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Classical Risk-Averse Control for a
Finite-Horizon Borel Model

Margaret P. Chapman

Abstract—We study a risk-averse optimal control
problem for a finite-horizon Borel model, where a cumu-
lative cost is assessed via exponential utility. The set-
ting permits non-linear dynamics, non-quadratic costs, and
continuous state and control spaces but is less general
than the problem of optimizing an expected utility. Our
contribution is to show the existence of an optimal risk-
averse controller without using state space augmentation
and therefore offer a simpler solution method from first
principles compared to what is currently available in the
literature.

Index Terms—Stochastic optimal control,
utility, Markov processes.

exponential

|. INTRODUCTION

ECENTLY, there has been a renewed interest in
risk-sensitive control for various applications, including
robotics [1], [2], remote state estimation [3], and building
evacuation [4]. A classical risk-sensitive control approach is to
assess a random cost using the exponential utility functional.

This functional takes the form py (G) = _72 logE (eTeG), where
0 is a parameter and G is a non-negative random variable. If
6 < 0, then large values of G are exaggerated through the
exponential transformation, which represents a risk-averse per-
spective. In contrast, the case of & > 0 represents a nsk-seeklng
perspective. It can be shown that pg(G) = E(G) — var(G)
approximates a weighted sum of the mean and Varlance of
G under appropriate conditions, including |6 being small [5].
Exponential-utility optimal control has been studied since the
1970s, and we first summarize early work.

In 1972, Howard and Matheson studied the optimization
of an exponential utility criterion for a discrete-time Markov
decision process (MDP) with finitely many states [6]. In
1973, Jacobson considered the problem of optimizing the
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exponential utility of a quadratic cost for a discrete-time
linear system with Euclidean state and control spaces
subject to additive Gaussian noise [7]. This problem is
often called linear-exponential-quadratic-Gaussian (LEQG) or
linear-exponential-quadratic-regulator (LEQR) control. LEQG
theory was generalized by Whittle, in particular to the case of
partially observed states, in the 1980s and 1990s; see [8] and
the references therein. Relations between controllers satisfy-
ing an Hso-norm bound and the infinite-time LEQG controller
were analyzed in the late 1980s [9], [10]. In 1999, di Masi and
Stettner studied MDPs on continuous state spaces and discrete
infinite-time horizons with exponential utility criteria [11]. In
the early 2000s, relations between robust model predictive con-
trol (MPC) and MPC with an exponential utility criterion were
investigated in the linear-quadratic setting [12, Ch. 8.3]. The
exponential utility criterion belongs to the broader family of
expected utility criteria, which measure risk by transforming a
random cost based on a user’s subjective preferences.

Additional methods for quantifying and optimizing risk are
presented by [13, Ch. 6], [14], for example. Specifically,
Ruszczyriski considered the optimization of a nested risk
functional for a discrete-time Borel-space MDP [14], and
related formulations have been studied, e.g., see [15], [16].
A nested risk functional takes the form p(Z; + p2(Zy +-- -+
PN-1(Zn—1+pN(ZN)) - --)), Wwhere Z; is a random variable and
pi is a mapping between spaces of random variables [14]. This
functional is not straightforward to interpret, but it can be opti-
mized using dynamic programming (DP) on the state space.
In 2021, connections between nested risk functionals and dis-
tributionally robust MDPs were drawn [16], and similar ideas
were suggested earlier, e.g., see [17, eq. (4.11)].

Another approach to risk-sensitive control is to optimize
an expected cumulative cost subject to a risk constraint, for
instance, see [18]-[22]. In particular, Tsiamis et al. considered
a variance-like constraint in a linear-quadratic setting [22],
whereas References [18], [20], [21] considered Conditional
Value-at-Risk (CVaR) constraints. In contrast to expected util-
ity criteria, CVaR is a quantile-based measure that quantifies
an average cost in a fraction of worst cases. In prior work,
we developed a controller using a CVaR objective [23] and a
safety analysis framework using CVaR [24]. Risk-constrained
MDPs and MDPs with expected utility or CVaR criteria
were studied by [19] in an infinite-time setting using occu-
pation measures and state space augmentation. State space
augmentation is a technique for tracking history-dependent
information that may be needed to characterize the stage-
wise sub-problems of a multi-stage optimization problem. This
technique is not needed when a sub-problem can be written
in terms of the current state rather than the current and prior
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states. More details about risk-sensitive MDPs can be found
in [16], for example.

While these maturing approaches to risk-sensitive control
are intriguing, this letter concerns exponential utility, which
remains popular in the literature. Specifically, the focus here
is optimizing exponential utility for an MDP on a discrete
finite-time horizon with Borel state and control spaces, which
we call Problem A for convenience. Problem A permits non-
Euclidean spaces, non-linear dynamics, non-quadratic costs,
and non-Gaussian noise, and therefore generalizes the LEQG
setting. In 2014, Biuerle and Rieder developed the state-of-
the-art approach for solving Problem A and a broader class of
MDP problems with expected utility criteria [25]. However,
the methodology employs an augmented state space, in which
an extra state records the cumulative cost thus far [25, Th. 1,
Corollary 1]. Our contribution is to demonstrate that the addi-
tional complexity of state space augmentation is not required
to solve Problem A, as we provide an alternate solution
pathway using first principles from measure theory and real
analysis.

There are key distinctions between our paper and the exist-
ing literature on MDPs with exponential utility criteria, which
we outline below. Many works concern MDPs on countable
state spaces, see [26]-[30] for some examples, whereas we
consider the more general setting of Borel spaces. As men-
tioned previously, the proof of [25, Th. 1, Corollary 1] uses
a Bellman equation that is defined on an augmented state
space, whereas our approach does not use an augmented
state space. Numerous papers about discrete-time Borel-space
MDPs examine infinite-time settings, e.g., [11], [31]-[36],
which naturally require different techniques compared to our
work. di Masi and Stettner studied infinite-time problems in
which the stage cost is continuous using a span contraction
approach and two discounting approaches [11], [31]. Later, di
Masi and Stettner generalized their work by approximating an
MDP with one that is uniformly ergodic [32]. In contrast,
our paper concerns a finite-time horizon and lower semi-
continuous costs, and thus requires measure-theoretic argu-
ments that are properly adapted to this setting. Jaskiewicz and
colleagues examined infinite-time problems using a vanishing
discount factor approach [33], MDPs in which the transition
kernel only depends on the current control [34], and later using
the Banach fixed point theorem [35]. Anantharam and Borkar
studied an infinite-time reward maximization problem using
occupation measures [36]. While we focus on the discrete-time
case, we note that continuous-time MDPs with exponential
utility criteria have been examined by [37]-[40], for example.

Notation: If M is a metrizable space, B is the Borel
sigma algebra on M. P(D) is the set of probability measures
on (D, Bp) with the weak topology, where D is a Borel space.
Capital letters denote random objects, while lower-case letters
denote the associated values; e.g., x; is a value of X;. We define
T:={0,1,...,N—1}and Ty :=1{0,1,...,N}, where N € N
is given. R* := RU {—o00, +00} is the extended real line. We
abbreviate lower semi-continuous as Isc.

[I. PROBLEM STATEMENT

Let S, A, and D be Borel spaces of states, controls, and
disturbances, respectively. Consider a system on a discrete
finite-time horizon of length N € N of the form

Xep1 =Ji(xp, us, wy) Ve eT, (D

where x; € S, u; € A, and w; € D are values of the random
state X;, the random control U,, and the random disturbance
W;, respectively. The initial state X, is fixed at an arbitrary
initial condition x € S. The dynamics function f; : SXAxD —
S is Borel measurable. Given (X;, U;), the disturbance W; is
conditionally independent of W; for all s # ¢. The distribution
of Wi, p:(dwy|xs, uy), is a Borel-measurable stochastic kernel
on D given S x A. That is, the function y; : S x A — P(D)
defined by y:(x;, u;) := p;(dwy|x;, u;) is Borel measurable. If
(x7, ;) € S x A is the value of (X;, U;), then the distribution
of X;41 is given by

qr(Blxs, up) = Pt({Wt €D : fi(xe, us, wy) € B}|Xt, Mt) 2

for all B € Bs and ¢+ € T. We consider the class of deter-
ministic Markov policies I1. Each w € II takes the form
T = (o, 41, ..., MN—1) such that u, : S — A is Borel
measurable for each ¢ € T.

We aim to define and optimize a random cost (where we
specify the precise notion of optimality later). For this task, we
are required to define a probability space (2, Bg, PT), which
is parametrized by an initial condition x € S and a policy
7 € I1. The sample space  is defined by Q := (S x A)V x §.
That is, an element w = (xg, Ug, ..., XN—1, UN—1,XN) € 2 is a
value of the random trajectory (Xo, Uy, ..., Xy—1, Un—1, XN)-
The coordinates of w have causal dependencies due to the
form of the dynamics (1) and the class of policies I1. The
distribution of the random trajectory is given by a probability
measure P on (2, Bg). The form of P allows us to define
a DP recursion for computing an optimal policy under certain
conditions (to be specified).

Let 8, denote the Dirac measure on (S, Bs) concentrated at
x. With slight abuse of notation, let §,,(,) denote the Dirac
measure on (A, B4) concentrated at wu;(x;), where x; € S is
a value of X;. Let B € Bg be a measurable rectangle, i.e.,
B = By, x By, x Bx, x By, x --- X Bx,, where By, € Bs for
all i € Ty and By, € By for all j € T. Then, we have

P§(3)=/ / / / / gnN—1(dxn|xn—1, un—1)
Bx, YBy, YBx, YBuy, Bxy

<+ 8y (o) (dur) go(dxt [x0, o) 8y (xg) (duto) 8x(dxo). (3)

The nested integrals should be taken from “the inside to
the outside.” The integral with respect to xy € S is taken
over the set By, ; the integral with respect to u; € A is taken
over By,, etc. The reader may refer to [41, Proposition C.10,
Remark C.11, p. 178] or [42, Proposition 7.28, pp. 140-141]
for details.

If G : @ — R* is Borel measurable, then the expectation
of G with respect to P7, ET (G), is defined by

Jo G(w) dPT (w)

— ////...fG(xO,uo,...,)CN_I,MN—lva)
SJAJS JA N

gn—1(dxn|xn—1, un—1) -+ = 8y ep) (dur)
qo(dxl |X(), u()) 8/1,()():()) (du()) (Sx(dXO) (4)

The expectation ET (G) exists (i.e., does not take the form
400 — 00), if G is bounded or non-negative, for instance. G is
an extended random variable on (2, B, PY) for each x € §
and € II.

We consider a particular random variable Z, representing a
cost, that is incurred as the system operates over time. For any
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value w = (xg, ug, ..., xXy—1, Un—1,xy) € 2 of the random

trajectory, we define
N-1

Z(@) =) e, u) + en (o), )

t=0
where ¢; : S XA — R and ¢y : § — R are Borel measurable
and bounded. In (5), x; is the value of X; and u; is the value
of U; associated with the trajectory value w.

A standard (risk-neutral) approach to manage Z is to min-
imize its expectation E7 (Z) over the class of policies I1. An
alternative approach is to use the (risk-averse) exponential util-
ity functional. Let 6 € ® C (—o0, 0) be given, and define the
optimal value function Vj : § — R* as follows:

) -
Vi) = inf —=logE] (eTeZ). (6)

If there is a policy m; € Il such that Vj(x) =

%logE (e E Z) for all x € S, we say that m) is optimal
for V. The next assumption ensures that such a policy exists.

Assumption 1 (Measurable Selection): We assume that

1) pi(dwylxs, uy) is a continuous stochastic kernel for all

t € T. That is, the function y; : S x A — P(D) defined
by yi(xs, ur) = pi(dw;|x;, u;) is continuous.

2) f; is continuous for all r € T. ¢, is lower semi-continuous

and bounded for all r € Ty.

3) The set of controls A is compact.

Remark 1 (Justification of Assumption 1): Assumption 1 is
an example of a measurable selection condition. Such con-
ditions are standard in stochastic control problems on Borel
spaces, e.g., see [42, Definition 8.7], [41, Sec. 3.3]. In a risk-
neutral problem, which optimizes E7 (Z), it is common to
assume that ¢; is only bounded below. However, assuming that
¢; is bounded simplifies arguments for risk-sensitive MDPs,
e.g., see [19], [25], [35]. ¢; being bounded ensures that Z is
bounded, which implies that Vé‘ is finite for all 6 € ©.

[1l. DYNAMIC PROGRAMMING ALGORITHM

Next, we provide a DP algorithm for V.
Algorithm 1 (DP for Vj): For any 6 < ©, define

V‘9 S —  R* recursively, VN(x) ‘= c¢ny(x) and for
t=N—1,...,1 0,

Ve (x) = infvf (w0, (7a)
where v 1§ x A — R* is defined by

vt+1(x, u) = co(x, u) + 9l (x, u),
Wl (xr,u) = 22 log( [,y e Vi &) b (dwlx, u)). (7b)

Algorithm 1 is a backwards recursion that applies an expo-
nential transformation to the cost-to-go Vf)_H and resembles
existing formulations, e.g., see [11, eq. (2.3)], [25, Remark 1],
and [35, eq. (1.1)]. Our contribution is not the algorithm itself
but instead the direct pathway that we follow to solve the
risk-averse control problem of interest. Namely, we use first
principles from real analysis and measure theory and build on
arguments from [42], [43] to prove two theorems. Theorem 1
shows that Vt is lower semi-continuous (lsc) and bounded,

and there is a Borel-measurable function ;f : § — A such
that
Vi) =V, (o uf () Vxes. (8)

In Theorem 2, we show that the (non-unique) policy m; =
(ug, M?, e ,ujev_l) is optimal for V; and Vg =V;.

IV. ANALYSIS OF DYNAMIC PROGRAMMING ITERATES

In this section, we first prove Proposition 1, which shows
that the composition of a continuous increasing function and
a bounded Isc function is Isc. Then, we use Proposition 1 and
another preliminary result (Lemma 2, Appendix) to analyze
the DP iterates V9 Vl e Vf, in Theorem 1.

Proposition 1 ( Comp. of con’t, inc. and Isc): Let M be a
metrizable space. Assume that ); := (a;, b;)) € R is non-
empty for i = 1, 2. Suppose that k1 : Y1 — )» is continuous
and increasing, and x3 : M — ) is Isc and bounded. (There
are scalars ¢ and ¢ such that [c,c] C V| and ¢ < ko(y) <
for all y € M.) Then, «1 ok : M — ) is Isc.

Proof: To show that k1 o k7 is Isc, we must show that
lim infj_, o0 k1 (k2 (x))) > K1 (k2(x)), where {x' }"ol is a sequence
in M converging to x € M.! Since {x}>°, converges to x and
k7 1s 1sc, it holds that

lim inf /cz(xk) = hm 1nf Kz(x) > Ko (x). )

i— o0 k>i

Since 3 is bounded below by ¢ and above by ¢, we have

c <infiy(*) < inf Kp(x¥) <@ VieN, (10)
k>i k>i+1
which implies that ¢ < lim;_, o infi>; Kz(xk) < ©¢. Since

{infi>; Kz(xk)}?il is a sequence in [c, ¢] which converges to
a point in [c, ¢, [c, €] is a non-empty subset of )i, and k| is
continuous on )i, we find that

/q<11m inf ko (x )) = 11m K1 (mf/cz(xk)) )
i—00 k>i
Since k1 is increasing and by (9), we have
K1 ( lim 1nf/c2(xk)> > K1 (k2(x)). (12)
i—00k

Moreover, since k7 is increasing, for any i € N, it holds that

Vk =i, ki(k2(h) > ko (ikgf,fcz(x")>. 13)

Thus, Kl(lnfk>,l(2(xk)) € R is a lower bound for the set
{rc1(k2(xX)) @ k > i}, which implies that

inf 1 (k2 () = s (iknffcz(xk)>- (14)

By letting i tend to infinity, it holds that

5)

i— 00 k>i

lim inf ki (k2 (X)) > lim &g (insz(xk)>,
i i— 00 k>i
which is equivalent to
liminf iy (k2 (x)) > & (.lim inffcz(xk)> (16)
i— 00 i— 00 k>i

by (11). Finally, by (12), we derive the desired result. [ |
Next, we use Proposition 1 to prove Theorem 1.

N key aspect of the proof of Proposition 1 is the use of the bounds ¢
and ¢ to guarantee that a limit inferior is in the domain of «{. This and the
continuity of x| allow us to exchange the order of a limit and «;.
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Theorem 1 (Properties of Vf ): Assume Assumption 1. For

We use Proposition 1 again to conclude that logo ¢; : S X

all t € Ty, V¥ is Isc and bounded. For all r € T, there is a A — R is Isc. To apply Proposition 1, we choose M = S x A,

Borel-measurable function ,u,t S — A such that (8) holds.

Proof By induction. For brevity, denote S := § x A x D.
VN = ¢y is Isc and bounded by Assumption 1. Now 5up-
pose (the induction hypothesis) that for some ¢ € T, 1 is
Isc and bounded The key step is to show that I/Il (7b) is
Isc and bounded.? Boundedness of ¢ follows from bounded-
ness of V . For showing boundedness, note that the function
¢S — deﬁned by

VO (fiGxuw) (17)
is non-negative and bounded. (We drop the superscript 6 on
the left-hand-side for brevity.) Also, for any (x, u) € S x A, the
function ¢;(x, u, -) : D — R is Borel measurable because it is a
composition of Borel-measurable functions. In addition, since
p:(dwlx, u) is a probability measure on (D, Bp), it follows that
the (Lebesgue) integral

—0
Gr(x,u,w) =e?

¢r(x, u) = / & (x, u, w) pr(dwlx, u) (18)
D
exists and is finite for all (x, u) € S x A.
To complete the proof, we show that WY (7b) is Isc. Since
[t is continuous by Assumption 1, +1 is Isc by the induction
hypothesis, and 2 > 0, the function g; : S — R defined by

VO (fix, u, w)) (19)

is Isc. Indeed, let {(x', u', w)}%°, be a sequence in S converg-
ing to (x,u,w) € S. To show that V/ | of; is Isc, we must
prove that

&, u,w) == _7

hmme_H(ft(x ', wh) >

Vi (e u,w)). (20)
Since {(x u w )}:’o | converges to (x, u, w) and f; is continu-
ous, {f,(x u', w)}o"1 converges to f;(x, u, w). Since the latter
is a converging sequence in S and Vf_'_l S — R is Isc, we
have

11m1an+1(f,(x u', wh) >

VO (e, u,w)), (21

which proves that the composition V, Jrlof, is Isc. Since V; +10ft

is Isc and =2 > 0, the function g, = 29 41 0t 18 1sc because
multiplying (21) by a positive constant preserves the direction
of the inequality.

By Proposition 1, it holds that ¢, = expog; (17) is lsc
because exp : R — (0, 400) is continuous and increasing
and g; : S — R (19) is Isc and bounded. In addition, ¢; is
bounded as a consequence of g, being bounded.

It follows that ¢; (18) is bounded and Isc. The latter property
holds in particular because ¢, (17) is Isc and p;(dw|x, u) is a
continuous stochastic kernel (see Lemma 2, Appendix).

21f wtg is Isc and bounded, then V?—t—] = c,-i—n/f;9 is Isc and bounded because
the sum of two Isc and bounded functions is Isc and bounded. Since v 1 is
bounded, Ve is bounded (7a). The remaining desued conclusions follow from
a known result, which we describe next. Since vr e :SxA— Rislsc, A
is compact, and VH x) = 1ntu€Av 1w Vx € S, it holds that V(" is Isc,
and there is a Borel-measurable function u, : § — A such that V9 x) =
[_H(x /J,[ (x)) Vx € § by a special case of [42 Proposition 7.33, p. 153].
In summary, if w, is 1sc and bounded then a) V9 is Isc and bounded and

b) a Borel-measurable function N'z satisfying (8) exists. This logic repeats
backwards in time to complete the proof.

Y = (0 +00), Vo = R, k1 = log, ko = ¢/, and [¢,C] =
[e? b e b 1 C V1, where b is a lower bound and bi 1s an upper
bound for Vt - Finally, since logo ¢, is Isc and == > 0, we
conclude that ¥ = 2% logo ¢} is Isc. u

By prov1ng Theorem 1, we guarantee that the functions
Vg Vle, .. VN satisfy propertles which facilitate the optimal-
ity result (Theorem 2) in the following section.

V. EXISTENCE OF AN OPTIMAL RISK-AVERSE PoLIcy

In this section, first we prove a DP recursion for the
risk-averse control problem; the sum-to-product property of
the exponential function is particularly useful for this proof
(Lemma 1). Then, we use Lemma 1 and Theorem 1 to show
the equality V¢ = V; and to construct an optimal risk-averse
policy (Theorem 2).

Define the random cost-to-go Z; for time ¢ € Ty as follows:
for all w = (xo, ug, ..., xXN_1, UN_1, XN) € 2,

_ fenen) + X i up if e T
Zi() = {CN()CN) = ifr=N" (22)

Note that Z,(w) = c¢;(x;, us)+Zs+1(w) forany t € Tand w € Q
of the form specified above, and Zy = Z (5). While Z; is a ran-
dom variable whose domain is €2, Z; does not depend on the
trajectory prior to time ¢, which is required to derive a recur-
sion that is history-dependent only through the current state.
For any t € Ty, x € S, 996 0, and JT e I1, we denote a condi-
tional expectation of ¢2 Z by W, (x) =E"(e2 Z’IX, = X).

Lemma 1 (A DP Recursion): Let 0 € © and ® =
(/Lo,/,tl,...,pLN 1) € IT be given. Under Assumption 1,
holds that W (x) € (0, 400) for all x € S, and

)
W (1) = e Tt f W (e, a0 W) pe(dwlr, 1 (2))

forallre T and x € S.

Proof: To derive the form of W, ' the first step is to use
P7 (3) to derive the induced probability measure P;’(r (B) =
PT({X; € B}), where B € Bs. The second step is to apply the
definition of conditional expectation [43, Th. 6.3.3, p. 245]. It
follows that the function W, Y . § — R* is Borel measurable
and WY (x,) is given by

-0 N—1 .
W () = / / / / / o 2N+ i)
AJSJA AJS

gn—1(dxn|xv—1, un—1) Sy oy_p) (dun—1) - - -
Sy ) (dutry 1) qt(dXz+1|xt, Uz) Sy, () (dutr) (23)

for all x; € Sand r € T. Similarly, W : S — R* is Borel

measurable and satisfies WN (xN) = e Fen ) for all xy € S.
Since ¢; is bounded, we have that W;" (x,) € (0, 400) for all
x; € S and t € Ty. Details about applylng [43, Th. 6.3.3] are
provided in a footnote.>

Lettre {0,1,...,N—2}. By the deﬁn1t1on of Z;(w) (22),
it holds that e 2 @) = e alu “")eTZ’“(‘”), which equals

-6
3To apply [43, Th. 6.3.3], note that eZ2 % is a random variable on
(22, Bg, PY) for any x € S and 7 € II. X; is a random object. The expecta-
= -6 -8
tion EY (eTZ’) = fQ eTZ’(w)de (w) exists because e 2 4@ > 0 for all
w e Q.
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e v+ i) iy (23). Since e2 Peini) does not
depend on the trajectory after time z, it can be placed “outside”
several integrals so that (23) becomes

e%et‘t(xrﬁur)//,_,//e%ezt+l(w)
A SJA AJS

gn—1(dxy |y 1, un—1) Spup_y (y_p) (dun—1) - -+
5M,+|(x,+|)(dut+1) qr(dxpy 11X, uy) 5u,(x,)(dut)- (24)
Since t+ 1 € T, by (23), it holds that

W;T’él)(xr-i—l) = // /e_Te(CN(XN)-l-Z‘L—,JIr] ci(xi,ui))
+ A AJS

gN—1(dxy|xn—1, uUN—1)8uy_ ey (duy—1)
o 8M1+1 (X1+1) (dut‘l'l) (25)

Wit () =

for all x;41 € S, where ¢ 2 P en G+ 4 i) (25) equals
¢ 7L ©) i (24) by apgjlymg the definition (22). Moreover,
the expression for W, +1(x,+1) (25) appears in (24), which
permits the following conclusion:

W () = / et / T 1) (i1 e, )8y, ) ().
(26)

By using the definition of the Dirac measure 8, and the
definition of g, (2), we complete the derivation of the recursion
for t € {0,1,...,N — 2}. The derivation for t = N — 1 is
analogous. [ ]
The last result proves optimality.
Theorem 2 (Optimality  of V9 and  my):  Under
Assumption l, it holds that V‘l @ = Vi =
2 logE (e Z) for all x € S, where 7} =
(,uo, ,ul, e M N—l) is non-unique and is given by Theorem 1.
Proof: First, note that W Y = ET (eng) for all x € S and
7 € I, and recall that Z = Z;. To show the desired statement,
it suffices to show that

—1og W00 = Vi (@) = —log W ()

for all t € Ty, x € S, and m € II. (Let + = 0, note that
m,; € TII, and use the definition of the mﬁmum) Proceed

by mductron For the base case, we have & log Wy (x)
2 log(e 2 CN(")) =W v() for all x € S and = € II because
W}G %(x) = e 7V and by the definition of V. Now, assume
(the induction hypothesis) that for some ¢ € T, it holds that
2log 1(x) > f_H(x) = _72log Wﬂe1 (x) for all x € S
and 7w € l'I Since _70 > (), the exponential is increasing, and

eloga = 4 for all a € (0, +00), the induction hypothesis is
equivalent to

27)

W) > e TV — W o ‘o) vres. (28)

Now, let x € § and 7w = (o, i1, - .., un—1) € I be given.
We use the recursion provided by Lemma 1, the inequality

in (28) b +1 being Isc and bounded below (Theorem 1), and
Wl " bemg Borel measurable to derive the inequality
W,”’e(x) > e%"frmm(m/ LV (i (6).w)) pe(dwlx, (). (29)
D

The right-hand-side of the inequality in (29) is a product
of elements of (0, +00) in particular since V 1 is bounded

(Theorem 1). Since log(ab) = loga + logb for any a €
(0, +00) and b € (0, +00), the natural logarithm is increasing,
and W™ (x) € (0, +00), it holds that

lOg WZJTQ(X) > lOge%eC’(x’ur(x))

+ log< f e 7 Vi W) (G, m(x»). (30)
D

By simplifying the first term in the sum and multi-
plymg by _72 > 0, 1t follows that logW (x) >
. Jrl(x n:(x)), where vt 1 is given by (7b). Since
t+](x Ue(x)) > infyep vH_l(x u) = Ve(x) (7a), we conclude
that 2 log W™ (x) > VO (x).

A s1m11ar procedure shows that V‘g x) = _2 log W, (x)
to complete the induction. In partlcular one uses 716 =

(“0’ Ml, R ,uN 1) € IT as the pohcy in the recursion pro-

vided by Lemma 1, where each ! : S — A is Borel
measurable, satisfies (8), and exists by Theorem 1. |

VI. CONCLUDING REMARKS

Here, we have studied a classical risk-averse control
problem for an MDP with Borel state and control spaces on a
discrete finite-time horizon, where risk is characterized using
the exponential utility functional. While exponential-utility
optimal control is well-understood in settings with linear-
quadratic assumptions, countable state spaces, or infinite-time
horizons, it is not well-understood outside of these settings
from a basic analytical perspective. Using first principles from
measure theory and real analysis, we have presented a more
basic path to the solution in comparison to the existing litera-
ture. Topics for future work include investigating an alternative
path using the Interchangeability Principle [13] and exten-
sions to partial state information and universally measurable
policies, e.g., by building on techniques from [44].

APPENDIX

We state and prove Lemma 2 below.

Lemma 2 (¢; is Isc and finite): Recall that ¢, : SxAxD —
(0, +00) is Isc and bounded (17), and p,(dw,|x;, u;) is a con-
tinuous stochastic kernel on D given S x A. It holds that
¢; S x A — (0,400) (18) is Isc.

Proof: Showing that ¢, is Isc is a special case of
[42, Proposition 7.31], which we call Corollary 1: Let X
and Y be separable metrizable spaces, and let q(dy|x) be
a continuous stochastic kernel on Y given X. Suppose that
g: X xY — Ris lsc, and there are scalars ¢ and ¢ such
that ¢ < g(x,y) < ¢ forall (x,y) € X x Y. Then, the function
A1 X — R defined by 1(x) = [}, g(x, y) q(dylx) is Isc.

To apply Corollary 1, choose X =SxA,Y=D,g=¢,
r=¢,c=e 7, E—e 3b , where b is a lower bound and b
is an upper bound for V' +1, and g(dy|x) = p:(dw]x, u).

To prove Corollary 1, one uses the fact that g : X xY — R
being Isc and bounded (¢ < g < ¢), where X x Y is a metriz-
able space, implies that there is a sequence of continuous func-
tions g, : X x Y — R such that ¢ < g, < gp41 < g < for
allm € N, and {gy,};,"_; converges to g pointwise. The proof of
this fact uses techmques from [42, Lemmas 7.7 & 7.14] and
[43, Th. A6.6]. We outline some key steps below for clarity.

One may choose g,,(z) = inf{g(s) + mp(z,s) : s =
(s1,82),51 € X,s0 € YV}, where z = (z1,22), 21 € X,
22 € Y, m € N, and p is an appropriate metric on X x ).
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Now, let z = (z1,22) € X x Y and € > 0 be given. For
each m € N, g,,(2) is finite, and hence, there is a point
Zm = (Zim» 22m) € X x Y such that
8(zm) +mp(z,zm) < gm(2) + €. (31)
Since ¢ < g(z,) and g,(z2) < g(z) for all m € N, we have
c+mp(z,zm) < gn(@) +€ <g@)+e YmeN. (32)

Since c is finite, m is finite and positive, p is bounded below
by zero, and from (32), it follows that

0<p(zm) < W# Vm e N. (33)
The inequality (33) and g(z) being finite imply that
liminf p(z, zn) = limsup p(z, zm) =0, (34)
m—o0

m— 00

which shows that the limit of {0 (z, zx)};,_, exists and equals
zero. Then, g being Isc and p(z, z;,) — O implies that g(z) <
liminf g(zy,).

Moreover, the proof of Corollary 1 uses the Extended
Monotone Convergence Theorem [43, p. 47], which applies
in particular because g, > ¢ for all m € N. [ |
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