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On Optimizing the Conditional Value-at-Risk of a
Maximum Cost for Risk-Averse Safety Analysis”

Margaret P. Chapman', Member, IEEE, Michael Fau3*, Member, IEEE, and Kevin M. Smith**

Abstract—The popularity of Conditional Value-at-Risk
(CVaR), a risk functional from finance, has been growing
in the control systems community due to its intuitive in-
terpretation and axiomatic foundation. We consider a non-
standard optimal control problem in which the goal is to
minimize the CVaR of a maximum random cost subject to
a Borel-space Markov decision process. The objective rep-
resents the maximum departure from a desired operating
region averaged over a given fraction of the worst cases.
This problem provides a safety criterion for a stochastic
system that is informed by both the probability and severity
of the potential consequences of the system’s behavior. In
contrast, existing safety analysis frameworks apply stage-
wise risk constraints or assess the probability of constraint
violation without quantifying the potential severity of the
violation. To the best of our knowledge, the problem of
interest has not been solved. To solve the problem, we
propose and study a family of stochastic dynamic programs
on an augmented state space. We prove that the optimal
CVaR of a maximum random cost enjoys an equivalent
representation in terms of the solutions to these dynamic
programs under appropriate assumptions. For each dy-
namic program, we show the existence of an optimal policy
that depends on the dynamics of an augmented state under
the assumptions. In a numerical example, we illustrate how
our safety analysis framework is useful for assessing the
severity of combined sewer overflows under precipitation
uncertainty.

Index Terms— Conditional Value-at-Risk, Risk-averse op-
timal control, Safety analysis, Markov decision processes.

|. INTRODUCTION
Control system safety is often assessed through minimax
optimal control problems [1]-[4], which assume bounded
nonstochastic adversarial disturbances that try to inhibit safe
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Fig. 1. Arisk-averse safe set S, is the set of initial states from which
the Conditional Value-at-Risk (CVaR) at level « € (0, 1] of a trajectory-
wise maximum random cost can be reduced to a threshold » € R.
(A random cost is a random variable in which smaller realizations are
preferred.) While we depict a state-dependent maximum random cost
Y’ in this figure, our theory permits control-dependent random costs
as well. Our framework applies to settings in which leaving a desired
operating region K may be inevitable, but the extent of a departure
should be limited when possible. (K need not be a polytope. However,
we require stage and terminal cost functions to be continuous and
bounded. In this figure, g () is a signed distance between a state
x and the boundary of K.) In this work, we prove that any collection of
87, is given by the solutions to a family of stochastic dynamic programs
under a measurable selection assumption. In a numerical example, we
compare this characterization to our underapproximation method from
[12]. An underapproximation set U, , C S7, depends on a soft-
maximum parameter ~ that requires tuning [12].

or efficient operation. In cases where disturbances are not
well-modeled as bounded inputs (e.g., Gaussian noise), then
it is standard to define safety in terms of a stochastic op-
timal control problem, whose optimal value is a probability
of satisfactory operation. This framework, called stochastic
safety analysis, can accommodate either adversarial [5], [6]
or nonadversarial [7], [8] stochastic disturbances. However, a
minimax approach may lead to controllers that are too cautious
in practice. On the other hand, a purely probabilistic risk
assessment indicates the likelihood of a harmful event but
has a limited capacity to quantify the amount of harm the
event would cause. These different limitations have motivated
a growing body of research that lies in the intersection of
formal methods and risk analysis for control systems [9]-[13].

Here, we study a nonstandard safety analysis problem,
which concerns the notion of a risk-averse safe set S|, =
{x €5 :Jkx) <r} S represents the set of initial states
from which the maximum distance between the trajectory and
a desired operating region averaged over the « - 100% worst
cases can be reduced to a threshold » (Fig. 1). The system
of interest is a Markov decision process (MDP) with Borel
spaces of states, controls, and disturbances, operating on a
discrete-time horizon of length NNV, a natural number. J}(x)
is the optimal value of a stochastic optimal control problem
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with a Conditional Value-at-Risk maximum cost objective:
Ji(x) = infT CVaR? . (V), (la)
e ’

te{O,Ilr,l.E.i.?(N—l}{Ct(Xt’ Ui).en(Xn)} (1)

The random variable Y depends on stage and terminal cost
functions ¢;, random states X;, and random controls U;. The
quantity CVaR7 , (Y) represents the average value of Y in
the « - 100% worst cases when the initial state is x and the
system uses the control policy m. A control policy provides
distributions for the realizations of Uy, Uy,...,Un_1. (We
will formalize CVaR], . (Y) and 7 in Sec. III-B and Sec. IV-
A, respectively.) The setting is fairly general in theory. It per-
mits nonlinear dynamics, nonconvex bounded cost functions,
continuous spaces, and non-Gaussian stochastic disturbances.
First, we will explain why (1) is an important problem to solve,
and then we will explain the novelty of our contribution.

A. Relevance of the CVaR

The CVaR functional, which defines the objective of (1),
provides an intuitive and quantitative interpretation for risk
because it represents the average value of a random variable
in a fraction « of the worst cases [24, Th. 6.2]. Other
common risk functionals do not have interpretations that are as
consistent or clear. Expected utility risk functionals encode risk
preferences using utility functions and their parameters [14]—
[19]. It is challenging to provide a precise meaning for the pa-
rameter of the classical expected exponential utility functional,
which limits its applicability to control systems with specific
safety or performance requirements [20]. It may be difficult to
interpret a recursive risk functional because it takes the form
p1(C1+p2(Co4-- -+ pny—1(Cn-1+pn(Cn))---)), where
C; is a random variable and p; is a map between spaces of
random variables [21]-[23]. A weighted sum of the mean and
a moment-based dispersion functional, e.g., variance, standard
deviation, and upper-semideviation [24], provides an heuristic
for the probability and severity of more rare and harmful out-
comes. The CVaR is arguably more intuitive than the broader
class of spectral risk functionals, which are “mixtures” of the
CVaR,, over the values of « [25, Prop. 2.5]. The Value-at-Risk
(VaR) at level «, which is the left-side (1 — «v)-quantile, has a
clear quantitative interpretation. However, the VaR’s ability to
summarize the severity of harmful outcomes is limited because
it is insensitive to the shape of the distribution beyond the
(1 — a)-quantile. From a decision-theoretic perspective, the
VaR has the disadvantage of lacking a desirable property called
subadditivity [26]. Both of these shortcomings are overcome
by the CVaR [24], [27].

B. Relevance of the Maximum Cost

We focus on a maximum cost (1b) generated by an MDP
rather than a cumulative cost. While a cumulative cost is
typical for MDP problems [17], [21], [23], [25], [28]-[30],
a maximum cost is typical for robust safety and reachability
analysis problems for nonstochastic systems, e.g., see [3],
[4], and the references therein. Maximum costs have natural
roles in systems theory, beyond robust safety and reachability
analysis. The theory of the long-term behavior of normalized
maxima of random variables, i.e., extreme value theory, has

applications in finance, the study of human longevity, and
hydrology [31].

A maximum cost is appropriate for applications in which
the extent of a constraint violation over a brief time interval
is more critical to assess than its accumulation.! For exam-
ple, in stormwater management, the maximum water level
can be a useful surrogate for the maximum flood extent
(in more extreme cases) and the maximum discharge rate
(in general). These are instantaneous rather than cumulative
properties. For gravity-drained stormwater systems, the in-
stantaneous discharge rate through an uncontrolled outlet into
open atmosphere is a function of the water level behind the
outlet. Therefore, from water levels, we can estimate instan-
taneous demands on downstream conveyance infrastructure
(i.e., infrastructure to transport water rather than to store it).
Designing this infrastructure for the worst maximum discharge
rate may be cost-prohibitive. However, assessing the average
maximum water level in the worst « - 100% of cases from
historical data would allow designers to estimate downstream
conveyance capacity demands along a spectrum of worst cases.

C. Related Literature

The problem of computing risk-averse safe sets S, is
distinct from established problems in the stochastic and risk-
averse control theory literature and necessitates different tech-
niques. Classical discrete-time stochastic control theory, e.g.,
[32], studies the problem of optimizing the expectation of
a cumulative cost. In contrast, our focus is optimizing the
CVaR of a maximum cost (1). The dynamic programming
(DP) proofs from stochastic control theory do not apply to
our problem directly. Theoretical challenges arise because the
CVaR satisfies only some of the properties that are enjoyed
by the expectation. Moreover, while sums and integrals of
nonnegative Borel-measurable functions can be interchanged,
this is not the case for maxima and integrals in general. Such
technical differences between our problem and the scenarios
that prevail in the literature make it necessary to build a
pathway from measure-theoretic first principles. Doing so
enables us to solve for the sets S/, and the associated optimal
control policies under appropriate assumptions.

We take inspiration from a technique called state-space
augmentation, which has been used to solve risk-averse MDP
problems with cumulative costs [17], [25], [28]-[30]. The
problem of minimizing the expectation of a cumulative cost
subject to an upper bound on the CVaR of a cumulative
cost has been studied in [29]. The authors propose offline
and online algorithms on augmented state spaces to update
a Lagrange multiplier and a lower bound on a cumulative
cost [29]. Several risk-averse control problems with cumulative
costs over an infinite-time horizon have been investigated
using infinite-dimensional linear programming and state-space
augmentation [30]. Biuerle and Ott provide a DP solution to
the problem of minimizing the CVaR of a cumulative cost
[28]. While we also use DP, our approach requires different
proof techniques to manage a maximum cost (1b) and to

YA constraint violation means that a state or control leaves a desired
operating region, and its extent refers to the severity of the violation.
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study our proposed algorithm, which we define in terms of
dynamics functions z441 = fi (2, us, wy), stage and terminal
cost functions ¢, and disturbance distributions p;(dw; |z, us).

Most literature about risk-averse MDPs concerns exponen-
tial utility, taking inspiration from decision theory in eco-
nomics and extending from 1972 to present-day [14]-[16],
[18], [19], [33]. Biduerle and Rieder study the problem of
optimizing an expected utility for systems on Borel spaces
with state-space augmentation, analyzing exponential utility
as a special case [17]. Another line of work considers the
optimization of recursive risk functionals [21]-[23], [33]; the
basic approach is to replace a conditional expectation with a
“conditional risk functional” to derive a risk-based Bellman
equation. The problem of minimizing an expected cumulative
cost subject to a risk constraint has been studied by, e.g., [9],
[11], [29], [30], [35], [37]. Linear-quadratic settings have been
studied in [11], [35], [37], and a safety analysis problem with
CVaR has been proposed by [9]. Our problem (1) assesses
the risk of the entire trajectory, whereas the framework in
[9] is concerned with the risk of each state in the trajectory
separately, i.e., CVaR, (¢(X;)) must be small for every ¢. An
emerging research direction proposes risk-averse signal tem-
poral logic specifications for linear-quadratic model predictive
control [11] and for a setting with continuous-time systems
of the form & = f(z) + g(x)u [13]. We refer the reader to
our survey about risk-averse autonomous systems [34] and the
references therein for additional literature.

Contributions. We show that any collection of risk-averse
safe sets is characterized exactly using the solutions to a
family of stochastic dynamic programs on an augmented state
space under a measurable selection assumption. We derive this
characterization by expressing the minimum CVaR (for a given
initial state x and a given level «) as a nested optimization
problem with respect to a control policy and a dual parameter
s. We propose a nonstandard stochastic dynamic program
that is parametrized by s to assess a maximum random cost.
We show that the algorithm returns an optimal s-dependent
value function and policy under regularity conditions on the
dynamics functions, stage and terminal cost functions, and
disturbance distributions. Subsequently, we perform an outer
minimization over s to obtain J77(x) (1). The framework
permits nonlinear dynamics, non-Gaussian noise, nonconvex
bounded cost functions, and continuous spaces. We solve the
risk-averse safety analysis problem, whereas our prior works
[10], [12] provide approximations. For detailed derivations of
our theory, we refer the interested reader to [36, Appendix].

The numerical tractability of the method is limited due to
its reliance on DP and an augmented state space. In this work,
we provide a nonlinear two-dimensional example motivated by
a stormwater management application and offer a comparison
to our underapproximation method from [12]. Our on-going
and future work involves developing more scalable approaches
using extreme value theory and value function approximations.

Notation. We define R* := R U {400, —cc} and N :=
{1,2,...}. Given N € N, we define T := {0,1,...,N — 1}
and Ty = T U {N}. If M is a metrizable space, then
Baq is the Borel sigma algebra on M. If ¢ : M — R*,
then min,eca g(x) means that there is a point z* € M

such that g(x*) = inf,caq g(2); ie., g attains its infimum,
and z* is a minimizer. If ¢ : M’ — M, where M’ is
a metrizable space, then we define go g’ : M’ — R* by
(gog")(y) = g(¢'(y)). If M is a Borel space, then P(M)
is the space of probability measures on (M, Ba,) with the
weak topology; if x € M, then J, is the Dirac measure
in P(M) that is concentrated at x. We distinguish between
random objects and their realizations (i.e., values) using capital
letters and lowercase letters, respectively. The abbreviation
l.s.c. means lower semi-continuous.

[I. CONTROL SYSTEM MODEL

We consider a fully observable MDP operating on a finite
discrete-time horizon Tp, where N € N is given. The
state space S, control space C, and disturbance space D
are nonempty Borel spaces. X, U;, and W, are random
objects, whose codomains are S, C, and D, respectively.?
The disturbance process (Wp, Wy,...,Wy_1) satisfies the
following property: for every t € T, given (X;,U;), W,
is conditionally independent of W, for every 7 # t. The
realizations of X are concentrated at an arbitrary element x of
S. For every t € T, p.(+|,-) is a Borel-measurable stochastic
kernel on D given S x C, providing a conditional distribution
for the realizations of W;. For every ¢t € T, if (z,u) € S x C
is the realization of (X, U;), then the probability that Xy,
is in S € Bg is defined by

qt(§|w7u) = pt({w eED: ft(l‘fuvw) € §}|‘L7u) (2)

where f; : S x C x D — S is a Borel-measurable function
for the dynamics. The stage cost function ¢; : S x C' — R for
every t € T and the terminal cost function ¢y : S — R are
Borel-measurable.
Assumption 1 (Measurable selection): We assume:
1) There exist a € R and b € R such that a < ¢; < b for
every t € Ty. (We define Z := [a,b].)

2) The control space C' is compact.

3) For every t, f; and c¢; are continuous functions, and

pt(+]-,+) is a continuous stochastic kernel.

We will show that Assumption 1 guarantees the existence of
an optimal policy that depends on the dynamics of a running
maximum (Sec. IV). It is standard to impose a measurable
selection assumption for stochastic optimal control problems
on Borel spaces, e.g., see [32]. As risk-aware MDP problems
can pose additional technical challenges, it is common to
assume bounded costs, e.g., [17], [28], [30], [33]. We assume
continuous cost functions c¢; because our cost-update operation
is a composition of two functions (rather than a sum). Hence,
we replace the typical l.s.c. assumption by a property that is
preserved under compositions. In the theoretical sections of
this work, we assume that Assumption | holds, even without
an explicit statement.

[1l. RISK-AVERSE SAFETY ANALYSIS
First, we will present an example of the maximum random
cost Y (1b) in terms of a desired operating region K. Then,
we will provide measure-theoretic definitions of ¥ and CVaR
to formalize our risk-averse safety specification S,.

2The realizations of Xy, Uz, and W; include the possible states, controls,
and disturbances at time t, respectively.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

A. Y as a Distance between the State Trajectory and K

Suppose that K € Bg is a desired operating region. While
we would like the state trajectory to remain inside K always,
this may not be possible due to disturbances that may arise.
We will explain how one may choose Y (1b) to represent a
distance between the state trajectory and K.

Let gk : S — R be bounded and continuous, where gx ()
quantifies a signed distance between a state = and the boundary
of K. For example, if S € B> is bounded and K = [0, k1] x
[0,ks] C S is the set of desired water levels in two storage
tanks, then max{x — k1,22 — ko, 0} or max{z1 — k1,2 —ko}
are suitable choices for gx (x) with @ = [z1,22]T € S. More
generally, if = is outside K and far from its boundary, then
gk (x) has a large positive value. Otherwise, if 2 is inside
K, then there are two options: 1) gx(x) equals zero, or 2)
gk () equals a more negative value if x is located more deeply
inside K. The former applies when there is no preference for
certain trajectories inside K. The latter applies when there is
a preference for trajectories that are inside K and farther from
its boundary.

To quantify the extent of the state trajectory’s departure
relative to K, we can choose the terminal and stage cost
functions to be gx. That is, we can choose ¢y = ¢gx and
ci(z,u) = gi(z) for every t € T and (z,u) € S x C. In
this case, if (zg,21,...,7x) € SN*1 is the realization of
(X0, X1,...,XnN), then y = max{gx(z) : t € Ty} is the
realization of Y (1b). In this example, Y represents the extent
of the state trajectory’s departure from K, and we use the
notation Y’ =Y (Fig. 1).

B. A CVaR-based Trajectory-wise Safety Specification

To define risk-averse safe sets formally, we must describe
Y (1b) in measure-theoretic terms. Let x € S be an initial
state and m € II be a control policy. (We will specify the
control policy class II in Sec. IV.) Y is a random variable
defined on a probability space (2, Bq, P7). The sample space
Q contains all possible trajectories; a trajectory is a tuple of
states, maximum stage costs, and controls over time. From
Assumption 1, every c¢; is bounded below by a € R. Given
(x,a), m, and the system dynamics, there exists a unique
probability measure P7 € P(2) (Ionescu-Tulcea Theorem).
We write Py instead of Pg, for brevity. EZ(-) denotes the
expectation operator with respect to P7. Since the stage and
terminal cost functions are bounded (Assumption 1), Y is
bounded everywhere. This is one way to ensure that EZ (|Y])
is finite, which will allow us to define CVaR[ , (Y").

As we have mentioned, CVaR, , (Y') represents the average
value of Y in the - 100% worst cases when the initial state
is x and the system uses the control policy w. The meaning
of the a - 100% worst cases is made precise using a quantity
called the Value-at-Risk of Y at level o, which we denote by
VaR7, , (V). Formally, CVaR{ ,(Y') is the expectation of Y’
conditioned on the event that Y exceeds VaR7 , (Y'), provided
that o € (0, 1) and the distribution function of Y is continuous
at VaR{, , (V') [24, Th. 6.2]. The Value-at-Risk of Y at level
a € (0,1) is defined by

VaRy (V) =inf{y e R: PT{Y <y}) > 1-a}, ()

where y — PZ({Y < y}) is the distribution function of Y.
Now, for every a € (0,1], we define CVaR, ,(Y) by

CVaR] (¥) = inf (s + LET (max{Y — s, o})), @

following Shapiro et al. [24, Eq. (6.22)]. We call s € R a dual
parameter. Using the derivation from [24, p. 258], one can
show that if a € (0, 1), then CVaR[, ,(Y) equals

VaR] (V) + L Ef (max{Y — VaR] ,(Y),0}). (5

This relation implies that CVaR7  (Y") assesses a probability-
weighted average of the realizations of Y above VaR[, , (Y').

CVaR is an attractive choice for defining safety specifica-
tions for two reasons. First, the parameter a has a quantitative
interpretation as a fraction of the worst cases. Second, CVaR
assesses the part of a distribution above a particular quantile
and therefore is designed to assess more rare and harmful
outcomes. We define risk-averse safe sets S, as the sublevel
sets of the optimal CVaR of the maximum random cost Y.

Definition 1 (S!): For every o € (0,1] and r € R, we
define the («,r)-risk-averse safe set by Si = {x € S :
J5(x) < r} with J5(x) = infrer CVaR7 (V) (1).

In the next section, we will show that risk-averse safe
sets can be characterized exactly using stochastic dynamic
programs on an augmented state space.

IV. CHARACTERIZATION OF RISK-AVERSE SAFE SETS
USING STOCHASTIC DYNAMIC PROGRAMS

Unlike the minimum expectation of a cumulative cost, J
cannot be computed using a DP recursion on the state space
S alone. Such a recursion holds in special cases due to the
structure inherent in certain problems, but it does not hold
universally. To alleviate the challenge of optimizing the CVaR
of a maximum cost, we will construct an augmented state
space to record the running maximum. Recall that Z = [a, b].

A. Construction of an Augmented State Space

We define the random augmented state by X; = (X, Z;)
for every t € Tp. X, is the original S-valued random state. 7,
is a Z-valued random object that records the maximum stage
cost up to time ¢ (to be further described). The realizations
of Xy = (Xo, Zp) are concentrated at (x, a), where we recall
that x € S is arbitrary. Z;;1 depends on X, U, and Z; as
follows: Z;11 = max{c;(Xy,Uy), Z;} for every t € T. We
define S := S x Z for brevity.

X, and U, are functions defined on € := (S x C)V x S.
Every w € Q takes the form

(6)

with (¢, z;) € Sforevery t € Ty and u; € C forevery ¢t € T.
We define X (w) = (Xy(w), Zy(w)) = (z4, 2¢) and Up(w) =
u; for every w € () whose coordinates are specified by (6). It
follows that X; and U; are Borel-measurable functions. While
these definitions are general enough to capture arbitrary depen-
dencies between the coordinates of w, we restrict ourselves to
particular casual dependencies, which we have discussed and
will continue to present. Next, we will define the class II of
control policies using the augmented state space S.

w = (%0, 20,10, -, TN=1,ZN—1, UN—1, TN, ZN)
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Definition 2 (11): Every control policy m € II takes the
form 7 = (m,71,...,7mNn_1), where m(:]-,-) is a Borel-
measurable stochastic kernel on C' given S for every ¢ € T.

Remark 1 (11 is history-dependent): Let m € II be given,
and suppose that (x¢,2;) € S is the realization of A; =
(Xt, Z). The distribution (|2, z¢) € P(C') for the realiza-
tions of U, depends on (¢, z;), which depends on the previous
states and controls.

Remark 2 (A deterministic control law §,): Letk :S — C
be Borel-measurable. We use the notation J, to denote the
following Borel-measurable stochastic kernel on C' given S:
for every (z,2) € S, 04(q,») is the Dirac measure in P(C')
that is concentrated at the point x(z,z) € C.

The next remark presents a convenient notation for an
element of S and a transition law for the realizations of X, .

Remark 3 (xt, ¢:): The notation x; = (x4, 2;) denotes an
element of S. For every ¢t € T and (x;,u;) € S x C, let
Gt (*|xt, us) be the product measure of q;(-|a¢, ur) (2) and
Omax{ce(ze,us),2¢}- @¢ 1S @ continuous stochastic kernel on S
given S x C by applying Assumption 1 [36, Appendix].

Now, we are ready to formalize the expectation operator
E7(-). Let x € S and 7 € II be given. If G : Q@ — R* is
Borel-measurable and E7(G) = [, G APy exists, then

EX(G) =[5 Jo- - JsG(x0, w0, -+, XN) )
gn—1(dxn|xn=1,un—1) - - mo(duo|x0) Ox,a(dXx0),

by applying [32, Prop. 7.28] and Assumption 1 [36, Ap-
pendix]. The kernels in (7) describe how an augmented state
Xo = (2o, 20) may lead to a control ug, how (xo,up) may
lead to a subsequent augmented state x1 = (x1,21), and so
on. The point (x,a) serves as the initial augmented state.

B. Characterization of Risk-Averse Safe Sets

Here, we show that risk-averse safe sets enjoy an equivalent
representation in terms of a family of stochastic dynamic
programs on the augmented state space under Assumption 1.
For convenience, for every s € R, we define h° : R — R by

h?*(y) == max{y — s, 0}. ®)

Let x € S and « € (0, 1] be given. The optimal value J(x)
(1) can be expressed using the definitions of CVaR7 ,(Y') (4)
and h® (8) as follows:

JaGo = inf (s+ L inf EZ(0*(Y), )

where we exchange the order of the infima over R and II.
By the definition of Y (1b) and Assumption 1, we have that
Y (w) € Z for every w € Q. Consequently, a minimizer in Z
exists for the outer problem of (9) by the next lemma.

Lemma 1 (Existence of a minimizer): Let Assumption 1
hold, x € S, a € (0,1], G : 2 — R be Borel-measurable,
and G(w) € [a,b] for every w € . Define L(s) = s +
Linfren EZ(h*(G)) for every s € R. Then, inf,cr Lg(s) =
mingepqp) L (5); i.e., a minimizer s} , € [a, b] exists.

Proof: Define £ = inf ¢, ) L (s). Then, for every s €
[a,0], LE(s) > L. Now, if s < a, then h*(G) = G — s,
and hence, L$(s) > L¢(a) > ¢. However, if s > b, then
h*(G) = 0, and thus, Lg(s) > LE(b) > £. Since L (s) > £

for every s € R, ¢ = inf,cr LE(s) holds. Since LZ(s) is

continuous in s and [a, b] is compact, the infimum £ is attained

by a point s}, , € [a,b] [38, Th. A6.3]. [ |
For every s € R, we define V° : S — R* by

Vi(x) = Helfn EZ(h*(Y)). (10)
By Lemma 1, there exists a point sy , € Z such that
JX(x) = gléiél (s+1Vo(x)) =sko+ évsi»a (x). (1D

We will develop a dynamic programming-based solution for
V? to characterize J. Toward this aim, we define extended
random variables that represent costs-to-go. For every s € R
and ¢t € Ty, we define Y;° : Q@ — R* by

VS — hs(maX{CN(XN)7 Ay, Zt})v
t hs(IIl&X{C]\/'()(N),ZN})7

with A; : Q@ = R, Ay = max;cqy,.. nv-1} ci(Xi,Us), t € T.
The next theorem specifies some properties of a conditional
expectation ¢;*(z,z) = E™(Y|X; = (x,2)) of Y given
X;. The theorem is based on the definition of conditional
expectation [38, Th. 6.3.3] and a basic change-of-measure
theorem [38, Th. 1.6.12]. For brevity, we use the notation
Jopo X dPT = [, o(X(w)) dP](w), where ¢ : S — R*
is Borel-measurable.

Theorem 1 (Properties of ¢;°): Let Assumption 1 hold,
and let x € S, m € I, and s € R be given. Define the
function J§; : S — R* by

J3(z, 2) == h®*(max{cy(z), 2}).

ifteT,

12
ift=N, (12)

(13)
Then, the following statements hold:

EZ(h*(Y)) = [o 00" 0 Xo AP = 657" (x,a), (14)
Jo %" 0 Xy dPF = [, J§ o Xn dPF, (15)
Jo @i %0 X APT = [ ¢737 0 Xypyy APY, (16)

Proof: For every t € Ty, Y,” is an extended random
variable on (2, Bq, PT), X; : Q — S is Borel-measurable,
and [, Y dPJ exists (recall that Y;° is nonnegative). The
probability measure induced by X; is defined by Py », (S) =
PF(X7Y(S)) for every S € Bs. By the definition of condi-
tional expectation [38, Th. 6.3.3] and the change-of-measure
theorem [38, Th. 1.6.12], we have

teT.

fQYts dP,’g:ngbf’szt dP7, teTp, a7n

where the integrals exist. Now,
jﬂ Y? dPf = jQ Y, dP;, teT, (18)
as a consequence of Z;,1 = max{ci(Xs,Ut), Z:}. The

relations (17)—(18) imply the relation (16). The relation (14)
is derived using (7) and (17) with ¢ = 0; note that EZ(Yy) =
EZ(h°(Y)) because a < ¢ for every ¢ € Ty and the
realizations of (X, Zy) are concentrated at (x, a). The relation
(15) holds by (17) witht = N and by Y3 = Jj, 0 Xy. W
Subsequently, we will use Theorem 1 to derive a DP-based
solution for V* (10), and we will show the existence of a
control policy that is optimal for V* under Assumption 1.
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Theorem 2 (DP on S): Let Assumption 1 hold, and let s €
R be given. Recall the definition of Jy, (13). For t = N —
1,...,1,0, we define J; : S — R* recursively by

']t (ZL',Z) = Jggvt (ZIJ,Z,U), (1921)

where we define v§ : S x C' — R* by vj(z, z,u) =

fD JP (ft(az, u,w), max{c(x,u), z}) pi(dw|z,w). (19b)

Then, for every ¢t € Ty, J; is ls.c. and bounded below by
zero. Moreover, for every t € T, there is a Borel-measurable
function 7 : S — C' such that

I (x,2) = v (z, 2,68 (2, 2)), (x,2) €S. (20)

We define 7% = (83, 0n5,- -+ 0n3,_,
of II. Then, for every x € S, we have

Ji(x,a) = V*(x) = E (h*(Y)).

Proof: J; being l.s.c. and bounded below by zero for every
t € Ty and the existence of a Borel-measurable function «; :
S — C that satisfies (20) for every ¢t € T follow from standard
induction arguments. These arguments use Assumption 1,
properties that are preserved under integration with respect to a
continuous stochastic kernel [32, Prop. 7.30], and a measurable
selection result [32, Prop. 7.33].

Next, we prove (21). We work on the probability spaces
{(Q,Bq, P) : x € S, m € II}. For (21), it suffices to show
that for every t € Ty and x € S,

VeIl fQ ¢p° 0o Xy APT > fQ J? o X, dPF,
Jo o7 0 Xy dPE = [, J 0 X, APE.

), which is an element

21

(22a)
(22b)

Indeed, if ¢ = 0, then the above statement implies that for
every x € § and w € 11,

EZ(h*(Y)) 2 J§(x,a) = EY (h°(Y)), (23)

using (14) from Theorem 1 and the realizations of Aj; being
concentrated at (x,a) (7). Then, we take the infimum of the
expression in (23) with respect to m € II to derive (21). The
function ¢;® appears inside an integral in (22) because a
conditional expectation is not unique everywhere in general
[38, Th. 6.3.3]. We proceed by induction to prove (22). The
base cases (¢ = N) for (22) hold by (15) from Theorem 1.
Now, suppose that for some ¢ € T, we have: for every x € S,

Vrell, [, o5 oX APE > [, Ji o0&y APE. (24)

Let x € S and 7w € II be given. To show the induction step
for (22a), it suffices to show that

fQ Ji o X1 dPT > fQ JP o Xy dPT, (25)

by applying (16) from Theorem 1 and the induction hypothesis
(24). Noting that J, ; o Xy11 : @ — R* is Borel-measurable
and nonnegative, we use (7), the change-of-measure result [38,
Th. 1.6.12], and the Fubini Theorem [38, Th. 2.6.6] to derive

Joy Jii1 0 Xesy dPT = [L03" 0 X, dPT, (26
where v;"" : S — R* is given by
v (@, 2) = o vi (s 2, u) m(dulz, 2). 27

Since v;"" o Xy : @ = R* and Jf o X; : Q — R* are Borel-
measurable and satisfy v;"" o X, > JfoX; > 0 and (26) holds,
the relation (25) follows. An induction argument for (22b) is
similar. A key step is using (20) to find that v}"™ = J;. m

In particular, by letting any s € R be the dual parameter’s
value and any x € S be the initial state, we have shown that
(21) holds under Assumption 1. Therefore, under Assumption
1, we conclude that for every s € R and x € S, J§(x, a) =
V#(x). This conclusion permits a useful characterization of
risk-averse safe sets (Def. 1) in terms of the family {J§ : s €
Z} under Assumption 1:

Sp={xes: min(s+Lhxa)<r) @9

s€Z
To derive (28), we use (11) as well. Since {J§ : s € Z} does
not depend on « or r, the family {J§ : s € Z} characterizes
any collection of risk-averse safe sets {S!, : & € A,r € R},
where A is a subset of (0, 1] and R is a subset of R.

The results in this section provide a nonunique optimal
policy on the augmented state space 7% € II under As-
sumption 1. Policies on augmented state spaces have also been
developed by, e.g., [17], [25], [28], [30]. Nonunique optimal
policies are typical in stochastic optimal nonlinear control.

Remark 4 (Policy deployment): Let « € (0,1] and x €
S be given. Let 7o € II satisfy (21), where S%a €

Z satisfies (11). Let /@i""’ be the control law for time
t € T associated with 7. Let (z0,20) = (x,a) and
t = 0. Fort = 0,1,...,N — 1, repeat the following
four steps: 1) choose u; = ﬁf"’“(mt,zt); 2) nature pro-
vides a realization w; of W, according to the distribution
pe(-|xe, ue); 3) the realization (x¢41,ze41) of (Xyv1, Zig1)
is (fi(@e, ug, wy), max{c(x¢,us), 2 }); 4) t updates by 1.

V. NUMERICAL EXAMPLE

Risk-averse safety analysis, as presented here, suffers from
the curse of dimensionality inherent to DP and requires an
augmented state space. Despite these computational chal-
lenges, risk-averse safety analysis may be a useful tool for
designing control systems. At the design stage, large-scale off-
line simulations may be commonplace, and designers may be
required to assess multiple alternatives in light of uncertainty.

We consider the task of modifying the design of an urban
stormwater system. We refer the reader to [36] for more details
about the simulation setting. The system consists of two tanks
(tank 1, tank 2) connected by an automated valve. Water flows
by gravity between the tanks based on the relative difference
in water levels and the position of the valve. Water enters the
system through a random process of surface runoff. Water exits
the system through a storm sewer drain that is connected to
tank 2 or through outlets that lead to a combined sewer. The
storm sewer directs stormwater to a nearby water body, which
occurs without penalty. However, the storm sewer’s capacity
is limited. When water levels are too great, excess flows are
directed to a combined sewer, which can release a mixture of
stormwater and untreated wastewater into a local waterway.
This event is called a combined sewer overflow (CSO), which
can disturb local ecosystems. We apply risk-averse safety
analysis to examine how design modifications may reduce the



risk of CSOs by managing the system’s maximum water levels.
The designs are: (a) baseline, (b) replace the valve with a
controllable bidirectional pump, and (c) retrofit tank 1 with an
outlet that drains to a storm sewer without penalty.

X; = [Xt1, Xi2)T is the vector of random water levels
in tank 1 and tank 2 at time ¢. The state space is S =
[0,k1] x [0,ko] ft>, where k; = k; + 2 ft and k; is the
maximum water level that tank ¢ can hold without releasing
water into the combined sewer. The desired operating region
is K = [0, k1] x [0, k2]. We choose ¢; = gx for every t € Ty,
where gr(x) = max{x; — k1,22 — k2,0} quantifies the
maximum water elevation outside K. In the baseline design,
the control input is the valve position at time ¢, and the
control space is C = [0,1] (closed to open, unitless). The
tuple (Wo, Wq,...,Wx_1) is a random process of surface
runoff that arises due to precipitation uncertainty (units: ft3/s).
We select a disturbance distribution to reflect simulations from
our prior work [39]. We use Newtonian physics and a mass
balance to form a dynamics function (f = f; V¢t € T) for each
design. We consider N = 20; [t,¢ + 1) represents a duration
of 3 minutes. S denotes a computation of a set S.

Fig. 2 presents computations of S, (28). For comparison,
Fig. 2 also presents computations of the underapproximations
Z/Iorw using the method from [12]. As the risk-aversion level o
becomes smaller (more pessimistic), the contours of S’; and
Z/AIOTw contract, as we expect, while the qualitative features are
preserved. The contours for the pump design (b) are more
rectangular than those for the baseline design (a). The contours
for the outlet design (c) are stretched farther along the z;-
axis compared to those for the baseline design; i.e., tank 1’s
effective capacity increases under the outlet design.

The underapproximation method [12] requires the manual
tuning of a soft-max parameter ~ that impacts the fidelity
of the underapproximation set U, ., at different levels of a.
The current method provides S, exactly in principle and does
not involve the tuning of an additional parameter, but it does
require significantly more resources.® This is due to the aug-
mented state space S = S x Z and solving dynamic programs
for different values of the dual parameter s. In contrast, for a
fixed +, solving one MDP problem on S is required to compute
U, ., for every a and r of interest [12]. Consequently, the
underapproximation method provides a preliminary screening
tool to identify more promising designs from a collection of
candidate designs. The current method provides a tool for in-
depth analysis of a small number of promising designs that
have been selected through preliminary screening. The risk-
aversion level « allows one to specify a degree of pessimism in
terms of a fraction of the worst cases. The interpretability and
flexibility of o may be useful for assessing trade-offs between
system performance and financial considerations in practice,
especially given the limited budgets afforded to “ordinary”

3We provide a rough comparison of resources; we have made no attempt
to optimize efficiency beyond parallelizing the operations in a given DP
recursion. One can run the underapproximation method on a standard laptop
(2-4 CPU cores) in approximately 10 minutes for a fixed v and a fixed
design. However, the current method takes about 13.5 hours and 30 CPU
cores for a fixed design. We used the Tufts Linux Research Cluster (Medford,
MA) running MATLAB (The Mathworks, Inc.). Our code is available from
https://github.com/risk-sensitive-reachability/RSSAVSA-2021.
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rather than “safety-critical” infrastructure.

VI. CONCLUSIONS

By overcoming theoretical challenges attributed to optimiz-
ing the CVaR of a trajectory-wise maximum cost, we have
shown that risk-averse safe sets enjoy an equivalent repre-
sentation in terms of the solutions to a family of stochastic
dynamic programs. We are investigating extensions to higher-
dimensional systems in the finite-time case using extreme
value theory [31] and in the infinite-time case using value
function approximations. In the future, we hope to study new
problems that combine performance and risk-averse safety
criteria, such as optimizing a utility functional subject to a
constraint on the CVaR of a maximum cost.
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