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Abstract 

This paper analyses several promising policies in the electronic parts industry for disrupting 

the flow of counterfeit electronic parts. A socio-technical electronic part supply-chain 

network model has been developed to facilitate policy analysis. The model is used to 

understand the technical and social dynamics associated with the insertion of counterfeit 

electronic components into critical systems (e.g., aerospace, transportation, defense, and 

infrastructure) and to analyze the impact of various anti-counterfeiting policies and practices. 

This network model is used to assess the effectiveness of mandatory original component 

manufacturer buyback programs and the debarment of distributors found to provide 

counterfeit components. In this agent-based model, each participant in the supply chain is 

modeled as an independent entity governed by its own motivations and constraints. The 

entities in the model include the original component manufacturers, distributors, system 

integrators, operators, and counterfeiters. Each of these entities has dynamic behaviors and 

connections to the other agents. Since time is an integral factor (lead times and inventory 

levels can be drivers behind the appearance of counterfeits), the simulation is dynamic. The 

model allows the prediction of the risk of counterfeits making it into an operator’s system 

and the length of time between relevant supply-chain events/disruptions and the appearance 

of counterfeits.  
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1. Introduction 

Supply-chain disruption and compromise risks are significant problems for all types of products and 

systems. However, critical systems, including medical, aerospace, transportation, energy generation, other 

infrastructure (including food and water delivery, sanitation, energy grid), and defense, are particularly 

vulnerable (Schipp, 2018). These systems are expensive to procure, must be supported for long periods of 

time, and the consequences, if compromised by counterfeit electronic parts, can be catastrophic, often 

directly or indirectly resulting in a risk to human life or national security and causing significant economic 

peril. In this paper, a part (also called a component or piece part) is assumed to be an electronic part (e.g., 

an integrated circuit), a discrete electronic part (e.g., a transistor), or a passive electronic part (e.g., a 

resistor).  

Because critical systems are not the supply-chain drivers for many of the parts they use, they suffer 

from supply-chain aging, i.e., the supply chains they depend on grow old or evolve away from them. 

Generally, supply chains cater to the needs of the highest volume (and profit margin) market, often leaving 

lower volume critical systems markets behind. If the lower-volume markets cannot adapt to the supply-

chain’s direction, they will encounter obsolescence problems (also known as DMSMS – diminishing 

manufacturing sources and materials shortages in the critical systems community), i.e., an inability to 

source the items that they need from the item’s original manufacturer (Sandborn, 2008). Specifically, for 

electronic parts, the supply chain is driven by applications that have short periods of production and support 

(e.g., cell phones); therefore, the parts evolve quickly, i.e., the period of time over which the part can be 

sourced from its original manufacturer (the “procurement life”) of many electronic parts is measured in 

months. These systems can also face “obsolescence” when they cannot accept process, material, or supply-

chain changes imposed on a part. The inability of systems to adapt to supply-chain changes creates an 

opportunity for illicit entities to introduce counterfeit parts into the supply chain.  
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A counterfeit electronic part is a part that is misrepresented to a buyer as original and unused (a more 

detailed definition is provided in Section 2). In the electronic parts marketplace, it is often assumed that if 

a component is purchased from an authorized source, it will be an original part (Livingston, 2010). Most 

counterfeit electronic parts find their way to customers through unauthorized sources, e.g., brokers and 

independent distributors (U.S. Department of Commerce, 2010). 

Ideally, critical system providers would only source the parts they require through authorized channels 

that are largely safeguarded from the risk of counterfeit parts (U.S. Senate Armed Services Committee, 

2011). Rigorous controls over the source and condition of the parts, mainly through contractual tools, 

prevent counterfeit parts from easily infiltrating authorized channels. However, once parts are discontinued 

by their original manufacturers (i.e., become obsolete), the supply of parts from authorized channels dries 

up. As a result, critical system providers eventually must seek parts from non-authorized channels, thereby 

increasing the risk of getting counterfeit parts. Because critical system developers obtain parts from non-

authorized sources, technologies and processes to detect counterfeits have become commonplace. However, 

detecting counterfeit components is a challenge because of the test time, cost, and lack of metrics to evaluate 

the test confidence due to the rapidly changing threat environment (Guin et al., 2014).  

In this paper, we analyze the impact of several policies in the electronics industry that may impact the 

illicit supply chain of counterfeit electronics. When applied to complex systems such as supply chains, 

policies may fail to achieve the results envisioned and, worse, cause unintended consequences. Thus, there’s 

a need to evaluate the impacts of policies and modify and tune them, if necessary, before their widespread 

application. In this paper, we introduce a socio-technical network modeling approach for understanding and 

evaluating policies that may affect the counterfeit electronic part supply chain. Using this approach, we 

explore the dynamics and trends in the supply chain, especially the social, technical, and adaptive behavior 

of all the involved parties as they apply to counterfeit parts. The structure of the marketplace defined in this 

paper is specific to the electronic piece parts, and the proposed model may not adequately represent the 

supply chain for other items, including those for other electronic items such as circuit cards. 
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This paper is organized as follows: Section 2 discusses the previous work relevant to modeling 

counterfeit supply chains, and Section 3 introduces the network model developed for this analysis. In 

Section 4, the results from two policy studies using the model are reported. The implication of the widescale 

application of these two policies and suggestions for their implementation are described in Section 5. We 

present the conclusions along with continued work in Section 6. 

2. Background and previous work 

Although many types of components and subsystems (both hardware and software) in critical systems 

are potentially at risk of being counterfeited, we are focusing on electronic parts in this paper. SAE AS5553 

(SAE, 2022) defines counterfeit electrical, electronic, and electromechanical (EEE) parts as: “An 

unauthorized (a) copy, (b) imitation, (c) substitute, or (d) modified Electronic and Electrical Equipment 

(EEE) part, which is knowingly, recklessly, or negligently misrepresented as a specified genuine item from 

an original  component  manufacturer or authorized aftermarket manufacturer; or a previously used EEE 

part which has been modified and is knowingly, recklessly, or negligently misrepresented as new without 

disclosure to the customer that it has been previously used.” Critical systems providers often use this 

definition as it covers areas of risk beyond the legal definition of counterfeiting and the implications of 

obtaining or selling counterfeit parts.  

Despite a substantial body of work focused on developing counterfeit electronic part detection 

methodologies (e.g., Asadizanjani et al., 2017; Santhanam et al., 2013; Kanovsky et al., 2015; Fernandez 

et al., 2008), and authentication-enabling technologies through tracking and traceability (Cui et al., 2019; 

Islam and Kundu, 2019), relatively little attention has been paid to modeling the networks responsible for 

creating and distributing counterfeit electronic parts.  

Illicit supply networks, similar to lawful supply networks, are complex socioeconomical systems and, 

therefore, share common economic, social, and technical dynamics. There have been several modeling 

attempts to represent specific economic, social, and technical dynamics specific to industries such as 
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pharmaceutical and luxury goods (Anzoom et al., 2021). Illicit supply networks contain some agents that 

behave in an illegal manner, but the networks maintain the basic principles of supply chains, such as 

economic dynamics. Such dynamics have been extensively modeled with various attributes associated with 

supply chains, such as reputation (e.g., Busby, 2019), bidding dynamics (e.g., Yin et al., 2004), and order 

selection (e.g., Zhao and Qiu, 2014), and the network models reported in the literature. In addition, the 

social and cognitive dynamics present in an illicit network have also been modeled, such as the motivation 

of individual supply-chain participants (e.g., Axtell, 2000) and collective decision making (e.g., Chen et 

al., 2020) apply to illicit supply networks. Various technical aspects of supply networks, such as product 

diffusion (e.g., Rahmandad and Sterman, 2008) and the adoption of new technologies (Chen et al., 2020), 

have also been reproduced in network models. 

The aforementioned economic, social, and technical supply network models have been utilized to 

model specific illicit networks. Counterfeit pharmaceuticals (e.g., Bhushan et al., 2013; Choi et al., 2015), 

drug trafficking (e.g., Bright et al., 2019; Magliocca et al., 2019), and others have studied illicit supply 

networks. While network modeling of the electronic parts supply chain is relatively common (e.g., Berry 

et al., 1994), models focused on the network modeling of counterfeit electronic parts in the supply chain 

are scarce. The only known network modeling attempts that address counterfeit electronic parts are from 

Rouse and Bodner (2013), who created a prototype socio-technical network for the flow of counterfeit parts 

for U.S. Department of Defense applications. Subsequently, Bodner implemented a simplified version of 

the network (Bodner, 2014), (Bodner, 2015). The implemented network was constructed as an agent-based 

model to analyze the complex implication of implementing large-scale policies. Pennock et al. (2016) 

extended Bodner’s model and analyzed multiple part procurement scenarios using simplified networks 

lacking many critical supply-chain parameters and activities such as lead time, price, negotiation, and post-

obsolescence procurement. The work of Bodner and his co-workers is exclusively focused on the U.S. 

Department of Defense (DoD) procurement process. The questions addressed in Bodner and Pennock’s 

work are: what are the efficacy and costs associated with the Responsible Electronics Recycling Act 
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(RERA), U.S. Department of Justice (DoJ) IP infringement and fraud enforcement, DoD acquisition 

policies, and U.S. Customs and Border Protection inspection regarding specific DoD programs. 

3. Network modeling 

The electronics supply chain is a complex socio-technical system by nature. It is composed of 

specialized stakeholders, often with objectives that may not align with each other. Moreover, as a complex 

system, supply-chain networks are vulnerable to disruptions, and failure at any point in the supply chain 

has the potential to cause the entire network to fail (Rice and Caniato, 2003) due to interdependencies in 

the supply chain. Understanding the micro and macro behavior of this type of complex network is necessary 

to identify the opportunities for failure in a supply chain in order to detect and prevent counterfeit part 

proliferation. Different modeling methodologies have been used to understand the electronics supply chain 

and predict the availability and distribution of components to improve business planning.  

In this analysis, we use agent-based modeling (ABM), which provides a flexible platform ideal for 

quantifying the effectiveness of various proposed policies. Agent-based modeling is shown to be an 

effective tool for policy analysis (Blume, 2015). Implementing anti-counterfeiting policies can be costly 

(U.S. Government Accountability Office, 2016), and the policies can have unintended consequences. Thus, 

policies should be carefully analyzed for efficacy in achieving the desired goal and identifying potential 

unintended consequences. ABM’s flexibility allows the exploration of emergent patterns and behaviors, 

allowing users to forecast policy outcomes. Unlike other modeling methodologies, ABM does not require 

known system dynamics, discrete supply-chain events, or a complete representation of agents’ behavior 

and decision-making through mathematical models as required in game theory models. The strength of 

ABM lies in not being fully constrained, resulting in fixed output. The characteristics of ABM can produce 

non-intuitive outputs reflective of real business scenarios. Without analytical supply-chain models attempts 

to disrupt counterfeit part networks may be haphazard and inadequately targeted. Network modeling can 

be an effective tool in identifying policy consequences. 
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3.1. The electronic parts supply chain 

The electronic part supply chain is a complex socio-technical network that requires the identification 

of nodes (participating entities) and edges (the nature of participant’s connections). Based on subject matter 

expert inputs (University of Maryland, 2021) as well as government reports (U.S. Department of 

Commerce, 2010; U.S. Senate Armed Services Committee, 2011) highlighting malicious supply-chain 

actors and the paths they use to insert counterfeits, a general supply-chain network was created (Fig. 1). 

The policy environment for each entity and the nature of the exchanged commodity, payment, information, 

and parts were also identified (University of Maryland, 2021).  

 

Figure 1. A general supply-chain network model for electronic parts. The symbol      represents an “or” 

operator. The direction of the arrows represents the flow of payments, information, or parts. The blue 

dashed lines define policy environments where specific policies are in effect. Red dashed boxes denote 

parts exiting the supply chain and not expected to reenter. Rectangles represent agent populations, and 

circles represent individual agents. 
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Fig. 1 shows that entities such as the Original Component Manufacturer (OCM) produce parts that flow 

through part distributors. The original equipment manufacturer procures parts from the distributors for use 

in equipment to be delivered to the operator. Meanwhile, illicit processes such as recycled part recovery, 

cloning, and inserting defective OCM parts can enable illicit parts to enter the supply chain through 

distributors. This list of counterfeit part sources is not exhaustive, and Fig. 1 includes only examples. 

To simplify the network, the entities responsible for manufacturing, procuring counterfeit parts, and 

knowingly selling them as authentic parts are aggregated into one entity called Point-of-Entry (POE); these 

entities pose as independent distributors. POEs represent the primary conduit for counterfeit parts to enter 

any supply chain, including the electronic parts supply chain. For this modeling effort, direct Operator-

OCM, Operator-Distributor Base, and Original Equipment Manufacturer-OCM connections have been 

omitted to better represent the dynamics faced by critical-system manufacturers and sustainers. Unlike 

consumer electronics products, the critical-systems electronics supply chain is constrained to the 

connections shown in Fig. 1. 

The electronics supply chain is similar to other supply chains in which buyers consider trade-offs 

between price and lead time, and the counterfeit electronics supply chain resembles these supply chains 

with the introduction and circulation of counterfeit parts. While there are overlaps between the counterfeit 

electronics supply chain and other counterfeit supply chains (e.g., luxury goods), in the electronics supply 

chain, buyers have access to multiple authentication mechanisms with varying probabilities of correct 

counterfeit detection and cost (described in Section 3.2). Buyers must often balance the cost of 

authentication with their other profit maximization parameters that include risk.  Similarly, the motivation 

for testing authenticity differs in the electronics supply chain compared to other supply chains. Most 

electronics buyers and sellers associated with parts for critical systems perform some level of testing due 

to the safety critical nature of their systems rather than a simple cost-benefit analysis that might be 

performed for consumer or luxury items (e.g., authentication only performed for high-priced items, not all 

items). As seen in Figures 1 and 3, all buyers in the supply chain perform testing on incoming part shipments 
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as the last stage of interaction with sellers. Finally, unlike counterfeit consumer or luxury products, no 

participant in the critical-systems supply chain knowingly purchases a counterfeit part, i.e., there is no 

demand for counterfeit parts (unlike consumer and luxury goods); this forces the POE agents to represent 

its counterfeit parts as authentic. Participants in critical system supply chains are only forced to procure 

from unauthorized sources when part availability dictates. However, procurement from unauthorized 

sources in other counterfeit supply chains, such as luxury goods, is not motivated by just original part 

availability. 

Far and away, the most effective approach to avoiding counterfeit electronic components is to always 

purchase electronic parts directly from the OCM or a distributor, reseller, or aftermarket supplier authorized 

by the OCM. However, following this policy becomes increasingly difficult the further in time from the 

part’s discontinuance (obsolescence) one goes, i.e., this is a practical policy to adopt only while the parts 

can still be obtained from authorized sources. However, the authorized sources are often depleted long 

(decades) before the part is retired from service in critical systems (which may still be actively manufactured 

or need spare parts for support). Even for non-obsolete parts, authorized sources can impose restrictions on 

buyers, such as a minimum order quantity or an end-user certificate disclosing how the parts will be used, 

forcing buyers to procure parts through unauthorized channels. Supply-chain disruptions can also limit the 

inventory of authorized distributors even before its obsolescence, forcing buyers to look elsewhere for parts. 

3.2 Agent-based counterfeit network modeling 

The supply chain shown in Fig. 1 was simplified to create a practical network model by removing the 

physical location of parts and entities from the modeling process. There are no inherent parameters or 

actions based on the geographical location of an entity or any logistical entity responsible for the physical 

transportation of parts. Independent part testing labs are modeled as a testing function within distributors 

and original equipment manufacturers.  
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After identifying and simplifying the electronics supply chain, active and passive agents were identified 

based on the defined entities. Each active agent is an independent autonomous participant in the supply 

chain interacting with other agents within the network environment to achieve a specific goal, while passive 

agents follow a simple predefined behavior (Macal and North, 2010). In the model, one passive agent (the 

operator) and five types of active agents are defined: customer, POE., OCM, independent distributor, and 

authorized distributor. Each agent type is initialized as a population of agents called the “agent base,” 

described by static and stochastic parameter values. Each active agent base dynamically interacts with 

external bases or the agent within its internal base to achieve its agent-type objective. The operator (a 

passive agent) represents a single supply-chain entity that introduces a stochastic demand into the network 

to which all the other agent bases react. The operator agent is modeled as a passive agent without the ability 

to make autonomous decisions based on a predefined objective for the functions modeled in this network. 

We developed a network with agents maximizing their profit while the network is perturbed by introducing 

various policies. This system of interacting agent bases is shown in Fig. 2.  



    
 

11 

 

 

Figure 2. The system of interacting agents and their allowable actions. The arrows represent the direction 

of the flow of parts, circles are individual supply-chain actors, and rectangles represent the type of supply-

chain actors. 

 

The customer base receives the demand generated by the operator. The customer base responds to the 

demand by competing for a potential purchase order by choosing the cost and lead times for the demand 

and submitting a bid. If the customer needs to procure parts, it communicates its demand to the distributor 

base. Similarly, the distributors compete for a possible selling opportunity by adjusting their cost and lead 

time. In turn, if the distributors require additional inventory, they send their demand to either OCMs or 

POEs. In the electronics part supply chain, only the authorized distributors can purchase parts from the 

OCM. Independent distributors can procure parts from authorized distributors, other independent 

distributors, or POEs representing themselves as independent distributors while only providing counterfeit 

parts. In this simplified model, OCMs and POEs can manufacture parts without dependence on respective 

respective suppliers. 
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We assume that every active agent makes decisions based on maximizing their “profit.” The profit 

function parameters are dynamic and influenced by internal and external events. Zhang and Zhang (2015) 

make a similar assumption in supply chains with deceptive counterfeits for modeling commercial 

counterfeit products (as opposed to modeling critical systems). Unlike Zhang and Zhang (2015), “profit” 

in the context of our model could be short-term (single transaction) profit for some agents and long-term 

(decades or longer) profit for others, denoted by 𝑀0  (profit horizon). For example, an internet part broker 

acting as an independent distributor may only be interested in closing the current part sale for as much 

money as it can get now. Alternatively, a system integrator’s (i.e., customer’s) objective is to maximize 

profit over the system’s entire life cycle and potentially a longer business cycle, e.g., taking actions that 

maximize their probability of retaining their current contract(s) with an operator and winning future 

contracts. Such a modeling approach allows us to capture the realistic behavior of electronics supply chain 

participants, which differs based on their operational timeframe. Such an approach can also be applied to 

other supply chains where the agents’ decisions are based on their time horizon. 

Profit maximization is represented by maximizing the internal rate of return (IRR). The objective of 

each agent base is to maximize their 𝐼𝑅𝑅𝑡   at time step 𝑡 over their profit horizon (𝑀0) by maximizing total 

revenue (𝑅𝑡) and minimizing total cost (𝐶𝑡) of carrying 𝑁(𝑡) ∈ ℕ of parts with unique stock keeping unit 

(SKU) numbers at time step 𝑡 while being bounded by certain regulations, external market dynamics, and 

business practices. The degree to which an agent avoids purchasing and selling counterfeit parts is captured 

through the agent’s 𝐼𝑅𝑅𝑡  maximization goal. Selling counterfeit parts may lead to financial penalties and 

tangible business consequences such as loss of future sell opportunities or intangible consequences such as 

loss of reputation that leads to loss of future business transactions. These consequences translate into 

revenues and costs incorporated into an agent’s 𝐼𝑅𝑅𝑡 maximization objective. The current model does not 
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address other intangible and abstract objectives such as mission success, the risk of criminal prosecution, 

or business ethics.1 𝐼𝑅𝑅𝑡  is defined as: 

𝐼𝑅𝑅𝑡 =
∑ [𝑅𝑡 − 𝐶𝑡
𝑡
𝑡−𝑀0

]

𝑀0∑ [𝐶𝑡
𝑡
𝑡−𝑀0

]
 

(1) 

𝑀0 is the profit horizon in time steps. 𝑀0 determines the 𝐼𝑅𝑅𝑡 time duration for the agents at time step 𝑡. 

The total revenue and total cost for part SKU = i are functions of the sell quantity in parts at time step 𝑡 

(𝑄𝑆(𝑖, 𝑡)), sell price per part at time step t (𝑃𝑆(𝑖, 𝑡)), buy quantity in parts at time step 𝑡 (𝑄𝐵(𝑖, 𝑡)), buy cost 

per part at time step t (𝐶𝐵(𝑖, 𝑡)), inventory level at time step 𝑡 (𝐼(𝑖, 𝑡)), a constant holding cost per part (𝐶𝐻), 

a constant order execution cost (𝐶𝐸𝑥), and unitless 𝑇𝐴(𝑡) ∈  [0,1) representing the accuracy of testing that 

the agents perform on incoming component shipments. 𝑥(𝑖) is the part-specific cost of obtaining a 100% 

accurate test result (measured in units of the part’s buy cost, 𝐶𝐵(𝑖, 𝑡)). 𝑇𝑠 describes the duration of the time-

step and other parameters stay constant during the time-step. The revenue and cost functions are given in 

equations (2a) and (2b). 

 

𝑅𝑡 = ∑[𝑄𝑆(𝑖, 𝑡)𝑃𝑆(𝑖, 𝑡)

𝑁(𝑡)

𝑖=0

] 

(2a) 

𝐶𝑡 = ∑[𝐶𝐸𝑥 + 𝑄𝐵(𝑖, 𝑡)𝐶𝐵(𝑖, 𝑡)(1 + 𝑥(𝑖)𝑇𝐴(𝑡))𝑇𝑠 +  𝐼(𝑖, 𝑡)𝐶𝐻𝑇𝑠]

𝑁(𝑡)

𝑖=0

 

(2b) 

                                                           
1 It should be noted that currently there is very little risk of criminal prosecution since prosecution cases are low for 

most white collar crimes and many POE agents are outside of the jurisdictions where the operators and OEMs operate.  
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The parameters that define 𝑅𝑡 and 𝐶𝑡 (except for 𝐶𝐸𝑥  and 𝐶𝐻) dynamically change based on internal 

decisions and external factors. Particularly, 𝑇𝐴(𝑡) at time step 𝑡 is linearly correlated with 𝐶𝑡 and can be 

indirectly correlated with 𝑅𝑡  through interacting agent behaviors. Agents can choose to perform less 

expensive and less accurate (or no testing where 𝑇𝐴(𝑡) = 0) testing on purchased incoming parts, thus 

reducing 𝐶𝑡. Agents can also autonomously choose to increase 𝑇𝐴(𝑡), which can result in additional 

business (through an improved reputation for avoiding counterfeit parts), thus increasing 𝑅𝑡 .  

All the agent inventories are governed by static parameters expressing the maximum inventory level 

(𝑆) and minimum inventory level (𝑠). When the expected inventory (𝐼𝐸𝑥(𝑖, 𝑡)) level at time step 𝑡 for part 

SKU = i, i.e., the current inventory plus the scheduled incoming (𝐼𝐼𝑛(𝑖, 𝑡)) minus the outgoing (𝐼𝑂𝑢𝑡(𝑖, 𝑡)), 

falls below (𝑠), a purchasing or manufacturing mechanism is automatically initiated to achieve an inventory 

level of (𝑆) governed by equations (3a) and (3b)2: 

𝐼𝐸𝑥(𝑖, 𝑡) = 𝐼(𝑖, 𝑡) + 𝐼𝐼𝑛(𝑖, 𝑡) − 𝐼𝑂𝑢𝑡(𝑖, 𝑡) 

(3a) 

𝑄𝐵(𝑖, 𝑡) = {
𝑆 − 𝐼𝐸𝑥(𝑖, 𝑡), 𝐼𝐸𝑥(𝑖, 𝑡) < 𝑠

0, 𝐼𝐸𝑥(𝑖, 𝑡) ≥ 𝑠
 

(3b) 

The POE. and OCM, respectively, have the capability of producing counterfeit and authentic parts 

governed by the constant manufacturing lead time in time steps (LTM), which is unique to each 

manufacturing-capable agent (i.e., POE. and OCM). Independent distributors and customers can negotiate 

and purchase parts from the agent bases they are in contact with, as seen in Fig. 3. Each purchase-capable 

agent (i.e., customer and independent distributor) has two sets of distributors 𝔸 and 𝕀. 𝔸 and 𝕀  are subsets 

of the authorized distributor (AD) base and independent distributor (ID) base, respectively. These subsets 

                                                           
2 Equations (1) through (3) are not unique to the electronics supply chain. These equations can be applied to other 

supply chains where agents are motivated by IRR and purchase parts based on their inventory level. 
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function as the approved distributor list for business purposes. The 𝔸 𝑎𝑛𝑑 𝕀 sets are dynamically and 

autonomously updated by the purchase-capable agents. Purchase-capable agents can only contact, 

negotiate, and purchase from agents in the 𝔸 and 𝕀 sets. The model is initiated assuming a purchase-capable 

agent’s 𝔸 and 𝕀 sets contain every agent in the connected agent bases. Agents can independently suspend 

agents from these sets for a DT period, representing debarment duration. DT can range from zero to very 

large (effectively representing permanent removal from the 𝔸 and 𝕀 sets).  

If 𝑄𝐵(𝑖, 𝑡) > 0 in equation (3b) for a purchasing agent, the agent (Buyer) initiates the purchasing 

mechanism shown in Fig. 3 for a part SKU = i at time step 𝑡. The purchasing agent sends a request for a 

quote (RFQ) to the 𝔸 and 𝕀 sets (approved distributors list). The model is initialized with every distributor 

assumed to be approved and on the list. In the transient phase of the model, some distributors are removed 

from the approved distributor list if they are identified to have sold counterfeit parts. As the model 

approaches the steady state, a specific group of distributors remains on the approved list of each customer. 

However, some of the distributors removed from an approved list might rejoin their respective approved 

lists under some policy scenarios discussed in Section 4.2. In response to the RFQ, distributors send the 

purchasing agent a quote. During the cycle of RFQ and quote exchange (i.e., negotiation), both the 

purchasing and the selling agents adjust their 𝐶𝐵(𝑖, 𝑡) and 𝑃𝑆(𝑖, 𝑡) dynamically by increments of 1 to 

maximize their 𝐼𝑅𝑅𝑡 objective. 𝐿𝑇𝐵(𝑖, 𝑡) and 𝐿𝑇𝑆(𝑖, 𝑡) representing the buyer lead time and seller lead time 

in time steps, are also adjusted dynamically in increments of 1  until the condition 𝐿𝑇𝐵(𝑖, 𝑡) ≥ 𝐿𝑇𝑆(𝑖, 𝑡) is 

reached. The dynamic price and lead time adjustment among the agents defines the current market value of 

electronic parts, which is critical for agents in their decision-making process seen in equation (1). In some 

cases, a large increase in the procurement cost of obsolete parts emerges as a result of the continuous 

increase of 𝑃𝑆(𝑖, 𝑡) by selling agents due to part scarcity. Part price increase (post-part discontinuance) is 

one of the drivers of an increased prevalence of counterfeit parts in the model. During negotiation, each 

sell-capable agent is bound by a constant threshold selling price PS-Min and constant threshold selling lead 

time LTS-Min. Conversely, purchase-capable agents are bound by constant thresholds buying cost CB-Max and 
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lead time LTB-Max in time step. These thresholds represent the inherent characteristics of agents concerning 

their business and operational scope. For example, some agents inherently require short lead times based 

on the contracts executed compared to others, which can tolerate longer lead times. Once the lead time 

condition and 𝐶𝐵(𝑖, 𝑡) ≥ 𝑃𝑆(𝑖, 𝑡) condition is satisfied, the purchasing agent then chooses one selling agent 

(e.g., AD, ID, or POE) to send a purchase order (PO). Customers in the critical systems supply chain procure 

a small enough number of parts so that a single-sourcing assumption is adequate. Moreover, customers in 

the critical systems assign absolute priority to authorized distributors over non-authorized distributors (i.e., 

POEs and IDs). These customers follow the common business practices stated in the SAE AS5553 standard 

(SAE, 2022), which states parts should be procured from ADs, and robust evaluation and risk mitigation 

steps need to be taken when purchases are made from independent distributors. These steps include audits 

and testing. Lastly, the distributor ships the part in 𝐿𝑇𝑆(𝑖, 𝑡) time steps, and the shipment is instantaneously 

received by the buyer. The buyer then performs testing on the shipment with a true positive (counterfeit) 

detection probability of 𝑇𝐴(𝑡). 
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Figure 3. The interaction of the purchasing and selling mechanisms. RFQ = request for quote, PO = 

purchase order. The threshold parameters are not visible to other agents. The counterfeit or authentic 

nature of parts within the shipment is not visible to the buyer. Through testing, the true nature of parts can 

be determined with a probability of 𝑇𝐴(𝑡). 

 

After a successful transaction, the buyer decrements the price 𝐶𝐵(𝑖, 𝑡 + 1) =  𝐶𝐵(𝑖, 𝑡) − 1 and lead time  

𝐿𝑇𝐵(𝑖, 𝑡 + 1) =  𝐿𝑇𝐵(𝑖, 𝑡) − 1 with the objective of increasing its 𝐼𝑅𝑅(𝑡)in the next purchasing cycle. In 

contrast, the distributor incerments the price 𝑃𝑆(𝑖, 𝑡 + 1) =  𝑃𝑆(𝑖, 𝑡) + 1 and lead time 𝐿𝑇𝑠(𝑖, 𝑡 + 1) =

 𝐿𝑇𝐵𝑠(𝑖, 𝑡) + 1 with the same objective of 𝐼𝑅𝑅(𝑡) maximization, as shown in Fig. 3. 

4. Policy impact evaluation 

Network models are valuable tools for evaluating policies that are otherwise expensive or impossible 

to assess or would take a very long time to test for effectiveness in practice. Two studies were chosen for 

analysis using the model, demonstrating the ability of the model to capture real-life scenarios in the 

electronic parts supply chain, produce data for policymakers, and validate the model structure. The two 

cases are representative of legal and contractual actions that are considered and, in some cases, implemented 
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by the agents that may impact the prevalence of counterfeit parts. Due to a lack of public knowledge of 

static parameters, such as agent base populations and POE’s counterfeit manufacturing or procuring 

capabilities and capacities, subject matter experts were consulted to estimate static parameters and set 

boundaries for stochastic parameters (University of Maryland, 2021). The fraction of counterfeit parts in 

the customer base indicates the prevalence of counterfeit parts accessible to the operator and represents the 

measurement of policy impact in both case studies. 

4.1. Discontinuation-driven buyback contracts 

Supply-chain buyback programs are contractual agreements between different supply-chain entities 

(i.e., OCMs and ADs). Conventionally, a buyback policy specifies the conditions under which a retailer can 

return unsold merchandise for a full or partial refund, or the supplier buys back retailer inventories. In some 

instances, buyback contracts are in place in the supply chain to reduce the retailers’ inventory cost burden, 

thus promoting higher purchase volumes (Wang et al., 2021). Buyback contracts are often employed in 

supply chains characterized by uncertain demand, long production lead times, and short selling seasons 

(Wang, 2010). In the electronics market, buyback programs are in place to encourage the users to transition 

to the next generation of the component (e.g., Brondoni, 2018) or as an electronic-waste management tool 

(e.g., Atasu and Van Wassenhove, 2011). Brondoni (2012) hypothesized (but does not present any 

supporting data) that, although largely beneficial, buyback programs as a planned obsolescence strategy 

can cause an increase in the presence of counterfeit parts. In this experiment, the developed network model 

tests the effects of the buyback contract parameters on the prevalence of counterfeit components in the 

electronics supply chain to test the hypothesis proposed by Brondoni (2012).  

4.1.1. Experiment design 

In this experiment, the OCM is able to exercise a component buyback clause in a contract with its 

authorized distributors at any time. Unlike conventional consumer product buyback contracts, we assume 

that participation in this policy by authorized distributors is mandatory and applies to all agents within the 
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AD agent base. Once a buyback is initiated, the OCM no longer accepts new component orders, effectively 

initiating the component’s end-of-life phase. Simultaneously, the unobligated components in the inventory 

of the authorized distributors are transferred back to the OCM. The OCM is able to dictate the buyback rate 

of components per time step. An infinite buyback rate requires the authorized distributor base to transfer 

all of their unobligated inventory back to the OCM immediately upon buyback initiation. Alternatively, a 

zero-buyback rate equates to no existing component inventory transfer back to the OCM regardless of the 

buyback rate, the OCM does not supply any new components to the ADs post-buyback initiation. If the 

customer base is carrying an inventory with a high fraction of counterfeit parts after a buyback policy is 

implemented, it indicates the adverse effects of the buyback policy and vice versa. Before part 

manufacturing discontinuation (at time step 𝑡0), the OCM broadcasts how long the part will be available 

before discontinuation (𝑇𝐷 ∈ ℕ) to all customers. At time step 𝑡0 + 𝑇𝐷, the part production is stopped, and 

buyback is initiated according to a policy parameter, “buyback rate.” After receiving the broadcast 

announcement at a time step 𝑡0, customers may execute a last time buy. Last time buys mean that a customer 

estimates how many components they will need to support their systems until the next design refresh 

replaces the impacted part with a non-obsolete part (or until the end-of-support of their systems if there are 

no more design refreshes) and then buys and stores that number of parts. The customers attempt to minimize 

the 𝐶 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑖) cost for part SKU = i associated with last time buy and design refresh by finding the 

optimal design refresh date 𝑇𝐷𝑅 representing the last time step, the customer will consume part SKU = i in 

fulfilling the operator’s demand as given in equation (4).  

𝐶 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑖) =
𝐶𝐻(𝑇𝐷𝑅 − 𝑇𝐷 )

2𝐷(𝑖)

2
+
𝐶𝐵(𝑖, 𝑡0)𝐷(𝑖)(𝑇𝐷𝑅 − 𝑇𝐷 )

(1 + 𝑟)𝑇𝐷
+

𝐶𝐷𝑅0
(1 + 𝑟)𝑇𝐷𝑅

 

(4) 

The customer purchases an adequate quantity of parts on the discontinuation date. It is assumed that 

OCMs are capable of fulfilling the demand until  𝑡0 + 𝑇𝐷 through the ADs.  
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In equation (4), for part SKU = i, 𝐶𝐵(𝑖, 𝑡0) is the price per part at the discontinuation announcement 

time step 𝑡0. 𝐶𝐻, 𝐶𝐷𝑅0, and r are model constants representing holding cost per part, constant design refresh 

cost, and the discount rate, respectively. 𝐷(𝑖) is the average demand per time step, and 𝑇𝐷 is the time until 

discontinuation is announced by the OCM (𝑇𝐷 time steps after 𝑡0). At time step 𝑡0 + 𝑇𝐷, customer optimized 

the 𝐶 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑖) function with 𝑇𝐷𝑅 as the variable. On the discontinuation date, the customer orders 

𝐷(𝑖)𝑇𝐷𝑅 parts with SKU = i. After the discontinuation date, the customer no longer adheres to the 

aforementioned inventory policy described by equation (3) and only procures parts after the inventory 

reaches zero if there is still a demand. At this stage, no design refresh occurs for the system, and previously 

procured parts must continue to support the system. After discontinuation and depletion of the customer 

inventory, if there is a demand, the customer executes the purchasing mechanism shown in Fig. 3. Since no 

new authentic parts are being produced, only POE-provided parts will enter the supply chain at this point. 

4.1.2. Results 

The experiment was conducted with three different buyback rates, zero, 50 parts/time step, and virtually 

infinite (999 parts/time step) over 3000 time steps, and the results are shown in Fig. 4 as the percentage of 

all the parts delivered to the operator that are counterfeit parts. The primary insight from the experiment is 

that a high buyback rate results in a higher prevalence of counterfeits in the supply chain. Irrespective of 

the buyback rate, there is an initial sudden increase in the prevalence of counterfeit parts in the supply chain 

followed by a buyback rate-induced increase (relative to no buyback, 0 parts/time step) in the percentage 

of counterfeit parts received by the operator. The takeaway from this experiment is that too rapid a buyback 

can initially increase the prevalence of counterfeit parts in the supply chain.  
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Figure 4. Discontinuance-driven buyback showing that high-rate buyback policies can result in a higher 

percentage of parts received by the operator being counterfeit. Discontinuance occurred at time step 1000 

while 11% of the delivered inventory was counterfeit 

 

The causes of the dynamic shown in Fig. 4 can be attributed to a reduction in the availability of the 

authorized parts due to the buyback. This dynamic puts pressure on component buyers, leading to purchases 

from non-authorized channels. The increased part demand through non-authorized channels, in turn, leads 

to market opportunities for counterfeiters (POEs). Such demands may be filled by illicit manufacturing and 

procurement by POEs, further increasing the prevalence of counterfeit parts in the supply chain. Lead time 

does not affect the dynamic as, during discontinuation, stocks are not replenished, and buyback is only 

applied to parts in inventory. 

Percentage of Counterfeit Parts Delivered to 

the Operator 
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4.2. Supplier debarments  

One possible consequence of getting caught selling counterfeit parts is debarment from future business 

opportunities. Debarment is a mechanism used by entities in critical system supply chains as a punishment, 

and it removes suppliers prone to selling counterfeit parts from supplier pools. It is also considered a 

deterrent to future infractions by the remaining members in the pool. There is no literature reporting the 

impact of debarment on reducing counterfeit incidences. In this experiment, multiple durations of debarment 

have been examined for efficacy in counterfeit part control, encouragement of IDs to increase testing 

accuracy and possible unintended consequences. 

4.2.1. Experiment design 

Each independent distributor and customer in the supply chain has the ability to test incoming 

shipments of parts for authenticity. The probability of correctly detecting the authenticity of incoming 

shipments is correlated with the parameter 𝑇𝐴(𝑡) at time step 𝑡. Each ID in the independent distributor base 

can independently choose the 𝑇𝐴(𝑡) parameter value they wish to target, while customers follow a 

predefined constant 𝑇𝐴 value. Customer 𝑇𝐴 has not been modeled as a dynamic parameter since the 

objective of this experiment only focuses on the behavior of IDs concerning adjusting their 𝑇𝐴(𝑡) in a 

supply chain with a debarment policy. Choosing a higher 𝑇𝐴(𝑡) increases the selling price per part by 

𝐶𝐵(𝑖, 𝑡)(1 + 𝑥(𝑖)𝑇𝐴(𝑡)) as well as the offered lead time by 𝐿𝑇𝑆(𝑖, 𝑡)(1 + 𝑥(𝑖)𝑇𝐴(𝑡)), making the agent 

less competitive in securing a PO during negotiation compared to other distributors, as seen in Fig. 3 (𝑥(𝑖) is 

set to 1 for this case). However, with a higher 𝑇𝐴(𝑡) value, counterfeit parts are less likely to enter the 

agent’s inventory and later be sold, resulting in less probability of debarment and loss of participation in 

negotiation. 

In the model, if a shipment is detected to have at least one counterfeit part, the seller is removed from 

the buyer’s 𝕀 set for a duration of debarment in time steps (𝐷𝑇). The model assumes that no false positives 

occur during testing. False positive testing cases are not considered as they are assumed to be rare and can 
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be resolved between the involved parties without impacting specific policies and technologies. The 

debarment duration is a global policy applicable to all agents active in the supply chain. A secondary effect 

of the debarment policy is an assumption that the debarment is public knowledge to all the agents within 

the network. The information broadcasting allows agents to have access to information about a positive 

counterfeit detection case. If an agent is debarred, it can adjust its internal parameters in order to recover 

from lost profits during the debarment duration, namely through adjustment of its 𝑇𝐴(𝑡) parameter.  

Though many algorithms can be implemented in modeling the 𝑇𝐴(𝑡) adjustment behavior of IDs. A 

Q-learning algorithm (Watkins and Dayan, 1992) given in equation (5) has been used to model the ID’s 

learning behavior in correlating 𝑇𝐴(𝑡) with 𝐼𝑅𝑅(𝑡).  

𝑄𝑛𝑒𝑤(𝑠𝑡−1, 𝑎𝑡−1)
𝑈𝑝𝑑𝑎𝑡𝑒
←     𝑄𝑜𝑙𝑑(𝑠𝑡−1, 𝑎𝑡−1) + 𝛼 [𝑅𝑒 + 𝛾max

𝑎∈𝐴
𝑄(𝑠𝑡, 𝑎) − 𝑄𝑜𝑙𝑑(𝑠𝑡−1, 𝑎𝑡−1)] 

(5) 

In Q-learning, agents move from one state (𝑠𝑡−1) to another state (𝑠𝑡)  by taking actions (𝑎𝑡−1) in time 

steps. After each action, the agent reevaluates the “value” of the action through immediate reward (𝑅𝑒), 

i.e., did the action result in a more favorable state or a less favorable state for the agent? The transition from 

state 𝑠𝑡−1 to 𝑠𝑡 by taking the action 𝑎𝑡−1 is stored as a unitless Q-value 𝑄(𝑠𝑡−1, 𝑎𝑡−1). After reevaluation 

and revisitation of a state previously visited, the agent is more likely to make the decision that has the 

highest probability of resulting in a more favorable state. Higher Q-values are more likely decisions by an 

agent compared to lower value Q-values in determining possible actions. 

In the model, each ID agent can be at any of the 180 discretized states (𝑠𝑡) { 𝑠𝑡 | 𝑠𝑡 ∈ ℤ, −90 ≤ ∈ ≤ 90} 

according to equation (6) representing the IRR in terms of the slope of the net present value of the agent 

expressed as degrees. For example, in 𝑠𝑡 = −90, 𝐼𝑅𝑅 = −∞. And in 𝑠𝑡 = 90, 𝐼𝑅𝑅 = ∞.  

𝑠𝑡  = ⌊
180 tan−1 𝐼𝑅𝑅(𝑡)

𝜋
⌋ 
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(6) 

Agents can take 10 discretized actions 𝑎 to operate at any time steps 𝑡. 𝑎 = TA ∈

{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} while 𝐴 is the set of all possible actions at the state 𝑠𝑡. The immediate 

reward of the agent from the state 𝑠𝑡−1 to 𝑠𝑡 by taking the action 𝑎𝑡−1 is taken to be 𝑠𝑡−1 − 𝑠𝑡 reflective 

change in 𝐼𝑅𝑅(𝑡) at time step t. 𝛾 and 𝛼 represent unitless parameters of the algorithm, defined as the 

learning rate and action discount rate. 

After initializing 𝑇𝐴(0) values of each agent, in each time step, agents reduce the 𝑇𝐴(𝑡) value by 

multiplying 𝑇𝐴(𝑡 − 1) by 0.99. This automatic reduction represents the compliance of IDs in testing during 

the period when no counterfeit part is identified sold by the IDs. This concept of “slacking-off” in testing 

acts as a mechanism to explore the state field. If the 𝑇𝐴(𝑡) value is less than 𝑇𝐴(𝑡 − 1) − 0.1, the agent 

executes the algorithm in equation (5) learning the Q-value associated with taking the action of 

𝑇𝐴(𝑡 − 1) − 0.1
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔
→          𝑇𝐴(𝑡) at state 𝑠𝑡−1. When a counterfeit part is detected in an ID agent’s 

outgoing shipment, and the ID is debarred, after the end of the debarment period, the ID adjusts its 𝑇𝐴(𝑡) 

based on the previously learned Q-values and its current state of 𝑠𝑡. 

4.2.2. Results 

Eight debarment durations of 0, 10, 25, 50, 100, 250, 500, and 1000 time steps were tested during a 

6000 time step duration experiment. Typically, debarment times in the U.S. DoD practices are in years. 

Each debarment experiment was conducted with uniformly distributed demand and stochastic discrete 

model static values. Each experiment was conducted five times, and average values were captured and 

presented. Based on the simulation results, debarment is seen to not significantly impact the number of 

counterfeit parts delivered to the operator during the pre-discontinuation life-cycle stage of a part, as shown 

in Fig. 5.  
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Figure 5. The percentage of counterfeit and authentic parts received by the operator for various durations 

of debarment (DT) pre-discontinuance. Each column represents a specific case study with the debarment 

duration seen on the horizontal axis. 

 

Debarment duration in time steps 
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Figure 6. The percentage of counterfeit and authentic parts received by the operator for various durations 

of debarment (DT) post-discontinuance. Each column represents a specific case study with the debarment 

duration seen on the horizontal axis. 

However, after the discontinuance of a part, a longer debarment duration leads to a lower fraction of 

counterfeit parts delivered to the operator, as shown in Fig. 6. The ineffectiveness of debarment during pre-

discontinuance versus post-discontinuance can be attributed to IDs making up a relatively smaller share in 

the part flow compared to the post-discontinuance period. 

5. Policy implementation implications 

Any attempt to alter a supply-chain system for the desired objective may also have unintended 

consequences with impacts beyond intuitive expectations. The dynamics of such systems can only be 

detected through practical parametric analysis. To disrupt the flow of counterfeit parts in the electronic part 

supply chain, we have simulated two current policies and their impacts on the stated objective of reducing 

the counterfeit incidence at the operator and analyzed for any unintended consequences. 

Debarment duration in time steps 
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Although buyback contracts are a policy tool mutually beneficial to the OCMs and distributors, they 

can have negative consequences concerning the proliferation of counterfeit parts. The positive business 

motivations should be weighed against the risk of promoting an increase in counterfeit versions of the parts 

removed from the supply chain. If companies choose to implement buyback contracts, the distributors 

should be given sufficient time to return their stock. This allocation of time would give the market time to 

transition away from the part and not be shocked. 

Buyback contracts are implemented by the private sector, but debarment is a public policy tool to 

disrupt the illicit electronic parts supply chain. Enforcing public policies requires resources and has 

associated costs that is not borne by an individual agent but by enforcement agencies that are not represented 

in this model. Enforcing debarment during a part’s pre-discontinuation stage does not significantly reduce 

the counterfeit parts received by the operators. However, enforcing debarment during the post-

discontinuation stage of a part results in a measurable reduction in counterfeit part flow. Agencies should 

focus on enforcing debarment for parts that are obsolete rather than on the parts that are actively produced. 

With this policy choice, more resources will be available for implementation during the more effective post-

discontinuation stage. It should be noted tht policies may have multiple objectives besides counterfiet part 

reduction and they may succeed in them even if the results on coutnerfeit part prolifeartion are not positive. 

6. Discussion and conclusions 

This paper demonstrates that a realistic electronic component supply chain that includes counterfeit 

parts can be built as a network model. The structure of the supply chain and the major active entities are 

identified. The motivation and connections of each entity, as well as their decision-making capabilities, are 

built into the model. Entities were modeled as agents residing in population bases. The supply-chain 

network model was implemented in the commercial AnyLogic simulation tool as an agent-based model.  

The two studies implemented are based on actual administrative and business practices. It is impractical 

or impossible in real-life to conduct such an experiment. The results from this study provide policymakers 
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with guidance on how to design, optimize and implement policy and measure the effectiveness and cost at 

a global scale without being influenced by the narrow goals of one member and anecdotal information. 

Government and company-level policymakers can use such models to test and adjust anti-counterfeiting 

policies before widespread implementation. 

The model has been validated by observing visible dynamics such as the bullwhip effect and 

measurable metrics in the electronics supply chain published by the U.S. Department of Commerce (U.S. 

Department of Commerce, 2010). In addition, subject matter experts have validated each agent interaction 

and objective under the stated assumptions.  

Several modeling simplifications have been made to represent the electronics supply chain. Agents 

have limited autonomy in participating in policies such as detection broadcasting and mandatory buybacks. 

In the real world, agents might decide not to participate in such policies for reasons such as legal 

ramifications and more complex profit models. We have assumed that agent populations remain constant, 

while in real-life, their numbers vary for various business reasons, including mergers, acquisitions, 

bankruptcies, and spinoffs. Agents’ objectives can be more abstract than maximizing profit, as was assumed 

in this paper. Objectives such as mission success or nation-state-related objectives can introduce unique 

behaviors leading to rare emergent dynamics. These objectives will be incorporated in future versions of 

the model. These modeling simplifications will be addressed in future efforts, and other emerging policies 

such as distributed ledger and information sharing chains will be analyzed. Concurrent implementation of 

multiple mitigation/policy strategies will also be explored. The formulas presented as a mathematical 

representation of the supply-chain dynamics are simplified. More complex and representative mathematical 

representations will be introduced in future work. Our approach can be extended to other types of parts 

given the required modifications in the distribution channels and modes of purchase. 
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