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We introduce a general setup for the analog quantum simulation of the dynamics of open quantum sys-
tems based on semiconductor gquantum dots electrically connected to an array of quantum RLC electronic
circuits. The dots are chosen to be in the regime of spin-charge hybridization to enhance their sensitivity to
the RLC circuits while mitigating the detrimental effects of unwanted noise. In this context, we establish an
experimentally realizable map between the hybrid system and a qubit coupled to thermal harmonic envi-
ronments of arbitrary complexity that enables the analog quantum simulation of open quantum systems.
We assess the utility of the simulator by numerically exact emulations that indicate that the experimental
setup can faithfully mimic the intended target even in the presence of its natural inherent noise. We fur-
ther provide a detailed analysis of the physical requirements on the guantum dots and the RLC circuits
needed to experimentally realize this proposal that indicates that the simulator can be created with exist-
ing technology. The approach can exactly capture the effects of highly structured non-Markovian quantum
environments typical of photosynthesis and chemical dynamics and it offers clear potential advantages
over conventional and even quantum computation. The proposal opens up a general path for effective

quantum dynamics simulations based on semiconductor quantum dots.
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L INTRODUCTION

Open quantum systems refer to microscopic quantum
coherent systems that are coupled to a quantum environ-
ment. Computing the dynamics of open quantum systems
with high precision is a central challenge in chemistry,
physics, and quantum information science [1-3]. This is
because most quantum systems of physical interest are in
interaction with an environment that modulates its phys-
ical properties and introduces decoherence and relaxation
routes in the dynamics [4-6].

The challenge is particularly difficult when trying to
capture the effects of environments of relevance in chem-
istry (such as solvents, vibrations, protein scaffolds, poly-
mer matrices, and electromagnetic radiation) as needed,
for example, to develop better organic solar cells [7-9]
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or understand wital processes such as photosynthesis
[10—~12] and wvision [13—15]. These environmenis can
operate at disparate time scales with varying interaction
strengths to the system (thus highly structured), remember
the dynamical history of the system (thus non-Markovian),
and lead to both energy relaxation, loss of quantum coher-
ence, and environment-mediated interactions (thus many-
body).

Despite the success of a variety of approximate methods
[16-26], tackling this key problem exactly with conven-
tional computers remains a formidable task due to the
exponential scaling of the computational cost with system
size and bath complexity. Even for a quantum computer,
currently available machines and algorithms have been
shown to be able to capture the open quantum system
dynamics of simple models [27-30] but are unable to deal
with the structured environments encountered in chem-
istry. The accurate modeling of this class of problems
would require a large number (approximately 10°-107) of
entangled qubits [31,32], which is a desirable but currently
unreachable goal.

An attractive alternative is analog quantum simula-
tion [33-36], which does not require a scalable quantum
computer. In this approach, instead of trying to solve the
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Liouville—von MNeumann equation using digital compu-
tation, the problem of physical interest is mapped onto
a highly controllable experimental setup and nature is
allowed to do the simulations. However, not all exist-
ing setups can be used for open quantum systems, partly
because it is challenging to model the effect of the quantum
environment on the system of interest. Current approaches
in quantum simulation [37-39] mimic the environment
by simply introducing classical noise. This approach can
yield an apparent loss of coherence but fails to cap-
ture energy relaxation through spontaneous emission and
other unique quantum features of the environment and its
dynamics [40.41]. Interesting proposals to generate dis-
sipation with classical noise [42] are only valid thus far
for weak system-bath interactions. Thus, there is a critical
need to develop general methods to simulate the effects of
complex quantum environments.

In this paper, we develop the theory of a new simulator
architecture for open quantum system dynamics harness-
ing semiconductor quantum dots and quantum electronic
circuits (see Fig. 1). We focus on environments that can
be described by a collection of harmonic oscillators, such
as photonic and phononic environments. This class of
environments is widely applicable because any system-
environment problem can be rigorously mapped onto a
system linearly coupled to an oscillator environment, pro-
vided that the interaction can be dealt with to second order
in perturbation theory [43]. Makri has further argued that
this is a common situation in the thermodynamic limit
when the system-environment coupling is diluted over a
large number of degrees of freedom [44].

To model the system, we propose the use of gate-defined
semiconductor quantum dots (QDs) [45,46], as they enable
the design of highly configurable and coherent quantum

(a) Energy Transport

Charge Transfer

F1G. 1.

{b) System Energy Levels

Bath Spectral Function

systems. These QDs are created by lithographically fab-
ricating nanoscale electrodes on the surface of semicon-
ductor interfaces (e.g., GaAs-AlGaAs or 5i-5iGe) hosting
a two-dimensional electron gas at cryogenic lemperatures.
Through applied voltages on the electrodes, one can create
electrostatic potential wells that act as QDs for electrons
(Fig. 2) with a well-defined spectrum of discrete elec-
tronic energy levels. Through gate voltages, the shape
and depth of the QDs, the tunnel coupling between con-
secutive (JDs, and the number of confined electrons can
be precisely manipulated [Figs. 2(b) and 2(c)]. State-of-
the-art experiments using (JDs involve the manipulation
of up to nine QDs in a linear geometry [47.48]. Recent
experimental achievements include quantum teleportation
between distant electron spins [49] and rapid shuttling of
a single electron across a large QD array [47], all demon-
strating the high controllability of the QD platform. These
technical advances have positioned QDs as an excellent
candidate for analog quantum simulation. In fact, (QDs
have been proposed as simulators of simple chemical reac-
tions [50] and used to simulate strongly correlated electron
systems [51,52]. Our proposed QD-based scheme to simu-
late open quantum systems complements these efforts and
has unique advantages over related proposals based on
superconducting qubits [35,53] and ion traps [36].

To model the environment, we introduce the concept
of a quantum bath synthesizer ((JBS) that is composed
of arrays of quantum electronic circuits [Fig. l{e)]. The
approach is based on cooling RLC circuits until they
behave like dissipative quantum mechanical oscillators. By
judiciously controlling the resistance (R), inductance (L),
and capacitance (C) of the circuits, the frequency, quan-
tum fluctuations, and relaxation of each oscillator can be
tailored. By considering an array of them with different

(d) Gate-Defined QDs

B —

Quantum Bath Synthesizer
(QBS)

Schematic of the proposed gquantum simulator of open quantum systems based on quantum dots ((JDs) and microelectronic

circuits. The proposed setup is versatile enough to capture environments of chemical complexity such as those relevant in (a) energy
transport in photosynthetic complexes and charge transfer in solar cells. The (b) system energy levels and (c) spectral density of the
thermal environment are mapped into (d) gate-defined QDs and () a quantum bath synthesizer (QBS) composed of arrays of RLC
circuits.
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Energy

FIG. 2. The semiconductor quantum dot setup. {(a) A false-color scanning-electron micrograph of a double-quantum-dot (DQD)
device formed by plunger (blue) and barrier (green) gates. (b) The scheme of the device. (c) The electrostatic potential energy surface
along the current path [the black arrow in (a)]. (d) The eigenenergies of the DQD with two electrons for a given detuning &4 and

magnetic field B..

frequencies, the physical system will act as a quantum bath
that can be tuned to mimic the dynamics and response
of thermal environments even of chemical complexity.
The use of the RLC degrees of freedom gives an analog
quantum simulator an advantage over digital approaches
that require many qubits to accurately represent a single
harmonic oscillator.

The strategy of using quantum circuits to introduce
dissipation in analog simulation has been suggested by
Mostame ef al. [35,54] for flux qubits inductively coupled
to RLC circuits, In this proposal, however, the physical
proximity required for effective inductive coupling limits
the number of distinet circuit elements that can be cou-
pled to the qubit. Leppikangas er al [53] adapted the
idea for transmons electrically coupled to microwave res-
onators and proposed a scheme based on two-color driving
to reproduce Ohmic environments. However, the physical
requirements needed to capture environments of chemical
complexity remain unclear. Our proposal can be used to
maodel complex environments and is based on purely elec-
trical interactions between the (JDs and the RLC circuits.
These electrical connections offer fast response times and
the ability to spatially separate the QDs from the QBS,
offering additional flexibility in designing the simulator
and controlling its parameters.

The proposed approach constitutes a general model-
ing strategy for open quantum systems based on QDs
that can be used to understand the operation of realistic
quantum devices, to engineer quantum environments that
enhance system function, to isolate qubits with enhanced
coherence properties, to understand elementary steps in
photosynthesis, and to test quantum control strategies in
the presence of quantum environments. As in conven-
tional simulation, the setup enables continuous tuning of
the Hamiltonian through external controls opening essen-
tial routes to understand properties of matter that are not

accessible to direct experimentation. [n addition, it has the
advantage that the computational cost does not increase
with the complexity of the spectral density or in regimes
in which the quantum features of the environment become
increasingly important. The proposed sirategy captures
dissipative effects to all orders in the system-bath coupling
and includes both Markovian and non-Markovian effects.
Specifically, in this paper we provide a strategy to build
an analog quantum simulator based on QDs for a qubit
coupled to a thermal environment of arbitrary complex-
ity. In Sec. I, we develop a rigorous mapping between
the target system and the quantum simulator. In Sec. 111,
we use numerically exact emulations to examine simula-
tion accuracy even in the presence of experimental noise.
These emulations reveal clear operation conditions where
the simulator can accurately mimic the target dynamics. In
Sec. IV, we analyze the experimental requirements needed
for its realization and find that the building of such a simu-
lator is accessible to present-day technology. Last, in Sec.
V, we discuss how the proposed simulator can be used as a
building block for the general simulation of open quantum
systems. We summarize our observations in Sec. VI,

II. MAPPING OPEN QUANTUM SYSTEMS TO
HYBRID QUANTUM DOTS—QBS SYSTEMS

In developing a useful analog simulator, the key is to
isolate degrees of freedom of the QDs that offer customiz-
able energy-level structure and interact strongly with the
(QBS but weakly with the natural environment (i.e., the
charge fluctuations and nuclear spins in the semiconduc-
tor) such that the simulator informs about the system of
interest. At the bath level, the key is to guarantee that the
(BS is customizable such that it can be used to model
a wide range of environments and that the interactions
between the ()Ds and the QBS accurately map into the
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physical interactions of interest. The QDs offer charge,
spin, and hybrid spin-charge (singlet-triplet configurations
of electron pairs) controllable degrees of freedom. Here,
we hypothesize that hybrid spin-charge approaches are
likely the most suitable, as they avoid the short coherence
time of charge and the weak interactions of spin.

A, Target Hamiltonian

We consider a general two-level quantum system that
consists of’ a ground state |g} and an excited state |€) in
interaction with a thermal bath. The target Hamiltonian
that we want to encode in the quantum simulator is of the
form

H=H &1y +1,® Hy + Hu, (1)

where H, describes the system part, H, the bath and H,,
their interaction, and 1 5 {iﬁ.} is the identity operator in the
system (bath) subspace. The general Hamiltonian for the
qubit is

. M .
Hs = Eaz + iy, {1]

where A is the energy difference between the two states,
n is their coupling, and &, = |e) {g]| + |g)} (e] and &: =
le} {e] — |g) (g| are the Pauli spin operators. In turn, the
bath consists of a collection of harmonic oscillators,

- e 1
Hp = Zﬁmj (a;aj + E) (3)
¥

where & and a; are the raising and lowering operators
of the jth mode with characteristic frequency w;. For
the system-bath interaction, we consider the archetypical
spin-boson and displaced-harmonic-oscillator (or Frenkel-
Holstein) models, as they have been found to be useful
to describe a variety of problems. This includes quan-
tum impurity problems [55], quantum thermodynamics
[56], artificial light-matter coupling [57] for the spin-boson
coupling, and molecular photophysics such as the dynam-
ics of natural [58] and artificial chromophore aggregates
[59], photovoltaic materials [60], and electroluminescent
materials [61] for the displaced harmonic oscillator.

In both cases, the displacement of the collective bath
coordinate,

B=Y"hg @ +a), (4)
i

leads to fluctuations in the system energy. That is, Hy, =
S & B, where g; 1s the coupling strength of the jth mode
to the system. In the spin-boson model, § = 4. and the

ground and excited states are symmetrically affected. In
turn, in the displaced oscillator model, only the excited
state is affected and § = |} {e]. The influence of the har-
monic bath on the system is completely characterized by
its spectral density [43],

J(w) =" hglslw — wy), (5)
¥

a quantity that summarizes the frequencies of the environ-
ment and the system-bath coupling strengths.

We suppose that at ¢ = (0, the density matrix of the com-
posite system is factorizable, i.e., A(0) = g,(0) @ Gy (),
where 5,(1) is the reduced density matrix of the system and
oy () that of the bath. At initial time, the bath is taken to be
at thermal equilibrium at temperature T, i.e.,

_ exp(—Hy /kaT)
Tr[exp(—H, /kyT)]

The feasibility of the analog quantum simulation relies on
the ability to experimentally construct artificial systems
that faithfully mimic H,. J{w) and the initial conditions.
While the dynamics of interest often operate arcund room
temperature T ~ 300 K, the QDs operate at eryogenic tem-
peratures Iys = | K. To establish a map, energies and time
scales need to be scaled according to the temperature ratio

T
= T

An(0) (6)

Y (7
The dynamics of the simulator will be ¥ times slower and
the characteristic energies |/y smaller than in the physi-
cal system. Given a useful mapping, this guarantees that
the effective dynamics and thermal-density matrices of the
simulator and its target coincide. This temperature scaling
factor can be used to map a wide range of target Hamil-
tonians to the setup and offers the additional advantage of
slowing down and thus increasing the time resolution of
the simulation with respect to direct experimentation in the
target system.

B. Mapping thermal environments to arrays of RLC

circuits

To emulate thermal environments, we consider arrays of

RLC circuits. The elementary unit is a parallel LC circuit

containing a coil with inductance L (the ability to oppose a

change in the electric current arising from electromagnetic

induction) and a capacitor with capacitance C (the abil-

ity to store charge at a given voltage). The total classical
Hamiltonian for the LC circuit is

He=5=++5 (8)

where () is the charge stored in the capacitor and @ is
the magnetic flux passing through the inductor. Equation
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(%) is identical to the Hamiltonian of a harmonic oscillator
of frequency Qg = 1/+/LC and mass m = C if we simply
identify the momentum p — ( and position ¢ — @. In
fact, just as with p and g. @ and @ are canonically con-
jugated variables [62]. That is, the curresp-:rndmg quantum

mechanical operators Q and & satisfy [d, Q] ifi. This
allows us to rewrite Eq. (8) in quantized form as

e e I

i~ = hSy, (b*b + E)’ (9)

where b' and b are the raising and lowering operators,

defined as
1{'252 (ZQ + id).
1 A s
N E—hzn(ZnQ—m, {10}

in which Zy = /T/C is the characteristic impedance. For
low temperatures satisfying kpTigs < fifdy, the LC cir-
cuit behaves exactly like a quantum harmonic oscillator
and the electromagnetic observables Q and & show zero-
point quantum fluctuations. Fluctuations in the charge of
the LC circuit introduce fluctuations in the circuit voltage
Vo= QfC that influence the potential wells of the QDs.
These zero-point Aluctuations of circuit voltage form the
physical basis of the system-bath coupling in the simulator.

A rigorous analogy between thermal environments and
an array of quantum RLC circuits is established as follows.
The ()BS needs to reproduce spectral densities encoun-
tered in thermal environments. To understand the mapping
between these two, it is useful to focus on the two-time
bath correlation function [2]

At

(B(OB(0)) 1

Fuw .
—hf J{WJ[mlh(Ek T) mswi‘—mnwf]dw,

(11)

where the angular bracket {- - - }r denotes a thermal average
at temperature T and B(f) are the bath operators in .. [Eq.
{4)] in the interaction picture of H— f;'-.m. Equation (11}
is a useful quantity for describing harmonic environments
because all higher-order time correlations can be written
in terms of Eq. (11} in this case [63,64]. We now use it to
identify the proper mapping.

Consider a QBS made of a single LC circuit coupled
to the QDs through voltages Fy - = Q/C that influence
the potential wells, Le., HETS = iqs @ﬁ'qs with :EQS =
k Vi, where i is a response factor that quantifies how
the energy of a QD changes with applied LC voltage.

Since the LC circuit behaves like a harmonic oscillator, the
time-correlation function for Bgs is [62]

(Bos(0Bos(0)) 14

hQ? hQ
= —"Zﬂxz coth 2 )ecos Lt — i sin S2qi |.
2 2kpTys

(12)

We now introduce the impedance Z(£2), a complex-valued
quantity that describes the response of a circuit under a
sinusoidal voltage of frequency £2. The magnitude |Z£{S2)|
is a resistance, while the argument arg[Z(£2)] deseribes the
phase difference between the voltage and the current. The
impedance of an LC circuit is [62]

Z(Q) =

[8(2 — Qo) + 8(2 + Q0)]

iZol, 2 S
+F(ae) r(ame)) o

where T denotes the principal value. From Eqs. (12) and
(13), it follows that

b R RV
2

. N bl o
(Bas (0 Bas () = — fu Q Re[Z()]

ha2
* [cuth( )msﬂr—:‘sinﬂ.f]dﬂ. (14)
2kpTos

To mimic Eq. (11), one needs to consider a collection of
serially connected LC circuits with different values of L
and C, with Hamiltonian

. e
Hors =) hey, (b}aj + E)‘
i

(15)

where the bosonic ladder operators f::: and E:j are defined
analogously to Eq. (10}

- 1 - -
a}=1/ﬁtzuf@ +id)),
- 1 - -
by = ,I'ETZW(ZOJ.Q, — id;).

Here, Zy; is Zy for the jth oscillator. The continuous limit
can be achieved with a finite number of serially connected
parallel RLC circuits, where the resistance broadens their
spectral features and introduces dissipation [see Fig. 1(e)].
The validity of Eq. (14) remains unaffected at this limit but

(16)
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the impedance of the serial circuit is now [62]

Re[Z(Q)] = ) Re[Z/(Q)],
J=l
2, Q2
(QF — Q7)? +4r7Q?

Re[Z (Q)] = 24, (17

where Z;(£2) is the contribution of a single RLC circuit.
The reorganization energy A; = Zy £ /2 and damping
constant I'; = Zg;£3; /2R; can be controlled by varying
the circuit resistance R;, frequency €; and Zo; = \/L; /C;.
For By — 0, the contribution of the circuit to the spec-
tral density vanishes as Re[Z; (£2)] — 0. For finite R;, the
resistance introduces broadening of the resonance of the
LC circuit. As R; — 00, the RLC circuit reduces to an LC
circuit and Iy — 0.

Comparing Eqs. (11) and (14), we see that the RLC cir-
cuits behave identically to the target environment provided
that one tailors Z{52) such that

2

il
J(w) = - Re[Z(w/y)], (18)

where y is the temperature ratio in Eq. (7). This equation
is cenfral to establishing an exact map between thermal
environments and RLC circuits.

C. Mapping system levels to QD states

We now address the key issue of how to map the qubit
Hamiltonian [Eq. (2)] into the QD states. For definitive-
ness, we focus on the double quantum dot (DQD) with
two electrons schematically shown in Fig. 2. To proceed,
it is important to understand the energy-level structure
offered by the DQD [65-67], schematically shown in
Fig. 2(d). Here, (1,1} describes the state in which one
electron occupies both the left and right dots and (0,2)
in which both electrons occupy the right dot. The ener-
gies of these states are €(1,1) = €L + e and €2y = 2ep +
€pair- Where £g denotes the ground-state energy of the left
(f = L) orright (§ = R) QD, respectively, and epg 15 the
electron-pairing energy arising from Coulombic interac-
tions. The energetic detuning e [the x axis in Fig. 2(d)]
is defined as the energy difference between the two charge
configurations,

€4 = £(1,1) — €(0,2) = €L — €R — Epair- (19

In the absence of a magnetic field, the (1,1) configuration
is fourfold degenerate with one singlet and three triplet
spin states. By contrast, the (0.2) configuration favors the
singlet state due to the Pauli exclusion principle.

The singlet states of the (1,1} [|S(1,1)}] and (0,2}
[15(0,2))] configurations hybridize near the degeneracy
point &g ~ () due to the tunnel coupling #. between the
0QDs, yielding two adiabatic singlet states [|Sp). [51)]. By
contrast, the (1,1) triplet states [[Tp+(1, 1)} or [To+) for
short] are not affected by the hybridization.

The application of an external magnetic field along the
z axis lifts the energy degeneracy of triplet states. The
energy diagram in Fig. 2(d) results from these observa-
tions, where the zero-energy baseline is chosen as (ep +
Jer + €pair)/2 to make the diagram symmetric. In the ide-
alized picture, the £;, and £ are manipulated by changing
the gate potentials of the left and right dots [Pl and P2 in
Fig. 2(b)], respectively, while the tunnel coupling f. is con-
trolled through barrier-gate electrodes between the QDs
[B2 in Fig. 2{b)]. The resulting level mixing is referred to
as spin-charge hybridization.

In mapping the open quantum system to this hybrid
structure, there is freedom on which QD states to use.
However, the choice can dramatically impact the experi-
mental requirements and utility of the simulator. We now
introduce a useful mapping for two-state problems based
on the Sy/T_ states. These states are chosen because their
relative energy is controllable by varying 4 [Fig. 2(d)],
their coupling can be manipulated through magnetic fields,
they are not highly excited states that suffer from additional
spontaneous relaxation, and because they can be used to
form useful qubits [68]. In this map, the quantum noise is
incorporated by connecting the QBS to the left QD, leading
to quantum fluctuations in the ¢ and thus 4.

Other alternative mappings suffer from significant draw-
backs. For instance, the choice of states that are distin-
guished solely by charge configurations, such as S(1,1)
and S§(0,2), suffers from the fast unwanted decoherence
due to coupling to charge fluctuations in the natural
environments of the QDs, making them of limited util-
ity for simulation. In turn, states that differ in spin but
not charge, such as Sy and Ty for negative detunings,
offer long coherence times, as they are mostly uncou-
pled to charge fluctuations in the natural QD) environ-
ment but have the disadvantage of also being insensi-
tive to the desired charge fluctuations introduced by the
OBS, making the experimental requirements on the QBS
unfeasible.

The Hamiltonian for a DOD in the presence of an exter-
nal magnetic field is I?QD = f;'gﬂ +eupiBr -5 4+ By -
Sg), where ﬁgn is the pristing quantum dot Hamiltonian,
g is the Lande g factor, pg is the Bohr magneton, Bp
and Br (S, and Sg) are the magnetic fields (total spin
operators of the electrons) at the left and right (QDs, respec-
tively. We take the magnetic field to have the form of By =
(AB/2)% — BaygZ and By = —(AB/2)% — Byy,Z, such that
its x-component changes between the dots [see Fig. 2(b)].
Inthe {ITy)}.|To}.|T_},|8(1, 1)}, 15(0, 2)}} basis,
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where iQu. is the identity operator in the QD Hilbert space. From this point on, we disregard the zero base line of energy

as it does not change the dynamics.

The desired mapping is obtained by expressing the Hamiltonian in the eigenbasis of .’:fqu,n, H A Y EYR Y P
[Sa) . |51}} and focusing on the |T_}, |5;) subspace. In this basis,

. By 0 0 —A%sind  —£% cos6
2 0 0 0 0 0 0 0 0 0
0 ff- 0 0 0
- AR AR
HQD — g g EE:: ﬂ g +g.ﬁ-E 0 0 _BM"B m siné m cosd {21'}
€ AR - AR .
3 0 0 3& 5 e sind () z—ﬁmnﬂ 0 0
! —;‘B cosf 0 %cnsﬂ 0 0

The | S} and |81} states are defined by

|Sp) = sind |S(1, 1)) = cos @ |S(0,2)),

[S1} = cos@ |S(1,1)) + siné |S(0,2)}, (22)
with the mixing angle
%tan" (2—&) g =0
J— E""r
' i + ] tan ! 2 g =<0 =
7 7 Py 4 o B

while their eigenenergies are e5 = —.,.-'eﬁf*l-l—fﬁ and

€5, = —&g,. Inthe [T_), |5y} subspace, this yields

gD = Eo(IT_) {T_| + IS} (So)
+ Ags(|So} (Sol — 172} (T-])

+ ngs (1T-) (8ol + [So) (T_1), (24)
where Eg = €4/4 + €5, — gitgBayg/2 15 the zero of energy
and the Hamiltonian parameters Ags =e5, —€4/2 —
gipBy and ngs = gﬁgﬁﬂﬁﬁ sin# are experimentally
controllable. The “0Q8" superscript highlights that this is
the subspace where the quantum simulation takes place.
This desired subspace can be energetically isolated from
the two remaining triplet states by increasing Bay, and from
the |&) state by increasing the magnitude of the detun-
ing. By simply changing the zero of energy, this vields the
Hamiltonian in Eq. (2) by associating |T_) with |g} and
|Sg) with |&).

In the absence of the QBS, &g is purely determined by
gate voltages, e, eg = éﬁ,, where ef are energetic changes
due to applied voltages on the lithographic electrodes. As
discussed in Sec. 11D, connecting the QDs to the QBS
leads to additional static energy contributions to €g.

D. Mapping the system-bath coupling

The total Hamiltonian of the QD-QBS hybrid system is
of the form

:f!'up = -’:fqn 4] iuas + iQD & ﬁQBS + foD-QB& (25)

where I;'Qu,qug describes the interactions between the QDs
and the QBS. We now consider how to map the physical
interaction between the system and the environment into
that of the QDs with the (JBS. Since the energetics of the
QDs depend on e, — eg [see Eq. (19)], for the QBS to exert
quantum noise, the two dots must couple differently to the
QBS. To be concrete, we choose to couple the QBS to the
left QD only

Hop.gs = (1gp — 15(0,2)) (SQ.2)h @ e Y _ ¥, (26)
7

where ¥, = Q, [C; is the voltage operator for the jth LC
circuit of the QBS and « is the “lever arm™ or propor-

tionality factor, which converts changes in gate voltage to
changes in the QD energy. In the {|T}). [To). [T-), |So},
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|51)} basis:
I 00 0 0
0 1 0 0 0
Agpops= |0 0 1 0 0
o 0 0 sin® @ sinf cos @
0 0 0 sinfcosd cost @

(27)

@HZ“ {b_,r +b}
i

where the ¥ are expressed in terms of the bosonic
operators of the (JBS [Eq. (16)]. As in the spin-boson
problem, the interactions in Eq. (27} are diagonal in the
{17-) , |50} } simulation subspace and linear in the environ-
mental degrees of freedom. However, thus far the physical
model and the simulator are not identical.

To overcome this, we propose to displace the QBS
charge coordinates by applying a bias voltage

AV = "}‘QZCL} (28)
)

between the opposite ends of the QBS, which identi-
cally charges all the capacitors with AQ. The new charge
operator in the displaced coordinates,

Q=0 +AQ (29)
still obeys the desired commutation relations and the dis-
placement AQ can be conveniently chosen to yield either
the spin-boson or the displaced harmonic oscillator, How-
ever, the introduction of AQ will result in ﬁ{}ﬂs % iQD +
Hyn.ges static energy shifts that contribute to the g on

top of the contributions due to the gate electrodes sﬁ,
Specifically,

2aAQ

T_
a=d4 QY A0y,
}.

2,

ANt
ER_ER-I—Z{ Q) : (30b)

and thus the detuning

o
£ =E§ + Z ?Q
I f

(31)

In these new coordinates, I;'QD remains as defined in Eq.
{21), and

(32)

. _—
Hoss = Y hey, (E:fbj ~ E)‘
f

where the raising and lowering operators in the displaced
charge coordinates are given by

= ]. - -
b = .I' (Zy Q) — idy). (33b)
g h&]; i

In turn, the resulting QD-QBS interaction term in the
T4y 1 Tod 1T}, 180) . |81} ) basis is

a—AQ 0 0 0 0
0 a-AQ O 0 0 hZe
ﬂQD—Q-BS = 0 0 o — ﬁQ 0 0 & z _.fzﬂ.l" [bd + b“}. 34)
. 2 . 2 i )
] 0 0 asin®d — AQ  wsinf cosf
1] 0 0 asinfcosfd acos @ — AD

By projecting into the simulation subspace, we obtain

S

QD-gBS = [« — AQ) T} (T-|

+ (asin’ 6 — AQ) |So} (Sol]

Z

{b’* +B). (39

In this charged coordinate system, one can manipulate AQ
to yield different types of interactions. When AQ = a, the
interaction is identical m the dmplaccd harmonic oscilla-
tor. In turn, for AQ = -a’{l + sin? ), the interaction is
identical to the spin-boson problem. By separating EQS
[Eq. (12)] from Eq. (35), we can now also specily the
undetermined constant in Eq. (12) as ¥ = @ cos” @ for the
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displaced harmonic oscillator and & = éa cos? B for the
spin-boson problem.

E. Choice of simulator parameters
The total Hamiltonian of the simulator is

Hos = PH_, P
= ﬁgﬁ ® 1gps + igf}. ® Hops +ﬁ'§{5iq55, (36)

where P is the projection operator onto the simulation
subspace. The simulator Hamiltonian is specified by Eqs.
(243, (32), (35), and ({36). Thus, as desired, if we associate
lgh — |T_} and |e) — |Sp), we can exactly map H in Eg.
(1) to I;'Qs in Eq. (36). An important feature of the pro-
posed mapping is that it enables us to continuously tune
Hamiltonian parameters through experimentally accessi-
ble variables. We now discuss how to choose experimental
variables needed to reproduce a given target Hamiltonian.

At this stage, it is useful to introduce the sensitivity
of the quantum simulator to the fluctuations of the QD
energy as an important target feature of the simulator. This
is important because such sensitivity determines how the
simulator couples to its natural environment and to the
OBS, and will guide the physical requirements in (BS
design. We define the sensitivity as how the §—T_ energy
gap Ags changes with the detuning g, i.e.,

dAgs
deg

k,E‘

) =cost @, (37)

|
:_(, L
2 e+ ar

where the latter equality follows by combining Eq. (37)
with Eq. (23). The sensitivity can be tuned in the QD setup
by changing €. Increasing the sensitivity 0 < k; < 1 has
the desirable consequence of reducing the physical size
of the QBS required to achieve a given physical effect.
However, increasing k&, also has the undesirable effect of
reducing the coherence time of the simulator states, as it
makes the influence of the uncontrollable electrical noise
in the experimental setup more important. The optimiza-
tion of k; is essential for the development of a useful
simulator,

By expressing the mixing angle @ in terms of the sen-
sitivity (sinf = /1 — k,, cosf = /&), we find that the
external control fields needed to realize a given set of A,
1, and k;, with a temperature ratio ¥ and tunnel coupling

f., are

_ rc{zks - l}

(38)

8
AB=—1_ |
gupy\ 1 =k

Equations (18) and (38) with k = @k, for the displaced har-
monic oscillator or ¥ = %n'ﬁr, for the spin-boson problem
provide a complete mapping between the original problem

[Eq. i 1)] and the quantum simulator [Eq. (24)].

HL EMULATING THE SIMULATOR

A. Simulation and physical time scales and energies

To illustrate how physical time scales and energies are
mapped into the quantum simulation setup, consider Table
I, which details the physical requirements of the map.
For illustration purposes, we focus on target parameters
needed to capture excitonic dynamics in photosynthetic
complexes operating at T = 300 K in a simulator operat-
ing at Tgs = 60 mK. To establish a map between chemical
environments and our QBS, the energies and time scales
need to be scaled according to the temperature ratio y =
T/Tps. The dynamics in the simulator will be p times
slower and the characteristic energies 1/ smaller than in
the physical system. Importantly, the characteristic time
scales and energies of such a molecular system map into
time scales and energies that are accessible in existing
QD setups [69], making it a viable simulation strategy.
By tuning the temperature ratio y, it is possible to map
a wide range of target parameters into an experimentally
accessible operation conditions for the (}Ds.

B. Quantum dynamics of the simulator

To understand the practical operation of the simulator
for different conditions and the extent to which the quan-
tum dynamics can be confined to the desired simulation
subspace, we now emulate the full five-state QD Hamil-
tonian interacting with the QBS [Eq. (23)] and compare
the dynamics to that of the target system. While emula-
tions in the presence of highly structured environments are
beyond the reach of state-of-the-art computational meth-
ods, for simple bath spectral densities, such emulations can
be conducted using the hierarchical equations of motion
(HEOM) [70]. In these HEOM simulations, it is neces-
sary to go beyond usual high-temperature approaches and
include all low-temperature corrections. This is needed
because the large energy separation between the specta-
tor states and the Sp/T_ manifold prevents invoking the
high-temperature approximation.
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TABLEIL  Typical ranges for physical parameters in energy or charge transport processes for photosynthetic complexesat T =300 K
and how they translate in the quantum simulator operating at cryogenic temperature Tz = 60 mK. The quantity y = T/Tgs = 5 = 107
denotes the ratio between temperatures of the target problem and the quantum simulator. Tuning of the temperature ratio can be used

to map a wide range of target parameters.

Target system

Quantum simulator

Element Maximum Resolution Scaling Maximum Resolution
Simulation time 10 ps 2fs ¥ S0 ns 10 ps
Molecular energy span (A) 125 meV (1000 em™") 125 weV (1 cm™") 1/y 25 peV (6 GHz) 2.5 neV (6 MHz)
Molecular coupling (7) 25 meV (200 cm™ ") 125 eV (lem™) 1/y 5 eV (1.2 GHz) 2.5 neV (6 MHz)
Bath frequency 250 meV (2000 em~ 'y 125 meV (1 ecm™ ") iy 50 peV (12 GHz) 2.5 neV (6 MHz)

Reorganization energy 100 meV (800 cm™")

For definitiveness, we study the relaxation to thermal
equilibrium of a molecule initially in the excited state.
Specifically, we choose the displaced-harmonic-oscillator
model [Egs. (1345) with §= le} {e]] with the system
parameters set as A =10 meV and =35 meV. The
system-bath coupling is taken to be described by a Drude-
Lorentz spectral density

2k e

T =T &9

with reorganization and cutofl energies A =5 meV and
e, = 10 meV, respectively. These parameters are similar
to those extracted from typical natural photosynthetic com-
plexes [71,72]. The target temperature (300 K ) and simula-
tor temperature (60 mK) temperatures are those considered
in Table I. All HEOM calculations are conducted with a
hierarchy depth of 10 and the low-temperature correction
by using sixth-order Padé expansion of the Bose-Einstein
distribution function [73]. For all simulations, the dynam-
ics are propagated until the physical time of 1.5 ps, which
corresponds to a 7.5 ns simulation time. Such a time scale
is well within the usual regime of coherent operation and
resolution of ()Ds in experiments.

To monitor the dynamics, we follow the population
inversion {&-(f)) of the two-level molecule as it relaxes to
thermal equilibrium. To quantify the accuracy of the quan-
tum simulation, we compute the ime-dependent fidelity

2
F(f) = (Tn/ ﬁﬁr}ﬁ?ﬁmﬁ,!ﬂfr}) (40)

between the HEOM reduced density matrix for the sys-
tem g, and that of the simulator Iﬁ? (f) in the simulation
subspace. The fidelity 0 = F(f) < 1 increases as the sim-
ulation becomes more accurate. To quantify the ability
of the simulator to contain the dynamics in the simula-
tion subspace, we further quantify the total leakage of
population into the spectator states.

In constructing the simulator, there is freedom in the
choice of tunnel coupling f. and sensitivity k;. However,

125 peV (1 em™h) 1y

20 peV (48 GHz) 1 neV (2.4 MHz)

the choice influences the simulation accuracy and deter-
mines the experimental requirements to build the simulator
i(see Sec. IV). Figure 3 shows the population inversion,
fidelity, and total leakage during the dynamics for three
select choices for i, and k,. As shown, the simulator is able
to accurately capture the target population dynamics (black
line) in the three different regimes of operation selected,
with fidelities larger than (.98 in all cases. The disagree-
ment between the simulator and exact dynamics is most
apparent for relatively low f. = 30 peV (red lines). We
ohserve that a decrease in the accuracy of the simulation
is correlated with population leaking out of the simulation
space [Fig. 3(c)]. By contrast, for t. = 100 weV, the sim-
ulation accuracy is high for both &, = 0.3 (blue lines) and
ky = 0.6 (green lines).

To characterize how the choice of tunnel coupling
. and sensitivity k, influences the simulation accuracy,
we perform extensive emulations for 0.25 < &, < 0.9 and
10 peV =1, = 100 weV. The simulation accuracy is
quantified by extracting the minimum fidelity min[F ()]
throughout the simulation time. We stress that this is an
overestimate of the infidelity, since it is an extreme value
instead of an average. Figure 4(a) shows the heat map of
min[F(f)] as a function of & and f.. The three specific
choices of 1, and & in Fig. 3 are marked by the colored
ired, blue, and green) dots in Fig. 4(a). We observe that the
accuracy of simulation increases with both &, and #., and
even exceeds fidelities of 99.9% in the upper-right part of
the map, demonstrating high simulation accuracy in this
regime of operation.

As shown in Figs. 3(b) and 3(c), the decay of F(f) is
stromgly correlated with the leakage to the spectator states.
Suppression of this leakage is therefore the most crucial
task for improving the quality of the simulation. We can
identify two sources of leakage: (i) the magnetic couplings
in Hgp involving the spectator states [Eq. (21)]; and (ii)
the residual interaction between |5;) and |5} in ﬁ'QD-QBS
[Eq. (34)]. To understand their relative contributions, we
repeat the emulations eliminating either element from the
simulator Hamiltonian. Figures 4(h) and 4(c} show results
without leakage due to Hyp and Hop.gps. respectively. As
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10 (a) (without noise)
' ko= 0.3, t, = 30 peV
ke = L3, f. = 100 peV
N = [ (G, t, 100 e
i J
= J farge
0.1
(b)
1.00 &

FH
)

| 0.9% ]

0.9% : !

0.n2
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?___f:;i-

Time (ps)

FIG. 3. Performance of the quantum simulator for three dif-
ferent sensitivities &, and tunnel couplings .. (a) Population
inversion (o (f)} in the target dynamics (black line) and the simu-
lator (colored lines). (b) Fidelity () of the simulation. (c) Total
population leaked out of the simulation subspace. Time is physi-
cal time. Simulation time is obtained by scaling by 3 = 5 = 10°.
In Fig. 4(a), the three specific choices of &, and . used are marked
by the colored (red, blue, and green) dots.

seen, leakage due to Hgp has a minor effect in the simula-
tion [Fig. 4(b}]. By contrast, leakage due to HQD_QBS is the
dominant effect, as removing this effect greatly expands the
{t: ky) region of high simulation fidelity [Fig. 4(c)].

C. Effect of uncontrollable noise

In practical realizations, the simulator will also suffer
from the inherent uncontrollable noise of the experimen-
tal setup. It is thus important to determine if the simulation
strategy remains viable in the presence of the decoherence
due to a noisy environment.

For QD systems, the main source of decoherence is
the electrical noise that causes fluctuations of ¢4 and, in
turn, Ags. A recent noise-spectroscopy study [74] has
demonstrated that this noise mainly arises from low-
frequency noise (< 108 Hz), the time scale of which is

much slower compared to those relevant to the simulation
(Table T). Based on this observation, we model how the
noise affects the quality of the simulation by perturbing
€y with static noise dey, which follows a Gaussian dis-
tribution of zero mean and a standard deviation of o, =
2 peV [75]. Practically, this is achieved by discretizing the
Gaussian distribution into ten points uniformly spaced by
0.5 peV and conducting the emulation at each point with
the detuning of €; + 8¢y while not altering ., By, and
AB. The system density matrix with noise is calculated as
the weighted average g,(f) = E:a:] Wy e (), where ,,(0)
denotes the system density matrix obtained from the emu-
lation at the nth point and w, is the appropriate weight
for this point determined by integrating the Gaussian
distribution,

Figure 5 shows the emulated dynamics of the simula-
tor in the presence of noise, under conditions otherwise
identical to those in Fig. 3. In general, the influence of
electrical noise leads to only modest changes in the dynam-
ics. The effect of the noise is the most important for the
case with &; = 0.6 and 7, = 100 peV (green curve), which
shows almost perfect agreement with the target dynam-
ics in Fig. 3(a) but now exhibits slight deviation at early
times in Fig. 5(a). The effect of noise is not as preva-
lent in the other two simulation conditions (red and blue
curves), which already exhibit some amount of leakage-
induced error. Figures 5(b) and 5(c) show that the noise
has a negligible effect on the amount of leakage.

To determine the conditions optimal for the experimen-
tal operation of the simulator, we compute the minimum
fidelity min[F{#)] in the presence of noise for varying
ky and #.. Figure 4(d) shows the resulting heat map for
min[F(f}]. A comparison with Fig. 4(a) shows that, over-
all, the noise slightly deteriorates the quality of the sim-
ulation. The green curve in Fig. 5 is representative of the
best simulator performance in our emulations. The effect
of the noise is the most prominent for large sensitivities,
as this is the region where the quantum dot energy lev-
els are the most susceptible to fluctuations in the detuning.
Remarkably, even in the presence of noise, we observe
that min[F(1)] still exceeds 99% for most of the simula-
tion conditions and even 99.9% for 0.55 = &, = 0.7 with
i = 100 peV.

These emulation results illustrate the utility of the simu-
lator to model condensed-phase dynamics. As shown, even
in the presence of noise, it is possible to choose sensitivi-
ties and tunnel couplings in which the leakage into nonsim-
ulator states is suppressed to = 0.5% [Fig. 5(c)]. leading to
small errors in the simulated dynamics [Fig. 3(b)]. The data
shows that a larger £, leads to better agreement between the
target problem and the quantum simulator, as increasing f.
leads to a larger energy separation between Sp and §) and
suppresses leakage into nonsimulator states. In turn, there
exists an optimal value of & for a fixed ¢.. This is because a
larger k, suppresses the leakage by decreasing the strength

040308-11



CHANG WOO KIM. NICHOL, JORDAN, and FRANCO

PRX QUANTUM 3, 040308 (2022)

(@) Pristine
(1.5

0.8
0.7
(.G
0.5

0.4

{c) No HQII\‘- leakage

20 40 Gl bl 1o
te el

(d) Moy

(b) No Hop leakage

0,0

(1.0490

.09

eovin [ F{t]]

.4

(.0

20 40 (1 &0 100

FIG. 4. The accuracy of the simulator for different sensitivities &, and tunnel muplings t.. The plots show heat maps of the minimum
fidelity [Eq. (40)] throughout the simulation period min[F(#)] for simulators (a) in pristine form and (b),(c) without coupling to
spectator states (|5}, 7). |To)) through either (b) the QD Hamiltonian I;'Qn [Eg. (217] or (c) the QD-0QBS interaction qu_qgs [Eqg.
{27)]. (d) Quantification of the simulation accuracy in the presence of electrical noise o, = 2 peV added to the detuning ¢;. The color

map is based on a logarithmic scale.

of the residual coupling between Sy and §; due to Hgp.ges
but also increases the amount of electrical noise felt by the
simulation subspace.

IV. EXPERIMENTAL CONSIDERATIONS

To mimic the system, the simulator requires a coherent
DD system in the presence of a homogeneous magnetic
field and a magnetic field gradient along the current path.
These QDs must be electrically connected to an array
of quantum circuits of high impedance and with vary-
ing frequencies. The electrical noise in the QDs must be
small enough such that the effect of unwanted decoherence
remains negligible throughout the simulation time. In addi-
tion, the simulator components and their interactions in the
experiments must closely follow the model Hamiltonian
[Egs. (32) and (34)].

In designing the simulator, one has freedom on the sen-
sitivity (k;), temperature scaling (y), and tunnel coupling

(t;) employed. However, the choice influences the qual-
ity of the simulation (see Sec. Ill} and the experimental
requirements to build it, including the required QBS size,
magnetic fields, and coherence times. The choice of k,,
¥, and {,. ideally minimizes the experimental requirements
and maximizes the accuracy of the simulation.

We now discuss how varying these parameters imposes
requirements on experimental coherence, magnetic fields,
and QBS size as well as the consequences on simulation
accuracy. We also discuss the effect of possible nonideal
behavior of the simulator components and possible ways
to mitigate it if significant.

A. Coherence times

The simulation time is affected by how long the sim-
ulator can preserve its quantum coherence in the pres-
ence of noise. The charge noise is the dominant source
of decoherence with time scales of approximately tens
of nanoseconds. By contrast, decoherence effects arising
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FIG. 5. The performance of the quantum simulator in the pres-

ence of electrical noise that leads to fluctuations of the detuning
ey with a standard deviation o, = 2 peV. The panel distribution
is identical to that in Fig. 3. In Fig. 4(d), the three specific choices
of i. and k; used are signaled by the colored (red, blue, and green)
dots.

from hyperfine fluctuations of residual nuclear spins are
much slower at approximately hundreds of nanoseconds
or longer [76]. We thus focus on the decoherence due to
charge noise.

The standard deviation of €4 due to electrical noise for
state-of-the-art QD devices is o, ~ 2 peV [75,77] and has
a weak temperature dependence for T = 1 K [78]. The
effective magnitude of fluctuation felt by the simulation
subspace is o = k., which leads to a decoherence time
ty ~ 2mfi/o of the simulator. Therefore, an estimate of the
coherence time of the target system that the simulator can

support is

¥

which illustrates that the simulation time can be
enhanced by decreasing k; € [0, 1], as it slows down the

decoherence, or decreasing y, as it speeds up the labora-
tory simulation time.

For example, for a sensitivity k, = 0.6, the decoherence
time is 7 ~ 3.4 ns. The highest operation temperature for
the QDs is 1 K [79], which yields y = 3 = 10* for a sim-
ulation of a room-temperature process. Thus, in this case,
the maximum simulation time is approximately 11 ps, sug-
gesting that the simulator will be accurate in capturing both
the early times and the asymptotic behavior of the dynam-
ics of microscopic open quantum systems. Even when the
QDs are operated at the usual temperature of 100 mK, the
maximum simulation time is 1.1 ps, which is more than
suitable for modeling most molecular processes.

B. Magnetie fields

A homogeneous magnetic field is employed in the sim-
ulator to modulate the energy gap and separate simulation
states from spectator states. In turn, a magnetic field gradi-
ent is needed to infroduce couplings between the simulator
states. Using Eq. (38), one can develop a quantitative esti-
mate for the experimental requirements of the simulator.
For definitiveness, consider the example in Fig. 4 with
i, = 100 weV and &, = 0.6. For 5i- {or GaAs-) based (JDs,
the simulator requires B,,; = 1.08 T {or 5.00 T} and 88 =
38.6 mT (or 179 mT). The less demanding requirements in
silicon arise because the Landé g factor is larger (g = 2.00)
[B0] with respect to that of GaAs (g = 0.43) [B1]. Bawy
stronger than 5 T can be routinely generated in experiments
and is not expected to be a limiting factor in building the
simulator. By contrast, state-of-the-art magnetic field gra-
dients are limited to 1 mT nm~" and they impose practical
limits on 5 that can be modeled. For example, the usual
distance between Si (QDs is approximately 100 nm, which
implies that the maximum magnetic field change between
consecutive ()Ds is approximately 100 mT. Since k; = 0,
it follows from Eq. (38) that there is an upper limit for
givena AB,

veur|AB|
242

For limiting y values of 3 x 10°-3 x 10, the upper limit
of 7 can be in the range of 1.2-120 meV. The larger the y,
the larger is the 5 that can be modeled.

Inl = (42)

C. QBS requirements

The proposed (JBS requires arrays of serially con-
nected resonators that generate the desired level of voltage
fluctuation. To understand the frequency and impedance
requirements to build the QBS, it is useful to consider
the parameters needed in molecular modeling. For chemi-
cal problems, the bath frequencies are in the 10~ = Wy <
0.4 eV range, or 107%/y < @; =< 0.4/y eV for the QBS.
The frequency of operation of the materials needed for the
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QBS will impose restrictions on the choice of . For exam-
ple, high-impedance resonators constructed with superin-
ductors (e.g., Nb-Ti-N [52] and granular aluminum [33])
have frequencies up to 20 GHz, which implies 300 = ¢ <
5 % 10°, where the lower limit is imposed by the magnetic
field requirements and the upper one by the frequencies of
the superinductor resonators.

We now estimate the number of resonators needed
per color to model complex chemical environments. The
strength of the coupling between electrons and environ-
mental modes is quantified by the Hoang-Rhys factors
5; = (g foy ). The characteristic impedance required in
the QBS to achieve these Huang-Rhys factors at a given
trequency is [Eqgs. (5), (11} and (12)]

2 2
_on( &\ o (-
Zi = _h(awﬂj) zmj(ah) .43

where n =1 for the displaced harmonic oscillator and
n = 2 for the spin-boson model. The required Z;p increases
with the Huang-Rhys factor s;, decreases by choosing a
larger sensitivity, and is independent of the temperature
scaling .

To proceed, it is uwseful to decompose the spectral
density J{w) = Jp(w) + Jylw) into a component due to
sharply peaked high-frequency modes such as intramolec-
ular wvibrations Jy(ew) and an unstructured broad low-
frequency component due to solvent Jp(w). In one
partition [84], Ji (&) = S{w, @*)J (@) and Jylw) =[1 —
Stew, @*) S (), where the splitting function S(w, w*) =
[1 = (/w*)*]? for @ < w* and zero otherwise.

For high-frequency modes of typical molecules 0.001 <
s; = 0.1, which requires a characteristic impedance of
2x 107 = Zip=2x 10° © (assuming the realistic values
o =01eVV, &, =06 and n = 1). For state-of-the-art
resonators [82,85,86], £y ranges from 11¥ to 10" and there-
fore up to 107 serially connected resonators are needed
to construct the (JBS per color. Given sufficiently high
Zin, the contribution of each color to the decoherence can
be modulated by scaling down the signal by attaching a
tunable voltage-divider circuit.

By contrast, for low-frequency components, the Huang-
Rhys factors can easily exceed 5; 3 1, making the above
approach intractable. To overcome this, we take advantage
of the fact that for these modes, A2 < kgTys, sponta-
necus emission processes are negligible and classical noise
approximations are useful [41]. Specifically, we propose to
model this component of the spectral density by introdue-
ing classical noise F(f) to the voltage of the gate elecirode
that controls the dot energy. This assumes that the low-
frequency component does not lead to sizable spontaneous
emission of phonons or, equivalently, that the voltage-time

correlation function is real and satisfies [Eq. (11)]

1 - -
VOVO) = Re[(B(1/y)B(0))1]

2 amo
= E (i) f Jp (3 £2) coth
y\ek ) Jo

) cos 2 d92.

h
( 2kgTgs 44

D. Tunnel coupling

For simulation purposes, increasing the tunnel coupling
f. is desirable, since it improves the quality of the simula-
tion by broadening the energy separation between Sy and
81. However, for measurement purposes, smaller values of
t. are preferred, as they are required for initializations of
the (QDs and the rapid readouts of the state populations by
taking advantage of Pauli-spin blockade [87] in the QDs.
Currently, the range of £, that allows useful measurement
and initialization is 10-20 eV [88,89]. By contrast, larger
t. values enhance the simulation fidelity and add more flex-
ibility in choosing k.. Measurements for larger £, can be
accomplished using readout based on spin-selective tun-
neling [90]. Alternatively, different #. for simulation and
measurement can be employed.

E. Sensitivity

The choice of an optimal value of k, must balance
leakage, simulator accuracy, and hardware requirements.
Specifically, increasing the sensitivity &, reduces leakage
and also the minimum required size for the QBS, which
are both desirable aspects in simulator design. However, it
also reduces the simulation time for which the setup can
support [Eq. (41)] and increases the B,,, and, more impor-
tantly, the AR needed to realize desired values of A and 5
[Eq. i38)]. For example, the emulations in Sec. [11 show
that sensitivities in the range of .55 = &, = 0.7 exhibit
good simulator performance with large #. while requiring
moderate (JBS sizes to achieve a given level of desired
decoherence. However, they also have the downside of
requiring strong magnetic fields to realize a given H;, espe-
cially for GaAs-based QDs with a small g factor. Using
Si-based ()Ds and increasing the f, will broaden the range
of the sensitivity that can be used in practical simulations.

F. Gate voltages

In the experiment, the effect of changing the voltage of
a gate electrode [Fig. 2(b)] often stretches across multiple
QDs. Nevertheless, energies of individual QDs can still be
independently tuned by finding appropriate linear combi-
nations of the gate voltages, which are called virtual gates
[89]. Similarly, while connecting the QBS to a single elec-
trode would not exclusively affect a single (3D as assumed
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in Eqg. (26), this type of coupling can still be realized by
connecting the QBS to multiple gate electrodes and scal-
ing the coupling according to the ratios between the linear
combination coefficients of the virtual gates.

G. Real circuits

Until now, we have treated the LC circuits as perfect har-
monic oscillators [Eq. (B)] with fully controllable circuit
parameters. However, experimentally fabricated circuits
can deviate from such an ideal model. We now discuss
such effects on the effectiveness of the simulator.

1. Resonator anharmonicity

We expect possible anharmonicities in the QBS circuits
to play a negligible role in the simulator. Deviations from
the harmonic model for the QBS lead to uneven spac-
ing between the phononic quantum states. For our QBS,
we estimate the anharmonicity as |{aJ3 - Ifu1j,"a:-|| < 1073
[91], where haw, is the energy of the nth quantum state.
Assuming that the energy difference between the consec-
utive states decreases at a uniform rate of 102 b, the
effect of anharmonicity will not become prevalent unless
approximately 10° or more quantum states are significantly
populated. Therefore, to a good approximation, the RLC
circuits behave as ideal harmonic oscillators except for
the ones with very small energy spacing compared to the
thermal energy (A <« kyTigs). Even for such cases, the
anharmonicity will have a negligible effect, as the charac-
teristic time scale of the resonators would be much slower
than that of the dynamics. At this limit, the oscillators only
exert quasistatic noise and do not readily exchange energy
with the system.

2 Inherent dissipation

Inherent dissipation of the LC resonators broadens their
impedance Re[Z(£2)] from perfect delta functions [Eq.
(13)]. This dissipation is measured by the quality fac-
tor (the ratio between the characteristic frequency and
bandwidth) which is g = 10* — 10° for state-of-the art
resonators [82,83,86]. By contrast, ¢ < 107 for typical
molecular vibrations [11,92]. This implies that the inherent
decay of the internal circuits will be slow enough to be able
to simulate all physically relevant dynamics before they
start contributing to the dynamics. Therefore, the decay
rate of LC oscillators is small enough for simulating the
bath spectral densities of realistic physical and/or chemical
systems.

3. Parasitic capacitance
Parasitic capacitance due to the wire that serially con-
nects individual LC or RLC oscillators can affect the over-
all impedance of the QBS. This effect can be mimicked
by adding an additional parallel capacitance (; to each

Exactl ——
i Cp=0F ——
L5 [y Cp=1F ——

Julw) (mev)

0 ol 100 1501 200

Bath Frequency (meV')

FIG. 6. The effect of parasitic capacitance on the bath spec-
tral density realized by the (JBS. The target spectral density
Jyle) (black) is discretized into 50 equally spaced RLC oscilla-
tors with a fixed damping parameter of 2 meV (red) and parasitic
capacitances of | fF (blue) and 5 fF (green) are added to each
oscillator.

oscillator, which increases the overall capacitance of the
Jthoscillator from C; to C; + €. The size of €, in micro-
electronic circuits is often assumed to be a few femtofarads
[53]. To examine how detrimental this is to our simulator,
we discretize Ju(w) (Sec. IV C) into 50 RLC oscillators
with £, = (4 meV) = j and I'; = 2 meV. The effective
Jpie) of the QBS is then simulated for different values of
C, by using Egs. (17) and (18). For the simulation parame-
ters we have chosen, &, = 0.6 and @* = ., where w* is the
cutoff frequency for the splitting function §{w, w*) intro-
duced in Sec. IV C. We set A and @, to be the same as in the
emulations (Sec. [T B). The results are presented in Fig. 6,
which shows that the parasitic capacitance reduces the
intensity of the spectral density by suppressing zero-point
voltage fluctuation of the circuits. Such a reduction can be
compensated by increasing the impedance at the affected
frequencies, which can be achieved by serially connecting
multiple identical circuit units even in the presence of the
parasitic capacitance.

V. POSSIBLE EXTENSIONS

We have demonstrated that the dynamics of a two-level
open quantum system can be simulated by combining a
DOD and a QBS. We now discuss how to extend the
present proposal to systems of larger dimensionality and
point out some novel extensions that are unique to our
setup.

A. Multidimensional systems

The open two-level quantum system can be used as a
building block for constructing multilevel systems. The
most straightforward way to achieve this in our setup
is by placing multiple DOD units in head-to-tail config-
urations, which creates exchange coupling hetween the
electrons in adjacent DOQ)Ds. This enables the excitation
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to migrate across the DQDs and the rate of migration
can be controlled by changing the distance between the
DQDs [65,93]. We note that an experimental demonstra-
tion of such a phenomenon has been already reported for a
tour-QD device [94] and efforts toward the precise manip-
ulation of electrons in increasingly larger arrays of QDs are
ongoing [48,94].

The construction of such a linear chain of DQDs and
the coupling of each unit to a separate QBS will lead to
a one-dimensional Holstein model [95], which can simu-
late the transfer of excitations or charges among molecular
aggregates [Fig. 1(a)]. Other geometries can be constructed
by establishing long-range connections between the DOQD
units [96] or by using QD structures involving three or
maore (s [97,98]. In addition, the simultaneous connec-
tion of a QBS to multiple DOQD units will enable iso-
lating emerging correlations between subsystems that are
mediated by an environment.

B. Nonstandard initial conditions

Simulation methods for open quantum system dynam-
ics often rely on factorizable initial conditions p{0) =
£4(0) ® pr(0), where the bath is at thermal equilibrium
[Eq. (6)]. However, realistic dynamics are often launched
trom nonthermal bath conditions or correlated system-bath
states. Our setup can be used to treat such exotic initial
conditions by generalizing the initialization scheme in Sec.
[11. Instead of placing the QBS under a constant bias volt-
age, we can apply time-dependent driving or use nonlinear
circuit elements [99] to engineer nonthermal bath densi-
ties. Correlated system-bath states can be also generated
by connecting the QBS to ()Ds prior to the simulation and
applying the similar preparation schemes.

The implementation of such initialization schemes
requires the ability to immediately switch between differ-
ent Hamiltonians at the start of the simulation. This can
be achieved in our setup by hamessing the fast response
time (approximately 10 ps} of the electrical QD-QBS
connection,

C. Quantum transport

In addition to systems with a fixed number of electrons,
in the Q) setup it is possible to also open the boundaries
and make the QDs host electron transport by properly tun-
ing the chemical potentials of the source, drain, and the
QDs [100]. The connection of the QDs to QBS adds quan-
tum fluctuations to the (JD energies, which can be used
to simulate the dynamics in Fock space interacting with
an external bath. Although the coherent limit of such a
situation is relatively well studied [101], inclusion of the
effect of structured quantum noise is beyond the com-
putational reach of state-of-the-art methods such as the
nonequilibrium Green's function [102,103]. Analog quan-
tum simulators based on (JDs and QBS could naturally

handle such challenging cases, which will provide valuable
insights into quantum transport phenomena in nanoscale
systems such as switching [104], rectification [ 105], quan-
tum interference [106], and controlling the behavior of
charge carriers by light [107].

VI. CONCLUSIONS

In this work, we have developed a useful strategy for
analog quantum simulation of open quantum systems by
combining semiconductor QDs and arrays of serially con-
nected RLC circuits. The proposed approach exactly cap-
tures the decoherence and spontaneous emission of fully
quantum harmonic environments of arbitrary complexity.
As such, it goes beyond classical noise models and Marko-
vian or perturbative treatments of system-bath interactions.
Further, it has a quantum advantage, as the computa-
tional time of the simulation does not increase with the
complexity of the environment.

As a specific example, we have established a map
between a two-level quantum system embedded in a ther-
mal environment and a DOQD connected to a QBS. As
a simulation subspace, we choose the § — T_ qubit, as
it simultaneously offers favorable sensitivity to the QBS
environment and sufficiently long coherence times to
enable quantum simulation. The QBS interacts with the
0QDs electrically through quantum fluctuations of the RLC
circuit voltages. The diagonal matrix elements of the sys-
tem Hamiltonian are experimentally controlled through
the detuning and a homogeneous magnetic field; the off-
diagonal couplings via magnetic field gradients. By apply-
ing voltages to the (JBS, the spin-boson and displaced
oscillator models can be exactly mapped onto the simu-
lator.

The utility of the map was confirmed by numerically
emulating the simulator through HEOM computations of
the dynamics that include both simulator and spectator
states of QDs. These emulations demonstrate that the quan-
tum dynamics of the simulator can be confined to the
desired simulation subspace and that they offer a faithful
description of the target dynamics in an experimentally
accessible regime. We find that the overall sensitivity of the
QDs to the QBS is a useful target simulation parameter that
determines the quality of simulation and the experimental
requirements in building the platform.

Based on the map and the emulations, we identify
the requirements needed to physically build the simula-
tor, including the temperature scaling and sensitivity in
the map, the tunnel coupling values, the magnetic fields,
and the QBS size, materials, and range of frequencies.
To reduce the size of the QBS, we propose to divide
the spectral density into a low-frequency and a high-
frequency component and capture the effects of the low
frequency through classical noise without a significant
loss of accuracy. The high-frequency component of the
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spectral density can be constructed by 1-100 individual
RLC circuits per color.

An advantage of the proposed strategy is that the elec-
trical connection of the QDs with the QBS offers the
possibility of conveniently manipulating the importance of
individual components in the bath spectral density through
voltage dividers containing variable resistors. Further, the
OBS and QDs can be spatially separated and experi-
ence different temperatures, offering additional flexibility
in simulator design.

Overall, the proposed setup provides a general strategy
for the simulation of open quantum systems, even those
of chemical complexity. The strategy can be physically
realized with existing technology [108,109] and is there-
fore near term. This contrasts with other strategies that are
being advanced that require a universal quantum computer.
While the quantum hardware operates at cryogenic tem-
peratures, by controlling the energy-level spacing it can
be made to simulate dynamics at arbitrary target temper-
atures. We also outline how to extend the applicability of
our setup to multidimensional systems, nonstandard initial
conditions, and quantum transport through open boundary
systems. Indeed, recent advances in constructing fully con-
trollable quantum dots with 610 individual quantum dot
units [47,48] open up a clear path toward the simulation of
many-level systems,

Quantum simulators [110] have the power to shed new
light on some of the most challenging problems in mod-
ern science. The simulation strategy that we advance is
expected to be of general utility to understand the dynam-
ics of open quantum systems in chemistry, physics, and
quantum information science. This proposal represents an
exciting emerging direction in quantum simulation and
a promising new strategy in the ecosystem of molecular
simulation methods.
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