ, one can sample from µ in sublinear (≪ n) time.
Regularity assumptions are needed to prevent a scenario where an element i ∈ [n] has an extremely
high marginal PS∼µ[i ∈ S]; it is impossible to find out which element has this property (and
output it as part of the sample) without examining roughly all the n elements. This is quite
reminiscent of the problem of sampling from continuous log-concave densities on the Euclidean
space, as was noted in prior works [AD20], where important directions in the space might be
hard to find. The fastest algorithms for sampling from log-concave densities generally proceed by
transforming the distribution into an “isotropic form” (a time-consuming part of the algorithm)
which guarantees no particular direction accounts for a significant part of the variance, and
proceed to obtain samples from isotropic log-concave densities [LV18; Che21; KL22]. The Kannan-
Lovász-Simonovits (KLS) conjecture was formulated to answer how fast one can sample from
isotropic log-concave densities [LV18].

Motivated by the analogy with continuous distributions, Anari and Dereziński [AD20] defined
a notion of isotropy for discrete distributions µ on ([n]k ): µ is isotropic when PS∼µ[i ∈ S] is the
same for all i ∈ [n]. A distribution can be put in approximate isotropic position via preprocessing (see
Section 2.6 for details). The main question then becomes:

How fast can we sample from (approximately) isotropic distributions µ on ([n]k )?

Prior works [Der19; DCV19; AD20; CDV20] showed that the answer to this is ≤ poly(k, log n)
for strongly Rayleigh distributions, assuming oracle access to µ. However, the optimal sampling
runtime remained open. Our main result in this work shows that the optimal runtime for sampling
from isotropic strongly Rayleigh distributions on ([n]k ) is, roughly speaking, at most the runtime
for sampling from related distributions on ([t]k ) for t = ˜︁O(k). In other words, isotropy allows us to
pretend that n is only as large as ˜︁O(k).

Theorem 1 (Informal, see Theorem 3 for a formal statement). Suppose that the time to sample from
a class of strongly Rayleigh distributions on ([n]k ) is T (n, k). Then we can sample from (approximately)
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isotropic distributions in this family in time ˜︁O(1) · T (˜︁O(k), k).

Remark 2. Our progress is analogous to the history of sampling algorithms for continuous
distributions and the role of (continuous) isotropy [see, e.g., LV18]. Transforming a convex
body or a log-concave density into isotropic position (defined as having covariance matrix ≃ I
instead of uniform marginals) is the standard preprocessing step, and the main challenge has
been establishing properties of isotropic distributions that would then yield optimal bounds on
mixing time of standard off-the-shelf Markov chains. A notable conjectured property of isotropic
log-concave distributions is the KLS conjecture, which was recently nearly resolved [Che21; KL22].
We view our result as an analog, at least in spirit, of the KLS conjecture for discrete distributions:
we establish optimal mixing time bounds (analogous to consequences of the KLS conjecture) for
strongly Rayleigh (analogous to log-concave) discrete distributions in discrete-isotropic position (a
natural analog of the continuous isotropic position). Interestingly, our proof technique also shows
some resemblance to the common framework used in recent advances on the KLS conjecture
[LV18; Che21; KL22]: a key technical result we prove is that isotropy is approximately preserved
with high probability under a natural localization process (see Section 4). Chen and Eldan [CE22]
observed recently that several localization processes used for continuous and discrete sampling
problems can be, at least partially, unified under a single umbrella. We believe our results provide
further justification for this unification.

In many applications of sampling, one needs not just one, but rather many independent samples
from a distribution. A fundamental observation is that the amortized time of producing many
samples can often be much less than the cost of producing one sample. As an example, consider
the task of producing samples from a distribution on n points given explicitly by n numbers
p1, . . . , pn ≥ 0 that sum to 1. The time to produce a single sample from this distribution is ≃ n,
as one needs to look at all pi. However, after reading through the whole input, it is easy to
construct a data structure (such as a simple array of prefix sums) that allows subsequent samples
to be obtained in ˜︁O(1) time. Obtaining similar economies of scale for distributions supported
on exponentially-sized state spaces is not possible with this naïve approach; instead, our results
show how to obtain optimal economies of scale by a different method that preprocesses a strongly
Rayleigh distribution and puts it into isotropic form.

We remark that in some natural scenarios, a preprocessing step might not be needed at all,
and we can enjoy fast runtimes even for the first sample. For example, if the distribution is
symmetric w.r.t. the ground set, see, e.g., [OR18] for examples of determinantal point processes
on symmetric spaces, the distribution is automatically in isotropic form. Similarly, for random
spanning trees in graphs, under mild expansion assumptions (roughly speaking, expanding mildly
better than 2-dimensional grids) [Ale+18], no edge will have a large marginal and the distribution
is automatically in approximately isotropic form. Below we expand on two classes of distributions
that constitute the main applications of our result.

Random spanning trees. Random spanning trees of a graph G = (V, E) have found many appli-
cations in theoretical computer science. In approximation algorithms for the Traveling Salesperson
Problem (TSP) [GW17] they are a key component of the Best-of-Many Christofides algorithm
used in recent TSP improvements [KKO21]. Random spanning trees have found applications
in the construction of graph sparsifiers [GRV09; KS18]. As another example application, the
recent breakthrough of Karlin, Klein, Gharan, and Zhang [Kar+21] on the k-edge connected multi-
subgraph problem uses Θ(k) independent samples of random spanning trees, which demonstrates
how economies of scale for sampling can lead to faster algorithms for some natural problems.
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The distribution of random spanning trees is also deeply connected with spectral graph theory
and Laplacians of graphs, e.g., through the matrix-tree theorem. This has all motivated a long
sequence of works on obtaining fast algorithms for sampling from this ubiquitous distribution
[Ald90; Bro89; Wil96; CMN96; KM09; MST14; Dur+17a; Dur+17b; Sch18; Ana+21c]. Many of
these works have used random spanning trees as a testing ground for novel algorithm design
techniques, in particular techniques originating in the study of Laplacian solvers, and more
recently high-dimensional expanders. The latest works on sampling from spanning trees [Sch18;
Ana+21c] obtained, using two very different approaches, nearly-linear time sampling algorithms.
In this work we show how to push even further and get optimal sublinear sampling algorithms
with runtime ˜︁O(|V|), after an ˜︁O(|E|) preprocessing step.

Determinantal point processes Another important example of strongly Rayleigh distributions
is a k-sized determinantal point process, or k-DPP for short. A k-DPP µ is a distribution on ([n]k )
defined with the help of an n × n positive semidefinite matrix L, where probabilities are given by
k × k principal minors:

µ(S) ∝ det(LS,S).

DPPs have found many applications in machine learning, recommender systems, and randomized
linear algebra [see, e.g., DR10; KT12; DM21]. In most applications of k-DPPs, the size of a sample
is small compared to the domain [n], i.e., k ≪ n, and the primary goal of sampling algorithms is
to minimize the runtime’s dependence on n. A nearly-linear dependence on n can be achieved for
example via Markov chains [AOR16; HS19]. Recent works have shown how to go even further,
and obtain after a preprocessing step, poly(k, log n) sampling times [DWH18; DWH19; DCV19;
Gil+19; Der19; AD20; CDV20]; however, the dependence on k remained suboptimal. We push the
runtime to what we believe is the natural barrier for this sampling problem, and obtain a sampling
algorithm with runtime ˜︁O(kω), where ω is the matrix multiplication exponent. Note that kω is the
time needed to just compute µ(S) for one set S, which is a natural barrier and suggests our result
might be optimal.

We further show that the preprocessing step for DPPs can be implemented in time ˜︁O(nkω−1).
This, surprisingly, leads to an improvement for obtaining even a single sample from DPPs. The
best prior algorithms were either based on MCMC and had a runtime of ˜︁O(nk2) [AOR16; HS19]
or were based on linear algebraic primitives [KT12; Pou20], which implemented with fast matrix
multiplication, would take time ˜︁O(nω), see Lemma 36. We remark that our improvement from˜︁O(min {nk2, nω}) to ˜︁O(nkω−1) is only made possible by a fast preprocessing step which crucially
is implemented by bootstrapping with the primitive of fast sampling from isotropic distributions.

1.1 Sampling algorithm

To obtain our optimal sublinear samplers, we use the framework established in prior works
[Dur+17a; DCV19; Der19; AD20; CDV20; Ana+21a] of sparsifying the domain [n] for isotropic
distributions, i.e., distributions with roughly balanced marginals [AD20]. The preprocessing
step for our algorithm consists only of putting the distribution into (approximately) isotropic
position (see Section 2.6) by finding approximate overestimates for the marginals PS∼µ[i ∈ S] and
transforming µ by splitting elements with large marginals. One of our novel contributions is the
design of new schemes for bootstrapping very fast (and likely optimal) preprocessing steps.

For our main contribution, we obtain an optimal nearly-linear-in-k domain sparsification for
isotropic strongly Rayeligh distributions. In domain sparsification, we reduce the task of sampling
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from our distribution on ([n]k ) to distributions on ([t]k ); we show this can be done with t = ˜︁O(k).
Prior works on this problem either required t ≃ k2 [DCV19; Der19; AD20; CDV20; Ana+21a] or
for the specific case of spanning tree distributions required t ≃ k1.5 [Dur+17a].

More formally, for an approximately isotropic µ, we generate a sample by starting from some set
S0 ∈ ([n]k ) and following the random walk defined by Algorithm 1 for ˜︁O(1) steps. We output S˜︁O(1)
as our approximate sample from µ. Note that this random walk has an easy step (choosing Ti
uniformly at random from supersets of Si) and a challenging step (choosing Si+1 from subsets of
Ti with law induced by µ). The challenging step is an instance of a similar sampling problem but
with a smaller domain size t, so we can use a problem-specific baseline sampling algorithm.

Algorithm 1: Down-up walk on the complement distribution

for i = 0, 1, 2, . . . do
From all t-sized supersets of Si, select one uniformly at random and name it Ti.
Select among k-sized subsets of Ti a random set Si+1 with P[Si+1] ∝ µ(Si).

We remark that the sparsification algorithm (Algorithm 1) is not new and very similar variants of
it have been used by almost all mentioned prior works. However, our analysis of Algorithm 1 is
entirely different. A departure from prior methods of analysis is not for convenience, but rather
necessary. Domain sparsification looks fundamentally different below t ≃ k1.5. All prior works
used in some shape or form the fact that the partition function of Ti, i.e. ∑S⊆Ti

µ(S) concentrates
for a random Ti. Indeed, Durfee, Kyng, Peebles, Rao, and Sachdeva [Dur+17a] used this to design
algorithms for not just sampling, but also counting spanning trees. Below the threshold of t ≃ k1.5,
the partition function no longer concentrates (see Section 1.3). Surprisingly, we still show that
while Ti’s are not good representatives of the ground set [n] for partition functions or counting
purposes, they still are good sparsifiers for sampling.

1.2 Our results

To formally state our main results on sampling from strongly Rayleigh distributions, it is useful

to define Tµ(t, k) for a distribution µ ∈ R([n]k ) as the time it takes to produce a sample from µ
conditional on all elements of the sample being a subset of a fixed set T of size |T| = t. We use˜︁O(·) to suppress poly log n factors. Notice below that the sum of marginals ∑i PS∼µ[i ∈ S] is
always equal to k for a distribution supported on ([n]k ).

Theorem 3 (Sampling via marginal overestimates). Given a strongly Rayleigh distribution µ ∈ R([n]k )

and marginal overestimates qi ≥ PT∼µ[i ∈ T] for i ∈ [n] which sum to K := ∑i∈[n] qi, there is an
algorithm that produces a sample from a distribution with total variation distance n−O(1) from µ in time
bounded by ˜︁O(1) calls to Tµ(O(K), k).

We prove Theorem 3 using a local-to-global argument, which requires us to also show that random
conditionals of µ are isotropic with high probability. This is similar in spirit to the recent analyses
of the KLS conjecture using stochastic localization [Che21; KL22] which show that an isotropic
continuous distribution remains approximately isotropic over a stochastic evolution.

Theorem 4 (Informal, see Theorem 27 for a formal statement). Let µ ∈ R([n]k ) be an isotropic strongly
Rayleigh distribution. For T ⊆ [n] and S ∈ (T

k), let µT(S) := µ(S)/ ∑S∈(T
k)

µ(S). Then with high
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probability over T ∈ ([n]t ) for t = ˜︁O(k), µT is approximately isotropic.

Our input distributions may not be isotropic, so we also design an efficient preprocessing step to
obtain marginal estimates to transform µ into an isotropic distribution.

Theorem 5 (Informal, see Theorem 34 for a formal statement). Given access to a strongly Rayleigh
distribution µ ∈ R([n]k ), we can obtain overestimates of the marginals PT∼µ[i ∈ T] summing to O(k) in
time proportional to ˜︁O(n/k) calls to a sampler for isotropic distributions on sets of size ˜︁O(k).

We remark that the preprocessing time of ˜︁O(|E|) for estimating marginals of a random spanning
tree can be alternatively achieved by estimating effective resistances of the graph using Laplacian
solvers and the Johnson-Lindenstraus lemma [ST04; SS11]. However, we give a self-contained
method by bootstrapping the sampling algorithm (Theorem 5) that covers not only random
spanning trees, but also k-DPPs.

We can apply these results along with known algorithms that sample a random spanning tree in˜︁O(|E|) time [Ana+21c], or a k-DPP on n elements in ˜︁O(nω) time (see Lemma 36) to achieve faster
runtimes for sampling from these distributions. We note that our algorithm for sampling a k-DPP
is faster than previously known runtimes, even in the case of generating a single sample.

Corollary 6 (Sampling spanning trees). For a graph G = (V, E), possibly weighted with weights
λ ∈ RE

>0, we can output s independent spanning trees with n−O(1) total variation distance from the
distribution µ(T) ∝ ∏e∈T λe in time ˜︁O(|E|+ s |V|).

Corollary 7 (Sampling DPPs). Given an n × n positive semidefinite matrix L, there is an algorithm that
outputs s independent approximate samples from the k-DPP defined by L in time ˜︁O(nkω−1 + skω).

Finally, we remark that our methods also show analogous mixing times of ˜︁O(k) steps for the
Markov chain that uses small up-down steps, i.e., calls to Tµ(k + 1, k), when sampling isotropic
strongly Rayleigh distributions. Such steps are easy to implement in practice, and were used to
efficiently sample from general strongly Rayleigh and logconcave distributions [CGM19; Ana+21c].
We formally state these results in Theorem 35 in Section 6.

1.3 Techniques and comparison to prior work

We depart from previous analyses of Algorithm 1 and take the new approach of viewing the
sparsification procedure as a down-up random walk on high-dimensional expanders [see, e.g.,
KO18]. We establish that isotropy significantly improves the “expansion” of the high-dimensional-
expander. We use the notion of expansion called entropic independence [Ana+21b], which is one
of the few able to yield modified log-Sobolev inequalities and tight mixing times for down-up
walks.

The random walk in Algorithm 1 can be seen as the down-up walk (see Section 2 for definition)
on the complement/dual distribution associated with µ; note that each step of this walk involves
a sparsified sampling problem, where we only have to sample from a distribution on (Ti

k ). For
this we use a baseline sampling algorithm, a Markov chain based on a clever link-cut tree data
structure for spanning trees, and a naïve matrix-multiplication-based sampler for DPPs.

Below we describe the main techniques we use.
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Boosted entropic independence under isotropy. The main tool we use to bound the mixing time
of the random walk is the notion of entropic independence (see Section 2 for definition) [Ana+21b].
While standard results about strongly Rayleigh distributions give an out-of-the-box factor 1
entropic independence for the complement distribution µ̄, this is too weak for our purposes as
it only implies a mixing time of ≃ ˜︁O((n − k)/t) for Algorithm 1, which has an unacceptable
dependence on n. This is not surprising, as these black-box results do not incorporate isotropy of
µ. In this work, we show that whenever µ has entropic independence and its marginals are not
too large, the complement distribution µ̄ has to have a boosted entropic independence, better by a
logarithmic factor over what is naïvely expected (Theorem 24).

Average case local-to-global and concentration of marginals The standard machinery for
establishing mixing times using entropic independence (i.e., the so-called local-to-global method
[AL20]) needs entropic independence of not just the distribution µ̄, but all of its conditionings
as well. Conditioning µ̄ on a set of elements is the same as throwing those elements out of the
ground set for µ. Unfortunately, in the worst case, this can significantly imbalance the marginals
of µ. As an example, consider the spanning tree distribution on a complete graph, which is by
symmetry isotropic. Throwing edges out, we can create any graph as a subgraph of the complete
graph; for example, we can throw out all but one edge in a cut to make the marginal of that edge
equal to 1. To overcome this obstacle, we show that with high probability, i.e., in an average sense
over the choice of elements in the conditioning, the marginals remain balanced (Theorem 27)
and combine this with an average local-to-global result adapted from [Ali+21] (Theorem 20) to
establish the tight mixing time. As far as we know, this is the first application of an average
local-to-global theorem. Our strategy of showing average-case isotropy under conditionings is
reminiscent of the strategy employed in works on the KLS conjecture which show approximate
isotropy holds under an appropriate localization process [Che21; CE22; KL22].

Improved marginal estimation Our main focus is on the time per sample after preprocessing,
but we also obtain fast algorithms that improve the preprocessing runtime compared to prior
works. Our improved procedures are able to shave off poly(k) factors from the runtime of
marginal estimation (Theorem 34), and are essential for our faster ˜︁O(nkω−1) time algorithm for
sampling from a k-DPP. This is achieved by a recursive procedure that uses marginals of the
restriction of µ to roughly half the domain [n] as overestimates for the marginals of µ. In the end,
marginal overestimation is roughly reduced to ≃ ˜︁O(n/k) subtasks of marginal overestimation for
distributions over domains of size ˜︁O(k).

Barriers faced by prior approaches In order to derive the tight sparsification of t = ˜︁O(k) in
Algorithm 1, we had to rethink the entire analysis technique. To emphasize the importance of tight
bounds on t, we note that prior results on general strongly Rayleigh measures [Der19; CDV20;
DCV19; AD20] had at least a quadratic dependence on the output size k, which made them
moot for random spanning trees (where k2 is always larger than the total number of edges in the
graph). The barrier faced by the aforementioned works, and also that of [Dur+17a] is roughly
speaking that for the regime t = ˜︁O(k), subsets Ti are not good sparsifiers for partition functions. To
appreciate this better, consider a simple distribution µ on ([n]k ) defined as follows: first we partition
[n] into disjoint sets U1, . . . , Uk of size n/k each, and then define our distribution as uniform over
sets which pick exactly one element from each Ui. Clearly this distribution is isotropic. Now
suppose that we select a uniformly random ck-sized set T from [n]. The intersection of T with
each Ui has expected size c. For small values of c, the distribution of this intersection size is
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well-approximated by a Poisson distribution. The count / partition function of the distribution
restricted to T is ∏k

i=1 |T ∩ Ui|.

The fluctuations of each T ∩ Ui are on the order of
√

c. These fluctuations make the above product
typically very far from its mean, unless c is growing at least polynomially with k. A careful
analysis (similar to [Dur+17a]) would show that c ≃

√
k is the threshold after which the count

concentrates around the mean. To overcome this barrier, we do not use counts in our analysis at
all. Rather, we show that marginals do concentrate all the way down to the threshold t = ˜︁O(k),
using a martingale argument. We combine this concentration of marginals with the fact that
isotropy improves entropic independence to show that isotropic strongly Rayleigh distributions
are extremely good high-dimensional expanders in an average sense.

1.4 Organization

In Section 2 we collect preliminary notions relating to distributions, conditionals, and Markov
chains. We additionally introduce entropic-independence and local-to-global theorems that we
use to analyze the down-up walk that our sampling algorithms are based on. In Section 3 we
show our main bound on the entropy contraction of a down step of the complement distribution
of a strongly Rayleigh distribution with bounded marginals. In Section 4 we show that random
marginals of strongly Rayleigh distributions stay bounded with high probability, which is essential
to applying the average-case local-to-global principle. In Section 5 we give a simple and efficient
procedure for estimating marginal overestimates based on recursive sampling. In Section 6 we
combine the previous sections to prove our main results about sampling spanning trees, DPPs,
and strongly Rayleigh distributions in general. Finally, deferred proofs are given in Section 7.
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2 Preliminaries

We use [n] to denote the set {1, . . . , n}. We view distributions/measures defined over a finite
ground set Ω interchangeably as either (probability mass) functions µ : Ω → R≥0 or just row
vectors µ ∈ RΩ.

For a distribution µ ∈ R([n]k ), let p(µ) ∈ Rn denote the marginals of µ, i.e., p(µ)i := PS∼µ[i ∈ S].
Denote p(µ)max := max {p(µ)i | i ∈ [n]}. When µ is clear from context, we write p instead of p(µ).
We define µ̄ : ( [n]

n−k) → R≥0 as the complement distribution associated to µ, defined as

µ̄(S) := µ([n]\S).

Our analysis (in particular for applying a local-to-global principle) requires looking at restrictions
of µ to specific subset of the ground set [n] of elements. In the complement, this corresponds to
conditioning that µ̄ contains certain elements.
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Definition 8 (Restricted distribution). For a distribution µ defined over subsets of a ground set [n]
and S ⊆ [n], define µS to be the distribution of F ∼ µ restricted to the set S, i.e., conditioned on
the event F ⊆ S.

Definition 9 (Conditional distribution). For a distribution µ defined over subsets of a ground set
[n] and T ⊆ [n], define µT to be the distribution of F ∼ µ conditioned on the event F ⊇ T.

2.1 Markov chains and functional inequalities

Let µ and ν be probability measures on a finite set Ω. The Kullback-Leibler divergence (or relative
entropy) between ν and µ is given by

DKL(ν ∥ µ) = ∑
x∈Ω

ν(x) log
(︃

ν(x)
µ(x)

)︃
,

with the convention that this is ∞ if ν is not absolutely continuous with respect to µ. By Jensen’s
inequality, DKL(ν ∥ µ) ≥ 0 for any probability measures µ, ν. The total variation distance between
µ and ν is given by

dTV(µ, ν) =
1
2 ∑

x∈Ω
|µ(x)− ν(x)|.

A Markov chain on Ω is specified by a row-stochastic non-negative transition matrix P ∈ RΩ×Ω.
We refer the reader to [LP17] for a detailed introduction to the analysis of Markov chains. As
is common, we will view probability distributions on Ω as row vectors. Recall that a transition
matrix P is said to be reversible with respect to a distribution µ if for all x, y ∈ Ω, µ(x)P(x, y) =
µ(y)P(y, x). In this case, it follows immediately that µ is a stationary distribution for P, i.e.,
µP = µ. If P is further assumed to be ergodic, then µ is its unique stationary distribution, and
for any probability distribution ν on Ω, dTV(νPt, µ) → 0 as t → ∞. The goal of this paper is to
investigate the rate of this convergence.

Definition 10. Let P be an ergodic Markov chain on a finite state space Ω and let µ denote its
(unique) stationary distribution. For any probability distribution ν on Ω and ϵ ∈ (0, 1), we define
tmix(P, ν, ϵ) to be

min {t ≥ 0 | dTV(νPt, µ) ≤ ϵ},

and let tmix(P, ϵ) denote

max
{︁

min {t ≥ 0 | dTV(1xPt, µ) ≤ ϵ}
⃓⃓

x ∈ Ω
}︁

,

where 1x is the point mass supported at x.

We will drop P and ν if they are clear from context. Moreover, if we do not specify ϵ, then it is set
to 1/4. This is because the growth of tmix(P, ϵ) is at most logarithmic in 1/ϵ [cf. LP17].

Lemma 11. Let µ be a probability measure on the finite set Ω. Let P denote the transition matrix of an
ergodic, reversible Markov chain on Ω with stationary distribution µ. Suppose there exists some α ∈ (0, 1]
such that for all probability measures ν on Ω, we have

DKL(νP ∥ µP) ≤ (1 − α)DKL(ν ∥ µ).

Then tmix(P, ϵ) ≤ ⌈︃
1
α
·
(︃

log log
(︃

1
min {µ(x) | x ∈ Ω}

)︃
+ log

(︃
1

2ϵ2

)︃)︃⌉︃
.
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This is the standard argument for bounding mixing times via modified log-Sobolev inequalities
and can be found in, e.g., [BT06].

2.2 Strongly Rayleigh distributions

For density function µ : ([n]k ) → R≥0, the generating polynomial of µ is the multivariate k-
homogeneous polynomial defined as follows:

gµ(z1, . . . , zn) = ∑
S∈([n]k )

µ(S)∏
i∈S

zi.

Definition 12. Consider the open half-plane H = {z | Im(z) > 0} ⊆ C. We say a polynomial
g(z1, · · · , zn) ∈ R[z1, · · · , zn] is real-stable if g does not have roots in Hn. For convenience, the
zero polynomial is taken to be real-stable.

A distribution µ : 2[n] → R≥0 is strongly Rayleigh iff its generating polynomial is real stable [see
BBL09]. If µ is strongly Rayleigh, then its conditional and restricted distributions (see Definitions 8
and 9) are also strongly Rayleigh. The key fact we use about strongly Rayleigh distributions is
that they are negatively correlated [see, e.g., BBL09], i.e., the marginals (of non-restricted elements)
increase under restrictions (Definition 8):

PS∼µ[i ∈ S] ≤ PS∼µT [i ∈ S] for i /∈ T.

2.3 Down-up and up-down walks

Definition 13 (Down operator). For ℓ ≤ k define the row-stochastic matrix Dk→ℓ ∈ R
([n]k )×([n]ℓ )
≥0 by

Dk→ℓ(S, T) =

{︄
0 if T ̸⊆ S,

1
(k
ℓ)

otherwise.

Note that for a distribution µ on size k sets, µDk→ℓ will be a distribution on size ℓ sets. In
particular, µDk→1 will be the vector of normalized marginals of µ: (P[i ∈ S]/k)i∈[n], i.e., p(µ)/k.

Definition 14 (Up operator). For ℓ ≤ k define the row-stochastic matrix Uℓ→k ∈ R
([n]ℓ )×([n]k )
≥0 by

Uℓ→k(T, S) =

{︄
0 if T ̸⊆ S,

µ(S)
∑T∋S′ µ(S′) otherwise.

As in [AD20; Ana+21a], we consider the following Markov chain Mt
µ defined for any positive

integer t, with the state space supp(µ). Starting from S0 ∈ supp(µ), one step of the chain is:

1. Sample T ∈ ([n]\S0
t−k ) uniformly at random.

2. Downsample S1 ∼ µS0∪T, where µS0∪T is µ restricted to S0 ∪ T and update S0 to be S1.

Proposition 15. The complement of S1 is distributed according to µ̄0D(n−k)→(n−t)U(n−t)→(n−k) where µ0
is the distribution of the set S0.

Proposition 16. For any distribution µ : ([n]k ) → R≥0 that is strongly Rayleigh, the chain Mt
µ for

t ≥ k + 1 is irreducible, aperiodic and has stationary distribution µ.
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2.4 Entropic independence

We say that a distribution µ is entropically independent if the down operator Dk→1 significantly
contracts the relative entropy between ν and µ for any distribution ν.

Definition 17 (Entropic independence [Ana+21b]). A probability distribution µ on ([n]k ) is said to
be (1/α)-entropically independent, if for all probability distributions ν on ([n]k ),

DKL(νDk→1 ∥ µDk→1) ≤
1

αk
DKL(ν ∥ µ).

Any distribution with a log-concave generating polynomial (e.g., uniform on bases of a matroid)
is 1-entropically independent. This includes all strongly Rayleigh distributions.

Lemma 18 ([Ana+21b, Theorem 4]). Any strongly Rayleigh µ is 1-entropically independent. The
conditional and restricted distributions of µ are also strongly Rayleigh, and thus 1-entropically independent.

2.5 Average-case local-to-global method

First, we define the notion of the link of the distribution µ w.r.t. a set T [see, e.g., KO18]. This is
almost the same as the conditioned distribution µT, see Definition 9, except we remove the set T.

Definition 19. For a distribution µ : ([n]k ) → R≥0 and a set T ⊆ [n] of size at most k, we define the
link of T to be the distribution µ−T : ([n]−T

k−|T|) → R≥0 which describes the law of the set S − T where
S is sampled from µ conditioned on the event S ⊇ T.

We show that entropic independence for links, i.e., contraction of KL-divergence by Dk→1 operators,
results in the contraction of KL-divergence by Dk→ℓ operators for larger ℓ. While this is by now a
well-understood phenomenon, sometimes called the local-to-global method [see, e.g., AL20], we
use an average case variant, adapted from [Ali+21], which only requires entropic independence for
a “typical” link as opposed to a worst case link. We use that we can imagine deleting conditioned
out elements in a random order. This is essential for our result, where it is not true that for every
permutation the resulting product of ρ(·) below is large enough.

Theorem 20. Suppose that for every set T of size ≤ k − 2, µ−T contracts KL-divergence in terms of a
factor parameterized by ρ(T):

DKL(νDk−|T|→1 ∥ µ−TDk−|T|→1) ≤ (1 − ρ(T))DKL(ν ∥ µ−T).

In other words assume that µ−T is (k − |T|)(1 − ρ(T))-entropically independent. For a set T, define the
harmonic mean

γT := Ee1,...,e|T| uniformly random permutation of T

[︂(︁
ρ(∅)ρ({e1})ρ({e1, e2}) · · · ρ({e1, . . . , e|T|−1})

)︁−1
]︂−1

.

Then the operator Dk→ℓ has KL-divergence contraction

DKL(νDk→ℓ ∥ µDk→ℓ) ≤ (1 − κ)DKL(ν ∥ µ),

with

κ := min
{︃

γT

⃓⃓⃓⃓
T ∈

(︃
[n]
ℓ

)︃}︃
.

11



The proof is similar to [Ali+21, Theorem 46], [Ana+21b, Theorem 5], and is deferred to Section 7.

Remark 21. Similar to [Ali+21], if the KL-divergence is replaced by any other type of f -divergence, a
common choice being χ2-divergence which roughly relates to the notion of spectral independence,
Theorem 20 still remains valid.

2.6 Isotropic transformation

Anari and Dereziński [AD20] introduced the following subdivision process that takes marginal

overestimates of an arbitrary distribution µ ∈ R([n]k ), and transforms sampling from µ to sampling
from a distribution with nearly uniform marginals. In the following, we call µ′ the isotropic
transformation of µ.

Definition 22. Let µ : (n
k) → R≥0 be an arbitrary probability distribution, and assume that for some

constant c ≥ 1, we have marginal overestimates p1, . . . , pn of the marginals with p1 + · · ·+ pn ≤ K
and pi ≥ PS∼µ[i ∈ S] for all i. Let ti := ⌈ n

K pi⌉. We will create a new distribution out of µ: For each
i ∈ [n], create ti copies of the element i and let the collection of all these copies be the new ground
set: U =

⋃︁n
i=1 {i(1), . . . , i(ti)}. Define the following distribution µ′ : (U

k ) → R≥0 from µ:

µ′
(︂{︂

i(j1)
1 , . . . , i(jk)

k

}︂)︂
:=

µ({i1, . . . , ik})
t1 · · · tk

.

Another way we can think of µ′ is that to produce a sample from it, we can first generate a sample
{i1, . . . , ik} from µ, and then choose a copy i(jm)

m for each element im uniformly at random.

As show in [Ana+21a, Proposition 24], performing the isotropic transformation in Definition 22 at
most only doubles the size of the universe U, but makes all marginals bounded by O(K/n) now.
For the convenience of the reader, we present the proofs of the following in Section 7.

Proposition 23. Let µ : (n
k) → R≥0, and let µ′ : (U

k ) → R≥0 be the subdivided distribution from
Definition 22. The following hold for µ′:

1. Near-isotropy: For all i(j) ∈ U, the marginal PS∼µ′ [i(j) ∈ S] ≤ K
n ≤ 2K

|U| .

2. Linear ground set size: |U| ≤ 2n.

3. If µ is strongly Rayleigh then so is µ′.

3 Entropy contraction

Our goal is to prove an entropy contraction inequality for the (n − k) → 1 down operator. For

strongly Rayleigh distributions µ̄ ∈ R([n]k ), which are 1-entropically independent (Definition 17),
the entropy contracts by 1/(n − k). Surprisingly, if µ also has nearly uniform marginals, the
entropy contracts even more, by an extra ∼ log(n/k) factor.

Theorem 24 (Level one entropy contraction). Let µ ∈ R([n]k ) be a 1-entropically independent distribution

with p(µ)max := maxi∈[n] PF∼µ[i ∈ F] ≤ 1
100 . Then for any distribution ν̄ ⊆ R( [n]

n−k),

DKL(ν̄D(n−k)→1 ∥ µ̄D(n−k)→1) ≤
1

(n − k) log((ep(µ)max)−1)
DKL(ν̄ ∥ µ̄).
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We show this theorem by directly comparing the relative entropies of p = νDk→1 and q =
ν̄D(n−k)→1 with respect to µDk→1 and µ̄D(n−k)→1 respectively. We first show a single-variable
instance of this, which we sum over to get the overall comparison in Lemma 26.

Lemma 25. Let p, q, α ∈ R≥0 be such that αp + (1− α)q = 1. If α < 1/100 then for any µ ∈ (0, 1/100),

Cα,µ p log(αp/µ)− q log((1 − α)q/(1 − µ)) ≥ Kα,µ (αp − µ)

for any constants Cα,µ ≥ α
(1−α) log(1/(eµ))

and Kα,µ := Cα,µ/α + (1 − α)−1.

We explain some intuition behind this claim. First, both sides vanish when p = µ/α and
q = (1 − µ)/(1 − α). The constants Cα,µ and Kα,µ are chosen so that the inequality is tight up to
the second order at this point where p = µ/α and q = (1 − µ)/(1 − α).

Proof of Lemma 25. Define f (q) := Cα,µ p log(αp/µ)− q log((1− α)q/(1− µ))−Kα,µ (αp − µ). This
is defined for q ∈ [0, 1/(1 − α)]. Note that d

dq p = − 1−α
α . Hence

f ′(q) = −Cα,µ ·
1 − α

α
(log(αp/µ) + 1)−

(︃
log
(︃
(1 − α)q

1 − µ

)︃
+ 1
)︃
+ Kα,µ(1 − α).

By our careful choice of Kα,µ, we have f ′(q̄) = 0 for q̄ = 1−µ
1−α . Additionally, we can calculate

f ′′(q) = p−1q−1

(︄
Cα,µ

(︃
1 − α

α

)︃2

q − 1 − (1 − α)q
α

)︄
. (1)

Note that the f ′′(q) = 0 at exactly one value of q, which we denote by q2. Observe that f ′′(q) ≥ 0
if and only if q ≥ q2, because the coefficient of q in Eq. (1) is positive. Hence

f ′′(q̄) = p−1q̄−1

(︄
Cα,µ

(︃
1 − α

α

)︃2

q̄ − 1 − (1 − α)q̄
α

)︄

≥ p−1q̄−1

(︄
α

(1 − α) log(1/(eµ))

(︃
1 − α

α

)︃2 1 − µ

1 − α
−

1 − (1 − α) 1−µ
1−α

α

)︄

= p−1q̄−1
(︃

1
log(1/(eµ))

· 1 − µ

α
− µ

α

)︃
= p−1q̄−1 1

α log(1/(eµ))
(1 − µ(1 + log(1/(eµ))))

= p−1q̄−1 1
α log(1/(eµ))

(1 + µ log µ) ≥ 0

because µ log µ ≥ −1 for µ ≤ 1/100.

Note that f ′(0) = f ′(1/(1 − α)) = +∞. Recall that f ′′(q) < 0 for any q < q2 and f ′′(q) > 0 for
q > q2. The above calculation implies q̄ ≥ q2. Thus 0 = f ′(q̄) ≥ f ′(q2) and f ′(q) ≥ f ′(q̄) = 0 for
q ≥ q̄. Since f ′ is decreasing in [0, q2], there is no q1 ∈ (0, q2) such that f ′(q1) = 0. Thus f must
increase in [0, q1] for q1 < q2 < q̄, decrease in [q1, q̄], and increase on [q̄, 1/(1 − α)]. In particular,
f (q) ≥ f (q̄) for all q ∈ [0, 1]. Since f (q̄) = 0, we get the desired inequality.
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Lemma 26. Let p, q be distributions on [n] satisfying αp + (1 − α)q = 1⃗/n for α = k/n and α < 1/100.
Then for any µ ∈ Rn

[0,1] with ∥µ∥1 = k and µmax := maxi∈[n] µi < 1/100,

DKL

(︄
q

⃦⃦⃦⃦
⃦ 1⃗ − µ

n − k

)︄
≤ Cα,µmax DKL

(︂
p
⃦⃦⃦ µ

k

)︂
(2)

with Cα,µmax := α
(1−α) log(1/(eµmax))

as in Lemma 25.

Proof. By Lemma 25 (for the choice p = npi and q = nqi) and the fact that Cα,µ is monotonically
increasing in µ, we deduce that

Cα,µmax pi log(pik/µi)− qi log(qi(n − k)/(1 − µi)) ≥
1
n

Kα,µmax(αnpi − µi).

Summing this over all i gives us

Cα,µmax ∑
i∈[n]

pi log(pik/µi)− ∑
i∈[n]

qi log(qi(n − k)/(1 − µi)) ≥
1
n

Kα,µmax ∑
i∈[n]

(αnpi − µi).

The r.h.s. equals 0, so we deduce the desired inequality.

Now, Theorem 24 is an easy corollary of Lemma 26.

Proof of Theorem 24. Let ν, µ be the complement of ν̄, µ̄ resp. Let p = νDk→1, q = ν̄D(n−k)→1, andˆ︁µi := PF∼µ[i ∈ F] for i ∈ [n] in the setting of Lemma 26. Note that αp + (1 − α)q = 1⃗/n for
α = k/n, and ˆ︁µmax = p(µ)max ≤ 1

100 .

Because µ is 1-entropically independent (Lemma 18),

DKL

(︃
p
⃦⃦⃦⃦ ˆ︁µ

k

)︃
= DKL(νDk→1 ∥ µDk→1) ≤

1
k
DKL(ν ∥ µ) =

1
k
DKL(ν̄ ∥ µ̄).

Combining this with Lemma 26 for α = k/n gives us

DKL

(︄
q

⃦⃦⃦⃦
⃦ 1⃗ − ˆ︁µ

n − k

)︄
≤ Cα,ˆ︁µmax DKL

(︃
p
⃦⃦⃦⃦ ˆ︁µ

k

)︃
≤

α
k DKL(ν̄ ∥ µ̄)

(1 − α) log((ep(µ)max)−1)

=
DKL(ν̄ ∥ µ̄)

(n − k) log((ep(µ)max)−1)
.

We can almost directly combine Theorem 24 and the average-case local-to-global principle The-
orem 20 to deduce an entropy contraction for D(n−k)→(n−k′+1) and D(n−k)→(n−k−1). The one
remaining issue is that the local-to-global theorem requires that the marginals of conditionals of µ
also have almost uniform marginals. This is the main result of Section 4, which we state here.

Theorem 27. Let µ ∈ R([n]k ) be a strongly Rayleigh distribution, and let T ⊆ [n] with |T| = k̄. For a
sufficiently large constant C and any s ≥ C(np(µ)max + k̄) log n, we have

PS∼[n]\T
|S|=n−s

[︃
p(µ[n]\S)

max ≥ 2p(µ)maxn
s

]︃
≤ n−10.
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We prove this in Section 4. We now have all the pieces to show our main technical result.

Theorem 28. Let µ : ([n]k ) → R≥0 be a strongly Rayleigh distribution with p(µ)max ≤ 1/500. Let
s := C(np(µ)max + k̄) log n for C be as in Theorem 27 and k′ = Θ(np(µ)max). Then for any distribution

ν̄ ⊆ R( [n]
n−k) and k̄ ≥ k + 2

DKL(ν̄D(n−k)→(n−k̄+1) ∥ µ̄D(n−k)→(n−k̄+1)) ≤ (1 − κ)DKL(ν̄ ∥ µ̄)

with κ = k̄−k−1
2s log n . In particular,

DKL(ν̄D(n−k)→(n−k′+1) ∥ µ̄D(n−k)→(n−k′+1)) ≤ (1 − κ1)DKL(ν̄ ∥ µ̄)

and
DKL(ν̄D(n−k)→(n−k−1) ∥ µ̄D(n−k)→(n−k−1)) ≤ (1 − κ2)DKL(ν̄ ∥ µ̄)

with κ−1
1 = O(log2 n) and κ−1

2 = O(np(µ)max log2 n).

Proof. Fix k̄ ≥ k + 2 to be chosen later, and a set T̄ ⊆ [n] of size n − k̄. Let s := C(np(µ)max +
k̄) log n for C be as in Theorem 27. In the context of Theorem 20, we want to bound γT̄ with
respect to µ̄. Theorem 24 implies that the link of ∅ is 1/u0-entropically independent with
u0 = log((ep(µ)max)−1). Consider a random permutation e1, . . . , en−k̄ of elements of T̄. Note that
each set Si := {e1, . . . , ei} is a randomly sampled size-i subsets of T̄. By using Theorem 27 and
taking a union bound over i ∈ [n − s], we have that except with probability n−10 × n = n−9, we
have

p(µ[n]\Si
)max ≤ 2p(µ)maxn

|[n] \ Si|
≤ 2p(µ)max

s
≤ 2

C log n
<

1
100

for C sufficiently large. Suppose this event holds. Note that the complement of µ[n]\Si
is

exactly µ̄Si . Thus, Theorem 24 implies that this link is 1/ui-entropically independent where
ui := log( n−i

2ep(µ)maxn ).

As a result

ρ(∅)ρ(S1) · · · ρ(Sn−s) ≥
n−s

∏
i=0

(︃
1 − 1

(n − k − i)ui

)︃
(i)
≥ exp

(︄
−

n−s

∑
i=0

(︃
1

(n − k − i)ui
+

1
(n − k − i)2u2

i

)︃)︄
(ii)
≥ exp

(︄
−

n−s

∑
i=0

(︃
1

(n − i)ui
+

k + 1
(n − k − i)2

)︃)︄ (3)

where in (i) we use 1 − x ≥ exp(−x − x2) for x ≤ 1/2, in (ii) we use

1
(n − k − i)ui

=
1

(n − i)ui
+

k
(n − i)(n − k − i)ui

≤ 1
(n − i)ui

+
k

(n − k − i)2

Next, let h := 2ep(µ)maxn.

n−s

∑
i=0

1
(n − i)ui

≤
∫︂ n

s

1
t log t

h
dt =

∫︂ n/h

s/h

1
t log t

dt = log log(n/h)− log log(s/h).
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where in the final equality we use (log log t)′ = 1
t log t . Similarly

n−s

∑
i=0

k + 1
(n − k − i)2 ≤ (k + 1)

∫︂ n−k

s−k

1
t2 dt =

(k + 1)(n − s)
(s − k)(n − k)

which is ≤ O(1), where we use the fact that s ≥ 2Ck log n ≫ k. Thus, we have that the l.h.s. in
Eq. (3) ≥ Ω( 1

log(n/h) ).

Moreover, for i ∈
{︁

n − s + 1, · · · , n − k̄
}︁

, by 1-entropic independence of µ̄ and its links (Lemma 18)
we get the trivial bound ρ(Si) ≥ 1 − 1

n−k−i . Thus

n−k̄

∏
i=n−s+1

ρ(Si) ≥
n−k̄

∏
i=n−s+1

(︃
1 − 1

n − k − i

)︃
=

k̄ − k − 1
s − k − 1

≥ k̄ − k − 1
s

Thus, with probability at least 1 − n−9, ∏n−k̄
i=0 ρ(Si) ≥ k̄−k−1

s log n . Otherwise we have a trivial lower
bound of 1/n on the product of ρs due to 1-entropic independence of µ̄ and its links. Thus

γT̄ = E

[︄
n−k̄

∏
i=0

ρ(Si)
−1

]︄−1

≥
(︃
(1 − n−9) · s log n

k̄ − k − 1
+ n−9 · n

)︃−1

≥ k̄ − k − 1
2s log n

.

We are done with the general entropy contraction statement. Next, we prove entropy contraction
for specific values of k̄. Plugging in k̄ = k′ and noting that for our choice of k′ and s,

k̄ − k − 1 ≥ 1
2

k̄ ≥ Ω
(︃

s
log n

)︃
implies the first result. Similarly, setting k̄ = k + 2 gives the second result for our choice of s.

4 Concentration of marginals

The goal of this section is to show concentration of marginal upper bounds (Theorem 27) for
random conditionals of strongly Rayleigh distributions. In Section 3, this is applied in the context
of an average-case local-to-global principle (Theorem 20) to deduce our main entropy contraction
result (Theorem 28). The proof uses the following simple observation about covariances in a
set-valued distribution µ whose support contains only sets of identical size.

Lemma 29 (Covariances of homogeneous distributions). For any distribution µ defined over identically-
sized subsets of a ground set of elements [n] and any element i ∈ [n] we have

∑
j∈[n]

(︁
p(µ)i p(µ)j − PF∼µ[i, j ∈ F]

)︁
= 0.

We show Theorem 27 by analyzing the marginal of each coordinate i ∈ [n] conditioned on it
remaining in [n]\S via a stochastic process. Formally, fix T as in Theorem 27 and a coordinate
i ∈ [n] (possibly in T).

Definition 30 (Stochastic process). For fixed T ⊆ [n] with |T| = k̄, i ∈ [n], and s ≤ n − |T| − 1, let
σ be a random permutation of [n]\(T ∪ {i}). For 0 ≤ t ≤ n − s define St = {σ(1), σ(2), . . . , σ(t)}.
Define S = Sn−s and µ(t) := µ[n]\St .
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Note that St is generated from St−1 by removing a random element in [n]\(T ∪ {i} ∪ St−1). Now
we can analyze p(µ[n]\S)i = p(µ(n−s))i by analyzing the stochastic process p(µ(t))i. We start by
analyzing its drift.

Lemma 31 (Expected drift). With the setup in Definition 30 and 0 ≤ t < n − s, we have

ESt+1

[︂
p(µ(t+1))i

⃓⃓⃓
St

]︂
− p(µ(t))i ≤

(1 − p(µ(t))max)−1

n − k̄ − 1 − t
p(µ(t))i.

Proof. By definition, we know that if St+1 = St ∪ {j} for some j ∈ [n]\(T ∪ {i} ∪ St), then

p(µ(t+1))i − p(µ(t))i =
PF∼µ(t) [i ∈ F, j /∈ F]

1 − p(µ(t))j
− p(µ(t))j

=
p(µ(t))i p(µ(t))j − PF∼µ(t) [i, j ∈ F]

1 − p(µ(t))j
. (4)

Hence by Equation (4),

ESt+1

[︂
p(µ(t+1))i

⃓⃓⃓
St

]︂
− p(µ(t))i

=
1

n − |T ∪ {i} ∪ St| ∑
j∈[n]\(T∪{i}∪St)

p(µ(t))i p(µ(t))j − PF∼µ(t) [i, j ∈ F]

1 − p(µ(t))j
. (5)

Because µ and hence µ(t) is strongly Rayleigh, each numerator of the fractions in Equation (5) is
nonnegative for j ̸= i, hence the expression in Equation (5) is at most

(1 − p(µ(t))max)−1

n − k̄ − 1 − t ∑
j∈[n]\ {i}

(︂
p(µ(t))i p(µ(t))j − PF∼µ(t) [i, j ∈ F]

)︂

=
(1 − p(µ(t))max)−1

n − k̄ − 1 − t

⎛⎝p(µ(t))i − p(µ(t))2
i + ∑

j∈[n]

(︂
p(µ(t))i p(µ(t))j − PF∼µ(t) [i, j ∈ F]

)︂⎞⎠
(i)
≤ (1 − p(µ(t))max)−1

n − k̄ − 1 − t
p(µ(t))i,

where (i) follows from Lemma 29. This completes the proof.

Now we analyze the variance/maximum change in p(µ(t))i.

Lemma 32 (Variance and maximum change). With the setup in Definition 30 and 0 ≤ t < n − s, we
have with probability 1 conditioned on St that

p(µ(t+1))i − p(µ(t))i ≤
p(µ(t))max

1 − p(µ(t))max
p(µ(t))i. (6)

Also, we have the variance bound

ESt+1

[︃(︂
p(µ(t+1))i − p(µ(t))i

)︂2
⃓⃓⃓⃓

St

]︃
≤ 1

n − k̄ − 1 − t
· p(µ(t))max

(1 − p(µ(t))max)2
p(µ(t))2

i .
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Proof. By the formula in Equation (4) we get

p(µ(t+1))i − p(µ(t))i =
p(µ(t))i p(µ(t))j − PF∼µ(t) [i, j ∈ F]

1 − p(µ(t))j
≤ p(µ(t))max

1 − p(µ(t))max
p(µ(t))i.

Because µ and hence µ(t) is strongly Rayleigh, p(µ(t+1))i ≥ p(µ(t))i so

ESt+1

[︃(︂
p(µ(t+1))i − p(µ(t))i

)︂2
⃓⃓⃓⃓

St

]︃
(i)
≤ p(µ(t))max

1 − p(µ(t))max
p(µ(t))i ESt+1

[︂
p(µ(t+1))i − p(µ(t))i

⃓⃓⃓
St

]︂
(ii)
≤ 1

n − k̄ − 1 − t
· p(µ(t))max

(1 − p(µ(t))max)2
p(µ(t))2

i ,

where (i) follows from Equation (6) and (ii) follows from Lemma 31.

Our desired concentration bound now essentially follows from a careful application of Bernstein’s
inequality for martingales to the sequence log p(µ(t))i.

Theorem 33 ([CL06, Theorem 20]). Let X(0), X(1), . . . , X(t) be a martingale such that X(u) − X(u−1) ≤
M with probability 1 and Var

[︂
X(u)

⃓⃓⃓
X(u−1)

]︂
≤ σ2

u for u ∈ [t]. Then

P
[︂

X(t) − X(0) ≥ λ
]︂
≤ exp

(︄
− λ2

2 ∑u∈[t] σ2
u + 2Mλ/3

)︄
.

Proof of Theorem 27. For the setup in Definition 30, define the random variables Y(t) := log p(µ(t))i
indexed by 0 ≤ t ≤ n − s. Given this, we define the martingale X(0) = Y(0) and

X(t+1) := X(t) + Y(t+1) − Y(t) − ESt+1

[︂
Y(t+1) − Y(t)

⃓⃓⃓
St

]︂
,

for 0 ≤ t < n − s.

We will bound the drift, maximum change, and variance of Y(t+1) assuming that p(µ(t))max ≤
2p(µ)maxn/(n − t) < 1/10 (which we want to show holds with high probability). We may assume
this, because we can just prematurely stop the stochastic process whenever this condition breaks.
For the drift term, we bound

ESt+1

[︂
Y(t+1) − Y(t)

⃓⃓⃓
St

]︂
= ESt+1

[︂
log(p(µ(t+1))i/p(µ(t))i)

⃓⃓⃓
St

]︂
≤ ESt+1

[︄
p(µ(t+1))i − p(µ(t))i

p(µ(t))i

⃓⃓⃓⃓
⃓ St

]︄
(i)
≤ (1 − p(µ(t))max)−1

n − k̄ − 1 − t
(ii)
≤ 1

n − k̄ − 1 − t
+

4p(µ)maxn
(n − k̄ − 1 − t)(n − t)

, (7)

where (i) follows from Lemma 31 and (ii) follows from our assumption on p(µ(t))max. For the
bound on the maximum increase, we get

Y(t+1) − Y(t) = log
(︂

p(µ(t+1))i/p(µ(t))i

)︂
≤ p(µ(t+1))i − p(µ(t))i

p(µ(t))i

≤ p(µ(t+1))i − p(µ(t))i ≤
p(µ(t))max

1 − p(µ(t))max
≤ 4p(µ)maxn

n − t
. (8)
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by Lemma 32 Equation (6) and our assumption on p(µ(t))max. For the variance term, we first
bound

ESt+1

[︃(︂
Y(t+1) − Y(t)

)︂2
⃓⃓⃓⃓

St

]︃
= ESt+1

[︃
log
(︂

µ(t+1))i/p(µ(t))i

)︂2
⃓⃓⃓⃓

St

]︃

≤ ESt+1

⎡⎣(︄ p(µ(t+1))i − p(µ(t))i

p(µ(t))i

)︄2
⃓⃓⃓⃓
⃓⃓ St

⎤⎦
≤ 1

n − k̄ − 1 − t
· p(µ(t))max

(1 − p(µ(t))max)2
≤ 8np(µ)max

(n − k̄ − 1 − t)(n − t)
(9)

by Lemma 32 and our assumption on p(µ(t))max. Our next goal is to prove that X(t) ≤ X(0) + 1/10
with high probability by using Theorem 33. Because µ and hence µ(u) is strongly Rayleigh for all
0 ≤ u ≤ t,

X(u+1) − X(u) ≤ Y(u+1) − Y(u) ≤ 4p(µ)maxn
n − u

≤ 4p(µ)maxn
s

≤ 1
1000 log n

by Equation (8) and sufficiently large C for s ≥ C(np(µ)max + k̄) log n so we may take M =
1/(1000 log n) in Theorem 33. Additionally, we have that

Var
[︂

X(u+1)
⃓⃓⃓

X(u)
]︂
≤ ESt+1

[︃(︂
Y(t+1) − Y(t)

)︂2
⃓⃓⃓⃓

St

]︃
≤ 8np(µ)max

(n − k̄ − 1 − u)(n − u)
≤ 8np(µ)max

(n − k̄ − 1 − u)2
,

by Equation (9) so we may take σ2
u = 8np(µ)max/(n − k̄ − 1 − u)2 in Theorem 33. By Theorem 33

for λ = 1/10, M = 1/(1000 log n), and σ2
u = 8np(µ)max/(n − k̄ − 1 − u)2, we get that

P
[︂

X(t) − X(0) ≥ 1/10
]︂
≤ exp

(︄
− 1/100

2 ∑u∈[t] σ2
u + M/15

)︄

≤ exp

⎛⎝− 1/100
16np(µ)max ∑u≤n−s

1
(n−k̄−1−u)2 +

1
15000 log n

⎞⎠ ≤ exp

⎛⎝− 1/100
50np(µ)max

s−k̄−1 + 1
15000 log n

⎞⎠
≤ exp(−20 log n) = n−20

for sufficiently large C in s ≥ C(np(µ)max + k̄) log n ≥ Ck̄ log n. To finish, note that

Y(t) − Y(0) = X(t) − X(0) + ∑
u∈[t−1]

ESu+1

[︂
Y(u+1) − Y(u)

⃓⃓⃓
Su

]︂
(i)
≤ X(t) − X(0) + ∑

u∈[t−1]

1
n − k̄ − 1 − u

+
4p(µ)maxn

(n − k̄ − 1 − u)(n − u)

(ii)
≤ X(t) − X(0) + log

(︃
n − k̄ − 1

n − k̄ − 1 − t

)︃
+

20p(µ)maxn
n − k̄ − 1 − t

(iii)
≤ X(t) − X(0) + log

(︃
n

n − t

)︃
+

1
100 log n

, (10)
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where (i) follows from Equation (7), (ii) follows from direction calculations with Riemann
integrals, and (iii) follows from t ≤ n − s and s ≥ C(np(µ)max + k̄) log n. To conclude, we write

P

[︃
p(µ(t))i ≥

2p(µ)in
n − t

]︃
= P

[︃
Y(t) − Y(0) ≥ log

(︃
n

n − t

)︃
+ log 2

]︃
(i)
≤P

[︂
X(t) − X(0) ≥ 1/10

]︂
≤ n−20,

where (i) follows from Equation (10). Theorem 27 now follows from union-bounding over all
times t ∈ [n − s] and all coordinates i ∈ [n].

5 Isotropic rounding

We give a reduction which estimates marginals of a distribution given an algorithm that samples
using marginal overestimates. At a high level, we split our original strongly Rayleigh distribution

µ ∈ R([n]k ) into two smaller distributions (supported on S1, S2 for [n] = S1 ⊔ S2), and recursively
produce marginal overestimates for µS1 and µS2 that sum to at most 4k. Now, we merge these
groups. Because µ is strongly Rayleigh, the marginal overestimates on µS1 and µS2 provide
marginal overestimates for µ summing to at most 8k. Thus, we can cheaply take O(n log n/k)
samples from µ to get marginal overestimates summing to at most 4k again.

Theorem 34 (Isotropic rounding from sampling). Let µ ∈ R([n]k ) be a strongly Rayleigh distribution.
Assume that we can sample from restrictions µS of µ (Definition 8) in time Aµ(K) given marginal
overestimates of µS that sum to at most K2. Then there is an algorithm that produces marginal overestimates
qi ≥ p(µ)i with sum ∑i∈[n] qi ≤ 4k in time ˜︁O(︁n/k · Aµ(8k)

)︁
.

Proof. We use a divide-and-conquer procedure. Precisely, given a set S we use the following
algorithm to produce marginals overestimates of S summing to at most 4k. If |S| ≤ 4k, then we
let all our overestimates be 1. Otherwise, partition S = S1 ⊔ S2 into equally sized pieces, and
recursively produce marginal overestimates q(1)i ≥ p(µS1)i and q(2)i ≥ p(µS2)i with ∑i∈S1

q(1)i ≤ 4k

and ∑i∈S2
q(2)i ≤ 4k.

Because µ is strongly Rayleigh, in fact q(1)i ≥ p(µS)i for all i ∈ S1 and q(2)i ≥ p(µS)i for all i ∈ S2.

Hence the vector q̄ ∈ RS defined as q̄i = q(1)i for i ∈ S1 and q̄i = q(2)i for i ∈ S2 are marginal
overestimates for µS. Additionally, ∑i∈S q̄i ≤ 8k.

Set s = 100 |S| log n
k , and let F1, F2, . . . , Fs be independent samples from µS generated in total time˜︁O(s · Aµ(8k)), by using the overestimates q̄. Define for i ∈ S

qi = max
{︃

k
|S| ,

2 |{s′ ∈ [s] | i ∈ Fs′}|
s

}︃
.

We claim that qi are marginal overestimates for µS with high probability and sum to at most 4k.
The sum follows because

∑
i∈S

qi ≤ ∑
i∈S

(︃
k
|S| +

2 |{s′ ∈ [s] | i ∈ Fs′}|
s

)︃
≤ k + ∑

s′∈[s]

2 |Fs′ |
s

= 3k.

2We do not write an n dependence as it will be polylogarithmic in our algorithms.
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Now we show that qi are marginal overestimates of µS. The case p(µS)i ≤ k/ |S| is trivial.
Otherwise, by a Chernoff bound,

PF1,...,Fs

[︁⃓⃓
{s′ ∈ [s] | i ∈ Fs′}

⃓⃓
≤ p(µS)is/2

]︁
≤ exp(−p(µS)is/8) ≤ n−100

by the choice s = 100 |S| log n
k and p(µS)i ≥ k/ |S|.

The final runtime claim follows from recursively calling the above describde algorithm on µ, and
using that there are O(log n) layers, each with total size n. Precisely, the total number of samples
taken in a layer is at most the sum over s = 100 |S| log n

k in a layer, which is O(n/k · log n).

6 Proofs of main results

In this section, we combine our previous results to show Theorems 3 and 35 and Corollaries 6
and 7. All results will follow from our entropy contraction bound Theorem 28 combined with
Lemma 11. Also, Theorem 35 requires Theorem 34.

Proof of Theorem 3. We first apply Proposition 23 to instead focus on sampling from a strongly
Rayleigh distribution µ′ with all marginals bounded by K/n. Let µ′¯ be the complement of µ′.

For κ1 as in Theorem 28 we run O(κ−1
1 log n) steps of a down-up operator on the complement of our

set, to converge to µ′¯ , i.e., iterate the Markov chain D(n−k)→(n−k′+1)U(n−k′+1)→(n−k). Note that each
U(n−k′+1)→(n−k) part needs to be implemented via a baseline sampling algorithm which takes time
T (k′ − 1, k). By Theorem 28 and Lemma 11, and the fact that the up step U(n−k′+1)→(n−k) cannot
increase entropy, the chain mixes in O(κ−1

1 log n) = O(log3 n) steps. Thus the runtime is bounded
by making O(log3 n) calls to Tµ(O(K), k) as k′ = Θ(np(µ′)max) = O(K) from Theorem 28.

Proof of Corollary 6. Let n = |E|, k = |V|. By the results of [Ana+21c] a spanning tree can be
sampled in ˜︁O(|E|) time on a graph with edge set E. Hence applying Theorem 3 with K = O(k) =˜︁O(|V|) shows that after obtaining the initial overestimates, each future sample requires ˜︁O(|V|)
time. Obtaining the original overestimates takes time ˜︁O(n/k · k) = ˜︁O(|E|) by Theorem 34.

Proof of Corollary 7. Let µ be the k-DPP with ensemble matrix L. Sampling from a k-DPP over
ground set of size n can be done in ˜︁O(nω) time, see Lemma 36. This together with Theorem 34
shows that in Õ(n/k · kω) = ˜︁O(nkω−1) time, we can get marginal overestimates that sum to Õ(k),
as well as one initial sample S0 from µ. We now apply Theorem 3, and note that each oracle call is
equivalent to sampling from a k-DPP on a size-O(K) subset of [n], which takes Õ(kω) time.

We now state a result on sampling strongly Rayleigh distributions using up-down steps. While it
is known that this Markov chain normally mixes in ˜︁O(n) steps [CGM19], we show that under
isotropy of µ it mixes in ˜︁O(k) steps.

Theorem 35. Given a strongly Rayleigh distribution µ ∈ R([n]k ) and marginal overestimates qi ≥ PT∼µ[i ∈
T] for i ∈ [n] which sum to K := ∑i∈[n] qi, there is an algorithm that samples from a distribution with total
variation distance n−O(1) from µ in time bounded by ˜︁O(K) calls to Tµ(k + 1, k). Additionally, given a

strongly Rayleigh distribution µ ∈ R([n]k ), we can produce marginal overestimates qi ≥ PT∼µ[i ∈ T] with
sum ∑i∈[n] qi ≤ O(k) in time ˜︁O(n · Tµ(k + 1, k)).
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Proof of Theorem 35. For κ2 as in Theorem 28 we run O(κ−1
2 log n) steps of the one level down-

up operator on the complement of our set, to converge to µ′¯ , i.e., iterate the Markov chain
D(n−k)→(n−k−1)U(n−k−1)→(n−k). Note that each U(n−k+1)→(n−k) part needs to be implemented via
a baseline sampling algorithm which takes time T (k + 1, k). By Theorem 28 and Lemma 11,
and the fact that the up operator U(n−k−1)→(n−k) cannot increase entropy, the chain mixes in
O(κ−1

2 log n) = O(K log3 n) steps. Thus the runtime is bounded by making O(K log3 n) calls to
Tµ(k + 1, k).

Finally, by Theorem 34, we can obtain the desired overestimates qi in time

˜︁O(n/k · 8k · Tµ(k + 1, k)) = ˜︁O(n · Tµ(k + 1, k))

as desired.

7 Deferred proofs

Proof of Theorem 20. Let ν be an arbitrary distribution. Let f (x) := x log x and note that

DKL(ν ∥ µ) = ES∼µ[ f (ν(S)/µ(S))]− f (ES∼µ[ν(S)/µ(S)]).

Consider the following process: We sample a set S ∼ µ and uniformly at random permute its
elements to obtain X1, . . . , Xk. Define the random variable

τi = f
(︃

E

[︃
ν(S)
µ(S)

⃓⃓⃓⃓
X1, . . . , Xi

]︃)︃
= f

(︃
∑S′∋X1,...,Xi

ν(S′)

∑S′∋X1,...,Xi
µ(S′)

)︃
= f

(︃
νDk→i({X1, . . . , Xi})
µDk→i({X1, . . . , Xi})

)︃
.

Note that τi is a “function” of X1, . . . , Xi. It is not hard to see that

DKL(ν ∥ µ) = E[τk]− E[τ0] =
k−1

∑
i=0

E[τi+1 − τi].

Conveniently, we obtain DKL(νDk→ℓ ∥ µDk→ℓ) by just summing over the first ℓ terms:

DKL(νDk→ℓ ∥ µDk→ℓ) = E[τℓ]− E[τ0] =
ℓ−1

∑
i=0

E[τi+1 − τi].

Our goal is to show that the sum of the last k − ℓ terms are at least κ times the entire sum.
Applying the assumption of local contraction to the link of the set T = {X1, . . . , Xi}, we get

E[τi+1 − τi | X1, . . . , Xi] ≤ (1 − ρ(T)) · E[τk − τi | X1, . . . , Xi],

which we rewrite as

E[τk − τi+1 | X1, . . . , Xi] ≥ ρ(T) · E[τk − τi | X1, . . . , Xi].

Define the random variable

Zi :=
τk − τi

ρ(∅)ρ({X1}) · · · ρ({X1, . . . , Xi−1})
,
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and note that our previous inequality simplifies to E[Zi+1 | X1, . . . , Xi] ≥ E[Zi | X1, . . . , Xi].
Chaining these inequalities we get that E[Zℓ] ≥ E[Z0] = DKL(ν ∥ µ). We can further simplify
E[Zℓ] by noting that the numerator τk − τℓ remains the same if we permute X1, . . . , Xℓ.

E[Zℓ | {X1, . . . , Xℓ}, {Xℓ+1, . . . , Xk}] =
τk({X1, . . . , Xk})− τℓ({X1, . . . , Xℓ})

γ({X1, . . . , Xℓ})
.

Taking a further expectation, we get

E[Zℓ] ≤
E[τk − τℓ]

min
{︂

γ(T)
⃓⃓⃓

T ∈ ([n]ℓ )
}︂ .

This together with E[Zℓ] ≥ E[Z0] = E[τk − τ0] completes the proof.

Proof of Proposition 23. Clearly, PS∼µ′ [i(j) ∈ S] ≤ pi/ti ≤ K/n. Also,

|U| = ∑
i∈[n]

ti ≤ ∑
i∈[n]

(︂
1 +

n
K

pi

)︂
≤ n + n · ∑i pi

K
≤ 2n.

For the third property, if µ has the generating polynomial gµ(z1, . . . , zn), then the distribution µ′

obtained by subdividing element i into ti copies has generating polynomial

gµ′(z(1)1 , . . . , z(tn)
n ) = gµ

(︄
z(1)1 + . . . + z(t1)

1
t1

, . . . ,
z(1)n + . . . + z(tn)

n

tn

)︄
.

Clearly, if gµ is real-stable then so is gµ′ . This is because if zj
i are chosen from the upper half plane

{z ∈ C | Im(z) > 0}, their averages also lie in the upper half plane.

Lemma 36. Given an n × n positive semidefinite matrix L and an integer k ≤ n, we can sample from the
k-DPP defined by L in time ˜︁O(nω).

We remark that variants of this statement where slow (but more practical) matrix multiplication
algorithms are used, which result in cubic ˜︁O(n3) runtimes, already exist in the literature. Here,
we simply formalize the observation that these algorithms can be adapted to take advantage of
fast matrix multiplication and thus the runtime can be reduced to ˜︁O(nω).3

Proof. Kulesza and Taskar [KT12] reduce the task of sampling from a k-DPP defined by L to sam-
pling from a (size-unconstrained) DPP. This is achieved by performing a spectral decomposition of
the kernel matrix, choosing a subset of exactly k eigenvectors, each subset chosen with probability
proportional to the product of the corresponding eigenvalues and forming a new kernel matrix
just from the chosen eigenvectors. For details, see [KT12]. We simply remark that an approximate
spectral decomposition of L is the most expensive operation here (while choosing the subset of
eigenvectors can be done in O(n2) time). Thus, this part of the algorithm takes time ˜︁O(nω) using
fast matrix multiplication [YL93; Ban+20].

Now, for sampling from a (size-unconstrained) DPP, Kulesza and Taskar [KT12] presented a
somewhat slow O(n4)-time algorithm, which was subsequently refined to O(n3), see, e.g., [Pou20].

3See p.18 in https://buildmedia.readthedocs.org/media/pdf/dppy/latest/dppy.pdf for details on various
algorithms for sampling from DPPs.
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The same algorithm can be improved by switching linear algebraic operations it uses to those
that employ fast matrix multiplication. The factorization-based algorithm presented by Poulson
[Pou20] arranges the ground set of n elements as leaves of a balanced binary tree, where the
final sample from the DPP is produced at the root of the tree. Each node of this binary tree with
m leaves in its subtree is associated with an m × m kernel matrix. Roughly speaking, a node
with m leaves first computes an m/2 × m/2 submatrix for its left child (the marginal of its DPP
on the first half of the elements), produces a sample from the left subtree, and then produces
another m/2 × m/2 submatrix for its right child (the conditional DPP, conditioned on choices
made by the first child). These submatrices are produced simply by Schur complements and
matrix multiplication, all of which take time ˜︁O(mω) using fast matrix multiplication. Summing
over all levels of the binary tree results in an overall runtime of ˜︁O(nω).
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