
 

 
 

 

 
Polymers 2023, 15, 540. https://doi.org/10.3390/polym15030540 www.mdpi.com/journal/polymers 

Review 

Advanced Polymeric Nanocomposite Membranes for Water 

and Wastewater Treatment: A Comprehensive Review 

Abhispa Sahu 1,*, Raghav Dosi 2, Carly Kwiatkowski 2, Stephen Schmal 3 and Jordan C. Poler 2,* 

1 American Nano, LLC, 2011 Muddy Creek Road, Clemmons, NC 27012, USA 
2 Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd,  

Charlotte, NC 28223, USA 
3 Goulston Technologies, 700 N Johnston St, Monroe, NC 28110, USA 

* Correspondence: abhispasahu1@gmail.com (A.S.); jcpoler@uncc.edu (J.C.P.) 

Abstract: Nanomaterials have been extensively used in polymer nanocomposite membranes due to 

the inclusion of unique features that enhance water and wastewater treatment performance. Com-

pared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane 

performance (water permeability, salt rejection, contaminant removal, selectivity), but also the in-

trinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, me-

chanical, thermal, and chemical stability) of these membranes. This review focuses on applications 

of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-di-

mensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-

dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards 

novel polymeric nanocomposites for water and wastewater treatment applications. This review will 

show that combinations of nanomaterials and polymers impart enhanced features into the pristine 

membrane; however, the underlying issues associated with the modification processes and environ-

mental impact of these membranes are less obvious. This review also highlights the utility of com-

putational methods toward understanding the structural and functional properties of the mem-

branes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, 

and future scope of these advanced polymeric nanocomposite membrane based systems for water 

and wastewater treatment applications. 

Keywords: polymer nanocomposites; water treatment; inorganic nanoparticles; desalination; com-

putational studies; biopolymers 

 

1. Introduction 

Water is essential for sustainable development, energy and food production, healthy 

ecosystems, and, of course, all life. Industrialization is at the core of urbanization and sig-

nificantly contributes to the advancement of human welfare [1]. However, population 

growth, industrialization, and socio-economic growth have led to anthropomorphic cli-

mate change and pollution, and thereby the deterioration of water quality, especially in 

developing countries. One-third of the world’s population is suffering from scarcity of 

safe drinking water. This figure is expected to rise to two-thirds by 2025 [2,3]. Hence, one 

of the utmost global challenges is meeting the demand for safe drinking water [4]. 

Rapid industrial growth has exacerbated the production and widespread fouling of 

natural water resources [5]. These contaminants are of emerging concern because they are 

perceived as potential threats to human life and the environment [5,6]. Different classes 

of emerging contaminants, their source of origin, and their adverse health effects are listed 

in Table 1. Emerging contaminants can be primarily classified as organic, inorganic, mi-

crobial, perfluoroalkylated, and radioactive substances [3,6-10]. They do not degrade or 

hydrolyze easily and are persistent in the environment, resulting in bioaccumulation [6]. 
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Even though the acute nature of any adverse health effects will depend on an individual’s 

susceptibility and the mode of contact with the body, the US EPA has established maxi-

mum concentration levels (MCLs) for these contaminants in drinking water. For example, 

heavy metals include cadmium with an MCL of 5 parts per billion (ppb), antimony with 

6 ppb, lead with 15 ppb, and uranium MCL with 30 ppb [11-13]. Pesticides such as toxa-

phene and alachlor have an MCL of just 3 and 2 ppb, respectively [12], and many per-

fluoroalkylated compounds have MCL below 1 ppb, such as perfluorooctanoic acid and 

perfluorooctane sulfonate (both individually and combined) at less than 70 parts per tril-

lion (ppt) [14]. The US EPA has recently announced that there is no safe level for the per-

fluoroalkylated compounds. Moreover, the lowest predicted no effect concentration 

(LPNEC) for a few contaminants in freshwater include 20 ppt for ciprofloxacin (antibiotic), 

18 ppt for estrone (hormones) [9], and 560 ppt for 4 MBC (sunscreen) [15]. Given the po-

tential health risks and low MCLs associated with these pervasive chemicals (shown in 

Table 1), there has been significant ongoing efforts to understand the occurrence and 

health consequences of these contaminants. This review will discuss many of the devel-

oping robust water purification technologies for the production of safe and clean drinking 

water. In addition to removing anthropomorphic contaminants, we will discuss various 

methods to remove minerals from seawater and brackish water. Desalination technologies 

that treat natural water resources have evolved tremendously in recent decades to support 

urban and industrial development in areas with limited water supply and/or high trans-

portation or development costs [16]. 

Table 1. Different types of contaminants and their associated adverse health effects, examples, and 

maximum concentration levels. 

Contaminants Generation Source 
Impact on Human Health or 

Ecology 

Examples and Their Maximum 

Concentration Levels (Parts 

per Billion (ppb)) 

Organic 

Pesticides, pharmaceuticals, nat-

ural organic matter, disinfection 

byproducts, endocrine disrupt-

ing chemicals, hormones and 

steroids, personal care products, 

flame retardants, plasticizers 

[6,10] 

Mutagenicity, carcinogenicity 

[17], 

bladder cancer, 

developmental issues, in-

creased birth defects [18] 

Dibromochloropropane—0.2, 

simazine—4 [9], Dioxin (2,3,7,8-

TCDD)—0.00003, Hexachloro-

cyclopentadiene—50, Hexa-

chlorobenzene—1 [19] 

Inorganic (acids, 

salts, heavy metals) 

Byproduct of metal mining, 

smelting, fossil fuel combustion, 

mineral deposits, anerobic 

groundwater, soil erosion 

Toxic effect on aquatic flora 

and fauna, catharsis, congenital 

malformation, increased cancer 

risk, cardiovascular effects [20] 

Arsenic—10, cadmium—5, lead 

—15 [11], Mercury—2, cyanide 

—200 [13] 

Microbial (bacteria, 

virus, algae, proto-

zoa) 

Human and animal fecal wastes, 

Fertilizer, livestock, sewage 

Typhoid, cholera, diarrhea, 

damage to liver, skin, nervous 

system, stomach cramps [21] 

E. coli—0 [22] 

Perfluoroalkylated 

compounds 

Firefighting foams, lubricants, 

coating additives, cookware, 

food packaging, textile industry, 

paper packaging [8] 

Adversely affect growth, birth 

weight, fertility disorders, early 

menopause, thyroid malfunc-

tion, and carcinogenesis [7] 

Perfluorooctane sulfonate, 

perflourooctanoic acid—0.07 

(both individually and com-

bined) [14] 

Radioactive sub-

stances 

Mining and processing of radio-

active minerals 

DNA damage, osteosarcoma in-

cidence, leukemia, stomach 

cancer, urinary cancer, bi-

omarkers of renal (tubular) 

damage [23] 

Uranium (U)—30 [11,13] 
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Membrane technology has become indispensable in numerous industries such as 

food [24], pharmacy [25], textile [26], petroleum products [27], chemicals [28], lithium ion 

batteries [29], fuel cells [30], gas separation [31], and wastewater and drinking water treat-

ment systems [32,33]. Compared to all other conventional water treatment methods, mem-

brane technologies offer affordable solutions that support excellent contaminant rejection, 

low energy consumption, and easy availability of raw materials [34,35]. Over the past two 

decades, synthetic membranes have played an integral role in industrial and domestic 

applications, and have replaced commercially available cellulose-derived membranes 

(cellulose diacetate, cellulose triacetate, and regenerated cellulose) due to their high toler-

ance to stressful conditions [33,36,37]. Synthetic membranes can be fabricated using or-

ganic materials (polymers) or inorganic materials (metals, oxides, and ceramics). Mem-

brane technology has the flexibility of employing a wide range of materials based on ma-

terial type (ceramic: zirconia, titania, silica, alumina, etc.; metal: silver, palladium, copper, 

etc.; polymer: polyvinylidene difluoride (PVDF), polyether sulfone (PES), polysulfone 

(PSf), polyvinyl alcohol (PVA), polyetratfluoroethylene (PTFE), polypropylene (PP), pol-

yamide (PA), polyimide, poly(1-vinylpyrrolidone) (PVP), polyvinyl chloride (PVC), pol-

yacrylonitrile (PAN), etc.) and pressure driven membrane separation processes (microfil-

tration (pore size: 50–500 nm), ultrafiltration (pore size: 2–50 nm), nanofiltration (pore size 

≤ 2 nm), reverse osmosis (pore size: 0.3–0.6 nm), and forward osmosis (pore size: 0.3–0.6 

nm)) [3,32,35,37-43]. 

Inorganic and organic materials bring their own benefits and challenges in the devel-

opment of synthetic membranes. Inorganic membranes have exceptional mechanical 

strength, high durability, and high tolerance to chemical oxidation or extremes of pH, but 

also have high manufacturing cost and little to no control on pore size distribution, which 

make them less likely to be suitable for industrial use [1,44,45]. Polymer (or organic) mem-

branes are widely used technologies in water treatment due to their high degree of control 

over pore size distribution, high flexibility in operating conditions, ease of synthesis, and 

cost effectiveness [1,44]. These polymeric membranes are commercially available with dif-

ferentiated porosities that can be tuned for applications such as suspended solids, oil 

emulsions and microbe removal (microfiltration (MF); for colloidal solids, viruses, hu-

mics, proteins/polysaccharides removal (ultrafiltration, UF); for heavy metals, dissolved 

organic matter, common pharmaceuticals or pesticides removal (nanofiltration, NF); for 

desalination and ultrapure water production (reverse osmosis, RO and forward osmosis 

(FO)) [37,46,47]. These targeted functional systems are fabricated as thin-film composite 

(TFC) membranes that have been widely used in membrane-based water purification sys-

tems [48]. TFC membranes are comprised of a non-woven fabric support layer on which 

a porous intermediate polymer (PES or PSf) layer (~50 nm) is combined with a thin, highly 

crosslinked dense PA layer (<200 nm) [35,49,50]. The top epidermal layer provides selec-

tivity and/or separation while the porous substrate layer that is permeable to water and 

dissolved solute particles provides mechanical strength [32,51]. These membranes exhibit 

better salt rejection, higher water flux or permeability, and higher stability (chemical, me-

chanical and thermal) compared to commercially available cellulose-based membranes 

[50-53]. PSf and PES are the most commonly used materials for UF applications and are 

used as the standard base substrates for NF and RO composite membranes [32]. PP and 

PVDF are more commonly used for MF membranes [37,41]. However, there are key prob-

lems associated with TFC membranes. These membranes are prone to fouling, are highly 

hydrophobic, have low chlorine resistance, low mechanical strength, and demonstrate an 

inherent tradeoff between water flux and solute selectivity [4,33,35,44,54]. Apart from 

these, RO systems have a relatively high energy demand to desalinate feedwater [55,56]. 

Because these TFC have some inadequacies in achieving long-term viability and cost-ef-

fective membrane models, the incorporation of nanomaterials has emerged as an effective 

approach to overcome these application challenges. 

When nanomaterials are incorporated in the epidermal or porous intermediate layer 

or substrate/support, it produces polymer nanocomposite membranes. Compared to 
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conventional TFC membranes, these nanocomposite membranes offer unique morpholo-

gies that overcome the limitations of pristine polymer membranes, leading to better per-

formance and less energy demand. There are two ways of incorporating inorganic nano-

particles (NPs) into a polymer matrix. This can be either done by multilayer coating of 

NPs on polymer substrate or layer (thin-film nanocomposite membrane (TFNC)) [57,58] 

or dispersing NPs into a polymer blend, which forms into a cast (blended nanocomposite 

membranes) [39,59]. Blending can be achieved via phase inversion (PI) method, which is 

classified into four different types, and one of the common types used in fabrication is the 

non-solvent-induced phase separation (NIPS) method [39,60]. Fabrication of polymer 

membrane using NIPS has been shown in Figure 1. NPs are added to the solvent along 

with other additives and PSf (or any other polymer). This dope solution is casted on a 

glass plate with a casting blade set at a known gate height which is immediately trans-

ferred to a coagulation bath for polymer thin film to initiate the PI process. The membrane 

is peeled off the glass plate and kept in the bath to complete the PI process. By addition of 

hydrophilic fillers like NPs, there is a faster rate of organic solvent and non-solvent (water) 

exchange during the PI process, which leads to the diffusion of water from the water co-

agulation bath to polymer thin film, and the dissolution of walls between inner 

macrovoids and cavities leading to cavities of wider pores/voids and higher porosity 

(shown in Figure 1a) [61,62]. NPs can also be impregnated in the active epidermal layer 

(mainly PA) on the substrate during interfacial polymerization (IP) [63] or can be inte-

grated as an intermediate layer between porous PSf substrate and semidense PA layer 

(shown in Figure 1b) [64]. This PA layer is prepared through the reaction between tri-

mesoyl chloride (TMC) solution and m-phenylenediamine (MPD) solution during the IP 

process. NPs are added to either aqueous MPD or organic TMC phase depending on the 

hydrophilicity of NPs [65]. Multilayer coating of NPs on the substrate can be done by dip 

coating or layer-by-layer (LBL) deposition [66]. NPs loaded polymer sol–gel can also be 

electrospun at a high voltage into a nanofibrous membrane (shown in Figure 1f) [67-69]. 

There is the possibility of pressure driven membrane deposition of a dispersion of nano-

materials and the polymer [70,71]. Alternatively, NPs can be chemically cross linked to 

the polymer substrate [72,73], NPs can be grown in situ on the polymer surface [68], or 

the polymer can be covalently attached to the nanomaterials surface [74-76]. TFNCs are 

typically thin films of NPs coated on a polymer layer or substrate by dip coating, self-

assembly, pressure-driven deposition, and other related techniques [39]. Mixed matrix 

membranes (MMMs) are membranes in which NPs are embedded as a dispersed phase 

into a polymer matrix, which can be achieved using techniques such as PI, electrospin-

ning, crosslinking, LBL deposition, etc. [77-82]. This review will mostly focus on nano-

materials incorporated in the polymer substrate, but a few examples of other possibilities 

shall be discussed as well. 
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Figure 1. Various methods of integrating nanoparticles with polymer to form polymer nanocompo-

site membranes: (a) Schematic representation of one of the phase inversion methods (non-solvent-

induced phase separation) for fabrication of polysulfone (PSf) layer. (b) Integration of nanoparticles 

either in the polyamide (PA) layer or as a thin layer at the bottom of the PA layer on top of PSf layer 

in nanocomposite membrane using interfacial polymerization method (MPD—m-phenylenedia-

mine, TMC—trimesoyl chloride). (c) Short polymer strands grafted on a nanoparticle surface or na-

noparticles grafted from the polymer membrane. (d) Pressure driven filtration of dispersion/solu-

tion of polymer and nanoparticles (polymer grafted nanoparticles example in this case). (e) Dip 

coating of polymeric membrane in a dispersion/solution containing nanoparticles. (f) Electrospin-

ning of nanoparticles added in sol–gel (g). Layer-by-layer assembly of polymer and nanoparticles 

(NPs—nanoparticles, NWs—nanowires), [83], ©  American Chemical Society, 2008. For easy inter-

pretation, spherical shapes are used for nanoparticles in most of the figures. 

NPs differ from their larger bulk materials in that their size, shape, and dimension-

ality affect their properties and performance as a material. Specifically, when their size is 

reduced, the particles have extremely high specific surface area and surface-area-to-vol-

ume ratios. In a nanomaterial, at least one of the dimensions is in the nanoscale range of 

1–100 nm. The nanomaterials are classified into zero-dimensional (0D), one-dimensional 

(1D), two-dimensional (2D), and three-dimensional (3D) nanomaterials. In 0D nano-

materials, all three dimensions are at the nanoscale. Examples include quantum dots, core 

shell NPs, nanospheres, etc. In 1D nanomaterials, two dimensions are at the nanoscale, 

giving the structures a rod like shape. Examples include nanowires, nanofibers, and nano-

tubes. In 2D nanomaterials, one dimension is at the nanoscale, giving the structures a 

sheet-like topology, e.g., graphene sheets. The 3D nanomaterials are not confined to the 

nanoscale in any dimension, which can include polycrystals, bundles of nanowires or 

nanotubes, and nanoporous solids. Examples include graphite, dendrimers, liposome, etc. 

[84]. For illustration, various dimensionalities of carbon allotropes are shown in Figure 2. 

The nanomaterial properties can be fine-tuned as desired by precisely controlling the size, 

shape, synthesis conditions, and necessary functionalization. 
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Figure 2. Classification of nanomaterials of carbon allotropes based on their dimensionality. 

Adapted with permission from Gaur et al. [85]. Copyright (2021) MPDI. 

Additives like PVP and poly(ethylene glycol) (PEG) play important roles in mem-

brane modification. They act as pore-forming agents and modify hydrophilicity and anti-

fouling properties. However, dissolution or extrusion of homopolymer additives can lead 

to the deterioration of properties and the weakening of membrane performance. In this 

case, amphiphilic copolymers come to the rescue and show better compatibility, but these 

copolymers require costly and complex synthesis, making it difficult to achieve large scale 

production [39,86]. Maggay et al. investigated the amphiphilic nature of the copolymer of 

styrene and ethylene glycol methacrylate that was used to modify the PVDF membrane. 

It was found that the increase of the hydrophilic part led to the decline in anchoring sites, 

which led to a compromise in stability; the increase of the hydrophobic part led to the 

decrease of the antifouling property and increased protein adsorption on the surface. In 

addition to this, fine tuning of chain lengths of copolymer was required as well [87]. There 

are several reasons why there has been great interest in the development of polymeric 

nanocomposite membranes incorporating nanomaterials in drinking water and 

wastewater treatment systems. First, the incorporation of nanomaterials can implement 

extraordinary variations in polymeric nanocomposite properties such as permeability, se-

lectivity, hydrophilicity, conductivity, magnetism, mechanical strength, thermal stability, 

and antimicrobial properties [35,41,44,88-90]. Second, there has always been a threat of 

NPs leaching out into the environment, whereas their incorporation into a hybrid polymer 

nanocomposite can mitigate the possibility of environmental discharge due to encapsula-

tion [4,5,91]. Third, fouling in pristine polymeric membranes has been a serious problem. 

It is a well-known fact that foulants get adsorbed on the membrane surface due to van der 

Waals interactions, hydrogen bonding, and hydrophobic interactions [35]. Modification 

of the surface charge of polymeric membranes with hydrophilic components helps pre-

vent or reduce undesirable foulant interactions and boost membrane longevity. For in-

stance, modification of PVDF membranes has been performed by grafting or blending 



Polymers 2023, 15, 540 7 of 50 
 

 

amphiphilic copolymers [92-94], introducing hydrophilic components [95-97], or by incor-

porating NPs in the PVDF substrate during PI fabrication methods [60,61,98]. Apart from 

this, antifouling properties can also be enhanced with NPs that introduce photocatalytic, 

self-cleaning, and photodegradable properties [35]. In addition, NPs with tunable porosi-

ties impart enhanced selective separation in these MMMs [99]. Thus, the addition of NPs 

has been beneficial for the long-term usage of polymer nanocomposites due to reduced 

membrane fouling. Because the fabrication of NPs often requires toxic chemicals, there 

has been ongoing research efforts in the implementation of sustainable methods to facili-

tate the widespread use of nanomaterials in water treatment [35]. 

It is important to have an optimum polymer/NP interphase/adhesion region to over-

come agglomeration, which is one of the major challenges in the homogenous dispersion 

of NPs in a polymer blend. Agglomeration not only affects the performance and mechan-

ical properties, but weak adhesion between the polymer and the agglomerated NPs can 

lead to composite failure due to the concentration of exerted force on weak spots [100-

102]. Ashraf et al. showed that two grams of well dispersed and isolated 10 nm radius NPs 

can produce a remarkable interfacial area of 250 m2 within a polymer matrix [103]. When 

particles come in contact, they interact through van der Waals (vdW) attractive forces. The 

second interaction is electric double layer (EDL) repulsion, which arises due to the 

charged surface and surrounding counter ions and falls off exponentially with interparti-

cle distance. Derjaguin–Landau–Verwey–Overbeek (DLVO) theory combines the vdW at-

tractive force and the EDL repulsive force to understand the overall interactions between 

the NPs within the polymer matrix [104,105]. The other non-DLVO forces that influence 

aggregation are hydration forces and hydrophobic interactions. It is the interplay between 

these short-range thermodynamic interactions that determines the aggregation of colloi-

dal particles. However, as the nanofiller concentration increases, there is a dominance of 

strong vdW forces that result in irreversible agglomeration [106]. External factors, such as 

the solvent removal process, add new forces such as capillary action that can promote NP 

aggregation as well [105]. Liu et al. performed molecular dynamics (MD) simulations and 

demonstrated that a homogeneous dispersion of nanofillers is achieved at the intermedi-

ate interphase interaction, which is contrary to conventional theories [107]. In this review, 

we have cited several filler-polymer combinations where an optimum concentration re-

sulted in best interphase compatibility, properties, and performance, beyond which the 

performance deteriorated. Hence, it is crucial to manipulate the particles and minimize 

the colloidal agglomeration through methods such as mechanical agitation (like ultrason-

ication [108-111]), surface modification/functionalization to modify surface zeta potential 

[112], optimization of the incorporation procedure [113], etc. 

TFC membranes are state-of-the-art and further progress has been made in their fab-

rication by introducing nanomaterials to formulate TFNC membranes [48]. TFNC mem-

branes were first reported by Joeng et al. (2007), where the authors developed the first 

generation of MMMs by embedding NaA zeolite NPs in PA thin films interfacially pol-

ymerized on a PSf support. These RO membranes demonstrated a two-fold increase in 

water flux (9.37 → 16.96 L m−2h−1) and did not affect the solute rejection (93.9%, 2000 

ppm feed concentration, 12.4 bar pressure), making them comparable to commercial RO 

membranes [114]. This paved the way for the exploration of nanomaterials to generate 

unique morphologies for preferential water flow and excellent salt rejection. Incorpora-

tion of NPs in TFNC contributes to the enhancement of membrane properties such as en-

hanced hydrophilicity, water permeability/flux, excellent salt rejection, removal of or-

ganic and inorganic contaminants, and enhanced resistance to chlorine and fouling 

[41,115-118]. TFNC polymeric membranes have drawn considerable attention in the past 

decade (as shown in Figure 3). This review focuses on the key ongoing advances in nano-

material-modified polymeric thin-film membranes that—more specifically—benefit wa-

ter and wastewater treatment technologies.  
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Figure 3. Research impact of thin-film polymeric nanocomposites analyzed using web of science 

database for the past decade. 

We have further divided this review, focusing specifically on metal- or metal-oxide-

based, carbon-nanostructures-based, zeolite-framework-based, and environmentally sus-

tainable-materials-based polymer nanocomposite membranes. These nanocomposite 

membranes will be systematically evaluated for new properties and enhancement of ex-

isting properties that benefit from the introduction of NPs. The influence of different types 

of NPs, their concentration, their loading positions, their effect on morphologies, factors 

controlling the performance (hydrophilicity, antifouling, addition of surface charge, po-

rosity, thermal, mechanical strength, change in surface roughness), and performances 

(permeability, selectivity/separation, rejection) will be comprehensively evaluated. This 

review details the delineation of updated findings and challenges associated with 0D, 1D, 

2D, and 3D nanomaterials-based polymeric nanocomposites with a focus on MF, UF, NF, 

RO, and FO, which is beneficial to researchers for prospective materials and techniques. 

In addition to this, computational studies leading to better understandings of contaminant 

or foulant–membrane interactions, specifically in PA layer to examine antifouling behav-

ior, are highlighted. Nanostructural forms of biopolymers are discussed to compare with 

synthetic inorganic nanomaterials. We will also discuss the environmental impact and fu-

ture scope of these nanocomposite membranes. However, it should be noted that the 

membrane performance is highly dependent on the test conditions, which are different 

for various membrane applications (MF, NF, UF, RO, FO). Our efforts have primarily fo-

cused on a single type of NP-integrated membrane system, but have been extended to 

some combinatorial examples to demonstrate remarkable synergy between NPs when 

combined. Lastly, this review offers a diverse variety of polymer-nanoparticle thin-film 

combinations compared to previously published reviews, as shown in Figure 1. The aim 

of this manuscript is to offer a holistic overview of the extensive research conducted that 

can aid in the prospective selection of materials, combinations, and technologies primarily 

for water and wastewater treatment membrane solutions. 

2. Incorporation of NPs in TFNCs/MMMs 

2.1. Metal/Metal-Oxide-Based Nanocomposites 

The incorporation of metal oxide NPs in polymers leads to the enhancement of vari-

ous properties. For instance, enhancement in hydrophilicity is a common trait because 

these NPs can absorb hydroxyl groups and form a hydration layer on surface, imparting 

hydrophilicity in MMMs [119]. They have inherent antibacterial [108,120-122], antifouling 
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[123-126], and magnetic properties [127-130]. These traits enhance water flux and rejec-

tion/adsorption capacity properties. Apart from this, low cost, photocatalytic degradation, 

self-cleaning, and low toxicity are other important features found in metal oxide NPs 

[33,119,131-133]. However, metal oxide NPs have issues with uncontrolled colloidal ag-

gregation at higher concentrations due to organic–inorganic incompatibility [80,134,135], 

which affects the specific surface area and reactivity of these NPs and has a negative im-

pact on the mechanical properties and performance [80] of these systems, resulting in in-

creased viscosity and pore blocking phenomena [136]. The optimization of the fabrication 

procedure that allows for a homogeneous distribution of NPs within the polymer matrix 

and the targeting of an optimal threshold concentration should be considered to minimize 

agglomeration. There has been extensive work carried out proposing optimal concentra-

tions of incorporated NPs to provide maximum water flux and the highest desalina-

tion/adsorption capacity in membranes incorporating metal oxide NPs [80,134,137-140]. 

Recently, Erdugan et al. fabricated PVC membranes with specially designed hexagonal 

platelets of ZnO which exhibited promising UF membrane performance without agglom-

eration issues [106]. Additionally, the risk of leached NPs present in the environment and 

potential toxic effects on human health is always an ongoing concern [141-143]. This in-

corporation must be tailored in a way that fits the best process tools for environmentally 

friendly, high-performance water treatment systems. 

2.1.1. Iron-Oxide-Based Nanocomposites 

Iron is one of the most abundant and inexpensive elements present on earth and is 

widely used for geological and infrastructural purposes [144]. However, nano-dimen-

sional Fe is highly reactive and unstable, and therefore the oxide forms have been exten-

sively used [44]. This form of iron is used for incorporation in the polymer matrix as it is 

low cost, possesses hydrophilic properties, and has resulted in the enhancement of vari-

ous properties discussed further in this section. Upadhyaya et al. evaluated protein per-

meability performance of hydrophobic and hydrophilic MMMs where hydrophilic and 

hydrophobic nanocomposite membranes consisted of casting solutions of polymeric 

spheres interconnected with quaternized poly(2-dimethylamino)ethyl methacrylate-

coated iron oxide NPs and superparamagnetic NPs consisting of diblock copolymer and 

stabilizer-coated iron oxide NPs [127,145]. Application of a magnetic field in these mem-

branes resulted in the enhancement of permeated flux and a reduction of protein fouling 

effects, allowing them to be used as antifouling nanocomposite membranes [146]. Kim et 

al. synthesized poly-N-phenylglycine nanofibers grafted onto reduced graphene oxide 

(GO) sheets intercalated with Fe3O4 NPs to form nanocomposites that exhibited a high 

degradation capacity of Cu(II) up to 95%. They used density functional theory (DFT) cal-

culations and Perdew–Burke–Ernzerhof (RPBE) exchange–correlation functional to show 

that there is stronger binding due to deprotonated functional groups at higher pH com-

pared to lower pH, resulting in high sorption efficacy [147]. To reduce agglomeration and 

enhance interphase compatibility, surfaces of NPs are modified as well. Nawi et al. fabri-

cated the surface of Fe3O4 NPs with polydopamine, followed by functionalization with (3-

aminopropyl)triethoxysilane (APTES) or chlorosulfonic acid, which were impregnated 

onto hollow PES fibers by the dry/wet spinning method. These nanocomposite mem-

branes demonstrated an enhancement in water flux (82.60 → 137.23 L m−2h−1bar−1) and 

adsorption capacity (71.92 → 92.16%) of bovine serum albumin (BSA) when compared to 

pristine PES fiber [148]. 

2.1.2. Silver/Zinc-Based Nanocomposites 

Foulant build-up can lead to a decrease in membrane water flux with increased run 

time, increasing operational costs and shortening membrane life [149,150]. Membrane 

fouling can be of various types ranging from crystalline scaling, organic fouling, microbial 

fouling, or particulate and colloidal fouling [151,152]. These occur due to the interaction 

of the membrane with different sources. Biofouling has detrimental effects on membrane 
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systems and accounts for 45% of membrane fouling [151]. The incorporation of NPs into 

membranes can offer affordable solutions for long-lasting sustainable membranes by in-

creasing the resistance to membrane biofouling. Ag NPs are well known antibacterial 

agents. The mechanism of antibacterial activity of Ag stems from the denaturation effect 

of Ag ions, which causes the condensed DNA to lose its replication ability. Ag ions interact 

with thiol groups present in amino acids, resulting in the inactivation of bacterial proteins 

[153]. Ag ions have an affinity for sulfhydryl groups exposed on bacteria or viruses, dis-

rupting the H2 energy transfer system in microorganisms due to the sulfur and Ag bond 

[154]. Khare et al. added PEG-soaked Ag grown activated carbon microfibers and nano-

fibers (Ag-ACFs/CNFs) in situ during emulsion polymerization of PVA, which was casted 

into a film followed by the creation of laser ablation microchannels to expose Ag-

ACFs/CNFs dispersed within the polymer matrix. This metal–carbon–polymer-nanocom-

posite-based contractor inhibited the growth of gram-negative Escherichia coli (E. coli K-

12) and gram-positive Staphylococcus aureus (S. aureus RN4220) bacterial strains instanta-

neously under flow conditions due to the antibacterial property imparted from Ag NPs 

[155]. Besides acting as a scaffolding support to Ag NPs, CNFs enhanced the tensile 

strength and thermal stability of the film. There are also reports on the antibacterial prop-

erty of ZnO in the literature. From previous works, it is well known that the antibacterial 

activity of ZnO is related to the generation of H2O2 on the surface [156,157]. Jo et al. mod-

ified PES membranes with PVP-grafted and poly(1-vinylpyrrolidone-co-acrylonitrile) 

(P(VP-AN))-grafted ZnO NPs by the NIPS process. PVP and P(VP-AN) imparted hydro-

philicity while ZnO imparted antibacterial properties. Antibacterial activity was meas-

ured in accordance with the JIS Z-2801 standard and 0.5 wt.% loaded ZnO-modified mem-

branes showed an enhanced antibacterial activity (0.2 → 6.1) toward E. coli (ATCC 8739) 

and S. aureus (ATCC 6538P) when compared to pristine membranes. These PES/polymer-

grafted ZnO membranes demonstrated an increase in water flux and hydrophilicity, but 

a slight decrease in PEG rejection with an increase in filler content (>4 wt.%); there were 

improved antifouling characteristics compared to the PES membrane only, with no ZnO 

leaching observed in the modified membrane [158]. Mousa et al. electrospun 0.2 wt.% 

loaded ZnO NPs in a blend of PSf and cellulose acetate and coated with a 0.1 M NaOH 

solution to fabricate a superhydrophilic nanofibrous membrane. This membrane showed 

a decrease in water contact angle (WCA) (72.86 → 13.17°), comparable tensile strength, 

enhanced water flux (20 → 460 L m−2h−1), strong antibacterial activity against E. coli with 

a bacterial growth inhibition zone diameter of 10 ± 0.6 mm, but low flexibility [108]. Hong 

and He incorporated a PVDF membrane with ZnO NPs and the results revealed an im-

provement in photocatalytic self-cleaning efficiency (62 → 93%) and water flux (66.6 → 

147.2 L m−2h−1), and a decrease in WCA (63.21°) with an increase in ZnO NPs content, 

but led to a decrease in mechanical strength and chemical oxygen demand removal effi-

ciency after loading was exceeded beyond 0.01 wt.% [159]. 

2.1.3. Silica-Based Nanocomposites 

The incorporation of silica NPs has been a widely used method due to their chemical, 

structural, and thermal stability, facile suspension in aqueous solution, and environmen-

tally benign property [160-162]. For instance, when silica NPs were incorporated in PVDF 

membranes, the nanocomposite membranes exhibited higher thermal stability, hydro-

philicity, and improved levels of selectivity due to the presence of silica NPs [163]. Addi-

tionally, mesoporous silica are porous nanostructures incorporated to introduce a uni-

form pore size distribution [164]. Silica NPs have been incorporated within the polymer 

matrix or anchored on the surfaces of electrospun polymeric fibrous membranes. Pi et al. 

impregnated silica NPs on electrospun poly(vinylidene fluoride-hexafluoropropylene) 

(PVDF-HFP) to form superhydrophilic multistructured nanofibrous membranes for the 

removal of Cu(II) ion, which resulted in an adsorption capacity of 21.9 mg g−1 [165]. A 

Freundlich adsorption isotherm and a pseudo-first-order kinetic model was best fit for the 

experimental data. Teng et al. electrospun PVP combined with SiO2 to form mesoporous 
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fiber membranes with thioether group functionalization for selective adsorption of Hg(II). 

These membranes demonstrated an adsorption capacity of 852 mg g−1  with an 18% molar 

concentration of organosilane precursor [166]. Keshtkar et al. obtained nanofibrous mem-

branes by electrospinning a sol–gel of dispersed SiO2 NPs (7–25 nm particle size), PVP, 

APTES, and tetraethylorthosilicate, and demonstrated removal of Cd(II), Pb(II), and Ni(II) 

with an adsorption capacity of 157.4, 158.3, and 63.0 mg g−1, respectively. These experi-

ments were conducted with initial concentrations of these heavy metal ions ranging be-

tween 30 and 500 mg L−1at pH 6. The BET surface area of these nanoporous membranes 

was 65.647 m2g−1 and the adsorption isotherm best correlated with a Langmuir model. 

The activity coefficient of the adsorbate was less than 8 kJ mol−1, indicating that the ad-

sorption was a physical process [167]. Istirokhatun et al. demonstrated antifouling activity 

in the SiO2-coated PA-based membrane owing to the hydration property of SiO2. The fab-

rication of this membrane is demonstrated in Figure 4 [123]. A summary of key enhance-

ments in membrane properties due to the inclusion of different types of SiO2 nanoclusters 

has been illustrated in Table 2. 

 

Figure 4. Fabrication of SiO2−coated polyamide-based membrane for high-capacity rejection and 

antifouling activity. Adapted with permission from Istirokhatun et al. [123]. Copyright (2021). Else-

vier. 

Table 2. A summary of enhancements in properties of SiO2 nanoparticle-based nanocomposite 

membranes. 

Membrane Type Enhancements Due to Modification Reference 

Tubular hollow nanofiber PVC membrane with dis-

persed hydrophobic nano-SiO2 for water in oil emul-

sion separation 

High permeation flux, thermal, and hydropho-

bic stability, outstanding lipophilicity and super-

hydrophobicity 

[168] 

MSNs (~500 nm) incorporated in presence of PVP in 

PSf UF membrane 

Enhanced hydrophilicity, methylene blue (MB) 

rejection (84.7%), but decreased water permea-

bility with increase of MSNs wt.% 

[164] 

PES-MSNs nanocomposite UF membranes 
Higher thermal stability, hydrophilicity, poros-

ity, antifouling, and water uptake properties. 
[134] 
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Properties deteriorate at highest (4 wt.%) load-

ing due to agglomeration 

Silica NPs grafted onto PHEMA on PES membrane 

(PES)/SiO2-g-PHEMA carboxyl-modified fluorocar-

bon surfactant functionalized PEG segment: fPEG-

COOH; Grafting fPEG-COOH onto surface of the 

PES/SiO2-g-PHEMA forming amphiphilic porous 

membrane 

Higher oil–water flux, flux recovery ratio, lower 

flux decline ratio, antifouling, and self-cleaning 

properties 

[169] 

Composite membrane of Ce-doped nanosilica dis-

persed in PSf prepared by sol–gel process for oil–

water separation 

Higher tensile strength, hydrophilicity, and anti-

fouling property, >98% oil retention rate 
[170] 

Porous MCM-41 silica NPs and nonporous silica in-

corporated into PA thin-film layer via IP process 

with PSf support at the bottom 

Higher surface hydrophilicity, water flux/per-

meability compared to nonporous structure, en-

hanced salt rejections (NaCl (98.1%) and Na2SO4 

(98.6%)) 

[171] 

Incorporation of fumed silica NPs functionalized 

with APTES into chloromethylated PSf matrix using 

vapor induced phase inversion and NIPS processes 

High water permeance (0.46 L m−2h−1bar−1) 

and high percentage removal of contaminants 

(reactive red (99.99%), direct yellow (99.94%), 

methyl green (99.80%), rhodamine B (99.79%), 

crystal violet (98.69%). Negative impact on me-

chanical and selectivity for 3 and 4 mg g−1 load-

ing due to agglomeration. 

[80] 

PVC: polyvinyl chloride; MSNs: mesoporous silica; PES: polyether sulfone; PEG: poly(ethylene gly-

col); PSf: polysulfone; UF: ultrafiltration; PA: polyamide; PHEMA: poly (2-hydroxyethyl methacry-

late); APTES: (3-aminopropyl)triethoxysilane; IP: interfacial polymerization; PI: phase inversion; 

NIPS: non-solvent-induced phase separation; NPs: nanoparticles. 

Taking the toxicity of NPs into consideration, Paidi et al. demonstrated the applica-

tion of 3D mesoporous silica derived from marine diatom T. lunidiana cultures impreg-

nated in PSf membranes. These membranes exhibited enhanced hydrophilicity and had 

uniformly distributed large pores and low surface roughness as observed by scanning 

electron microscopy (SEM) (shown in Figure 5) and atomic force microscopy. Silica frus-

tules extracted from biomass were cleaned using corrosive nitric acid. In addition to the 

selection of biomass-derived products, the processing of these materials should also be 

considered in regard to the environmental impact. The highest loaded PSf nanocompo-

sites (0.5% diatom) demonstrated a water flux of ~807 L m−2h−1bar−1 at 20 psi operating 

pressure and a removal rate of 98.5% and 94.8% for 500 mg L−1 of BSA and 0.1 M of rho-

damine, respectively [172]. 
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Figure 5. Scanning electron microscopy (SEM) revealed that pore size is directly proportional to 

diatom loading. SEM surface porosity images of (a) Polysulfone (PSf) with 0.0% of diatom, (b) PSf 

with 0.1 wt.% of diatom, (c) PSf with 0.2 wt.% of diatom, (d) PSf with 0.5 wt.% diatom (×50,000, 100 

nm scale bar in all micrographs). Adapted from Paidi et al. [172]. Copyright (2022) MDPI. 

2.1.4. Titania-Based Nanocomposites 

In addition to antifouling properties, TiO2 NPs also possess tunable morphologies, 

facile surface functionalization/modification, chemical stability, low costs, self-cleaning 

properties, and photocatalytic activity for organic contaminants, making them suitable for 

membrane technology [173-178]. It is already known that photocatalytic properties of TiO2 

NPs help in the degradation of water contaminants in the presence of an energy source 

[179-184]. The mechanism of degradation lies in the absorption of energies higher than the 

semiconductor band gap, resulting in the excitation of electrons from the valence band to 

the conduction band. This leaves a hole in the valence band that can react with water 

molecules to generate highly reactive hydroxyl radicals that can oxidize organic contam-

inants [132]. Aoudjit et al. immobilized Ag-functionalized TiO2 NPs into the poly(vinyli-

dene fluoride-hexafluoropropylene) matrix and tested photocatalytic activity against an 

emerging contaminant, metronidazole, under solar radiation. The results revealed a max-

imum degradation efficiency of 100% with an initial metronidazole concentration of 10 

mg L−1 at a pH of 7 under 5 h of solar radiation [185]. Zhang et al. prepared a PVDF nano-

composite membrane by pre-dispersing TiO2 NPs via PEG additive, which ensured uni-

formly spaced surface pores, larger porosity, high water flux, negative zeta potential, and 

an increased hydrophilicity of the membrane. This membrane exhibited a higher interac-

tion energy peak compared to the control membranes, which signified the increasing dif-

ficulty with which foulants interact with or attach onto membrane surfaces when evalu-

ated using extended DLVO theory. This, along with low flux decline from the filtration 

experiment, corroborates the enhanced antifouling performance [186]. Like other metal-

based NPs, TiO2 NPs have been extensively used in MF [187-190], NF [191-195], UF [196-

200], and RO [201-203] applications. Yu et al. incorporated TiO2 NPs in a dope containing 

18 wt.% PVDF and 5 wt.% additive PVP to formulate hollow-fiber UF membranes using 

the sol–gel method and the blending method. Compared to a pristine PVDF membrane, 

the addition of 1 wt.% loaded TiO2 NPs using the sol–gel method enhanced the hydro-

philicity (lowering of WCA, 79.13 → 34.91°), thermal stability, mechanical strength (1.71 
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→ 2.26 MPa), and water permeation (~110 → 244 L m−2h−1) of this UF membrane, result-

ing in improved antifouling properties. The hydrophilicity and permeability subse-

quently decreased beyond 1 wt.% loading due to an increase in viscosity and pore block-

ing phenomena. The sol–gel method resulted in uniformly dispersed TiO2 particles in the 

polymer matrix compared to the blending method [198]. Key enhancements, as well as 

the loading % at which TiO2 agglomeration occurred, have been highlighted in Table 3 to 

consolidate the threshold concentration values used by researchers to obtain best perfor-

mance. 

Table 3. A summary of key enhancements in properties of TiO2 nanoparticle-based nanocomposite 

membranes. 

Membrane Type Enhancement and Agglomeration Due to Modification Reference 

PSf UF membrane with 

PANI-coated TiO2 NPs and 

PEG as additives fabrication 

by PI process 

Enhanced porosity, permeability, hydrophilicity, water uptake, anti-

fouling property with a rejection of 68% and 53.78% for Pb2+ and 

Cd2+, respectively. Agglomeration @ 1.5 wt.% loading. 

[204] 

PSf-based PANI-coated TiO2 

NPs-coated PA nanocompo-

site hollow fiber membrane 

Enhanced hydrophilicity and antifouling property with a rejection of 

81.5% and 96.5% for Reactive Black 5 and Reactive Orange 16. Ag-

glomeration @ 1 wt.% loading. 

[125] 

TiO2 NPs incorporated into 

PSf UF membrane 

Better porosity, hydrophilicity, and antifouling property. Tiny aggre-

gates @ 2.0 wt.% loading 
[124] 

Addition of TiO2 NPs in a 

PVDF and sulfonated PES 

blend membrane fabrication 

by PI method 

Enhanced hydrophilicity, antifouling, photo-bactericidal effect 

against E. coli, higher FRR (86.2%). NPs loading negative effect on 

pure water flux. Agglomeration ≥ 4 wt.%. 

[197] 

Addition of TiO2 NPs in mi-

croporous PES membrane 

Enhanced hydrophilicity, mean pore size and permeation property, 

flux (3711 L m−2h−1), mechanical strength, thermal stability. Ag-

glomeration @ 4–5 wt.% loading. 

[110] 

Electrospun nanofibers from 

a blend of PVP, PVDF and 

TiO2 NPs (oil–water separa-

tion) 

Enhanced hydrophilicity, mechanical strength, chemical stability, 

and antifouling property with high separation efficiency (98.4%) and 

FRR (95.68%) (Schematic shown in Figure 6) 

[205] 

PSf membrane using TiO2 na-

norods forming flower-like 

structures used as additive   

Enhanced hydrophilicity, high surface area, self-cleaning efficiency 

(68.8%), antifouling activity 
[111] 

L-cysteine-surface-modified 

TiO2 NPs incorporated in 

PES membrane by PI process 

Enhanced water flux, direct red-16 (98%) and liquorice (90%) re-

moval, hydrophilicity, antifouling. Agglomeration @ 1 wt.% loading 
[140] 

PANI: polyacrylonitrile; PSf: polysulfone; PEG: poly(ethylene) glycol; PI: Phase inversion; PVP: 

poly(1-vinylpyrrolidone); PVDF: polyvinylidene difluoride; UF: ultrafiltration; FRR: flux recovery 

rate. 

Hosseini et al. fabricated UF membranes by incorporating TiO2 NPs and observed 

that a 7 wt.% loading of TiO2 NPs resulted in the optimal properties of higher porosity, 

higher hydrophilicity, water flux, lower flux decline, mechanical stability, high oil rejec-

tion, and antifouling properties. However, higher loading (10 wt.%) resulted in a non-

uniform dispersion, aggregation, and pore blocking of the membrane, which in turn re-

sulted in a defective structure and a reduction in mechanical strength. Hosseini et al. 

tested the stability of the matrix and observed a 10 wt.% loading to be leaching from the 

polymer matrix, which is possible due to non-covalent binding of NPs onto the membrane 

surface [196]. This is noteworthy while addressing the concern of NPs leaching into the 

environment. Mahdhi et al. used the Lifshitz and Young–Laplace theories’ analysis to 
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show that the incorporation of threshold volume fraction of TiO2 NPs in PVDF, chitosan 

(CS), and cellulose acetate led to the conversion of the hydrophobic matrix to hydrophilic 

in nature, which resulted in the draining of water inside the nanopores without the need 

for external pressure or energy opening new avenues for green and sustainable NF mem-

branes [191]. 

 

Figure 6. Fabrication of blend containing polyvinylidene difluoride and TiO2 nanoparticles into a 

membrane for oil–water separation. Adapted with permission from Du et al. [205]. Copyright (2021) 

Elsevier. 

2.2. Carbon-Nanostructure-Based Nanocomposites 

Numerous studies on carbon-based nanomaterial adsorbates have been conducted 

because these materials exhibit high specific surface area, mechanical strength, uniform 

porosity, thermal stability, surface reactivity, and chemical stability to harsh conditions 

[206-210]. The performance of carbon nanostructures is superior in terms of high-water 

flux, high ion rejection, and antifouling properties. However, it is critical to note that car-

bon nanostructures have intrinsically poor dispersibility and thus agglomerate, which can 

be avoided by surface functionalization. Carbon nanostructures have been specifically 

used as nanofillers to enhance the mechanical strength and viscoelasticity of polymer ma-

trices [211-213]. Both carbon nanostructures and polymer membranes can adsorb or cap-

ture contaminants; however, their mechanism will be different based on the structure, 

morphology, stacking arrangement, and presence of surface functional groups. Addition-

ally, this section will provide a comprehensive summary of computational studies used 

to understand foulant–membrane interactions and antifouling phenomena in PA mem-

branes. 

2.2.1. Carbon-Nanotube-Based Nanocomposites 

This class of materials has attracted widespread interest in the scientific community 

for a wide range of applications due to their unique properties. The inner diameter of 
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CNTs can be adjusted within a narrow range to ensure high-efficiency performance of 

CNT-based membranes [214]. Compared to NF and RO membranes, CNT-based mem-

branes are more resistant to biofouling, thus reducing operating costs [214]. Incorporation 

of CNTs in the polymer matrices leads to better thermal, mechanical, electrical, and rheo-

logical properties, even at low concentrations [213,215,216]. However, CNTs usually ag-

gregate together because of van der Waals interactions, thus the efficient fabrication of 

these matrices is critical in order to optimize the performance of these nanocomposites 

[217]. Shawky et al. synthesized nanocomposite membranes by grafting a PA substrate 

with multiwalled carbon nanotubes (MWCNTs). It was found that a loading of 15 mg g−1 

of MWCNT resulted in an increase in salt rejection (24 → 76%) and mechanical properties 

(34.3 Mpa) with only a small decrease in water flux (32 → 28 L m−2h−1) [218]. Dumee et 

al. fabricated a dense layer of PA on a support substrate of a hydroxyl-functionalized CNT 

mesh, which resulted in higher porosity (>90%), low WCA (<20°), and high water uptake 

capacity (17 wt.%) compared to PSf membranes paving the way for FO and RO applica-

tions [219]. 

Lee et al. prepared a microporous membrane by incorporating 0.5 wt.% CNT in PSf 

support matrix and demonstrated an increase in water flux (268 → 342 L m−2h−1bar−1), 

surface porosity (1.4 → 3.8%), and salt rejection (97.4 → 97.7%) while maintaining the 

WCA (66.2 → 66.6°). This paved the way for designing optimized supports for FO and 

pressure-retarded osmosis [220]. Using π- π stacking and hydrophobic interactions, 

Zhang et al. designed an ultrathin film (1.5 µm) with an entangled mesh of CNTs uni-

formly coated with hyperbranched anthracene ending poly(ether) moieties (schematic is 

shown in Figure 7) [221]. These membranes displayed selective adsorption towards dyes, 

separation efficiency of up to 100% for molecules with similar backbones and the same 

charge states, and the ability to be regenerated without compromising efficiency. For dyes 

such as erythrosine B and Evans blue, adsorption capacities went up to 300 µmol g−1 for 

an initial concentration of 300 µmol L−1 in 6 mL phosphate-buffered aqueous media at pH 

7.2, proving these nanocomposites to be promising nanoadsorbents for wastewater treat-

ment [221]. Wu et al. fabricated an electrospun porous support layer of CS/PVP/PVA and 

single-walled CNTs (SWCNTs) were incorporated by the electrospraying technique along 

with CS and PVP. Optimized UF thin-film membranes exhibited a water flux of 1533.26 

L m−2h−1 , which is comparable to commercial PVDF UF membranes. These membranes 

also achieved excellent dye rejection (malachite green (MG), 87.20%; MB, 76.33%; CV, 

63.39%) and heavy metal removal (Cu2+, 95.68%; Ni2+, 93.86%; Cd2+,88.52 %; Pb2+, 80.41%), 

in addition to having enhanced antifouling properties [217]. 

 

Figure 7. Schematic of the fabrication of anthracene-ending hyperbranched poly(ether amine)-

coated carbon nanotube thin films formed by vacuum filtration. Adapted with permission from 

Zhang et al. [221]. Copyright (2016) American Chemical Society. 

2.2.2. Graphene/Graphene Oxide (GO)/Reduced Graphene Oxide (rGO)-Based Nano-

composites 
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Due to the hydrophobicity and mono-atomic thickness, graphene has been exten-

sively researched for membrane separations. Water permeation is extremely restricted in 

graphene due to the blocking of passage by the delocalized electron clouds due to π- π 

conjugation in the aromatic rings in graphene [222]. However, the adjacent interlayer dis-

tance can be effectively enlarged via intercalation, such as oxidation and subsequent ex-

foliation, or defects can be created in the form of pores to enhance membrane permeability 

while maintaining salt rejection [223,224]. GO contains several oxygen-rich functional 

groups (carboxylic acid, hydroxyl and epoxide groups), making this lamellar 2D structure 

hydrophilic, easily compliable to surface modifications, exhibit better permeability, and 

have good dispersibility in a variety of solvents [222,225] Due to this oxidation, GO be-

comes insulative, having poor thermal conductivity compared to graphene. Hydrophobi-

city, electrical, and thermal conductivity is partially restored by reducing GO as rGO [226]. 

Each of these forms of graphene is unique and has been extensively investigated for water 

and wastewater treatment. Zhang et al. prepared a nanofibrous membrane by performing 

an imidization reaction on electrospun poly(amide) acid and directly depositing rGO on 

the polyimide membrane by dip coating along with solvothermal reduction of GO. This 

membrane achieved a 99.19% oil–water separation efficiency, water flux up to 2040.04 

L m2h−1, and retained its mechanical integrity under harsh conditions making it an attrac-

tive candidate for wastewater treatment [227]. Najafabadi et al. obtained a nanofibrous 

membrane by electrospinning CS along with GO. SEM analysis of GO loaded up to 0.7% 

found a decreased diameter of the fibers because of the electrical effect GO had on the 

precursor gel used for electrospinning. Analysis of the adsorption kinetics was consistent 

with external as well as internal diffusion during the sorption process, resulting in a heavy 

metal ion adsorption capacity of 423.8, 461.3, and 310.4 mg g−1 for Pb2+, Cu2+, and Cr6+, 

respectively at 45 °C with an equilibrium time of 30 min [228,229]. Kim et al. described the 

creation of a FO composite membrane by entwining GO sheets with a cross linked 

poly(Nisopropylacrylamide-co-N,N’-methylene-bisacrylamide) network on a highly po-

rous nylon substrate. This membrane was less than 40 nm and demonstrated a water flux 

of 25.8 L m−2h−1 and a salt rejection of 99.9%. The membrane had excellent chlorine re-

sistance along with structural stability and the potential to be utilized for FO [230]. Wang 

et al. hot-pressed rGO on an electrospun PAN membrane to obtain a NF desalination 

membrane. It exhibited a higher water flux of (8.41 → 15.0 L m−2h−1) compared to the 

pristine PAN membranes measured at 10 bars. Moreover, 81% of the initial flux was re-

gained after regeneration. Due to the size exclusion effect, separation rejections of 90.0% 

and 23.8% were achieved for MgSO4 and NaCl, respectively, where the rGO nanochannels 

were considered to be narrower than the hydrated ion size of SO42−, but wider than the Cl− 

hydrated ion size [231]. Ganesh et al. incorporated GO into PSf membranes using the wet 

PI method, resulting in an introduction of macrovoids (shown in Figure 8), enhanced hy-

drophilicity, water flux, and Na2SO4 rejection (>40 → 72%) at 4 bar pressure using 2000 

ppm loading [232]. 

Table 4 lists the benefits of impregnating GO in polymer substrates while categoriz-

ing different filtration studies to help rationalize the choice of MF, UF, NF, or RO so as to 

maximize either selectivity or permeability. Typically, the water flux decreases from MF 

towards RO as the pore size decreases. These membranes are capable of a wide variety of 

applications ranging from filtration, separation, adsorption, rejection, antifouling, and 

self-cleaning, among others, as cited with specific examples below [233]. 
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Table 4. A summary of membrane types, applications, and enhancements in properties of nanocomposites due to incorporation of GO. 

Membrane Application Results (Compared to TFCs) References 

rGO/PVDF MF (1 bar) 
Enhanced water flux: 1024 L m−2h−1; Acetaminophen rejection: 72%; Triclosan rejection: 81%; Enhanced 

antifouling 
[234] 

TiO2/GO/PVDF  UF (1 bar) 
Water flux: 487.8 L m−2h−1; BSA rejection: 92.5%; Enhanced photodegradation efficiency; Enhanced antifouling; 

Self-cleaning 
[235] 

TiO2@GO/PES UF (1 bar) Water flux: 109.8 L m−2h−1; BSA rejection: 99.1%; MB photodegradation rate: 95.1%; FFR: 86.1% [236] 

Ag@GO/PVDF UF 
Water flux: 491 L m−2h−1; Flux loss: 21%; Improved hydrophilicity (86.1 → 62.5°); mechanical strength (1.94 → 

2.13 MPa); Enhanced antifouling due to GO 
[237] 

GO-ND/PVC UF (2 bar) 
Improved Water flux (0 → 0.15 wt.%): 200 → 440 L m−2h−1; BSA rejection: 95.08%; Flux recovery: 83.07%; 

Enhanced hydrophilic, antifouling, and mechanical strength  
[238] 

GO/PANI/PVDF NF (1 bar) 

Enhanced water flux (0 → 0.1% wt./v GO): 112 → 454 L m−2h−1; BSA rejection: 38.6 → 78.3%; Allura red: ~80 → 

98%; Methyl orange: ~80 → 95%; Enhanced hyrophobicity; degradation temperature: 398 → 470 °C; Improved 

Tensile strength: 32 → 90 MPa, Enhanced antifouling 

[239] 

COOH-GO/PA NF (10 bar) 
Enhanced water flux (0 → 0.07% wt./v GO): 110.4 L m−2h−1; New Coccine (dye) rejection: 95.1%; NaCl rejection: 

25%; Improved hydrophilicity and surface charge density 
[240] 

GO/PPS NF (0.3 bar) 
Enhanced flux: 325.65 L m−2h−1; Methyl blue rejection: ≥99%; Methylene blue rejection: ~99%; Rhodamine B 

(RhB) rejection: >99% 
[241] 

rGO-NH2/PA NF (2 bar) 
Enhanced water flux (0 → 50 mg L−1 rGO-NH2): 30.44 → 38.57 L m−2h−1; Salt rejection: NaCl: 26.9%, Na2SO4: 

98.5%, MgSO4: 98.1%, CaCl2: 96.1%; Improved antifouling properties 
[242] 

Zeolite/GO/PVDF RO (55 bar) 
Enhanced water flux (GO:Zeolite: 0.07): 15.6→ 34.5 L m−2h−1; Enhanced salt rejection: 82.8 → 96.86%; Higher 

porosity; Improved hydrophilicity 
[243] 

GO/PSf RO (55 bar) 

Enhanced water flux (0 → 0.5 wt.% GO): 27.2 → 35.6 L m−2h−1; NaCl rejection: 98.8 → 99.2%; Higher porosity: 63 

→ 71.1%; Surface free energy: −91.63 → −108.68 mJ m−2 (higher wettability); Enhanced tensile strength: 17.2 → 

23.6 MPa 

[244] 

GO: graphene oxide; rGO/PVDF: Injection of rGO dispersion into PVDF membrane; TiO2/GO/PVDF: Blending of PVDF with TiO2 and GO; TiO2@GO/PES: layer-

by-layer self-assembly of TiO2-loaded GO as few layers on PES membrane; Ag@GO/PVDF: Blending of PVDF with Ag-loaded GO; GO-ND/PVC: Incorporation of 

GO grafted with nanodiamond-COOH (GO-ND) into PVC membrane via IP method; GO/PANI/PVDF: Incorporation of GO and PANI in PVDF (PI); COOH-

GO/PA: Incorporation of Carboxyl functionalized GO in polyamide (PA) membrane impregnated on PSf substrate via IP; GO/PPS: Nanographene GO stacked on 

the surface and pore channels of poly(p-phenylene sulfide) membrane by crosslinking through Ca2+, Cu2+, and Mg2+ (solution casting); Embedding amino rGO 

(rGO-NH2) into PA layer on the inner PES hollow membrane (IP process): rGO-NH2/PA; zeolite/GO/PVDF: Incorporation of zeolite and GO in PVDF membrane 

(solvothermal method); GO/PSf: Thin film of PA on Incorporation of GO in PSf (PI method).
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Figure 8. Cross sectional SEM illustration of (a) pristine PSf, (b) 1000 ppm GO loaded PSf, (c) 2000 

ppm GO loaded PSf. Adapted with permission from Ganesh et al. [232]. Copyright (2013) Elsevier. 

2.2.3. Computational Studies 

MD and DFT calculations have been extensively used in water purification and treat-

ment systems [245-248]. Simulation studies of nanostructured carbon-based thin films 

have gained increased effort by researchers, offering new possibilities and understand-

ings of the fundamental structural and functional properties of these films. Despite mod-

est success, the directional alignment of incorporated CNTs as nanofillers within the pol-

ymer matrix remains a matter of significant effort. Successfully aligned CNT morphology 

can yield maximum theoretical values of salt rejection and water flux. The focus of subse-

quent research has addressed this issue using computational studies. Briefly, Yang et al. 

annealed vertically aligned (VA) CNT arrays at 1500 °C, etched to open the CNTs and 

embedded within a spin-coated thin layer of polydimethylsiloxane (PDMS) to form a VA 

open ended hybrid membrane. The transport mechanism of various classes of molecules 

(C6H5OH, CO2, and N2) was evaluated using DFT calculations. It was found that the ad-

sorption energy of phenol on the PDMS chain, the external wall, and the internal wall of 

CNT were −81.0, −69.5, and −208.6 kJ mol−1, respectively, using DFT calculations. From 

experimental results, they found that the single gas permeability of CO2 and N2 and binary 

gas (CO2/N2) separation had superior performances compared to unannealed, close-

ended, and unaligned control membranes [249]. Bisignano et al. created an ab initio meth-

odology to study the high-capacity rejection of the small molecular weight emerging con-

taminant racfluoxetine, glucose, and other small molecules (ethanol, glucose, water) with-

out compromising the membrane flux. This was done by simulating VA MWCNT arrays 

embedded within polyester or CS films to form a nanocomposite membrane. This novel 

algorithm included a study of functionalized MWCNT edge atoms at their open ends. The 

ends of the tubes were functionalized with polymers with intrinsic microporosity PIM-1 

monomers. It was observed that the rejection of molecules was in accordance with a size 

exclusion mechanism with the highest rejection of racfluoxetine achieved using MWCNTs 

with 4.44 nm internal diameters. Aligning the MWCNTs can produce a flux that is three 

times higher than the unfunctionalized membrane. MWCNT with 4.44 nm diameter pro-

vided the best tradeoff between water permeability, effective width for maximum func-

tionalization, and density of VA tubes [250]. 
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In a study by Kim et al., a nanocomposite membrane was synthesized using interca-

lation of rGO functionalized with deprotonated poly-N-phenylglycine and Fe3O4 NPs that 

exhibited 95% degradation capacity of Cu(II). DFT calculations with RPBE exchange–cor-

relation functionals were used to predict sorption affinity for Cu(II) at low and high pH. 

They found that there is stronger binding at high pH compared to low pH due to depro-

tonated functional groups. The adsorption process is best characterized as chemisorption 

at high pH but physisorption at low pH [147]. Khajouei et al. fabricated an antifouling UF 

membrane by incorporating GO NPs in PSf polymer matrix and used OPEN-MX cluster 

computing to evaluate the optimal loading percentage for GO deposition within a range 

(0.25, 0.5, 0.75, and 1 wt.%). They found that a loading of 0.75 wt.% was the most optimally 

stable state and, experimentally, this loading resulted in the optimal tradeoff between wa-

ter flux and nitride rejection. Khajouei et al. deduced that for GO loading higher than the 

optimal concentration, the performance dropped due to the uncertain position of GO 

functional groups on the membrane surface. Wang et al. used a DFT simulation to under-

stand the mechanism of interaction of pharmaceutical contaminants, triclosan (TCS), and 

acetaminophen (AAP) with rGO using Vienna ab initio calculations and found that the 

most stable adsorption configuration of AAP corresponded to the interaction between ac-

ylamino groups on AAP and hydroxyl groups on rGO with a calculated binding energy 

of 0.62 eV. Similarly, the most stable adsorption configuration on TCS corresponded to 

the interaction between hydroxyl groups on TCS and hydroxyl groups on rGO with a 

binding energy of 0.56 eV. This shows that AAP has a higher affinity than TCS to the rGO 

surface, which is consistent with filtration experiments of rGO layers on the PVDF mem-

brane (adsorption capacity of AAP and TCS: 0.023 mmol g−1 and 0.014 mg g−1, respec-

tively) [234]. A short summary on the evaluation of foulant and PA membrane interactions 

using computational studies have been shown in Table 5. 

Another efficient and sustainable method is the grafting of functional polymer 

bushes onto or from the surfaces of polymer substrates or nanostructures. This leads to 

unique morphologies, thereby exposing functional groups that can readily bind to con-

taminants. The covalent grafting of the polymers to the nanostructured scaffold results in 

reduced leaching and higher chemical stability for prolonged usage. For example, Ha et 

al. grew polystyrene brushes from CNT surfaces by synthesizing vinyl-group-functional-

ized CNTs and performing in situ polymerization in the presence of an initiator [251]. 

Similarly, poly(acrylic acid) (PAA) brushes were grafted onto the PVDF membrane using 

a physisorbed free radical polymerization technique, and Ag NPs were immobilized on 

PAA imparting hydrophilicity, anti-organic fouling, and anti-biofouling properties to the 

PVDF membrane [252]. Recently, Ouyang et al. developed an attractive membrane where 

they grafted an amphiphilic polymer, PVP, onto the surface of the hydrophobic PP mem-

brane. This membrane had a water flux of 50,000 L m−2h−1bar−1 with an adsorption ca-

pacity of 18.5 mg m−2 (42.6 mg g−1) for the emerging contaminant bisphenol A (BPA). 

Regeneration and reusability studies showed that the removal capacity remained above 

94% even after 10 adsorption/desorption cycles of BPA [253]. Sahu et al. fabricated short 

polymer brushes of anion exchange resins of vinylbenzyl trimethylammonium chloride 

and covalently functionalized it onto different carbon nanostructures (SWCNT, fluo-

rographite) in aqueous media that gave rise to conformally coated pinhole-free mesopo-

rous architecture and partially exfoliated stacked nanoplatelet-like thin films that deliv-

ered a flux capacity of 692 L m−2h−1  and 1100 L m−2h−1 , respectively. Functionalized 

SWCNT demonstrated a maximum adsorption capacity of 139 mg g−1 for sodium fluo-

rescein and functionalized fluorographite removed 99% of the emerging contaminant per-

fluorooctanoic acid to below 100 parts per trillion, which is close to the health advisory 

limit set by US EPA [74,75,254]. 
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Table 5. A summary of findings of computational studies contributing to understanding foulant interactions, effect of ions, and hydration properties of PA mem-

branes in desalination application. 

Membrane Type Computational Method Used Modeling Results Reference 

CNT embedded in mem-

brane 

Quenched solid DFT to understand effect of foulants, 

moving particle semi-implicit method to understand 

implication of foulant (BSA) on velocity and pressure 

understand foulant (BSA) 

Due to fouling, there was decrease in BET surface area (12.63 → 9.77 

m2g−1), average pore size, and pore volume because of saturated 

mesoporous structure, foulant content increasing dead flow section, and 

membrane pressure 

[255] 

CNT and CNF incorporated 

in membrane 

LAMMPS and OpenMM Ver. 7.5 package to study 

hydration and permeation with boron as antiscaling 

contaminant 

Simulation demonstrated higher H2O diffusion (0.766 × 10−5 → 0.923 × 10−5 

cm2s−1) after incorporating CNT and CNF compared to pristine 

membrane, CNF enhanced water hydration and boron diffusion on the 

membrane, and CNT responsible for increased charge transfer to PA 

[256] 

MWCNT incorporated in PA 

membrane 

LAMMPS to study interaction between membrane surface 

and foulant (BSA) 

MWCNT-PA membrane exhibited superior antifouling compared to pris-

tine due to enhanced hydrophilicity, smoother surface, and results in a 

stiffer PA structure that lowers structural conformity with BSA 

[257] 

PA and GO membranes 
MD simulation to study the effect of presence of ions (Na+, 

Cl−) on BSA–membrane interaction 

With increase in ionic strength, no changes were observed for protein-PA 

membrane while repulsion was observed between protein-GO 

membrane, PA showed attractive interaction with BSA while GO showed 

a repulsive one 

[258] 

CNT incorporated in mem-

brane 

LAMMPS to study effect of ions and nanomaterials on 

membrane fouling during crossflow measurements includ-

ing natural organic matter (NOM) or alginate. 

Low MW NOM interacts irreversibly with surface cavities of PA, high 

MW alginate either uncoil and spread on the surface or bind to foulant 

via ionic bridge due to Ca2+ ions, CNTs induce a stiffer and less rough 

surface, leading to low conformity to foulant interaction 

[259] 

BSA: Bovine serum albumin; PA: polyamide; BET: Brunauer–Emmett–Teller; MWCNT: multiwalled carbon nanotubes; CNF: carbon nanofibers; GO: Graphene 

oxide; MW: molecular weight; LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator; DFT: Density functional theory. 
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2.3. Zeolite-Based Nanocomposite 

As shown in Table 4, membrane performance is an optimization between selectivity 

and permeability. Zeolites are a cost effective and green ceramic membrane precursor and 

have shown the potential to simultaneously have high rejection/selectivity and high-water 

flux [37,260]. Zeolites are three-dimensional porous crystalline structures of aluminosili-

cates with primary building units of alumina or silica tetrahedra that organize to form 

secondary building units that are responsible for the development of unique zeolite prop-

erties [261]. Zeolites are classified based on their origin (natural or synthetic), silicon-alu-

mina ratio, pore size, crystal structure and composition, among other factors [262]. Cur-

rently, there are more than 70 different types of zeolites and more than 200 modified zeo-

lite frameworks utilized in various engineering applications [260,263,264].  

The ability of zeolites to contribute to water treatment applications comes from their 

well-defined porous structure with negatively charged surfaces, voids, and flow channels. 

These surface charges are balanced by exchangeable ions. Monovalent alkali metal ions 

and divalent alkaline earth metal ions within the zeolite structure allow for easy ion ex-

change processes [265-267]. Besides metal cations and water molecules in the pores and 

cavities, other types of molecules and cationic groups can be accommodated as well. For 

example, there is a selectivity order for the exchange of various cations by clinoptilolite 

zeolite materials [266]. The silica–alumina ratio in a zeolite is responsible for its chemical 

stability and the degree of cationic exchange within the zeolite. Zeolites with low or mod-

erate silica content exhibit hydrophilicity, electrostatic interaction with polar molecules, 

and good adsorption specificity. This gives rise to inter-crystalline defects, which eventu-

ally become a tradeoff for selectivity [268]. Zeolites with higher silica content showcase 

hydrophobicity and are better suited for removing emerging contaminants from drinking 

water [261]. Depending on the width of the flow channels, zeolites can act as molecular 

sieves, whereas the width can be tuned by changing the atoms in the framework. Hence, 

separations in zeolites can occur via competitive adsorption, ion exchange, molecular siev-

ing, or charge exclusion mechanisms [269-271]. 

2.3.1. Naturally Available Zeolites 

Clinoptilolites ((K2, Na2, Ca)3Al6Si30O72•21H2O, monoclinic) are some of the most 

abundant and economical zeolites of the heulandite category. They have high crystallinity 

and have been extensively used for water treatment [272]. Habib et al. impregnated PVC 

membranes with clinoptilolite NPs (0.5 wt.%) and the morphology analyzed under field 

emission SEM revealed the presence of larger macrovoids that could facilitate the effective 

diffusion of water. The incorporation of clinoptilolite in the nanocomposite membrane led 

to higher hydrophilicity owing to the presence of hydroxyl groups and higher water flux 

(13.9 → 20.2 L m−2h−1) after 300 min at 0.1 bar pressure, but resulted in a decrease in me-

chanical strength. The antifouling performance was improved, with a decrease in irre-

versible fouling rate (19.3 → 6%) and an increase of FRR (80.7 → 94%) for a 0.5 wt.% 

PVC/clinoptilolite nanocomposite compared to the pristine polymer [273]. Casadellà et al. 

prepared MMMs by blending different wt.% of clinoptilolite into PSf and PVP matrix for 

selective recovery of NH4
+ and K+. MMMs with 70 wt.% of clinoptilolite particles showed 

recovery or desorption capacities of 75% and 60%, respectively, for NH4
+ and K+  with H+ 

ions using ultrapure water at 60 °C [267]. Natural zeolite materials have shown molecular 

sieving, high selectivity, and high cation exchange capacity, yet water flux is often a per-

formance constraint. Moreover, impurities restrict their exchange efficiency. Many of 

these limitations can be circumvented using synthetic zeolites [260,274]. 

2.3.2. Synthetically Available Zeolites 

Synthetically produced zeolites have a controlled composition, which can be manu-

factured at a large scale. Moreover, the structural features of zeolites can be exploited, and 
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the total molecular charge of the zeolite framework can be modified for specific ion diffu-

sion and separation technologies. In the following section, a holistic review of mainly syn-

thetically produced zeolite materials for various water treatment applications are dis-

cussed in detail. The incorporation of zeolite into the polymeric matrix allows for en-

hanced chemical and mechanical stability, permeability, selectivity, adsorption, separa-

tion, and desalination processes [275].  

Organic Dyes 

Zeolites hold remarkable potential in the removal of toxic organic dyes from 

wastewater due to their strong electrostatic interactions [276-278]. Song et al. prepared a 

robust cellulose nanofibrous UF membrane by embedding Zeolite Imidazole Framework-

8 (ZIF-8, class of metal organic frameworks) as an anchor to hold 2,2,6,6-tetramethylpi-

peridine 1-oxyl radical (TEMPO) oxidized cellulosic membrane together using an in situ 

synthesis (shown in Figure 9). It was found out that the 21 wt.% ZIF-8-loaded nanocom-

posite membrane (20 µm thickness) showed optimum porous structure, with a smaller 

flux drop (29%) and a higher water flux of 84 L m−2h−1bar−1 as compared to 21 wt.% 

blend composite and pristine cellulose nanofibers (CNF) with water flux of 11 and 6 

L m−2h−1 , respectively (after 24 h of filtration (at 1–3 bar)). These membranes showed 

highly selective removal of cationic dyes (Janus Green B, 98.9%; MB, 93.8%) compared to 

negatively charged and neutral dyes due to electrostatic interactions with the negatively 

charged nanofibers [279]. 

 

Figure 9. A 21 wt.% ZIF–8 loaded 2,2,6,6-tetramethylpiperidine 1-oxyl radical oxidized cellulose 

nanofibers membrane. Adapted with permission from Song et al. [279]. Copyright (2019) Elsevier. 

Gowriboy et al. fabricated nanocomposite membranes by blending ZIF-8 NPs with 

PSf and CS, which resulted in enhanced crystallinity, hydrophilicity (WCA, 85.7° → 57.1°), 

surface area (580.94 m2 g−1), thermal, and mechanical stability. This membrane demon-

strated removal of both cationic and anionic dyes (MB, 94.11%; RhB, 94.01%; Acid blue, 

86.6% and Congo Red (CR), 85.50%) due to π-π, hydrogen bonding, and electrostatic in-

teractions. The trend of enhancement in porosity and hydrophilicity of these membranes 

can be observed in Figure 10a [280]. Nanocomposite RO membranes were fabricated by 

Kim et al. from amino groups carrying sulfonated poly(arylene ether sulfonate) and ami-

nated EMT type zeolite NPs. These membranes exhibited excellent chlorine resistance as 

evidenced by a negligible reduction in salt rejection (98.8%) and increment in water flux 

(37.8 L m−2h−1) by 12.7% and 2.5 L m−2h−1, respectively, after the chlorination test [281]. 

Dai et al. fabricated a membrane by electrospinning poly(lactic acid) and ZIF-8 loaded GO 

(ZIF-8@GO) and analyzed for hydrophilicity along with MB photocatalytic degradation. 

The enhanced hydrophilicity was due to the presence of large numbers of hydroxyl and 

carboxyl groups on the surface of GO. The mechanism of photocatalytic degradation was 

due to excitation and transfer of electrons from organic ligands of ZIF-8 to GO that react 
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with O2 to produce O2•−. This radical anion can react with H+ to produce H2O2 and subse-

quent side reactions generate OH• radicals (Schematic shown in Figure 10b). These highly 

reactive species cause the photocatalytic degradation of MB (90%), even at low concentra-

tions of ZIF-8@GO (0.06 mg mL−1) [69]. 

 

Figure 10. Integration of new membrane properties due to ZIF–8 addition: (a) Enhanced hydro-

philicity in ZIF–8 modified membrane [280], ©  Elsevier, 2022; (b) Possible mechanism for ZIF–8 

mediated photocatalytic degradation of methylene blue [69], ©  ACS Omega, 2018.  

Heavy Metals 

Heavy metals are a growing concern for environmental pollution due to the rapid 

growth of industrialization, agriculture, and urbanization [282]. Over the past decade, 

consistent efforts have been made to modify the surface of zeolites so that they not only 

possess cation exchange properties but also provide high capacity and selective adsorp-

tion [283]. ZIF-67 NPs loaded carboxylated GO sheets were impregnated in PSf hollow 

fibrous membranes, which were used for Cu2+ and Pb2+ removal. These membranes 

demonstrated a Langmuir adsorption isotherm with an excellent water flux of 346 

L m−2h−1 and FRR of 95.7%. Adsorption capacities of these membranes for Cu2+ and Pb2+ 

were 66.4 mg g−1 and 86.4 mg g−1, respectively, and contaminated water testing resulted 

in 94.5% and 97.8% rejections, respectively, without significant loss from regeneration cy-

cles [284]. Qiu et al. fabricated a TFNC membrane by embedding polydopamine-modified 

ZIF-8 in a crosslinked matrix generated by poly(ethyleneimine) (PEI) and 1,3,5-ben-

zenetricarboxylic acid chloride. This FO membrane exhibited a 95.8% rejection and a 5.95 

L m−2h−1bar−1 water permeability for 5.0 mM of MgCl2 under 1.0 bar where this highly 

selective rejection of MgCl2 decreased with increased loading of polydopamine-modified 

ZIF-8. This is mostly due to the Donnan exclusion effect, resulting in repulsion between 

divalent cations and the positively charged surface due to PEI. However, the water flux 

increased with NP loading due to the optimal interface voids generating continuous chan-

nels, an increase in pore size, and positive compatibility between ZIF-8 and PA matrix. 

This membrane exhibited remarkable FO mode rejection of heavy metal ions (Cu2+, 99.1%; 

Ni2+, 98.3%; Pb2+, 97.7%) [285]. Li et al. fabricated a UF membrane by electrospinning ZIF-

8 with PAN solution and demonstrated adsorption efficiencies of 89%, 92%, and 76% for 

CR, Pb2+, and Cu2+, respectively. Adsorption mechanisms of these contaminants were in-

vestigated by DFT calculations and MD simulations. It was found that all the contami-

nants easily adsorb on the ZIF-8 surface via physisorption. In addition to this, some frame-

works collapsed due to release of Zn2+ due to Pb2+ adsorption, meaning ZIF-8 takes up an 

ion exchange role, resulting in chemisorption for Pb2+. MD simulations investigated the 
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dynamic approach of Cu2+ at ZIF-8 surface and revealed that under 5 ns, all Cu2+ ions mi-

grated into ZIF-8 due to interactions between Cu2+ and carbon and oxygen atoms; within 

20 ns, dynamic equilibrium is achieved (shown in Figure 11) [286]. A comprehensive over-

view of zeolite–polymer nanocomposite membranes used for the removal of heavy metals 

and other molecules/ions are shown in Table 6. 

Table 6. An overview of nanocomposite membranes for the effective removal of especially heavy 

metal ions and few inorganic ions and molecules. 

Nanocomposite Membrane Composition 
Heavy Metal Ion (or Other 

Molecules/Ions) 

Adsorption Capacity 

(𝐦𝐠 𝐠−𝟏) (or Recovery/ 

Removal Rate b (%)) 

References 

Incorporation of NaX zeolite NPs into PSf mem-

brane 
Ni(II), Pb(II) 122.0, 682.0 [265,287] 

Impregnation of zeolite and PVP in matrix of PSf Cu(II) 38 [288] 

Hybrid membrane made up of Ca-Activated zeo-

lite, PVP, and PES blend 
PO4

3− 70 b [289] 

Fabricating ZIF-8 NPs into cellulose UF membranes As(III), methylene blue 97.7, 100 b [71] 

Mixing of zeolite into chitosan (CS) and poly(vinyl 

alcohol) PVA mixture via electrospinning 
Cr(VI), Fe(III), Ni(II) 8.84, 6.16, 1.77 [290] 

Mixture of Polycaprolactone and clay was electro-

spun 
Cd(II), Cr(III), Cu(II), Pb(II) 

 

29.59, 27.23, 25.36, 32.88 
[291] 

Mixture of PVA and clay was electrospun 14.58, 17.36, 16.46, 16.50 

Integrating ZIF-8 NPs into PAN UF membrane Congo Red, Pb(II), Cu(II) 89, 92, 76 b [286] 

Embedding zeolite and PVP into PSf matrix Cu(II) 96.4 b [292] 

Blending of zeolite into CS and PVA mixture via 

casting 
Cr(VI) 450 [293] 

Incorporating NaX zeolite into PVA via electrospin-

ning 
Ni(II), Cd(II) 342.8, 838.7 [294] 

Pd growth on electrospun mat of zeolite and poly-

acrylonitrile-co-methyl acrylate using electroless 

plating 

Ammonia nitrogen (NH4+-

N) 
92 b [295] 

Deposition of microfine powdered zeolite on outer 

surface of PVDF fiber membrane 

Total organic carbon, total 

nitrogen, NH4+-N 
~18, ~20, ~90 b [296] 

b: Recovery or removal rate in the third column can be identified by values with b superscript. 

 

Figure 11. Migration behavior of Cu2+ on the ZIF–8 framework (a–c). Adapted with permission from 

Li et al. [286]. Copyright (2022) Elsevier. 

Desalination 

Although TFCs usually consist of a PA layer on top with a porous PSf substrate to 

ensure higher permeability than the commercially available cellulose triacetate 
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membranes [297], the loading of zeolite NPs in TFNC membranes has further enhanced 

the water permeability and desalination rate [298]. Zeolite materials have been extensively 

used to fabricate TFNC from TFC membranes by impregnating NPs in the active rejection 

layer of PA or into the PSf substrate to optimize RO and FO specific applications. Zeolite-

loading-based membrane performance is an interplay between the interfacial polymeri-

zation process, surface roughness, and voids or flow channels due to substrate and active 

layer interactions that endow these membranes with new properties. These modifications 

yield enhanced water flux, solute flux, and salt rejection. Cay-Durgun et al. performed 

long term (3000 h) performance testing of NPs-loaded PSf TFNC membranes that exhib-

ited enhanced water permeability, salt rejection, and hydrophilicity (details in Table 7) 

[299]. Ma et al. performed RO and FO tests on a NaY zeolite-loaded TFNC membrane, and 

for FO tests, the active-layer-facing-draw solution (AL–DS) and active-layer-facing-feed 

solution (AL–FS) orientations were evaluated. In order to minimize internal concentration 

polarization, which significantly reduces water permeability, a structural parameter de-

noted as S (thickness × tortuosity/porosity) and the hydrophilicity of membrane substrate 

were taken into consideration in FO tests. A lower value of S is required for superior water 

flux performance, which indicates lower tortuosity, thinner structure, and higher porosity 

[300,301]. B/A is the ratio of solute permeability to water permeability, which is important 

in the selectivity process of FO membranes, where a small B/A value means reduced so-

lute back diffusion [301-304]. Table 6 summarizes the enhancement in characteristics and 

performance of FO/RO specific TFNCs compared to TFCs (or pristine membranes) due to 

the inclusion of zeolite particles. 

Table 7. Comparison of zeolite-loaded TFNC membranes with pristine membranes under specific 

conditions. 

Nanocomposite Mem-

brane 

Operating/Working 

Conditions 
Results References 

Incorporation of NaY 

zeolite NPs into the PA 

layer on porous PSf 

TFNC membrane 

RO tests: 500 mg L−1 

NaCl feed solution un-

der 2.5 bar 

0.1% (wt./v) loaded 0.4% (wt./v) loaded 

[305] 

Enhanced water 

permeability: (4.0 × 10−12 → 

7.1 × 10−12 m Pa−1s−1), 

reduction of salt rejection 

(95.6 → 77.6%), exacerbation 

in B/A (9.74 → 61.1 kPa) 

Decreased water 

permeability (4.13 × 10−12  

m Pa−1s−1), improved 

salt rejection (90.5%), 

improvement in B/A 

(22.2 kPa) 

FO tests: 

Both FS and DS at 500 

mL min−1 cross flow rate 

FS: 10 mM NaCl or DI 

DS: 0.5, 1.0 or 2.0 M 

NaCl 

S value (782 ± 160 µm) comparable to Hydration Tech-

nology Inc. FO membranes 

For DS: 1.0 M NaCl, FS: 10 mM NaCl and 0.1% (wt./v) 

loaded TFNC combination: ~50% enhanced water flux 

in AL-DS (30.7 L m−2h−1), ~50% enhanced water flux 

in AL-FS (14.6 L m−2h−1) 

For DS: 1.0 M NaCl), FS: DI water and 0.2% (wt./v) 

loaded TFNC combination: ~100% enhanced solute 

flux in AL-FS, >100% enhanced solute flux in AL-DS 

Incorporation of 0.30 

wt.% LTA zeolite NPs in 

PA layer on PSf TFNC 

membrane 

Long term test (3000 h) 

under 200 psi 

Enhanced water permeance (3.7 → 5.3 µm MPa−1s−1), 

enhanced salt rejection: (97.4 → 97.9%), improved 

contact angle before test (62.1 → 95.2°), improved 

contact angle after test (44.0 → 50.8°) 

[299] 

Incorporation of NaY 

zeolite NPs in the PA 

layer on porous PSf 

TFNC membrane 

Optimal compatibility at 

0.5 wt.% loading 

Lower S value (0.34 mm) compared to conventional 

TFNC FO membranes (0.96 mm), enhanced water 

permeability (128 → 461 L m−2h−1bar−1), enhanced 

hydrophilicity (contact angle, 53 → 50°) 

[298] 
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FO tests: Both FS and DS 

at 500 mL min−1 cross 

flow rate 

FS: 10 mM NaCl or DI 

DS: 0.5, 1.0 or 2.0 M 

NaCl 

For DS: 0.5 M NaCl, FS: DI and 0.5 % (wt./v) loaded 

TFNC, >100% enhanced water flux in AL-DS (43 

L m−2h−1), >100% enhanced water flux in AL-FS (21 

L m−2h−1) 

For DS (2.0 M NaCl), FS (DI water), and 0.5 % (wt./v) 

loaded TFNC, highest FO water flux reported under 

similar conditions (86 L m−2h−1) 

Incorporation of surface-

modified clinoptilolite 

into PSf substrate by 

phase inversion method 

and coating of PA layer 

on top 

Optimal compatibility at 

0.4 wt.% loading 

Enhanced surface porosity (80 → 85.4%), better water 

permeability (118.2 → 185.3 L m−2h−1bar−1), lower S 

value (0.78 → 0.48 mm), enhanced hydrophilicity 

(contact angle, 71.45 → 57.24°) (surface of clinoptilolite 

modified with hexadecyl trimethyl ammonium 

bromide to enhance hydrophilicity) 

[306] 

RO tests: 20 mM NaCl 

aqueous solution at 2.5 

bar 

For 0.4 wt.% loading, enhanced water permeability 

(1.93 → 2.74 L m−2h−1bar−1), exacerbation in B/A 

value (9.86 → 13.99 kPa), slightly reduced salt rejection 

(96.2% → 94.7%) 

FO tests: 

FS: 10 mM NaCl 

DS: 0.5 or 2.0 M NaCl 

FO performance for 10 mM NaCl as FS and 2 M NaCl 

as DS in AL-DS orientation (for 0.4 wt.% loading): 

~50 % enhanced water flux in AL-DS (33.1 

L m−2h−1), >50% enhanced water flux in AL-FS (~24.1 

L m−2h−1), >100% enhanced solute flux in AL-FS (~15 

L m−2h−1), ~100% enhanced solute flux in AL-DS (~20 

L m−2h−1) 

RO: reverse osmosis; FO: forward osmosis; AL-DS: active-layer-facing-draw solution; AL-FS: active-

layer-facing-feed solution. 

Overall, the high thermal and chemical stability as well as the tunable porous struc-

ture make the zeolite system ideal for high water flux treatment applications. Moreover, 

the ion exchange and molecular sieving properties make zeolites and related frameworks 

promising alternatives for molecule/ion removal, recovery, and desalination [274]. 

2.4. Biopolymer-Based Nanocomposites 

Biopolymer nanocomposite technologies have received significant interest in recent 

years due to their promising applications as sustainable water purification membranes. 

However, research on these materials is mostly limited to MF, UF, or NF applications 

[307]. Although biobased polymeric membranes have been widely researched, issues re-

lated to structural robustness, high-capacity removal, resistance to external conditions, 

and long-term performance are salient features that need to be carefully assessed. Xie et 

al. reconstituted aquaporin Z (channel proteins) into self-assembled poly(2-methyl-2-ox-

azoline)-block-poly-(dimethysiloxane)-block-poly(2-methyl-2-oxazoline) vesicles and im-

mobilized the protein onto a porous cellulose acetate membrane to enhance the membrane 

stability. For the membranes incorporated with aquaporin Z, the salt rejection rose from 

~0% in the control sample to 61% and 75% for NaCl and MgCl2, respectively. These mem-

branes demonstrated a water flux of ~23 L m−2h−1bar−1 while maintaining a high me-

chanical strength, proving to be a promising candidate for NF or FO application [308]. 

This section will shed light on some of the developments on biodegradable cellulose-

based and chitosan (CS)-based membranes leading towards advanced water and 

wastewater treatment applications. 

2.4.1. Cellulose-Based Nanocomposites 
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Cellulose, the world’s most abundant biopolymer, has been extensively studied for 

both its multitude of facile modification mechanisms and its incorporation into water and 

wastewater treatment systems. The first RO membranes were cellulose acetate based 

[309]. The primary C-6 and the secondary C-2 and C-3 hydroxyl groups on the D-glucose 

monosaccharide units allow a variety of reactive mechanisms to be employed [310-313]. 

To be used for water purification and treatment, cellulose has been modified using ester-

ification [314], etherification [315], halogenation [316], phosphorylation [317], xanthation 

[318], oxidation [319], sulfonation [320], carboxymethylation [321], hydrolysis [322], nitro-

oxidation [323], and polymer surface functionalization [324,325] methods. These modifi-

cations can help fine tune their affinity towards specific contaminates and/or add benefi-

cial features [314,324,326-329]. 

Interest in cellulosic nanomaterials is due in part to their high abundancy, low cost, 

biodegradability, sustainability, thermal stability, high flexibility, low density, and me-

chanical strength [325,330-333]. However, despite their environmental benefits due to 

their biodegradability, the long-term performance of these membranes remains a problem 

as they are susceptible to bacterial breeding, which needs to be improved. In a study by 

Xu et al., cellulose nanocrystals (CNC)/Ag were embedded into the PA layer of TFNC NF 

membrane, and 0.01 wt% CNC/Ag loading resulted in high water permeability (25.4 

L m−2h−1bar−1), a high NaSO4 rejection rate (99.1%), and remarkable antifouling (FFR: 

92.6% for humic acid) and antibacterial activity (reduction in E. coli viability: 99.4%) [334]. 

Though CNCs are usually processed by the acid hydrolysis method [335], a plant-based 

or green-chemical-based modification is of prospective research interest. Zhang et al. fab-

ricated a nanocomposite membrane incorporating Ag-loaded TiO2 NPs, CNF, and CS that 

was capable of bacterial eradication (E. coli, 99.97%; B. subtilis, 99.98%; S. aureus, 99.98%), 

high oil–water emulsion (~98.5%), and high MB photodegradation (96.25%) [336]. Yang et 

al. formulated clean water remediation by forming copolymers of tobramycin and dopa-

mine through mussel mimicked polymerization (PDA/TOB) and coated these PDA/TOB 

NPs on a cellulose acetate membrane. These highly durable membranes exhibited remark-

able photothermal efficiency and antibacterial properties, which were used for solar me-

diated steam generation. These low-cost membranes exhibited an evaporation rate of 1.61 

kg m−2h−1 and evaporation efficiency of 92.4% under 1 sun irradiation [337]. Chemically 

or mechanically modified cellulosic nanomaterials have been reported to have a remark-

ably high affinity towards various heavy metals from drinking water. These include 

Cd(II), Cu(II), Pb(II), Hg(II), Ni(II), Cr(III) [315], Ag(I), Co(II), As(V), and Zn(II) [338]. For 

cellulosic materials, the two main mechanisms involved in the removal of heavy metal 

ions are ion exchange and chemical complexation mechanisms [339]. Cellulose materials 

possess excellent hydrophilicity due to the presence of -OH groups on their surface, mak-

ing them perfect additives for TFNC membranes [340]. Hoang et al. deposited cellulose 

nanocrystals (CNC) as an interlayer on PES substrate and a barrier layer was fabricated 

using the IP method. For a loading of 5.5 mg cm−2  of CNCs, the water flux (23.92 

L m−2h−1) was increased by >70% compared to the pristine TFC membrane and demon-

strated exceptional removal efficiency for toxic heavy metals (CuSO4, 98%; CuCl2, 96.5%; 

PbCl2, 90.8%) [341]. A selective ion permeation membrane was prepared by vacuum fil-

tration of a mixed solution of bacterial cellulose (BC) and GO, where porous BC layers 

were intercalated between GO sheets that added to the stability and tensile strength of 

these membranes. These membranes operated on the size exclusion principle where large 

molecules like RhB and MO are rejected and small (hydrated radii < 1 nm) inorganic ions 

(Ni2+, Mn2+, Cl−, [Fe(CN)6]3-) permeate through it at a rate inversely proportional to their 

size (Figure 12) [70]. 
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Figure 12. Mechanisms of free–standing bacterial cellulose and graphene oxide membrane for se-

lective ion permeation. Adapted with permission from Fang et al. [70]. Copyright (2016) Scientific 

Reports. 

TEMPO-oxidized cellulose nanofibers (CN) were embedded within stacked GO 

sheets and the dispersion was coated onto a PVDF membrane to obtain MMMs with high 

water permeability (816 L m−2h−1bar−1) and efficient removal (82–99%) of neutral, ani-

onic, and cationic dyes. They performed reactive MD simulation calculations to under-

stand the mechanism of rejection, which revealed that the dyes exhibited adsorption be-

havior based on H-bonding, π-π stacking interactions between dye molecules and GO 

planes, and self-assembly [342]. Ma et al. incorporated CN and MWCNT in the PVA bar-

rier layer of TFNC composed of a PAN scaffold mid-layer and polyethylene terephthalate 

non-woven substrate for UF applications. Compared to commercial PAN10 UF mem-

branes, they achieved 10 folds higher permeation flux by adding nanofillers without com-

promising the rejection ratio (~99.5%) [343]. 

The dispersion of cellulosic nanomaterials in hydrophobic polymer membranes is 

one of the ongoing challenges associated with these materials. However, it has been re-

ported that surface grafting with polymers can potentially be a solution [339]. Nazri et al. 

incorporated microcrystalline cellulose (MCC) into hydrophobic PES matrix using the 

NIPS method and found that 3 wt.% MCC resulted in improved water permeability (51.50 

L m−2h−1bar−1) compared to the pristine membrane and a 96.14% humic acid rejection. 

Although the inclusion of MCC results in a better PI rate, leading to elongated and bigger 

pore sizes benefiting the flux response, it is important to note that 3 wt.% loading also 

reduced the tensile strength (6.57 → 5.71 MPa) compared to the pristine membrane due to 

an aggregation issue in the casting solution [340]. Other studies have shown better flux 

responses, 485 L m−2h−1bar−1 [344] and 692 L m−2h−1bar−1 [345], when using CNC and 

lignin cellulose nanofibrils in the PES membrane in the presence of PVP additive, which 

adds to the pore-forming property and reduce the aggregation of NPs. 

2.4.2. Chitosan-Based Nanocomposites 

Much like cellulosic nanomaterials, advantages such as low cost, high abundancy, 

reactivity, high hydrophilicity, biodegradability, and biocompatibility make CS nanocom-

posites a subject of interest in the current fields of water and wastewater treatment 

[346,347]. CS has a similar structure to cellulose, with C-2 acetamido groups and amine 

groups replacing the C-2 secondary hydroxyl groups. This allows for an abundance of 

amino and hydroxy groups, which can chelate with positively charged metal ions, cationic 
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molecules, and negatively charged metal oxyacid ions via electrostatic interactions; there-

fore, it is widely used in heavy metal removal [217,348-350]. CS has been employed in 

various forms for water treatment, such as NPs [351], fibers [352], coatings [353], flakes 

[354], nanorods [355], membranes [356], and hydrogels [357], among others. However, 

pristine CS possesses low thermo-mechanical properties, low porosity, and poor stability, 

and therefore requires reinforcement to enhance the membrane’s mechanical strength 

[358,359]. Hydroxyapatite was introduced in the CS solution to form electrospun nano-

composite membranes because pristine CS renders low flexibility, high viscosity, and 

poor mechanical properties, making it difficult to handle. These membranes delivered an 

exceptional adsorption capacity of 296.7, 213.8, and 180.2 mg g−1  for heavy metal ions 

Pb2+, Co2+, and Ni2+, respectively, within 30 min equilibrium time at 45 °C. The sorption 

followed pseudo second order kinetics and a Langmuir adsorption isotherm [348]. Ali-

abadi et al. electrospun polyethylene oxide and CS solution, which formed sorption-selec-

tive nanocomposite membranes for heavy metals in the order: Ni2+ (175.1 mg g−1) > Cu2+ 

(163.7 mg g−1) > Cd2+ (143.8 mg g−1) > Pb2+ (135.4 mg g−1). These nanofibers exhibited an 

average surface area of 312.2 m2g−1  using BET analysis. Regeneration and reusability 

studies for 5 cycles showed gradual reduction in capacity due to the loss of active sites 

during acid regeneration [347]. In another study, CNCs with functional groups (SO3− 

and/or COO−) were incorporated in the CS matrix via the freeze-drying method and cross-

linking was performed using glutaraldehyde vapors. This membrane was successfully 

used for the removal of the positively charged dyes (Victoria Blue 2B, 98%; methyl violet 

2B, 84%; Rhodamine 6G, 70%) after 24 h and demonstrated a water flux of 64 L m−2h−1. 

CNC was not only used as a reinforced nanofiller, but also provided functional sites for 

high capacity adsorption [360]. 

CS has been employed to form nanocomposite membranes using solvent casting, sol-

vent evaporation, and electrospinning techniques to obtain the desired porosities and tar-

geted functionalities for specific adsorption. Gharbani et al. fabricated PVDF/g-C3N4/CS 

membrane via dissolution casting and demonstrated a removal rate of 72.74% for an initial 

concentration of 2 mg L−1 RhB under a pH of 3 and 3% CS loading [361]. Huo et al. fabri-

cated a sustainable acid-resistant CNF/CS membrane using the solvent casting and sol-

vent evaporation method and demonstrated anionic MO removal with an adsorption ca-

pacity of 655.23 mg g−1 due to H-bonding, charge interaction, and n-π stacking interac-

tion with no affinity towards cationic dyes (MB and MG). This membrane demonstrated 

a slight reduction (98.50 → 89.65%) in MO adsorption in reusability experiments after six 

cycles [362]. Wu et al. fabricated an electrospun porous support layer of CS/PVP/PVA, on 

which an active layer coating of SWCNT/CS/PVP was performed using the electrospray 

method, and was finally crosslinked by glutaraldehyde vapors. Optimized UF thin-film 

membranes exhibited a water flux of 1533.26 L m−2h−1 comparable to a commercial PVDF 

UF membrane, a high dye rejection (MG, 87.20%; MB, 76.33%; CV, 63.39%), heavy metal 

removal (Cu2+, 95.68%; Ni2+, 93.86%; Cd2+,88.52 %; Pb2+, 80.41%), and enhanced antifouling 

properties [217]. Montaser et al. developed antimicrobial activity in CS by reacting CS 

with salicylaldehyde as a crosslinker using Schiff base reaction which resulted in sali-

cylimine-functionalized CS that formed a metal complex with TiO2 NPs to form the nano-

composite membrane. These membranes demonstrated full bacterial eradication of S. au-

reus and P. aeruginosa at two different concentrations (0.25 × 10−2 and 0.5 × 10−2 g mL−1). 

The tensile strength and elongation were enhanced due to the integration of TiO2 NPs 

[363]. Yu et al. fabricated a membrane consisting of modified cellulose acetate, modified 

CS, and TiO2 for oil–water separation and Cu2+ adsorption. In order to improve the heavy 

metal adsorption capacity of these membranes, the amino groups in CS were modified 

into N-salicylic groups using the Schiff base. This membrane exhibited 99.4% oil–water 

separation efficiency for cyclohexane. At neutral pH, the adsorption capacity for Cu2+ was 

220.67 mg g−1 and for a concentration of 1000 mg·g−1, the adsorption efficiency was 97% 

[364]. Habiba et al. electrospun a nanofibrous composite of CS/PVA/zeolite that exhibited 
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a 100% increase in Young’s Modulus because of the incorporation of zeolite and an ad-

sorption capacity of 153 mg g−1 for MO dye [365]. 

By 2025, more than 20,000,000 end-of-life RO membranes will be generated globally 

per year [307]. Therefore, using biopolymers for RO techniques will alleviate the waste 

and its environmental impact. However, fouling of these biobased membranes is one of 

the challenging issues while addressing membrane performance. Hegab et al. generated 

a layer of chemically functionalized CS with GO by forming amide bonds between car-

boxylic groups and amino groups of GO and CS, respectively. This layer was fabricated 

on a TFC PA membrane, which was tested against fouling resistance using BSA. This func-

tionalized membrane exhibited enhanced permeation flux (56.1 → 61.5 L m−2h−1), salt re-

jection (88.7 → 95.6%), and FRR (86 → 97%) compared to the pristine PA layer [366]. 

3. Summary, Impact, and Future Scope 

This review summarizes the state-of-the-art as well as comprehensive advances in 

the integration and distributions of various NPs, with morphologies that optimize the 

performance of nanocomposite membranes used for water treatment applications. Vari-

ous fabrication techniques in terms of loading positions of NPs and types of polymeric- 

or NP-based TFNC membranes are summarized in Figure 13. These membranes target 

emerging contaminants in the form of toxic molecules or ions in purified drinking water 

and wastewater. For example, several polymer nanocomposite studies have been con-

ducted using different NPs such as silica NPs [367], nanoscale zero-valent iron [368], 

poly(piperazineamide) [369], selective polyamide layer [370], montmorillonite [371], 

nano-sized MoS2 [372], GO [373], MWCNT [374], cellulose [324], etc., to achieve the effi-

cient removal of PFAS, one of the proposed emerging contaminants by the US EPA. In 

addition to removing pollutants, the merits of integrating NPs in membrane filtration 

technologies includes the addition of structural and chemical properties such as chemical 

and thermal stability, antifouling, addition of surface charge, mechanical strength, en-

hanced hydrophilicity, porosity, tunable pore size and permeability, among others 

[215,375,376]. These nanoadsorbents save time and energy during the water and 

wastewater treatment processes [375]. Despite their extensive use and high removal ca-

pacity, nanomaterials have underlying issues keeping them from widespread applicabil-

ity. Past studies have shown issues of interface incompatibility between the organic poly-

meric layer and inorganic NPs [377-380]. This incompatibility leads to the detachment or 

leaching of nanomaterials from the membrane surface, which not only affects the effi-

ciency of purification but also leads to secondary environmental contamination [40,65]. 

Exposure of nanomaterials into the environment, including natural water resources, can 

result in undesired toxicity and risks that need to be systematically assessed. To minimize 

leaching, further research is needed on reliable techniques such as covalent attachment, 

grafting, or cross-linking to enhance the binding between NPs and the polymer matrix. A 

second issue, due to incompatibility and high surface reactivity, is agglomeration of NPs. 

Unoptimized membrane fabrication or long-term use can challenge membrane perfor-

mance through the formation of undesirable voids and cracks [54,381-383]. 
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Figure 13. Various approaches of fabricating polymers and nanomaterials into membranes for water 

treatment applications: (a) cysteine-grafted cellulose nanofibers impregnated in electrospun poly-

acrylonitrile scaffold (microfiltration) [384], ©  Elsevier, 2014; (b) Graphene oxide (GO)-coated chi-

tosan nanoparticles incorporated into (TFN-M) or at the bottom (TFN-U) of polyamide (PA) layer 

during interfacial polymerization process (ultrafiltration) [64], ©  Elsevier, 2021; (c) carboxylated 

carbon nanofibers embedded into polysulfone layer via phase inversion process with PA layer on 

top (forward osmosis) [385], ©  Elsevier, 2020; (d) GO coated on PA layer via layer-by-layer tech-

nique [386], ©  Elsevier, 2022; (e) Vacuum filtration of bacterial cellulose and GO dispersion [70], ©  

Scientific Reports, 2016; (f) Membrane based on electrospun fibers of homogenous slurry of polyvi-

nylidene difluoride and GO mixed with metal organic framework [67], ©  Elsevier 2022. 

The isolation and reusage of these materials for water treatment or other applications 

could be a possible solution, which supports a circular economy [387-389]. The synthesis 

and fabrication of adsorption and purification membranes should use green chemicals 

and/or solvents to allow a relatively benign approach and reduce the possibility of sec-

ondary contamination [74,254,390,391]. To alleviate the general environmental contami-

nation problem, the use of nanomaterials with photocatalytic activity can be implemented, 

which would allow for the breakdown of the extracted contaminants, making the effluent 

or secondary waste stream free of contamination [375]. However, high operating costs and 

reliance on UV radiation makes this system inefficient [392]. Additionally, it is necessary 

to evaluate the various byproducts of the photocatalyzed degradation, and whether this 

process generates secondary, and possibly worse, contaminants. All of the fabrication 

techniques employing modifications in PSf membranes are relatively expensive. There-

fore, there is a tradeoff between cost efficiency and performance [393]. In order to ensure 
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cost effectiveness and long-term use, regeneration and reusability are important factors to 

be considered for these nanocomposite membranes [43,54,74,75,393]. 

There has been significant research performed to design and synthesize novel high-

capacity, green, sustainable polymer-based nanocomposite membranes for water and 

wastewater treatment. Despite these consistent efforts, several obstacles exist due to lack 

of research studies that can be used as a guide for commercial production [40]. Biode-

gradable polymeric membranes have been attractive for their ability to harness the hier-

archical structural and mechanical properties of naturally produced biomaterials, leaving 

a vanishingly small human footprint on the environment. Nanomaterials are also de-

signed to reduce the impact on the environment by providing highly efficient and reusa-

ble solutions [394]. For example, nanomaterials have been used in automotive exhaust 

systems to promote reactions that reduce pollution and promote cost efficiency [395]. It is 

important to harness the positive effects of nanomaterials that can lead to efficient and 

sustainable TFNC membrane systems. Computational chemistry methods are useful and 

convenient tools in this case to understand small scale complexities of novel membrane 

structures, characteristics, and/or performance. This review provides an overview of the 

extensive research that has been done in laboratories or at the pilot scale on various com-

binations that can help researchers in selecting the required materials and techniques. The 

future research scope includes the evaluation of long-term viability with a focus on regen-

eration and reusability of nanocomposite membranes with real feed solution testing, en-

vironmental contamination due to membrane processing, cost efficiency, and scaling up 

raw material production [40]. To meet the global demand for clean and safe drinking wa-

ter, these knowledge gaps require further investigative research efforts to improve the 

understanding of the commercial-scale production of affordable, efficient, and sustainable 

water and wastewater treatment membranes.  
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