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Abstract—This article develops a safety analysis method
for stochastic systems that is sensitive to the possibility
and severity of rare harmful outcomes. We define risk-
sensitive safe sets as sublevel sets of the solution to a
nonstandard optimal control problem, where a random
maximum cost is assessed via Conditional Value-at-Risk
(CVaR). The objective function represents the maximum
extent of constraint violation of the state trajectory, aver-
aged over a given percentage of worst cases. This problem
is well-motivated but difficult to solve tractably because
the temporal decomposition for CVaR is history-dependent.
Our primary theoretical contribution is to derive compu-
tationally tractable underapproximations to risk-sensitive
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safe sets. Our method provides a novel, theoretically guar-
anteed, parameter-dependent upper bound to the CVaR of
a maximum cost without the need to augment the state
space. For a fixed parameter value, the solution to only
one Markov decision process problem is required to obtain
the underapproximations for any family of risk-sensitivity
levels. In addition, we propose a second definition for
risk-sensitive safe sets and provide a tractable method for
their estimation without using a parameter-dependent up-
per bound. The second definition is expressed in terms of a
new coherent risk functional, which is inspired by CVaR.
We demonstrate our primary theoretical contribution via
numerical examples.

Index Terms—Conditional Value-at-Risk (CVaR), Markov
decision processes (MDPs), safety analysis, stochastic op-
timal control.

[. INTRODUCTION

ONTROL-THEORETIC formal verification methods

for dynamical systems typically fall in the robust
domain [20]-[24] or in the stochastic domain [25]-[28].
Robust methods for formal verification assume that uncertain
disturbances lack probabilistic descriptions, live in bounded
sets, and exhibit adversarial behavior. These assumptions are
appropriate if probabilistic information about disturbances is not
available, and if the conservative policy or safety specification
that results from a pessimistic world view is useful in practice.
However, when one considers formal verification as a design
tool for safety-critical systems in the digital world today, it is
reasonable to assume that simulation tools or sensor data are
available to estimate probabilistic descriptions for disturbances.
Moreover, it is reasonable to consider the following world view:
disturbances need not be adversarial, but rare harmful outcomes
are still possible.

Control-theoretic stochastic formal verification methods do
assume that disturbances are probabilistic and can be non-
adversarial [25], [26] or adversarial [27], [28] in nature. These
methods compute the probability of safety or performance by
using expected indicator cost functions. The expectation, how-
ever, is not designed to quantify the features in the tails of a
distribution, and the probability of a harmful outcome need not
indicate its severity. Thus, formal verification methods at the
intersection of the robust and stochastic domains are emerging.
A method for distributionally robust safety analysis has been
proposed [29], and methods that use risk measures to assess
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harmful tail costs, e.g., [30] and our prior work [38], have been
introduced. !

While the notion of risk-sensitive formal verification is recent,
it is related to the notion of risk-sensitive Markov decision
processes (MDPs), which dates back to the early 1970s. In 1972,
Howard and Matheson studied risk-sensitive MDPs on finite
state spaces, where the cost is evaluated in terms of exponential
utility [1]. This idea was transferred to linear control systems by
Jacobson in 1973 [2] and was further developed in later decades.
For example, see the seminal works by Whittle [4], [35] and di
Masi and Stettner [3]. The exponential utility of a nonnegative
random cost Y Jy(V) := 22 log(E(e=Y)) assesses the risk
of Y in terms of the moments of Y and is parametrized by a
nonzero scalar 6. Under appropriate conditions, Jy(Y") tends
to E(Y)as 0 — 0and Jy(Y) =~ E(Y) — %Variance(Y) if |6
is sufficiently small [4]. The risk-averse setting corresponds to
0 < 0. However, if 0 is too negative, the controller can suffer
from a phenomenon called “neurotic breakdown” in the linear-
quadratic-Gaussian setting [4].

Hence, the notion of risk-sensitive MDPs has been gener-
alized beyond exponential utility. Kreps used the expectation
of a utility function as a risk-sensitive performance criterion for
MDPs [7]. Ruszczyriski defined a risk-sensitive performance cri-
terion for MDPs in terms of a composition of risk measures [47].
State-space augmentation has been used to optimize the cumula-
tive cost of an MDP, where the cost is assessed via CVaR [16] or
a certainty equivalent risk measure [17]. The former problem is
called a CVaR-MDP. Convex analytic methods have been used
to solve MDPs with expected utility or CVaR criteria via state-
space augmentation and infinite-dimensional linear program-
ming [34]. A temporal decomposition for CVaR [40], [41] has
been used to propose a dynamic programming (DP) algorithm
on an augmented state space to solve a CVaR-MDP problem
approximately [31]. Analysis at the intersection of mean field
games, linear systems, and risk measures with connections to
CVaR is provided by [32].

Ruszczyriski’s approach [47] and MDPs that assess cumu-
lative costs via expectation or exponential utility are time-
consistent problems. That is, these problems satisfy Bellman’s
principle of optimality on the original state space.> However, a
CVaR-MDP is time-inconsistent. Several solution concepts for
time-inconsistent problems have been proposed. For example,
a game-theoretic solution concept is studied in [8], which con-
siders the problem as a game against one’s future self. Another
popular approach is to focus on precommitment strategies that
cannot be revised at later stages. Optimal or nearly optimal
precommitment strategies can be obtained using the structure
of CVaR; see [16], [34], and [39], for example. Although an
optimal precommitment strategy is globally optimal only at the
initial stage, maintaining suitable empirical performance at later
stages is possible, particularly when the time horizon is not too
long [18]. In mean-CVaR asset allocation problems, optimal

YA risk measure (risk functional) is a map from a set of random variables
to the extended real line. Exponential utility, Value-at-Risk, CVaR, and Mean-
Deviation are examples [37]. The terms risk measure and risk functional are
interchangeable.

2Different meanings for time consistency have been proposed; e.g., see [5],
[47], [6]. We refer to the meaning for time consistency from [6].

Probability Density of ¥

E(Y) VaRq(Y) CVaR,(¥) esssup(¥)

Fig. 1. CVaR quantifies the upper tail of a cost distribution. For an
absolutely continuous, bounded random variable Y representing a cost
and «a € (0,1], we illustrate the expected cost in the o -100% worst
cases, which is CVaR, (Y) in this setting. The area of the shaded region
is . The expectation of Y, the Value-at-Risk of Y™ at level « (the lowest
cost in the o - 100% worst cases), and the essential supremum of Y are
also shown.

Risk-Sensitive Safety Analysis:
Max amount of constraint violation, averaged
over the a-100% worst cases, is small

s
Stochastic Safety Analysis:
Probability of constraint
violation is small

Fig. 2. We develop a safety analysis method that generalizes stochas-
tic safety analysis by assessing the severity of random harmful out-
comes. We define the risk-sensitive safe set S/, in terms of CVaR and
derive an underapproximation U, ., that is computationally tractable. S;,
represents the set of initial states from which the maximum extent of
constraint violation of the state trajectory, averaged over the a - 100%
worst cases, can be reduced to a threshold 7.

precommitment strategies are shown to be effective even with
long time horizons [19].

A line of research that falls between risk-sensitive MDPs and
standard risk-neutral MDPs is risk-constrained MDPs [30], [33],
[34], [42]. Here, the goal is to minimize an expected cumulative
cost subject to a risk constraint that limits the extent of a cost.
The authors in [33], [42], and [30], for example, express this
constraint in terms of CVaR.

The additional effort required to solve time-inconsistent prob-
lems, including CVaR-MDPs, may be justified for safety-critical
applications. A strong theoretical basis for using CVaR to assess
harmful tail costs has been in development since the early
2000s, e.g., see [36] and the references therein. Informally,
CVaR represents the expected cost in the o - 100% worst cases,
where « € (0,1] (Fig. 1). CVaR quantifies the more harmful
tail of a distribution, and managing this tail is paramount in
safety-critical applications.

This article proposes a method to assess how well a stochastic
system can remain within a desired operating region with respect
to a range of worst-case perspectives. We call this method risk-
sensitive safety analysis (Fig. 2). Its foundation is a nonstandard
optimal control problem that evaluates a random maximum cost
via CVaR. The objective function represents the maximum ex-
tent of constraint violation of the state trajectory, averaged over
the o - 100% worst cases, where « € (0, 1] is a risk-sensitivity
level. This problem is difficult to solve tractably because the
temporal decomposition for CVaR is history-dependent [40],
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[41]. We define risk-sensitive safe sets as sublevel sets of the
solution to this nonstandard problem. These sets are powerful
tools for safety analysis. Indeed, they assess system behavior on
a spectrum of worst cases, while being sensitive to the possibility
and severity of rare harmful outcomes.

Our primary theoretical contribution is to derive computation-
ally tractable underapproximations to risk-sensitive safe sets. We
derive these underapproximations by proving the following: For
any control policy and any initial state, the CVaR of a maximum
cost is upper bounded by a scaled logarithm of an expected
cumulative cost, where the stage cost has a specific analytical
form. For this proof, we use various properties of CVaR and
the log-sum-exponential approximation to the maximum. The
latter approximation depends on a parameter v € R. For a fixed
7, the solution to one MDP problem is required to obtain the
underapproximations for any family of risk-sensitivity levels.
We provide practical insights on how to choose such a parameter
in the experimental section.

Our method provides a novel, theoretically guaranteed upper
bound to the CVaR of a maximum cost for the purpose of safety
analysis without the need to augment the state space. (Augment-
ing the state space may be less tractable in some settings, e.g.,
when the range of the augmented state is large.) In contrast,
existing methods aim to compute the CVaR of a cumulative cost
via state-space augmentation. By taking different approaches to
augment the state space, the papers [16] and [34] minimize the
CVaR of a cumulative cost, and the paper [31] minimizes the
CVaR of a cumulative cost approximately. These related works
are focused on controller synthesis but are not focused on safety
analysis.

Our secondary theoretical contribution is to propose a
second definition for risk-sensitive safe sets and provide a
tractable method for their estimation without using a parameter-
dependent upper bound. The second definition is expressed in
terms of a new risk functional, which is inspired by CVaR and
has certain desirable properties. In particular, this risk functional
admits an upper bound that can be computed via DP (on the orig-
inal state space and without an additional parameter that requires
tuning). This result forges a new path to estimate risk-sensitive
safety criteria with desirable computational attributes.

Organization: We present notation and background on CVaR
in Section II. Our primary and secondary theoretical contri-
butions are provided in Sections IIT and IV, respectively. We
develop computational examples of a temperature system and a
stormwater system to demonstrate our primary theoretical con-
tribution in Section V. Finally, Section VI presents conclusions
and directions for future work.

II. BACKGROUND ON CONDITIONAL VALUE-AT-RISK

We use the following notation. If S is a metrizable space, 53(.5)
is the Borel sigma algebra on S. If (€2, F, 1) is a probability
space and 1 < p < oo, LP(Q, F, 11) is the associated L? space,
and || - ||, is the associated norm. Typically, we use upper-case
letters to denote random variables or sets, whereas lower-case
letters denote deterministic quantities, including parameters.
Exceptions are the length of a time horizon is expressed in terms
of T € N and E(-) denotes expectation.

Next, we present a standard definition for CVaR and facts
about CVaR that are relevant to this work.? Let Y be a random
variable with finite first moment, representing a cost, defined
on a probability space (Q, F, u). That is, let Y € L1 (Q, F, p),
where smaller realizations of Y are preferred. The Conditional
Value-at-Risk of Y € LY(Q, F, i) at the risk-sensitivity level
a € (0,1] is defined by

CVaR,(Y) := inf (s+ 2E(max(Y —5,0))) (1)
where E(-) is the expectation with respect to (w.r.t.) y. We note
the following consequences of Definition (1):

1) CVaR, (V) = E(Y).
2) If 0 <y <as <1, then CVaR,, (V) > CVaR,,(Y)
and CVaR,,(Y) e R fori =1,2.

Definition (1) is not the most intuitive, so we present
an alternative definition that explains the names Conditional
Value-at-Risk and Average Value-at-Risk. The alternative
definition is written in terms of the Value-at-Risk of Y &
LY(Q, F, ) atlevel a € (0,1), which is given by

VaR,(Y) =inf{y e R: p{Y <y})>1—-a} (2

where 1({Y < y}) is the probability of the event {Y < y} :=
{weN:Y(w) <y} e F. In other words, VaR,(Y) is the
generalized inverse cumulative distribution function of Y at
level 1 — «, or equivalently, the left-side (1 — «)-quantile of the
distribution of Y [10]. The CVaR of Y € L1(, F, u) at level
a € (0,1) is equivalent to an average of the Value-at-Risk [37,
Th. 6.2]:

1
CVaR, (Y) = é/ VaR,_,(Y) dp. 3)
l-a
The above equation explains the commonly used name Av-
erage Value-at-Risk. Now, to explain the name Conditional
Value-at-Risk, suppose that the cumulative distribution function
Fy (y) := p({Y < y}) is continuous at y = VaR,(Y"). Con-
tinue to assume that Y € L'(Q,F, ) and « € (0,1). Then,
CVaR,, (Y')is aconditional expectation that is expressed in terms
of the Value-at-Risk [37, Th. 6.2]:

CVaR,(Y) = E(Y|Y > VaR,(Y)). (4)

Equation (4) means that CVaR,(Y) represents the expected
value of Y in the o - 100% worst cases.

CVaR is a commonly cited example of a coherent risk func-
tional [10], [37]. Coherent risk functionals are a class of risk
functionals, first proposed by Artzner et al. [11], that satisfy four
properties, which are particularly meaningful in applications
where sensitivity torisk is critical. We present these properties in
the context of CVaR atlevel v € (0, 1], where Y; € LY(Q, F, )
below.

1) Monotonicity: If Yi(w) < Ya(w) for almost every (a.e.)
w € Q, then CVaR, (Y1) < CVaR,(Y>). That is, a ran-
dom cost that is larger than another almost everywhere
incurs a larger risk.

2) Subadditivity: CVaR, (Y1 + Ys) < CVaR, (Y1) +
CVaR,(Y3). If Y; is the (random) stage cost of a

3 Additional names for CVaR include Average Value-at-Risk, Expected Short-
fall, and Expected Tail Loss. We present the definition for CVaR that is used by
Shapiro and colleagues, e.g., [9], [10], [37].
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control system at time 4, then the risk of the cumulative
cost over a finite horizon is at most the sum of the risks
of the stage costs.

3) Translation equivariance: If a € R, then CVaR,, (Y] +
a) = CVaR, (Y1) + a.

4) Positive homogeneity: If 0 <\ < 0o, then CVaR,, (1Y) =
)\.CV&RQ (Yl ) .

The last two properties ensure that shifting or scaling arandom
variable provides an analogous transformation to the risk of the
random variable. In particular, the expectation operator satisfies
the four properties above and thus is a coherent risk functional.
We use some of these properties in our proofs. We also use the
fact that a real-valued coherent risk functional can be represented
in terms of a supremum over a family of expectations.* This
representation takes the following form for CVaR at level o €
(0,1] [10]: forany Y € LY(Q, F, ),

CVaR,(Y) = sup / Y dQ = sup / YEdu (5a)
QeQn JQ £eAL JQ

where the definitions of Q,, and A,, follow. Q € Q,, if and only

if @ is a probability measure that is absolutely continuous with

respect to i, i.e., of the form Q(B) = fB &dp, where B € F

and £ € A,. A, is a set of densities defined by

Ay = {feLw(Sl,}',u):Ogggéa.e., /5du=1}.
Q (3b)

Ill. CVAR-BASED RISK-SENSITIVE SAFETY ANALYSIS

We use the CVaR functional to pose a safety analysis prob-
lem. We consider a stochastic system evolving on a discrete,
finite-time horizon and start with the standard set-up for this
setting. Let S and A be Borel spaces, representing the set
of states and the set of controls of the system, respectively.
Define the sample space € := (S x A)T x S, where w :=
(zo,uo, ..., xp-1,ur_1, o) € € is a finite sequence of states
and controls that may be realized on a time horizon of length
T+ 1and T € N is given. The random state X, : {2 — S and
the random control U; : 2 — A are projections. That is, for any
w € Q of the form above, define X;(w) := z; and Uy (w) := uy,
where the coordinates of w have casual dependencies, to be
described. The initial state X is fixed arbitrarily at = € S. The
system’s evolution is affected by 1#-valued random disturbances
(Do, Dy, ...,Dr_1) with a common distribution Pp, where
W is a Borel space. D; is independent of the states, controls,
and D for any s # t. The distribution of X;;; conditioned
on (X, Uy) = (x4,us) € S x A is defined as follows: for any
B € B(S5),

Q(B|rs,ut) == Pp ({d; € W : f(x4,us,di) € B})  (6)

where f: S x Ax W — S is a Borel-measurable map that
models the system dynamics. We use the typical class of ran-
dom, history-dependent policies II. Each 7 € II takes the form

4The family of expectations has specific properties that are out of the scope of
this article. The representation was developed over several years, e.g., see [10],
[11], [13], [14].

m = (7, T1,...,7r_1), where each ; is a Borel-measurable
stochastic kernel on A given H? := (S x A)! x S.

The above set-up is standard in discrete-time stochastic con-
trol. One reason is that, given = € S and 7 € II, the set-up
allows the construction of a unique probability measure P that
characterizes the system’s evolution, provided that the system is
initialized at = and uses the policy 7 (Ionescu-Tulcea Theorem).
The measure P permits the prediction of the system’s perfor-
mance over time under uncertainty. Random costs incurred by
the system are defined on (2, B(f2), PF), a probability space
parametrized by  and 7. The notation E7 (+) is the expectation
operator with respect to P .

A. On Evaluating a Random Cost via CVaR

We use (€2,B(2),PI) to define a random cost for the
system and to evaluate this cost via CVaR. Suppose that
there is a constraint set K € B(S), where the state trajectory
(Xo0,X1,...,Xr) of the system should remain inside. It may
be impossible for the system to remain inside K always due to
random disturbances in the environment. Let gx : S — R be
a bounded Borel-measurable function that represents a notion
of distance between a state realization and the boundary of K.
Specifically, gx (x:) is the extent of constraint violation of x4,
a realization of the random state X;. More specifically, if z; is
outside of K and far from the boundary of K, then g5 (z;) has a
large positive value. However, if x; is inside of K, then g5 (1)
may be either of the following:

1) zero, if one does not favor certain trajectories inside of
K;

2) a more negative value when z; is more deeply inside of
K, if one favors trajectories that remain deeply inside of
K.

Using gk, we define a random R-valued cost that quantifies
the maximum extent of constraint violation of the state trajec-
tory: for any w = (xo,uq, ..., Tr_1,ur_1,27) € £,

o 9x(Xe(w)) = x| gr(ze). (D
In other words, GG quantifies how well the random state trajectory
satisfies the safety criterion to remain inside of K. Hence, G
quantifies the safety of the random state trajectory, which is
defined with respect to the constraint set X via the function
gr- A deterministic (and continuous-time) version of (7) is
used in Hamilton-Jacobi reachability analysis, a robust safety
analysis method for (nonstochastic) uncertain systems, which
has been established over the past 15 years; e.g., see [21], [43],
and [24], and the references therein. A standard choice for g is
a clipped signed distance function with respect to K [43, p. 8].
In our numerical example of a thermostatically controlled load,
we use gk (x¢) = max(z; — 21,20 — ;) to quantify how far a
state realization x, can be inside or outside of K = [20, 21] °C
(Section V-A).

It holds that G € L™ := L>(Q,B(Q), PF) and G € L' :=
LY (2, B(Q2), PT). The function gx composed with X, is an
element of L>™ because gx : S — R is bounded and Borel
measurable and X; : Q — S is Borel measurable. Thus, G is
a point-wise maximum of finitely many functions in L. There-
fore, G inherits the measurability properties of these functions
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and is essentially bounded. Since (€2, B(2), PT) is a probability
space, L™ is a subset of L', and it follows that G' € L! as well.

Now, we express the CVaR of G. The CVaR of G €
LY (Q,B(Q2), Pr) atlevel a € (0,1] is given by

CVaR? (G) := in]lg (s+1ET(max(G —s,0))).  (8a)
’ sE
By using (5), it holds that
CVaR} ,(G) = sup / G¢ dPT (8b)
EEAT , /O

where A7, . is a set of densities defined by

AL = {f € L>*(Q,B(),Pr):0<¢< % a.e.,E;(ﬁ):l}.
(8c)
We use (7) and (8) to define risk-sensitive safe sets next.

B. Risk-Sensitive Safe Sets

Definition 1 (Risk-Sensitive Safe Sets): Leta € (0,1]andr €
R be given. The («, r)-risk-sensitive safe set for a given policy
m € Il is defined by

ST = {x € §:CVaR] , <t_max TQK(Xt)> < r}.

=0,1,...,

C))

The («, r)-risk-sensitive safe set is defined by

S = {az es: ;rellf_[CVaR;m <t=0m,1&}.>.(.,TgK(Xt)) < r} .
(10)

We denote the infimum in (10) by W/ (x). Risk-sensitive
safe sets are well-motivated. These sets represent the sets of
initial states from which the maximum extent of constraint
violation of the state trajectory, averaged over the o - 100% worst
cases, can be made sufficiently small. The maximum extent
of constraint violation of the state trajectory is the real-valued
random variable G := max;—o 1,7 g (X¢). We allow gx to
be negative so that decision-makers can encode preferences for
trajectories remaining deeper inside of A over trajectories near
the boundary of K, if desired. In our numerical example of a
thermostatically controlled load, we allow gy to take on both
negative and nonnegative values to express a preference for
trajectories that remain closer to 20.5 °C (Section V-A). In our
numerical example of a stormwater system, however, we choose
anonnegative g to utilize all capacity in the water storage tanks
without penalty (Section V-B).

Using CVaR to define risk-sensitive safe sets is well-justified
from a decision-theoretic point of view because CVaR is a
coherent risk measure. That is, CVaR satisfies the axioms of
monotonicity, subadditivity, positive homogeneity, and transla-
tion equivariance. Section II provides intuitive interpretations
for these axioms. Besides having an axiomatic justification,
CVaR has the useful interpretation of quantifying the upper
tail of a distribution. Indeed, CVaR provides a quantitative
characterization of risk aversion by representing the expected
cost in the o - 100% worst cases, where v € (0, 1] is selected
by the decision-maker. This interpretation is exact if continuous
random variables in L' are evaluated.

Risk-sensitive safe sets generalize probabilistic safe sets [25]
by quantifying the maximal extent of constraint violation at a

given risk-sensitivity level rather than the probability of con-
straint violation. Risk-sensitive safe sets quantify how much
constraint violation occurs on average in the o - 100% worst
cases, whereas probabilistic safe sets [25] quantify whether or
not constraint violation occurs with some probability. Indeed, let
€ € [0, 1] be a maximum tolerable probability of constraint vio-
lation. Choose « = 1,1 = ¢, and g = Iz, where I ¢ () = 1if
x ¢ K and I (z) = 0if x € K. Then, the (1, €)-risk-sensitive
safe set is

S = {x €s: ;Iellf_IEm <t=(1)n7la’b.>.<.7TIR (Xt)> < e} (11)

which is the maximal probabilistic safe set at the e-safety
level [25] for the system of Section III. (The paper [25] con-
siders discrete-time stochastic hybrid systems that evolve under
Markov policies.)

Risk-sensitive safe sets indicate higher degrees of safety as a
decreases and r decreases. We state this fact formally next.

Lemma 1: Suppose that 1 > a; > as >0 and rq > ro.
Then, 572 C St If m € 11, then S72™ C SPVT.

Proof: Let x €S and well. Since 1> a; > as >0
and G e LY(Q,B(Q), Pr), CVaR7, . (G) > CVaRy (G).
Since G =max;—o1,.. 79x(X:) and grx is bounded,
there exists a b€ R such that G(w)>b for almost
every w € ). Since CVaR is monotonic and b€ R,
CVaRy, ,(G) >b. Take the infimum over 7 €ll to
obtain infrerr CVaRy, (G) > infrenn CVaRY (G) >0,
which holds for any z € S. Now, suppose = € §72. Then,
ro > infrerr CVaR]  (G) > infrep CVaRY _(G). Since

2,T 1,T

71 > 19, we have 7 > infrcrr CVaRy, ,(G), which shows that
r € 8.1 . The proof for the last statement is similar. ]

The risk-sensitive safe set S/, specifies that the CVaR,, of the
worst constraint violation of the state trajectory must be below
a given threshold. In contrast, the safe set in [30] specifies that
for each ¢t the CVaR, of the constraint violation of the state
at time ¢ must be below a given threshold. Hence, S, assesses
the risk of the entire trajectory, whereas the safe set in [30] is
concerned with the risk of each state in the trajectory separately.
A specification that assesses the risk of the entire trajectory may
be preferable in certain applications because this approach treats
the trajectory as a unified entity representing the behavior of a
control system.

C. Underapproximation Method

Risk-sensitive safe sets are well-motivated but difficult to
compute due to the presence of the CVaR and the maximum.
Before presenting our approach to estimate risk-sensitive safe
sets, we describe related methods in further detail.

Several methods in the literature apply state-space augmen-
tation techniques to estimate the risk of a random cost incurred
by an MDP. Biuerle and Ott use dynamic programming (DP)
to minimize the CVaR of a sum of stage costs by defining
an augmented state space [16]. The range of the second state
is [0,esssup Y1, Cy], where C is the stage cost at time

5 An approach that does not require state-space augmentation is to evaluate a
cumulative cost via a composition of risk functionals [47]. We take inspiration
from this idea in Section IV.
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[16, Remark 5.1]. This state-space augmentation approach has
been extended to optimize certainty equivalent risk functionals
for MDPs [17]. A certainty equivalent approximates the sum of
the expectation and a function of the variance under particular
conditions [17], and more generally, characterizes risk aversion
in terms of functions of moments. However, CVaR provides a
quantitative characterization of risk aversion by penalizing a
random cost in a given fraction of the worst cases.

Chow et al. proposed a DP algorithm to minimize approxi-
mately the CVaR of a cumulative cost via state-space augmen-
tation, where the additional state ranges from 0 to 1 [31]. This
approach is expected to be more tractable than the approach
in [16]; compare the ranges of the additional states. However, it
is not known if the algorithm in [31] provides an upper bound
or a lower bound to the solution to a CVaR-MDP problem.
The algorithm in [31] is based on a CVaR Decomposition
Theorem [40, Th. 6] [41, Th. 21, Lemma 22], which requires
knowledge of the history of a stochastic process. How to remove
the history dependence and apply the Decomposition Theorem
to derive the algorithm in [31] is still an open research question.

The algorithms invented by [16] and [31] aim to minimize
the CVaR of a cumulative cost subject to the dynamics of an
MDP. The algorithm proposed by [40] aims to minimize the
CVaR of a more general cost (not necessarily a sum) but is
history-dependent, which limits its computational tractability.
The proof of the DP algorithm in [40] requires an exchange
between an essential supremum and an expectation, whose
validity in multistage settings for MDPs with Borel state and
control spaces is not known.

Here, we propose a method to provide tractable, theoretically
guaranteed underapproximations to risk-sensitive safe sets,
which we define via CVaR. We focus on CVaR due to its
quantitative characterization of risk aversion and since we aim
to assess the degree of safety of a control system in terms of
rarer, higher-consequence outcomes. In contrast, a certainty
equivalent assesses risk in terms of functions of variance and
other moments. In particular, variance does not distinguish
between rarer, higher-consequence outcomes in the upper
tail and rarer, lower-consequence outcomes in the lower tail.
Unlike the methods in [16], [17], [31], our method does not
use state-space augmentation because this technique typically
reduces computational tractability. For this reason, we do not
augment the state space with the running maximum over each
time period Z; := max;=¢1,...; 9x (X;). The range of Z; may
be large since the bounds of gx may be large. Instead of using
state-space augmentation to handle the CVaR and the maximum,
we use a scaled expectation to upper bound the CVaR and a
log-sum-exponential function to upper bound the maximum,
G = max;—0 1, .7 gr (X¢). Our first main result is below.

Theorem 1 (Upper Bound for CVaR of G): For any 7 € 11,
x €S, a € (0,1],and v > 1, it holds that

Wa(x,m) := CVaRy . (G) < % log (%E;T (EZ;O eng(Xt)))
(12)

The quantity W, (x, ) represents the maximum extent of
constraint violation of the state trajectory, averaged over the
a - 100% worst cases, when the system uses the policy 7 and
starts from the state x. The right-hand side of (12) can be

estimated more readily than W, (x, 7) for small o and provides
a conservative approximation to Wy, (x, 7). If « is small, more
samples of G are required to estimate W, (x, m) = CVaR], ,(G)
since small « corresponds to rarer larger realizations of G.
(We are more interested in using small « for safety-critical
applications.) Theorem 1 is powerful because it can be used
to estimate the performance of any control policy 7 € II with
respect to W, (x, 7). Policies may be designed for different
objectives, e.g., efficiency in power or fuel consumption, ro-
bustness to bounded adversarial disturbances, robustness to
bounded nonlinearities, etc. It may be beneficial to estimate their
performance with respect to a risk-sensitive safety criterion, such
as W, (x, ), efficiently. The proof of Theorem 1 requires two
lemmas.

Lemma 2 (CVaR-Expectation Inequality): Let (2, F, 1) be a
probability space, Y € L'(Q, F, i) such that Y > 0 a.e. w.r.t.
p. and o € (0, 1]. Then, CVaR,(Y) < LE(Y).

A version of the inequality is stated without proof in [10]. We
provide a short proof below.

Proof: Start from the CVaR definition (1), and select s =
0. Then, CVaRo(Y) < 1 E(max(Y,0)). Since ¥ >0 a.e.,
max(Y,0) =Y ae., 50 CVaR,(Y) < 1 E(Y). [ |

Lemma 2 provides an upper bound for CVaR in terms of
the expectation and the risk-sensitivity level a when nonneg-
ative random variables are evaluated. In addition to Lemma 2,
the proof of Theorem 1 requires the following result, which
relates the CVaR of the logarithm to the logarithm of the CVaR.

Lemma 3 (CVaR-Log Inequality): Let a € (0,1] and YV €
L>®(Q,F,p). Suppose that there are real numbers b >
b>0 such that b> Y(w) >b for every w € (. Then,
CVaR,, (log(Y')) < log(CVaR,(Y)).

Proof: Let a € (0,1] and & € A, (5b). Define pe(B) :=
[ &dp, where B € F. (2, F, pi¢) is a probability space, and
Jo Y dpe is finite. View Y as a random variable on (€2, F, j¢ ).
It holds that Y (w) € (0,00) for all w € £, and —log is a
convex function from (0, c0) to R. Thus, by Jensen’s Inequal-
ity, [, —log(Y) due > —log( [, Y dpug). Moreover, since ¥
is nonnegative and bounded everywhere, ¢ is nonnegative and
bounded a.e., and by using the definition of y¢, it follows that

log ([, Y€ du) > [, log(Y)E du. (13)

Since ¢ € A, is arbitrary in the analysis above, the inequality
(13) holds for all £ € A, In addition, we have CVaR,(Y) =
suPgca, Jo Yédp by (5), CVaRn(Y) € R because Y €
LY, F,p),and [, Ydpe = [ YEdp > b > Oforall € A,.
Thus, log(CVaR, (Y)) = log(supgc 4, [ Yédu) € R. Since
the natural logarithm is increasing,

log (CVaR,(Y)) = log ([, Y€ du) VE € A,. (14)

By (13)and (14), it holds that log(CVaR, (Y)) > [, log(Y)&dy

for all £ € A,. Since the supremum is the least upper bound,

we conclude that log(CVaR,(Y')) > supgc 4, [o log(Y)édu =

CVaR,, (log(Y)). [ |
We use Lemmas 2 and 3 to prove Theorem 1.
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Proof of Theorem 1: Note the log-sum-exp approximation for
the maximum [44, Sec. 3.1.5, p. 72]: If y € R? and v > 1, then

@
_IIllaX yi < 1 10g (Z 67‘%) < nllax yi + lOg(P).
Letm €I, z €S, ac (0,1], and v > 1. Recall that G =

,_max TgK(Xt) € L>™(Q,B(2), PF), where we have pre-

sented 2 and P at the start of Section III. Since ¢ is R-valued,

Y(w) = Z?:o

Since g is bounded and Y is a sum of finitely many expo-
nential functions of gy, there exist real numbers b>b>0
such that b > Y (w) > b for every w € Q. It follows that Y €
L*>(Q,B(Y), Pr) satisfies the assumptions of Lemma 3, and
thus,

5)

19K (X)) > 0 VYw e Q. (16)

CVaRy . (log(Y)) < log(CVaR[, .(Y)). W)

By the inequality (@) in (15) and by the definitions of G
and Y, the inequality G < 1 log(z 19Xy = Llog(Y)
holds a.e. w.r.t. PJ. Since CVaR is monotomc and positively
homogeneous, and since % > 0,

CVaRT, ,(G) < CVaRY,, (% log(Y)) = LCVaRT,, (log(Y)).
(13)
We use (17) and (18) to find that

CVaRj, ,(G) < 2 log(CVaRy (). (19)

Note that CVaRy ,(Y) € R such that CVaR[ ,(Y) > 0. In-
deed, Y € LOO(Q B( ), PT) and so is also an element of
LY(Q,B(92), PF), hence CVaR” (Y) € R. Y is bounded ev-
erywhere, and in particular, from below by a real num-
ber b > 0. Therefore, CVaRg’x(Y) > b > 0. Consequently,
log(CVaR] (Y)) € R. In addition, the assumptions of Lemma
2 are satisfied, and therefore,

CVaR] (V) < LET(Y). (20)

Use (19), (20), and log being increasing to derive that
CVaRj ,(G) < 7 log(CVaR] (V) < 2 log(LEZ(Y)). W

We use the conclus10n of Theorem B to deﬁne particular
subsets of the state space. First, we call these sets approxima-
tions, and then, we prove that they are underapproximations to
risk-sensitive safe sets in Theorem 2.

Definition 2 (Approximations to Risk-Sensitive Safe Sets):
Let « € (0,1], r € R, and v > 1 be given. The (a,r,7)-
approximation set for a given policy m € 1l is defined by

upn ={oes: Lz (Sl <o @1
The («, r,v)-approximation set is defined by
U = {:r es: 1nf SE7 (Z _eVIx (Xf)> <err
(22)

We denote the infimum in (22) by

o (@) = ;Iellﬁl Jaqy(x,m) = mf ~E} (Z evIK (Xt)>
(23)

where II is the set of randomized history-dependent policies,
which also includes deterministic Markov policies. Estimating
J, ~ 1s the critical step for estimating the sets U, .. The prob-
lem of estimating J;, . is an MDP problem. Thus, J;,  and a
deterministic Markov policy 7 € II such that J, ,(z,7,) =
J3 o (z) for all z € S can be computed via DP, in principle,
if a measurable selection condition holds.® Therefore, for a
fixed v > 1, an algorithm to estimate {J;‘w s € A}, where
A C (0,1] is a family of risk-sensitivity levels, exists and is
tractable. The next theorem shows that the sets in Definition 2
are underapproximations to risk-sensitive safe sets (Definition
D).

Theorem 2 (Underapproximations to Risk-Sensitive Safe
Sets): Let a € (0,1], » € R, and v > 1. For any policy = € 1I,
it holds that

Uys C Sy 24)
where U™

o is defined by (21) and S;™ is defined by (9).
Moreover, the («,r,~y)-approximation set is a subset of the
(o, r)-risk-sensitive safe set, i.e.,

u, ., <8,
where Uy, ., is defined by (22) and S, is defined by (10).
Proof: Equation (24) follows from Theorem 1. Leta € (0, 1],
r € R,y >1,and 7 € Il be given. Let z € U7 . Then,

(25)

1 Eﬂ (Z o €19 (Xf)) < e (26)

where the left-hand side is bounded below by a positive real
number since Y := Ztho 795 (X0) is as well. It follows that
log(L EX (1., €79%(X4))) is finite. Since the natural logarithm
is increasing and v > 1, we have

Llog (éE; (Etho e'*yK(Xf))) <7 7
By Theorem 1, it holds that
CVaRT , (G) < %log( ET (2 OewK(Xt>)) . Q8)

Combine (27) and (28) to find that CVaR, ,(G) < r, which
shows that z € S and proves (24). Now, to prove (25), let

r U] o which implies that

inf L7 (Z OeWK(X*)) < e (29)

Let e > 0 be given. Since the left-hand side of (29) is finite, there
is a ¢ € Il such that

éE;rE (Zz;oe'ygx(xt)) <e+ mf 1E7f (Z Opng(Xf))

<e+e
(30)
where the second line holds by (29). Note that the quantity
log(2 BT (7,79 (X)) is finite. Take the logarithm of (30)
and then divide by v > 1 to obtain

%log (%E: (Zzzoe'ygff(xt))> < %log (e+e). (@31

%Measurable selection conditions, e.g.,see[45,Ch.3.3]or[15], are commonly
invoked to guarantee the existence of a policy that optimizes or nearly optimizes
an expected cumulative cost subject to an MDP.
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By Theorem 1, it holds that
CVaR7,(G) < Llog (é B (Zfzo e’WyK(Xt))> NGY))

Therefore, CVaR7,,(G) < 2 log(e + ¢7"). Since 7° € IL, it fol-
lows that

Wi (x) := inf CVaR, ,(G) < CVaR” _(G).  (33)
TE ’ ’
Consequently, we have
W (x) < 3 log (e +e77). (34)

This analysis holds for any € > 0. Let ¢ — 0, and use the
continuity of the logarithm to obtain

. im L 7Y = Llog (1i ) —
Wa(m)glgr(lwlog(e—i—e )—Vlog(lli%e—i-e )—r.

(35)
Since W;; (z) < r,weconcludethatz € S.Sinceany z € U, .,
is also an element of S}, it holds that U/, ., C S. u

Since we have shown that ¢/;>7 and U,, ., are subsets of the
risk-sensitive safe sets, S);™ and S},, respectively, we now refer
to Uy 7 and Uy, ., as underapproximations.

Remark 1 (Assessment of Approximation Errors): Three ap-
proximations are required for the proof above. First, we use a
soft-maximum, under which we have

0 < LCVaR , (log(Y)) — CVaRT ,(G) < I+ (36)

where Y = Ztho 795 (Xt) and there are positive constants b
and b (which depend on 7', 7, and the bounds of gx) such that
Y € [b, b] everywhere. The inequality (36) implies an improved
approximation with larger values of « or smaller values of 7.
However, since it is not feasible to optimize %CVaRfm (log(Y))
directly, our next step is to leverage the CVaR-log inequality
provided by Lemma 3. The associated error is given by

07 = Llog(CVaR] (V) — LCVaRT , (log(Y)) > 0.
(37)

Since the range of V" is [b, 8], it follows that 777 < = log(b/b).
Therefore, we anticipate a smaller error 77} when Y has a
smaller range, which occurs when 7T is smaller, for example.

The last approximation is  log(CVaRj ,(Y)) <
log(LET(Y)), which of course is poor as a — 0. However,
for a fixed « € (0,1), we anticipate that this approximation
performs well when P has a fat (upper) tail, which we state
formally in the following lemma.

Lemma 4 (Tightness of log(CVaR,(Y)) < log(+E(Y))):
Assume the conditions of Lemma 3, and let « € (0, 1). Suppose
that for some finite m > 0, it holds that

1-«
0< m/ Valep(Y) dp < /
0

11—«

1

VaR;_,(Y) dp. (38)

Then, 0 < log(LE(Y)) — log(CVaR,(Y)) < log(L +1).
Remark 2 (Fat tail condition (38)): The second inequality
in (38) means that the cumulative VaR in the upper a-fraction
of the distribution of Y, |, f_a VaR;_,(Y)dp, is at least m times
greater than the cumulative VaR in the lower (1 — «)-fraction of
the distribution of Y, fol_a VaR;_,(Y")dp. The maximum value
fll—a VaRy ., (Y)dp
Jo % VaRyp(Y)dp
measure of tail “fatness.” For example, if the distribution of Y is
a standard log-normal with parameters ¢ = 0 and o = 1, and if

of m that satisfies (38) is m = , which gives a

o = 0.05, then numerical integration yields 1 ~ %42 ~ (.35.
4

If o is increased to 2 under the same conditions, then m ~ 2—; ~
1.7.
Next, we prove Lemma 4.
Proof of Lemma 4: The representation of CVaR in (3) and the
inequality (38) imply that
1

11—«
1 / VaRy_(Y)dp <
& Jo

CVaR,(Y)
—

(39)

The expectation and the VaR are related by E(Y)
= CVaR(Y) = [, VaR;_,(Y)dp. It follows that 2E(Y) <
(L 4 1)CVaR, (Y). From this and Lemma 2, we have

CVaR,(Y) < LE(Y) < (L +1)CVaR.(Y).  (40)

Then, take the logarithm of (40) and subtract log(CVaR,(Y)) €
R to complete the derivation. |

From Theorem 2, we obtain tractable underapproximations to
risk-sensitive safe sets. In practice, one selects v > 1 manually
and then estimates .J;, . (23) for a family of risk-sensitivity
levels. For a fixed v, only one MDP problem on the original
state space needs to be solved for any family of risk-sensitivity
levels because J;, , is a standard MDP problem scaled by «.
In Section V, which presents numerical examples, we take one
approach to choose a suitable value of v manually by visual
inspection. Before proceeding to the numerical examples, we
present one additional theoretical contribution.

IV. TOWARD A PARAMETER-INDEPENDENT SAFETY ANALYSIS
FRAMEWORK

Previously, we have defined risk-sensitive safe sets in terms
of the CVaR of a maximum random cost. However, this risk-
sensitive safety criterion is difficult to optimize exactly without
using state-space augmentation, which motivated us to derive
a parameter-dependent upper bound. One may wonder whether
there is another coherent risk functional (ideally related to CVaR)
that admits an upper bound, which can be computed via DP on
the original state space without an additional parameter that
requires tuning. The answer is indeed positive, as presented
below.

Definition 3 (Proposed Risk Functional): Leta € (0,1],z €
S,mell,andY € L™(Q, B(R), PT) be given. Let D,, be a set
of tuples of densities. Each tuple ¢ € D, takes the form ( =
(&0,&1,---,&r_1), where the properties of the densities follow.
Foreacht, & (|-, -) : § x S x A — R is Borel measurable, and
for every (z,u) € S x A, it holds that &, (-|z, u) € Ra(z,u).
Here, R, (z,u) is the set of Borel-measurable functions of the
form v : S — R such that v € [0,a" /7] ae. wrt. Q(|z,u)
and [, vdQ(-|z,u) = 1. We define pf, ,(Y') by

Paa(Y) = sup

T-1
/ YH ft($t+1|$t7 ’U/t) dP;
(£0,€15---:67-1)€D JQ 1 g
(41)

Remark 3 (Interpretation for R (x,u)): Ra(x, u) is related
to the set of densities in the CVaR representation given by
(5). If the probability space is (S, B(S), Q(:|z,u)), then A, =
Rz, u), where o = /7,

Remark 4 (Interpretation for pf, ,): Although we do not yet
have an exact interpretation for p7, ., we provide a preliminary

interpretation here. The quantity p7, ,.(Y) is a distributionally
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robust expectation of Y, such that an uncertainty &; perturbs the
system’s nominal transition law @ at each time ¢. £; may depend
on the current time, state, and control. Moreover, p7, , (") strikes
a balance between the expectation and CVaR, as formalized
below.

Lemma 5 (Coherence of pf, ,, relation to CVaR): The risk
functional p; . : L>(Q, B(S2), PT) — R is coherent. In addi-
tion, for any Y € L>(Q, B(2), PT), the inequality E7 (V) <
Pz (Y) < CVaRj . (Y) holds.

Proof: The first step is to verify the properties of mono-
tonicity, subadditivity, translation equivariance, and positive
homogeneity, which we omit in the interest of space. To show
that E7(Y') < p7, .(Y), note that ¢ = (§o,&1,--.,7-1) such
that & equals 1 for each ¢ is an element of D,. The inequality
ph - (Y) < CVaR] (Y) follows from (8b)—(8c). |

We use the risk functional (41) to define a safe set.

Definition 4 (ST -Risk-Sensitive Safe Set): For any o € (0, 1]
and r € R, define S}, :={z € S : infren pf (V) <7}

Definition 4 is inspired by Definition 1, and the form of p, ,
(41) is inspired by the representation for CVaR in (8b)—(8c).
We emphasize a key distinction. In (41), there is a function
&, for each ¢ that depends on the current state and control.
In (8b)—(8c), however, each function in .Agym depends on the
entire history. The “separable” structure of (41) allows us to
derive a DP algorithm on the original state space to upper bound
infrerr pf, (V') without using a parameter that requires tuning.
In this section, we make two assumptions.

Assumption 1 ( Prgperties of Y): We consider the case when
Y :=cp(Xr)+ Zt:}l ¢t (Xy, Up) is cumulative. The functions
ct:SxA—Rforallt € {0,1,.... T—1}andcy: S — R
are bounded and upper semi-continuous (usc).

Assumption 2 (Continuity property of Q): The transition ker-
nel @) (6) is continuous in total variation; i.e., if (z,,,u,) —
(2, ), then [Q( |z, ) — Q(-|z,u)|(S) — 0.

Remark 5 (Example that satisfies Assumption 2): Suppose
that Pp has a continuous nonnegative density and f in (6) has the
form f(lvuvd) = .fl(xvu) +d- .f2($7u)’ where W =S is a
vector space with fieldR, f; : S x A — Sand fo: S x A - R
are continuous, and f> is nonzero. Then, by Scheffé’s Lemma,
Assumption 2 is satisfied. We note that the continuity of f
is a typical condition in stochastic control, e.g., see [15, p.
209], and requiring additional structure on the dynamics to
achieve tractable algorithms is standard. For example, under
some assumptions the dynamics may be decomposed into
overlapping systems, to obtain conservative underapproxima-
tions to reachable sets for continuous-time, nonstochastic sys-
tems [23], [55]. A mixed monotone structure has been assumed
to approximate reachable sets for discrete-time nonstochastic
systems, with applications to traffic safety [56], [57]. More
broadly, additive continuous noise is a realistic assumption in
many domains, e.g., additive Gaussian noise in information
theory and control (classical references include [4], [58]) and
additive Brownian motion in continuous-time epidemiological
modeling [59], [60].

Boundedness and upper semi-continuity of ¢; for all ¢ ensures
that Y € L>(Q,B(?), PT) for any « € S and 7 € II. Also,
boundedness of ¢; ensures that the iterates of a DP recursion
are bounded, which we use to show that a supremum over

Ra(z, u) of the form ¢(z, u) := supecr,, (z.0) [ JE dQ(-|x,u)
is attained (Lemma 6, Appendix). This attainment and As-
sumption 2 together guarantee that the supremum is usc in
(z,u) (Lemma 8, Appendix). The upper semi-continuity of
the supremum permits the derivation of an upper bound for
infre pfy . (Y') via DP.

Theorem 3 (DP to Upper Bound inf cr pl, ,(Y)): Let As-
sumptions 1-2 hold, and let @ € (0, 1] be given. Define

Jri=cr (42a)
and fort =T —1,...,1,0, define
J(x) = inf v (z,u) Ve e S (42b)
ueA
where vy* := ¢; + ¢§ and
= s [l @20
(eRG(zu) J S

for all (z,u) € S x A. Then, J{* is usc and bounded for all
t=0,1,...,T. For all € > 0, there is a deterministic Markov
policy 7* € II such that p (Y) < J§(z) + eforall z € S.In
particular, inf ey pf, . (Y) < J§' () forall x € S.

A proof for Theorem 3 is in the Appendix, where we include
supporting results as well.

Theorem 3 is exciting for two main reasons: 1) It provides
a more numerically tractable way to estimate safe sets (the
upper bound does not have a parameter that requires tuning,
and the algorithm does not require an augmented state space);
and 2) more broadly, the result initiates new avenues for tractable
solutions to risk-sensitive safety analysis problems.

V. NUMERICAL EXAMPLES

Here, we present examples of risk-sensitive safe sets and their
underapproximations as in Definition 1 for a temperature system
and a stormwater system.” For each example, we have chosen
a value of v by exploring increasing integer values and then
stopping the exploration when improvements in the estimates of
Uy, , were no longer apparent.

A. Temperature System

Consider a thermostatically controlled load evolving on
a finite-time horizon ¢t =0,1,...,7 — 1 via a deterministic
Markov policy m = (7o, 71, ..., T7-1),

Xiv1 = aXy + (1 —a)(b—nrpri(Xy)) + Dy

This model is from [29] and [48]. X is the R-valued random
temperature (°C) of a thermal mass at time ¢. m;(X) is the
[0,1]-valued control at time ¢. The amount of power supplied to
the system decreases as the value of the control increases from 0
to 1. (Do, Dy,...,Dp_q) is a R-valued, iid stochastic process
that arises due to environmental uncertainties. We consider three
discrete distributions for the disturbance process, where each
distribution has a distinct skew (left skew, no skew, or right

7We used the Tufts Linux Research Cluster (Medford, MA) with MATLAB
(The Mathworks, Inc.). Our code is available from https://github.com/risk-
sensitive-reachability/IEEE-TAC-2021.
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TABLE |

TEMPERATURE SYSTEM PARAMETERS
Symbol | Description Value
a time delay e e (no units)
b temperature shift 32 °C
c thermal capacitance 2 kWh
n control efficiency 0.7 (no units)
K constraint set [20,21] °C
D range of energy transfer to/from thermal | 14 kW

mass

7 thermal resistance 2 1%,
AT duration of [t, ¢+ 1) 6—50 h
T length of discrete time horizon 12 (=1h)
A control space [0,1] (no units)
S state space [18,23] °C

h = hours, kW = kilowatts, °C = degrees Celsius.

skew). In each distribution, the minimum disturbance value is
—0.5 °C, and the maximum disturbance value is 0.5 °C. Table I
provides the model parameters.

We have chosen g (X;) = max(X; — 21,20 — X;) toquan-
tify the extent of constraint violation of the state X; with respect
to the constraint set K = [20,21] °C. K is a temperature range,
where the state trajectory should remain inside whenever pos-
sible. For different values of 7 (see next paragraph), we have
implemented classical DP with linear interpolation to estimate

* : : T t
J(x) = 7Pellf_[ Jy(z, ) = 71r611f_’l E7 (Zt:ﬂ eor (X )) (43)

and a deterministic Markov policy 7, € II such that J3(z) =
Jy(z,m,) for all z € S. DP on continuous state and control
spaces is implemented typically via discretization and inter-
polation. In particular, we have discretized the set of controls
A =[0,1] and the set of states S = [18,23] °C uniformly at
a resolution of 0.1. To improve the efficiency of DP, approxi-
mate DP methods are being developed, e.g., see [49], [50], and
the references therein. While these methods are exciting, we
leave investigations of their applicability to risk-sensitive safety
analysis for future work.

We have used v € I := {3,4,...,20} because forall y € S
and~ € T, the stage cost €795 () is at most €22, a large number
that a personal computer can handle. We have considered risk-
sensitivity levels from nearly risk-neutral (v = 0.99) to more
risk-averse (« near 0). Specifically, we have chosen o € A :=
{0.99,0.05,0.01,0.005,0.001}. A typical risk-sensitivity level
isa = 0.05 or & = 0.01, and we have considered smaller values
of avas well. For v € I"and o € A, we have estimated Jo~ (23)

by dividing our estimate of .J3 (43) by a. Let S denote the state
space grid. By using our estimate of 7., we have simulated
100,000 trajectories from each initial state = € S to generate an
empirical distribution of G := max;—¢1,... 7 gx (X;). Then, for
each o € A, we have used a consistent CVaR estimator [37, p.
300] to estimate CVaR3, (G).

Fig. 3 provides a visual summary of the inequality that we
have proved in Theorem 1:

CVaR( <t_0m1ax TgK(Xt)>

Uy dyeeey

<Ltog (LE7 (Sl X0)). (44)

Each plot in Fig. 3 shows estimates of the right-hand side of
(44) on the vertical axis versus estimates of the left-hand side
of (44) on the horizontal axis for the five values of o in A. In
each plot, each solid colored line consists of five points, one for
each o« € A. Points associated with smaller values of o (more
risk-averse) are positioned farther away from the origin. In each
plot, there are three solid colored lines, one for each distribution
of the disturbance process. In each plot, v € T' and an initial
state x € S are fixed. We have chosen initial states inside or
on the boundary of the constraint set K = [20,21] °C. Fig. 3 is
consistent with the inequality that we have proved in Theorem
1 since the solid colored lines are located above the gray line
of slope 1. Fig. 3 suggests that there is no unique value of ~
that provides the best approximation for all initial states x, risk-
sensitivity levels «, and disturbance distributions.

However, by Theorem 2, we have flexibility in choosing
the value of . In particular, we favor the quality of the ap-
proximations for small values of o due to our focus on safety
and present sets using v = 14 as an example of a value that
reflects this preference (Fig. 4).8 Fig. 4 provides estimates of the
(v, r)-risk-sensitive safe set for 7, € II (9)

ST .= {:1: € S :CVaRy, ( Lax TQK(Xt)> < r}

)

and the (o, r, v)-underapproximation set (22)

U = {x cs: %E;’ (ZZ:O eng(Xt)) < e"“"}

— {:c es: %log (éE;r” (Ztho e”gK(Xt))> < 7”}~

Note thatif;; ., = w2 InFig. 4, estimates of Uy, (solid red)
and Si™ (white circles with blue boundary) are shown for the
risk-sensitivity levels o € A and various » € R with v = 14.
The estimates of U, 5" are subsets of the estimates of Sg™”,
which we expect by Theorem 2. The estimates of S;,"” form an
increasing sequence of subsets as « increases and 7 increases,

which is consistent with Lemma 1.

B. Stormwater System

Next, we illustrate risk-sensitive safety analysis using
a gravity-driven stormwater system with an automated
valve. Consider a two-tank stormwater system evolving

on a finite-time horizon ¢=0,1,...,7—1 using a
deterministic =~ Markov  policy 7 = (m, 71, ..., T 1),
Xip1 = Xe + f(Xe,m(Xy), D) - A7, Let R} :={y=

(Y1, Yn)"T € R™ 1 y; > 0 Vi}. The state X, is the R% -valued
random water elevations in the tanks at time ¢ (ft, ft). m,(X,)
is the [0,1]-valued valve setting at time ¢ (closed to open).
(Do, D1,...,D7_1) is a R -valued, iid stochastic process of
surface runoff. A7 is the duration of [¢,¢+ 1). The function

8Higher-quality approximations are those in which the estimates of the
underapproximations are generally closer to the estimates of the risk-sensitive
safe sets when considering all three disturbance distributions. We suggest an
approach to quantify the quality of the approximations in Fig. 4.

“Recall that 7, € IL is a policy that satisfies J* (z) = J,(x,m) Yz € S.
That is, 7 is an optimal policy for the MDP problem that defines U4, .
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Fig. 3. Computations of the inequality that we have proved in Theorem 1 are shown for the temperature system. In each plot, the horizontal
axis provides estimates of CVaR[ ", (max;—o,1,....7 gx (X:)), and the vertical axis provides estimates of %log(% E;'v(thzo e79x (X1)Y)) for five

different risk-sensitivity levels « € A := {0.99, 0.05,0.01, 0.005, 0.001}. Points associated with smaller values of o (more risk-averse) are positioned
farther away from the origin. For a fixed v, 7, is an optimal (deterministic, Markov) policy for the MDP problem (23). In each plot, there are three
solid colored lines, one for each distribution of the disturbance process (green = no skew, yellow = left skew, blue = right skew). In each plot,
~v € {10, 14,18} and an initial state = € {20,20.2,...,21} are fixed. The value of v varies along the rows, and the value of = varies along the
columns. A dotted gray line of slope 1 is shown for visual comparison.
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Fig. 4. For the temperature system with v = 14, estimates of the («, r,y)-underapproximation set i, ., = U, " are shown (solid red circles).

Estimates of the (a,r)-risk-sensitive safe set for the control policy m, € II, S, are shown (white circles with blue boundary). Each plot
presents the estimated sets for the different disturbance distributions [top interval: right skew (RS), middle interval: left skew (LS), and bottom

interval: no skew (NS); see the labels in the first plot]. Each percentage Number of states in estimate of uﬁ,;l, - 100% indicates the estimated quality of the

Number of states in estimate of S,
underapproximation. These percentages are shown whenever the estimate of S5 ™" is not empty. The risk-sensitivity level a varies from nearly
risk-neutral (a = 0.99, left-most column) to more risk-averse (oo = 0.001, right-most column).
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TABLE Il

STORMWATER SYSTEM PARAMETERS
Symbol | Description Value
a1 surface area of tank | 28292 ft?
as surface area of tank 2 25965 ft>
cq discharge coefficient 0.61 (no units)
g acceleration due to gravity 322 :—2‘,
k1 maximum water level in tank 1 3.5 ft
ko maximum water level in tank 2 5 ft
T circle circumference-to-diameter ratio | =~ 3.14
T4 radius of drain 2/3 ft
Ty radius of valve 1/3 ft
AT duration of [t, ¢+ 1) 5 min
T length of discrete time horizon 24 (=2 h)
A control space [0, 1] (no units)
S state space [0, 5] ftx [0,6.5] ft
z1 invert elevation of pipe from base of | 1 ft

tank 1
Z1.in invert elevation of pipe from base of | 2.5 ft
tank 2

22 elevation from base of tank 2 to orifice | 1 ft

ft = feet, s = seconds, min = minutes, h = hours.

TABLE IlI
a=0.99 |a=0.05 |a=0.01 |a=0.005|a=0.001
r=0.51t[743 % 77.3 % 76.6 % 76.0 % 72.5 %
r=1ft |829 % 84.2 % 83.1 % 83.0 % 81.2 %
r=151ft]844 % 75.6 % 71.2 % 69.9 % 66.0 %

Number of states in estimate of %
3L - 100% for the sets

Number of states in estimate of SZ;’ g
in Fig. 5 (stormwater system, y = 22).

This table provides the percentages

f:R%2 x [0,1] x Ry — R? s given by

f(ﬁﬂy u,d) == d — quanve(, ) : d + GQuatye (T, 1) — Qarain ()

al az

Galve (T, 0) 1= u - 7?7'3 -sgn(h(x)) - v/2g|h(2)|

h(z) := max(21 — 21,0) — max(z2 — 21,in,0)

caTrin/2g(za — z2) if 22 > 29

arin (@) 0 otherwise.
Model parameters are in Table II. The constraint set K =
[0, k1] x [0, k2] specifies the maximum water elevations that
the tanks can hold without surcharge. The stage cost g (z) =
max(z1 — k1,22 — ko,0) is the maximum surcharged water
level when the system occupies the state x € ]R{i.

We have identified a discrete distribution for the disturbance
process with the approximate statistics, mean (12.2 cfs), variance
(9.9 cfs?), and skew (0.74), where cfs is cubic feet per second.
In previous work, we obtained runoff samples by simulating
a design storm in PCSWMM (Computational Hydraulics In-
ternational), which extends the US Environmental Protection
Agency’s Stormwater Management Model [52], [53]. In this
previous work, the empirical distribution had positive skew, and
the mean was about 12.2 cfs [52], which are reflected in the
current distribution (not shown in the interest of space).

In Fig. 5, we show estimates of risk-sensitive safe sets and
their underapproximations using v = 22 for five risk-sensitivity
levels (see also Table IIT). The shape of the contour of Si™”
indicates a critical tradeoff between the maximum initial water
elevations in the two tanks from which the system meets a desired
degree of safety. The similarity in the shapes of o™ and U, ,

is notable, suggesting that//, . may be a useful tool for inferring
these critical tradeoffs in networked water systems.

VI. CONCLUDING REMARKS

This article develops trajectory-wise safety specifications for
control systems that quantify the severity of random harmful
outcomes and thereby generalize classical stochastic safety
analysis. Our primary contribution is to develop a tractable,
interpretable safety analysis method with theoretical guarantees
that assesses the upper tail of a cost distribution by using CVaR.
It is notable that our method provides a parameter-dependent
upper bound to the CVaR of a maximum cost without augment-
ing the state space. We have developed compelling numerical
examples, which demonstrate the utility and tractability of our
underapproximation approach. Moreover, we have proposed a
risk-sensitive safe set definition in terms of a new coherent
risk functional, inspired by CVaR, that admits a parameter-
independent upper bound. We show that this upper bound can
be computed via DP on the original state space by proving the
regularity of a supremum over a function space for a class of
transition kernels. Numerical investigations of leveraging our
approximation to provide an efficient preliminary estimate to
the exact CVaR is an exciting future direction. For instance, we
have recently demonstrated the usefulness of efficient approx-
imate ‘“warm-start” computations to examine the effect of dif-
ferent design changes to stormwater infrastructure [61]. More
broadly, combining techniques from approximate DP, stochastic
rollout, and risk-sensitive safety analysis could lead to novel
controller synthesis algorithms for higher-dimensional systems.

APPENDIX

Lemma 6 (Attainment of Supremum): Let J:S — R be
Borel measurable and bounded, and let o € (0, 1]. Define the
function ¢ : S x A — R by

o(x,u) :=sup {/S JEAQ(z,u) - £ € Ro(x, u)} . (45)

Then, for any (z,u) € S x A, thereis a £*(-|z,u) € Ro(x, u)
such that
oo, = [ JE Ce,w) dQUew. (6
s

Proof: Let (z,u) € S x A, and fix the probability space
(8,B(S), Q(-|z,u)). Denote L%, := LP(S,B(S),Q(-|z,u))

for brevity, and view R (z,u) as a subset of L2 , with the
weak topology. Define the functional ¢ : Lf.wu — R by
w(©) = [ 7€ aQlau) @)

It suffices to show that ¢ is weakly continuous and R, (z, u) is
weakly compact. Weak continuity follows from two well-known
facts: 1) A linear functional on a normed vector space is weakly
continuous if and only if it is strongly continuous [54, Prop.
2.5.3]; and 2) a linear functional on a normed vector space is
strongly continuous if and only if it is bounded [12, Prop. 5.2].
By applying standard techniques, it follows that ¢ is a bounded
linear functional on a normed vector space, and thus, v is weakly
continuous. As R, (z, u) is a bounded and weakly closed subset
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Fig. 5.

pink). Estimates of the boundary of the («, r)-risk-sensitive safe set for the control policy =, € II, S
r € {0.5,1,1.5} and « € {0.99,0.05,0.01,0.005,0.001}. The percentages

For the stormwater system with = 22, estimates of the boundary of the («, r,v)-underapproximation set U, ., = L{;’,’;” are shown (solid

Ty

, are shown (dotted blue). We present
Number of states in estimate of 14/,

Y, 1 1 1 I
Number of states in estimate of 5777 100% indicate the estimated quality of

the underapproximations. We list these percentages for the plots in this figure in Table IlI.

of L2 . Ra(x,u) is weakly compact by the Banach-Alaoglu
Theorem [37, p.401]. Here, we use the fact that L?v,u is reflexive,
and hence, the weak and weak* topologies of L2 , are the same.
We provide details about weak closedness in a footnote.' W

We use similar techniques to prove Lemma 7. Lemma 7 is
needed to guarantee that a supremum over R, (z, u) (45) is usc
in (x,u).

Lemma 7 (Existence of weakly convergent subsequence): Let
(1 be a probability measure on (S, B(S)), G, (1) the set of func-
tions £ € L2 := L?(S, B(S), u) such that £ € [0, /7] ae.
w.r.t. 1, and (§,)nen C Gao (). Then, there exist (&, )ken <
(&€n)nen and £ € G, (1) such that (&, )xen converges to £* in
the weak topology of L?.

Proof: The proof requires two facts. The first fact is [51,
Th. 3.18]: Assume that E is a reflexive Banach space, and let
(zn,) be a (uniformly) bounded sequence in E. Then, there is a
subsequence (z,, ) C () that converges in the weak topology.
L3 is a reflexive Banach space, and [|¢,||z2 < a YT for all
n € N. Thus, there exist (¢, )ren € (€n)nen and &F € Li
such that (&, )ren converges weakly to £*. Moreover, it holds
that&* € G, (u) using [51, Th. 3.7] (Footnote 10). Indeed, G, (1)
is a convex subset of Li, and G, (p) is strongly closed in
L?. Thus, Go(s) is weakly closed in L?, which implies that
§ € Ga(p). u

We use Lemma 7 to prove the next supporting result.

Lemma 8 (Properties of $): Let J : S — R be Borel measur-
able and bounded and « € (0, 1]. Under Assumption 2, ¢ (45)
is usc and bounded.

Proof: Boundedness of ¢ follows from Q(-|x,u)-a.e.-
boundedness of J¢ for any £ € R, (x,u). Now, ¢ is usc if and

10For weak closedness, recall the fact [51, Th. 3.7]: Let E be a Banach space,
and let C be a convex subset of E. Then, C'is closed in the weak topology if and
only if it is closed in the strong topology. Since Rq (z,u) C L?E‘u is convex,
to show that R (x,u) is weakly closed, it suffices to show that Ry (x,u)
is strongly closed. Strong closedness of Rq (z,u) follows from 1) strong
convergence implying weak convergence and 2) strong convergence implying
the existence of a subsequence that converges a.e. to the same limit function [46,
Ths.2.5.1 &2.5.3]. Let (§n)nen € Ra (2, u) converge strongly to £* € L2 .

The first fact ensures that f 5§ dQ(|z, u) = 1,and the second fact ensures that
0<¢ < a VT ge., and thus, £ € Ra(z,u).

only if
Co ={(z,u) € Sx A:d(x,u) > a}

is closed for every a € R. Let a € R and (x,,, up)nen C Cq
converging to (z,u) € S x A be given, and we shall show that
(z,u) € C,. It suffices to show that there exist (z,,, , Un,, ) ken C
(Zny Un)nen and (cx)gen € R with ¢, — 0 such that

O(TnyyUn,) < ek + ¢(z,u) Vk e N.
Indeed, if so, then

a < limsup ¢(zp,, un, ) < limsup ¢, + ¢(x, u) = ¢(x, u).

k—o00 k—o00

Denote z,, := (z,,u,) and z := (z,u) for brevity. By Lemma
6, for every n € N,

36, =€ ("|zn) € Ralzn) st d(zn) = /SJén dQ(-|zn).

Since &, € [0,a Y] ae. wrt. Q(+|2,),
3B(z,) € B(S) s.t. &x(y) € [0, T] Yy € B(z,)
where Q(S \ B(z,)|z,) = 0. Define
£n = I(..)én-

It follows that &, € Ra(zn) with £n € [0, 1/T] everywhere.
Also, it holds that (&,),en € Go(Q(+]2)), where

Go(Q(]2)) = {g cL2:ce[0,a V) ae wrt. Q(-|z)}

and L2 := L*(S,B(S),Q(-|2)). By Lemma 7, there exist

(& )hen € (En)nen and €6 € Go(Q(+]2)) such that (£, ke
converges to 1 in the weak topology of L2. It holds that

&' € Ra(z), and we explain why [ £'dQ(:|z) = 1 next. For
any k € N, it holds that |, | < a YT everywhere, and it
follows that

/ £1dQ(|2) — 1’ < Terml (k) + Term2(k)
s
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where

Term1 (

)= ] [ daae) - [ Gt

Term2(k) := ofl/T|Q(-|Z) = Q(-|zn,)[(5).

The quantity |Q(-|z) — Q(:|2n, )|(S) is the total variation of the
signed measure Q(-|z) — Q(+|zy, ) evaluated at the set S. By the
weak convergence of (£, )ren to €1 in L2, Term1(k) — 0 as
k — oo0. By Assumption 2, Term2(k) — 0 as k — co.

Now, for every k € N, we use the triangle inequality and
everywhere boundedness of J&,, to find that

d(2n, ) — ¢(2) < Term3(k) + Term4 (k)

where
b
—77|QC1zn.) = Q(12)[(S),
b € R satisfies |J(y)| < bforally € S, and
)= | [ IEnaqein - [ sciaqera).
By the weak convergence of (&, )ren to £f in L2, Termd (k) —

0 as k — oo, and by Assumption 2, Term3(k) — 0 as k — oo.
We choose

Term3(k) :=

Term4 (k

¢ = Term3(k) + Term4(k) Vk e N

and it follows that ¢ is usc. |

We use the upper semi-continuity of ¢ to prove Theorem 3.

Proof of Theorem 3: Proceed by induction. J& = cr is usc
and bounded. Now, assume that for some t =7 —1,...,1,0,
J{ 1 is usc and bounded. Then, Ji} i1 is Borel measurable
and bounded, which implies that ¢f is usc and bounded by
Lemma 8. Since v{* = ¢; + ¢f is a sum of usc and bounded
functions, vy is usc and bounded. By [15, Prop. 7.34], we
conclude that J{* is usc and bounded, and for every € > 0,
there is a Borel-measurable function ;"¢ : S — A such that
Jo(x) < v (a, ke (x)) < JM(x) + eforallz € S.

A DP argument completes the proof, which we outline
below.!! Let IT’ be the set of randomized Markov policies. For
t=20,1,...,T, define the random cost-to-go by

v er(Xp)+ 5 e(X0, Uy ift< T
CT ) er(Xp) ift =1

and note that Y = Yj. For any 7 € II' and ¢ € D, we de-
note the (m,()-conditional expectation of Y; given X; by
W () := E™C(Y;|X; = a¢), where x; € S. For any 7 =
(71'0,71'1, C. ,7TT_1) € II' and C = (fo,fl, ce ,€T—1) € D, the
following recursion (“law of iterated expectations”) holds: for
t=0,1,....,T—1andxz € S,

T () = (2, u)) m(du
W) = [ (e 97 @) mldul) s

"We write that a relation with a conditional expectation holds everywhere
for simplicity, following [45, Th. 3.2.1].

where 17

(x,u) /Wt

with & (-|z,u) € Ra(z,u) for each (x,u) € S x A. For any
policy 7 € II, we have

is defined by

y) &(ylz, u) Q(dyl|x, u) (48b)

pr L (Y) = sup W (z) Vze€S. (49)
(€Dq
Let € > 0 be given. Then, for each t = 0,1,...,7T — 1, there

exists a Borel-measurable function p;" : S — A such that

T2 (@) < o (a1 () < Ji(2) + = Va €S,

T (50)

Define 7} := (pg°, ..., puy5,) € II', which is a deterministic
Markov policy, and thus, is an element of II (the class of
randomized history-dependent policies) as well. Hence,

o (49)
inf pa z(y) < pae,m(y) =

mell

sup Wg= (z) Va e S.

C EDQ
It suffices to prove that

(T —t)e
T

forallz € S,¢ € Dy, andt € {0, 1,...,T}. Indeed, by setting
t =0 in (51) and taking the supremum over D,, we would
derive ppce(Y) < J&(x) + € Va € S. Since € > 0 is arbitrary,
the desired statement would be shown. The sufficient condition
(51) holds by an inductive argument.'? [ ]

W () < I () + (51)
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assume that for some t € {0,1,...,7 — 1}, it holds that W:+1C(:c) <

Jg (2 )+w for all z€S and (€D,. Let €S and ¢ =
(€0,&1,...,&1—1) € Dy be given. Since 7 is a deterministic Markov policy,
we have

Tk, (48) € T, €
W (@) = el 1o (@) + 7S (2, 1) (2)).

By the induction hypothesis and & (+|@, 1y (%)) € Ra (2, pg

definition of D, it follows that

(z)) from the

Ié @ (T —t- 1)6
T 1 @) < 9 1 (@) +
Since vf* = ¢; + ¢, we derive VV;-:TC((L') < U?(‘L,p;le(i)) + w
Then, we complete the induction using the second inequality in (50), namely
v (@, 1y (@) < TP (2) + £
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