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Abstract

We propose Adversarially Trained Actor Critic
(ATAC), a new model-free algorithm for offline re-
inforcement learning (RL) under insufficient data
coverage, based on the concept of relative pes-
simism. ATAC is designed as a two-player Stack-
elberg game: A policy actor competes against an
adversarially trained value critic, who finds data-
consistent scenarios where the actor is inferior
to the data-collection behavior policy. We prove
that, when the actor attains no regret in the two-
player game, running ATAC produces a policy
that provably 1) outperforms the behavior policy
over a wide range of hyperparameters that control
the degree of pessimism, and 2) competes with
the best policy covered by data with appropriately
chosen hyperparameters. Compared with existing
works, notably our framework offers both theo-
retical guarantees for general function approxi-
mation and a deep RL implementation scalable
to complex environments and large datasets. In
the D4RL benchmark, ATAC consistently outper-
forms state-of-the-art offline RL algorithms on a
range of continuous control tasks.

1. Introduction
Online reinforcement learning (RL) has been successfully
applied in many simulation domains (Mnih et al., 2015;
Silver et al., 2016), demonstrating the promise of solving
sequential decision making problems by direct exploratory
interactions. However, collecting diverse interaction data
is prohibitively expensive or infeasible in many real-world
applications such as robotics, healthcare, and conversational
agents. Due to these problems’ risk-sensitive nature, data
can only be collected by behavior policies that satisfy certain
baseline performance or safety requirements.
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The restriction on real-world data collection calls for of-
fline RL algorithms that can reliably learn with historical
experiences that potentially have limited coverage over the
state-action space. Ideally, an offline RL algorithm should
1) always improve upon the behavior policies that collected
the data, and 2) learn from large datasets to outperform any
other policy whose state-action distribution is well covered
by the data. The first condition is known as safe policy
improvement (Fujimoto et al., 2019; Laroche et al., 2019),
and the second is a form of learning consistency, that the
algorithm makes the best use of the available data.

In particular, it is desirable that the algorithm can main-
tain safe policy improvement across large and anchored
hyperparameter choices, a property we call robust policy
improvement. Since offline hyperparameter selection is a
difficult open question (Paine et al., 2020; Zhang & Jiang,
2021), robust policy improvement ensures the learned pol-
icy is always no worse than the baseline behavior policies
and therefore can be reliably deployed in risk-sensitive de-
cision making applications. For example, in healthcare,
it is only ethical to deploy new treatment policies when
we confidently know they are no worse than existing ones.
In addition, robust policy improvement makes tuning hy-
perparameters using additional online interactions possible.
While online interactions are expensive, they are not com-
pletely prohibited in many application scenarios, especially
when the tested policies are no worse than the behavior
policy that collected the data in the first place. Therefore,
if the algorithm has robust policy improvement, then its
performance can potentially be more directly tuned.

However, few existing works possess all the desiderata
above. Regarding consistency guarantees, deep offline RL
algorithms (e.g. Kumar et al., 2020; Kostrikov et al., 2021)
show strong empirical performance, but are analyzed the-
oretically in highly simplified tabular cases. Theoretical
works (Liu et al., 2020; Jin et al., 2021; Xie et al., 2021;
Uehara et al., 2021) provide systematic analyses of learning
correctness and consistency, but most of them have little
empirical evaluation (Liu et al., 2020) or consider only the
linear case (Jin et al., 2021; Zanette et al., 2021).

Turning to the robust policy improvement property, this is
relatively rare in state-of-the-art offline RL literature. Behav-
ior regularization approaches (Fujimoto et al., 2019; Kumar



Adversarially Trained Actor Critic for Offline Reinforcement Learning

(a) hopper-random (b) hopper-medium (c) hopper-medium-replay (d) hopper-medium-expert

Figure 1. Robust Policy Improvement. ATAC based on relative pessimism improves from behavior policies over a wide range of
hyperparameters (β) that controls the degree of pessimism, and has a known safe policy improvement anchor point at β = 0. Thus, we
can gradually increase β from zero to online tune ATAC, while not violating the performance baseline of the behavior policy. By contrast,
offline RL based on absolute pessimism (e.g., Xie et al., 2021) has safe policy improvement only for well-tuned hyperparameters. The
differences are most stark in panel (d) where ATAC outperforms behavior for β ranging over 3 orders of magnitude (0.01 to 10), compared
with the narrow band of choices for absolute pessimism. The plots show the 25th, 50th, 75th percentiles over 10 random seeds.

et al., 2019; Wu et al., 2019; Laroche et al., 2019; Fuji-
moto & Gu, 2021) are scalable and show robustness for a
broad range of hyperparameters that controls the pessimism
degree; however, they are often more conservative, which
ultimately limits the policy performance, as their robust-
ness is achieved by a proximity regularization/constraint
that ignores the reward information. Some pessimistic algo-
rithms (Liu et al., 2020; Xie et al., 2021) have safe policy
improvement guarantees but only for carefully selected hy-
perparameters. For a more detailed discussion of related
works, see Appendix A.

In this paper, we propose a new model-free offline RL al-
gorithm, Adversarially Trained Actor Critic (ATAC). Com-
pared with existing works, ATAC 1) enjoys strong theoret-
ical guarantees on robust policy improvement over hyper-
parameter that controls the pessimism degree and learning
consistency for nonlinear function approximators, and 2) has
a scalable implementation that can learn with deep neural
networks and large datasets.

ATAC is designed based on the concept of relative pes-
simism, leading to a two-player Stackelberg game formu-
lation of offline RL. We treat the actor policy as the leader
that aims to perform well under a follower critic, and ad-
versarially train the critic to find Bellman-consistent (Xie
et al., 2021) scenarios where the actor is inferior to the
behavior policy. Under standard function-approximation
assumptions, we prove that, when the actor attains no regret
in the two-player game, ATAC produces a policy that prov-
ably outperforms the behavior policies for a large anchored
range of hyperparameter choices and is optimal when the
offline data covers scenarios visited by an optimal policy.

We also provide a practical implementation of ATAC based
on stochastic first-order two-timescale optimization. In par-
ticular, we propose a new Bellman error surrogate, called
double Q residual algorithm (DQRA) loss, which is in-
spired by a related idea of Wang & Ueda (2021) and com-

bines the double Q heuristic (Fujimoto et al., 2018) and
the residual algorithm (Baird, 1995) to improve the op-
timization stability of offline RL. We test ATAC on the
D4RL benchmark (Fu et al., 2020), and ATAC consis-
tently outperforms state-of-the-art baselines across mul-
tiple continuous-control problems. These empirical re-
sults also validate the robust policy improvement property
of ATAC (Fig. 1), which makes ATAC suitable for risk
sensitive applications. The code is available at https:
//github.com/microsoft/ATAC.

2. Preliminaries
Markov Decision Process We consider RL in a Markov
Decision Process (MDP) M, defined by (S,A,P, R, γ).
S is the state space, and A is the action space. P :
S × A → ∆(S) is the transition function, where ∆(·) de-
notes the probability simplex, R : S × A → [0, Rmax]
is the reward function, and γ ∈ [0, 1) is the discount
factor. Without loss of generality, we assume that the
initial state of the MDP, s0, is deterministic. We use
π : S → ∆(A) to denote the learner’s decision-making
policy, and J(π) := E[

∑∞
t=0 γ

trt|at ∼ π(·|st)] to denote
the expected discounted return of π, with rt = R(st, at).
The goal of RL is to find a policy that maximizes J(·). For
any policy π, we define the Q-value function as Qπ(s, a) :=
E[
∑∞

t=0 γ
trt|(s0, a0) = (s, a), at ∼ π(·|st)]. By the

boundedness of rewards, we have 0 ≤ Qπ ≤ Rmax

1−γ =:
Vmax. For a policy π, the Bellman operator T π is defined
as (T πf) (s, a) := R(s, a) + γEs′|s,a [f(s

′, π)], where
f(s′, π) :=

∑
a π(a

′|s′)f(s′, a′). In addition, we use dπ

to denote the normalized and discounted state-action oc-
cupancy measure of the policy π. That is, dπ(s, a) :=
(1 − γ)E[

∑∞
t=0 γ

t1(st = s, at = a)|at ∼ π(·|st)]. We
also use Eπ to denote expectations with respect to dπ .

Offline RL The goal of offline RL is to compute good
policies based pre-collected offline data without environ-

https://github.com/microsoft/ATAC
https://github.com/microsoft/ATAC
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ment interaction. We assume the offline data D consists of
N i.i.d. (s, a, r, s′) tuples, where (s, a) ∼ µ, r = R(s, a),
s′ ∼ P(·|s, a). We also assume µ is the discounted state-
action occupancy of some behavior policy, which we also
denote as µ with abuse of notation (i.e., µ = dµ). We will
use a ∼ µ(·|s) to denote actions drawn from this policy, and
also (s, a, s′) ∼ µ to denote (s, a) ∼ µ and s′ ∼ P (·|s, a).

Function Approximation We assume access to a value-
function class F ⊆ (S × A → [0, Vmax]) to model the
Q-functions of policies, and we search for good policies
from a policy class Π ⊆ (S → ∆(A)). The combination of
F and Π is commonly used in the literature of actor-critic or
policy-based approaches (see, e.g., Bertsekas & Tsitsiklis,
1995; Konda & Tsitsiklis, 2000; Haarnoja et al., 2018). We
now recall some standard assumptions on the expressivity of
the value function class F which are needed for actor-critic
methods, particularly in an offline setting.

Assumption 1 (Approximate Realizability). For any pol-
icy π ∈ Π, minf∈F maxadmissible ν ∥f − T πf∥22,ν ≤ εF ,
where admissibilty ν means ν ∈ {dπ′

: ∀π ∈ Π}.

Assumption 1 is a weaker form of stating Qπ ∈ F , ∀π′ ∈ Π.
This realizability assumption is the same as the one made
by Xie et al. (2021) and is weaker than assuming a small
error in ℓ∞ norm (Antos et al., 2008).

Assumption 2 (Approximate Completeness). For any π ∈
Π and f ∈ F , we have ming∈F ∥g − T πf∥22,µ ≤ εF,F .

Here ∥·∥2,µ :=
√
Eµ[(·)2] denotes the µ-weighted 2-norm.1

Again Assumption 2 weakens the typical completeness as-
sumption of T πf ∈ F for all f ∈ F , which is commonly
assumed in the analyses of policy optimization methods
with TD-style value function learning. We require the ap-
proximation to be good only on the data distribution.

3. A Game Theoretic Formulation of Offline
RL with Robust Policy Improvement

In this section, we introduce the idea of relative pessimism
and propose a new Stackelberg game (Von Stackelberg,
2010) formulation of offline RL, which is the foundation
of our algorithm ATAC. For clarity, in this section we dis-
cuss solution concepts at the population level instead of
using samples. This simplification is for highlighting the
uncertainty in decision making due to missing coverage in
the data distribution µ that offline RL faces. We will con-
sider the effects of finite sample approximation when we
introduce ATAC in Section 4.

1We will use the notation ∥f∥2,D for an empirical distribution

d of a dataset D, where ∥f∥2,D =
√

1
|D|
∑

(s,a)∈D f(s, a)2.

3.1. A Stackelberg Game Formulation of Offline RL

Stackelberg game A Stackelberg game is a sequential
game between a leader and a follower. It can be stated
as a bilevel optimization problem, minx g(x, yx), s.t. yx ∈
argminy h(x, y) where the leader and the follower are the
variables x and y, respectively, and g, h are their objectives.
The concept of Stackelberg game has its origins in the eco-
nomics literature and has been recently applied to design
online model-based RL (Rajeswaran et al., 2020) and on-
line actor critic algorithms (Zheng et al., 2021). The use
of this formalism in an offline setting here is novel to our
knowledge. Stackelberg games also generalize previous
minimax formulations (Xie et al., 2021), which correspond
to a two-player zero-sum game with h = −g.

Offline RL as a Stackelberg game Inspired by the min-
imax offline RL concept by Xie et al. (2021) and the pes-
simistic policy evaluation procedure by Kumar et al. (2020),
we formulate the Stackelberg game for offline RL as a
bilevel optimization problem, with the learner policy π ∈ Π
as the leader and a critic f ∈ F as the follower:

π̂∗ ∈ argmax
π∈Π

Lµ(π, f
π) (1)

s.t. fπ ∈ argmin
f∈F

Lµ(π, f) + βEµ(π, f)

where β ≥ 0 is a hyperparamter, and

Lµ(π, f) := Eµ[f(s, π)− f(s, a)] (2)

Eµ(π, f) := Eµ[((f − T πf)(s, a))2]. (3)

Intuitively, π̂∗ attempts to maximize the value predicted
by fπ, and fπ performs a relatively pessimistic policy
evaluation of a candidate π with respect to the behav-
ior policy µ (we will show Lµ(π, f) aims to estimate
(1 − γ)(J(π) − J(µ))). In the definition of fπ, Eµ(π, f)
ensures fπ’s (approximate) Bellman-consistency on data
and Lµ(π, f) promotes pessimism with β being the hyper-
parameter that controls their relative contributions. In the
rest of this section, we discuss how the relative pessimistic
formulation in Eq.(1) leads to the desired property of robust
policy improvement, and compare it to the solution concepts
used in the previous offline RL works.

3.2. Relative Pessimism and Robust Policy Improvement

Our design of the Stackelberg game in Eq.(1) is motivated
by the benefits of robust policy improvement in β given by
relative pessimism. As discussed in the introduction, such
property is particularly valuable to applying offline RL in
risk-sensitive applications, because it guarantees the learned
policy is no worse than the behavior policy regardless of the
hyperparameter choice and allows potentially direct online
performance tuning. Note that prior works (e.g., Liu et al.,
2020; Xie et al., 2021) have relied on well-chosen hyper-
parameters to show improvement upon the behavior policy
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(i.e., safe policy improvement). We adopt the term robust
policy improvement here to distinguish from those weaker
guarantees. While there are works (Laroche et al., 2019; Fu-
jimoto et al., 2019; Kumar et al., 2019) that provide robust
policy improvement in tabular problems, but their heuristic
extensions to function approximation lose this guarantee.

Below we show that the solution π̂∗ in Eq.(1) is no worse
than the behavior policy for any β ≥ 0 under Assumption 1.
This property is because in Eq.(1) the actor is trying to
optimize a lower bound on the relative performance (1 −
γ)(J(π)−J(µ)) for π, and this lower bound is tight (exactly
zero) at the behavior policy µ, for any β ≥ 0.

Proposition 3. If Assumption 1 holds with εF = 0 and
µ ∈ Π, then Lµ(π, f

π) ≤ (1 − γ)(J(π) − J(µ)) ∀π ∈ Π,
for any β ≥ 0. This implies J(π̂∗) ≥ J(µ).

Proof. By performance difference lemma (Kakade & Lang-
ford, 2002), J(π)− J(µ) = 1

1−γEµ[Q
π(s, π)−Qπ(s, a)].

Therefore, if Qπ ∈ F on states of µ, then (1− γ)(J(π)−
J(µ)) = Lµ(π,Q

π) = Lµ(π,Q
π) + βE(Qπ, π) ≥

Lµ(π, f
π) + βE(fπ, π) ≥ Lµ(π, f

π), where we use
E(π,Qπ) = 0 by definition of Qπ and E(π, f) ≥ 0
for any f ∈ F . Robust policy improvement follows, as
J(π̂∗)− J(µ) ≥ Lµ(π̂

∗, f π̂∗
) ≥ Lµ(µ, f

µ) = 0.

Relative vs. absolute pessimism Our formulation is in-
spired by the maximin objective of Xie et al. (2021), which
optimizes a pessimistic estimate of J(π) (which we call
absolute pessimism) and learns a good policy with a well-
chosen value of β. In contrast, our relative pessimism formu-
lation optimizes the performance of π relative to J(µ), i.e.,
J(π)−J(µ). As Section 4.1 will show, algorithms based on
both formulations enjoy similar optimality guarantees with
well-chosen hyperparameters. But absolute pessimism gives
policy improvement only for certain hyperparameters, while
the relative approach enjoys robust policy improvement for
all β ≥ 0, which is practically significant.

Improvement beyond behavior policy It is clear from
Proposition 3 that the objective in Eq.(1) results in the opti-
mization of a lower bound on the value gap (1− γ)(J(π)−
J(µ)). On the other hand, for appropriate settings of β,
it turns out that this lower bound is not too loose for any
π ∈ Π such that dπ is covered by the data distribution µ,
as implicitly shown in our detailed theoretical analysis pre-
sented in the next section. Consequently, maximizing the
objective Eq.(1) generally results in policies that signifi-
cantly outperform µ for appropriate choices of β, as long as
the data has support for at least one such policy.

Imitation learning perspective An alternative interpre-
tation of Proposition 3 follows from examining the special
case of β = 0 (i.e. not using any information of rewards
and transitions). In this case, the objective Eq.(1) reduces to
the maximin problem: maxπ∈Π minf∈F Lµ(π, f), which

always yields robust policy improvement under Assump-
tion 1. More generally, if the function classF is rich enough
to approximate all bounded, Lipschitz functions, then the
above objective with β = 0 resembles behavior cloning to
match the occupancy measures of π and µ using an inte-
gral probability metric (IPM; Müller, 1997) (or equivalently,
Wasserstein GAN; Arjovsky et al., 2017). With β > 0, the
algorithm gets more information and thus intuitively can
perform better. This perspective shows how our formula-
tion unifies the previously disparate literature on behavior
regularization and pessimism.

4. Adversarially Trained Actor Critic
We design our new model-free offline RL algorithm, Adver-
sarially Trained Actor Critic (ATAC), based on the Stackel-
berg game of relative pessimism in Section 3.2 In the follow-
ing, we first describe a theoretical version of ATAC (Algo-
rithm 1) in Section 4.1, which is based on a no-regret policy
optimization oracle and a pessimistic policy evaluation ora-
cle. We discuss its working principles and give theoretical
performance guarantees. This theoretical algorithm further
serves as a template that provides design principles for im-
plementing ATAC. To show its effectiveness, in Section 4.2,
we design Algorithm 2, a practical deep-learning implemen-
tation of ATAC. Algorithm 2 is a two-timescale first-order
algorithm based on stochastic approximation, and uses a
novel Bellman error surrogate (called double-Q residual
algorithm loss) for off-policy optimization stability. Later in
Section 5, we empirically demonstrate that the principally
designed Algorithm 2 outperforms many state-of-the-art
offline RL algorithms.

4.1. Theory of ATAC with Optimization Oracles

This section instantiates a version of the ATAC algorithm
with abstract optimization oracles for the leader and fol-
lower, using the concepts introduced in Section 3. We first
define the empirical estimates of Lµ and Eµ as follows.
Given a dataset D, we define

LD(f, π) := ED [f(s, π)− f(s, a)] , (4)
and the estimated Bellman error (Antos et al., 2008)

ED(f, π) := ED

[
(f(s, a)− r − γf(s′, π))

2
]

− min
f ′∈F

ED

[
(f ′(s, a)− r − γf(s′, π))

2
]
.

(5)

4.1.1. ALGORITHM

Using these definitions, Algorithm 1 instantiates a version
of the ATAC approach. At a high-level, the kth iteration of

2One can also use the formulation to design model-based al-
gorithms, by constructing f as a Q-function Q̂π

θ computed from
a model parameterized by θ, and using Eµ(π, Q̂

π
θ ) to capture the

reward and transition errors of the model θ.
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Algorithm 1 ATAC (Theoretical Version)
Input: Batch data D. coefficient β.

1: Initialize policy π1 as the uniform policy.
2: for k = 1, 2, . . . ,K do
3: Obtain the pessimistic estimation of πk as fk,

fk ← argminf∈Fk
LD(f, πk) + βED(f, πk).

4: Compute πk+1 by
πk+1 ← PO(πk, fk,D),

where PO denotes a no-regret oracle (Def. 4).
5: end for
6: Output π̄ := Unif(π[1:K]). ▷ uniformly mix π1, . . . , πK

at the trajectory level

the algorithm first finds a critic fk that is maximally pes-
simistic for the current actor πk along with a regularization
based on the estimated Bellman error of πk (line 3), with
a hyperparameter β trading off the two terms. The actor
πk+1 then invokes a no-regret policy optimization oracle to
update its policy, given fk (line 4). We now discuss some
of the key aspects of the algorithm.

Policy optimization with a no-regret oracle In Algo-
rithm 1, the policy optimization step (Line 4) is conducted
by calling a no-regret policy optimization oracle (PO). We
now define the property we expect from this oracle.

Definition 4 (No-regret policy optimization oracle). An
algorithm PO is called a no-regret policy optimization oracle
if for any sequence of functions3 f1, . . . , fK with fk : S ×
A → [0, Vmax], the policies π1, . . . , πK produced by PO
satisfy, for any comparator π ∈ Π:

επopt :=
1

1−γ

∑K
k=1 Eπ [fk(s, π)− fk(s, πk)] = o(K).

The notion of regret used in Definition 4 nearly corresponds
to the standard regret definition in online learning (Cesa-
Bianchi & Lugosi, 2006), except that we take an expecta-
tion over states as per the occupancy measure of the com-
parator. Algorithmically, a natural oracle might perform
online learning with states and actions sampled from µ
in the offline RL setting. This mismatch of measures be-
tween the optimization objective and regret definition is
typical in policy optimization literature (see e.g. Kakade
& Langford, 2002; Agarwal et al., 2021). One scenario in
which we indeed have such an oracle is when PO corre-
sponds to running a no-regret algorithm separately in each
state4 and the policy class is sufficiently rich to approx-
imate the resulting iterates. There is a rich literature on
such approaches using mirror-descent style methods (e.g.,
Neu et al., 2017; Geist et al., 2019), of which a particularly
popular instance is soft policy iteration or natural policy

3{fk}Kk=1 can be generated by an adaptive adversary.
4The computational complexity of doing so does not depend on

the size of the state space, since we only need to run the algorithm
on states observed in the data. See (Xie et al., 2021).

gradient (Kakade, 2001) based on multiplicative weight up-
dates (e.g. Even-Dar et al., 2009; Agarwal et al., 2021):

πk+1(a|s) ∝ πk(a|s) exp (ηfk(s, a)) with η =
√

log |A|
2V 2

maxK
.

This oracle is used by Xie et al. (2021), which leads to the
regret bound επopt ≤ O

(
Vmax

1−γ

√
K log |A|

)
.

4.1.2. THEORETICAL GUARANTEES

We now provide the theoretical analysis of Algorithm 1.
Recall that with missing coverage, we can only hope
to compete with policies whose distributions are well-
covered by data, and we need a quantitative measurement
of such coverage. Following Xie et al. (2021), we use

C (ν;µ,F , π) := maxf∈F
∥f−T πf∥2

2,ν

∥f−T πf∥2
2,µ

to measure how
well a distribution of interest ν (e.g., dπ) is covered by
the data distribution µ w.r.t. policy π and function class
F , which is a sharper measure than the more typical con-
centrability coefficients (Munos & Szepesvári, 2008) (e.g.,
C (ν;µ,F , π) ≤ maxs,a ν(s, a)/µ(s, a)).

We also use dF,Π to denote the joint statistical complexity
of the policy class Π and F . For example, when F and
Π are finite, we have dF,Π = O(log |F||Π|/δ), where δ is a
failure probability. Our formal proofs utilize the covering
number to address infinite function classes; see Appendix B
for details. In addition, we also omit the approximation error
terms εF and εF,F in the results presented in this section
for the purpose of clarity. The detailed results incorporating
these terms are provided in Appendix B.
Theorem 5 (Informal). Let |D| = N , C ≥ 1 be any con-
stant, ν ∈ ∆(S × A) be an arbitrarily distribution that
satisfies maxk∈[K] C (ν;µ,F , πk) ≤ C, and π ∈ Π be an
arbitrary competitor policy. Then, when εF = εF,F = 0,

choosing β = Θ
(

3

√
VmaxN2

d2
F,Π

)
, with high probability:

J(π)− J(π̄) ≤ επopt +O
(

Vmax

√
C(dF,Π)

1/3

(1−γ)N1/3

)
+ 1

K(1−γ)

∑K
k=1 ⟨dπ \ ν, fk − T πkfk⟩,

where (dπ \ ν)(s, a) := max(dπ(s, a) − ν(s, a), 0), and
⟨d, f⟩ :=

∑
(s,a)∈S×A d(s, a)f(s, a) for any d and f .

At a high-level, our result shows that we can compete with
any policy π using a sufficiently large dataset, as long as
our optimization regret is small and the data distribution µ
has a good coverage for dπ. In particular, choosing ν =
dπ removes the off-support term, so that we always have
a guarantee scaling with maxk C (dπ, µ,F , πk), but can
benefit if other distributions ν are better covered with a
small off-support mass ∥dπ \ ν∥1. The off-support term can
also be small if a small Bellman error under µ generalizes
to a small error out of support, due to properties of F .

Comparison with prior theoretical results To compare
our result with prior works, we focus on the two statistical
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error terms in our bound, ignoring the optimization regret.
Relative to the information-theoretic bound of Xie et al.
(2021), we observe a similar decomposition into a finite
sample deviation term and an off-support bias. Their finite
sample error decays as N−1/2 as opposed to our N−1/3

scaling, which arises from the use of regularization here.
Indeed, we can get a N−1/2 bound for a constrained version,
but such a version is not friendly to practical implementation.
Prior linear methods (Jin et al., 2021; Zanette et al., 2021;
Uehara et al., 2021) have roughly similar guarantees to Xie
et al. (2021), so a similar comparison holds.

Most related to Theorem 5 is the N−1/5 bound of Xie et al.
(2021, Corollary 5) for their regularized algorithm PSPI,
which is supposed to be computationally tractable though
no practical implementation is offered.5 While our bound
is better, we use a bounded complexity Π while their result
uses an unrestricted policy class. If we were to use the same
policy class as theirs, the complexity of Π would grow with
optimization iterates, requiring us to carefully balance the
regret and deviation terms and yielding identical guarantees
to theirs. To summarize, our result is comparable to Xie et al.
(2021, Corollary 5) and stated in a more general form, and
we enjoy a crucial advantage of robust policy improvement
as detailed below.

Robust policy improvement We now formalize the robust
policy improvement of Algorithm 1, which can be viewed
as the finite-sample version of Proposition 3.
Proposition 6. Let π̄ be the output of Algorithm 1. If As-
sumption 1 holds with εF = 0 and µ ∈ Π, with high
probability,

J(µ)− J(π̄) ≤ O

(
Vmax

1− γ

√
dF,Π

N
+

βV 2
maxdF,Π

(1− γ)N

)
+ εµopt.

Proposition 6 provides the robust policy improvement guar-
antee in the finite-sample regime, under a weaker assump-
tion on F than that in Theorem 5. In contrast to the regular
safe policy improvement results in offline RL (e.g., Xie et al.,
2021, Corollary 3) where the pessimistic hyperparamter is
required to choose properly, the robust policy improvement
from Proposition 6 could adapt to a wide range of β. As
long as β = o(N), the learned policy π̄ from Algorithm 1
is guaranteed improve the behavior policy µ consistently.
In fact, for such a range of β, robust policy improvement
holds regardless of the quality of the learned critic. For ex-
ample, when β = 0, Proposition 6 still guarantees a policy
no worse than the behavior policy µ, though the critic loss
does not contain the Bellman error term anymore. (In this
case, ATAC performs IL). In contrast, prior works based
on absolute pessimism (e.g., Xie et al., 2021) immediately
output degenerate solutions when the Bellman error term is
removed.

5Incidentally, we are able to use our empirical insights to pro-
vide a scalable implementation of PSPI; see Section 5.

Algorithm 2 ATAC (Practical Version)
Input: Batch data D, policy π, critics f1, f2, constants
β ≥ 0, τ ∈ [0, 1], w ∈ [0, 1]

1: Initialize target networks f̄1 ← f1, f̄2 ← f2
2: for k = 1, 2, . . . ,K do
3: Sample minibatch Dmini from dataset D.
4: For f ∈ {f1, f2}, update critic networks

lcritic(f) := LDmini(f, π) + βEwDmini
(f, π)

f ← ProjF (f − ηfast∇lcritic)
5: Update actor network

lactor(π) := −LDmini(f1, π)
π ← ProjΠ(π − ηslow∇lactor)

6: For (f, f̄) ∈ {(fi, f̄i)}i=1,2, update target
f̄ ← (1− τ)f̄ + τf .

7: end for

It is also notable that, compared with Theorem 5, Proposi-
tion 6 enjoys a better statistical rate with a proper β, i.e.,
β ≤ O(N1/2), due to the decomposition of performance
difference shown in the following proof sketch.

Proof sketch Theorem 5 is established based on the fol-
lowing decomposition of performance difference: ∀π,
(1− γ)(J(π)− J(πk)) ≤ Eµ [fk − T πkfk]− Eπ [fk − T πkfk]

+ Eπ [fk(s, π)− fk(s, πk)] + Õ
(√V 2

max

N
+

βV 2
max

N

)
. (6)

Details of this decomposition can be found in Appendix B.2,
and the proof relies on the fact that fk is obtained by our
pessimistic policy evaluation procedure. In Eq.(6), the first
two terms are controlled by the Bellman error (both on-
support and off-support), and the third is controlled by the
optimization error. Notably, when the comparator π is the
behavior policy µ, the first two terms in Eq.(6) cancel out,
giving the faster rate of Proposition 6. This provides insight
for why robust policy improvement does not depend on the
quality of the learned critic.

4.2. A Practical Implementation of ATAC

We present a scalable deep RL version of ATAC in Algo-
rithm 2, following the principles of Algorithm 1. With
abuse of notation, we use ∇lactor, ∇lcritic to denote taking
gradients with respect to the parameters of the actor and the
critic, respectively; similarly Line 6 in Algorithm 2 refers
to a moving average in the parameter space. In addition,
every term involving π in Algorithm 2 means a stochastic
approximation based on sampling an action from π when
queried. In implementation, we use adaptive gradient de-
scent algorithm ADAM (Kingma & Ba, 2015) for updates
in Algorithm 2 (i.e. f − ηfast∇lcritic and π − ηslow∇lactor).

Algorithm 2 is a two-timescale first-order algorithm (Borkar,
1997; Maei et al., 2009), where the critic is updated with
a much faster rate ηfast than the actor with ηslow. This two-
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timescale update is designed to mimic the oracle updates
in Algorithm 1. Using ηfast ≫ ηslow allows us to approx-
imately treat the critic in Algorithm 2 as the solution to
the pessimistic policy evaluation step in Algorithm 1 for a
given actor (Maei et al., 2009); on the other hand, the actor’s
gradient update rule is reminiscent of the incremental nature
of no-regret optimization oracles.

4.2.1. CRITIC UPDATE

The update in Line 4 of Algorithm 2 is a first-order approxi-
mation of Line 3 in Algorithm 1. We discuss the important
design decisions of this practical critic update below.

Projection Each critic update performs a projected mini-
batch gradient step, where the projection to F ensures
bounded complexity for the critic. We parameterize F as
neural networks with ℓ2 bounded weights.6 The projection
is crucial to ensure stable learning across all β values. The
use of projection can be traced back to the training Wasser-
stein GAN (Arjovsky et al., 2017) or IPM-based IL (Swamy
et al., 2021). We found alternatives such as weight decay
penalty to be less reliable.

Double Q residual algorithm loss Off-policy optimiza-
tion with function approximators and bootstrapping faces
the notorious issue of deadly triad (Sutton & Barto, 2018).
Commonly this is mitigated through the use of double Q
heuristic (Fujimoto et al., 2018; Haarnoja et al., 2018); how-
ever, we found that this technique alone is insufficient to
enable numerically stable policy evaluation when the policy
π takes very different actions7 from the behavior policy µ.
To this end, we design a new surrogate for the Bellman
error ED(f, π) for Algorithm 2, by combining the double
Q heuristic and the objective of the Residual Algorithm
(RA) (Baird, 1995), both of which are previous attempts
to combat the deadly triad. Specifically, we design the
surrogate loss as the convex combination of the temporal
difference (TD) losses of the critic and its delayed targets:
EwD(f, π) := (1− w)E td

D(f, f, π) + wE td
D(f, f̄min, π) (7)

where w ∈ [0, 1], E td
D(f, f

′, π) := ED[(f(s, a) − r −
γf ′(s′, π))2], and f̄min(s, a) := mini=1,2 f̄i(s, a). We call
the objective in Eq.(7), the DQRA loss. We found that using
the DQRA loss significantly improves the optimization sta-
bility compared with just the double Q heuristic alone; see
Figure 2. As a result, ATAC can perform stable optimization
with higher β values and make the learner less pessimistic.
This added stability of DQRA comes from that the residual
error E td

D(f, f, π) is a fixed rather than a changing objective.
This stabilization overcomes potential biases due to the chal-
lenges (related to double sampling) in unbiased gradient
estimation of the RA objective. Similar observations were
made by Wang & Ueda (2021) for online RL. In practice,

6We impose no constraint on the bias term.
7Divergence often happens, e.g., when π is uniform.

Figure 2. Ablation of the DQRA loss with different mixing weights
w in Eq.(7). The plots show the policy performance and TD error
across optimization epochs of ATAC with the hopper-medium-
replay dataset. The stability and performance are greatly improved
when w ∈ (0, 1). For each w, the plot shows the 25th, 50th, 75th

percentiles over 10 random seeds.

we found that w = 0.5 works stably; using w ≈ 0 ensures
numerical stability, but has a worst-case exponentially slow
convergence speed and often deteriorates neural network
learning (Schoknecht & Merke, 2003; Wang & Ueda, 2021).
In Section 5, we show an ablation to study the effects of w.

4.2.2. ACTOR UPDATE

The actor update aims to achieve no-regret with respect to
the adversarially chosen critics. In Algorithm 2, we adopt
a gradient based update (implemented as ADAM) mimick-
ing the proximal nature of theoretical no-regret algorithms.
Although ADAM has no formal no-regret guarantees for
neural network learning, it works quite well in practice for
RL and IL algorithms based on no-regret learning (Sun et al.,
2017; Cheng et al., 2019; 2021).

Projection We set Π to be a class of policies with a mini-
mal entropy constraint, so the projection in Line 5 ensures
that the updated policy has a non-zero entropy. Soft policy
iteration style theoretical algorithms naturally keep a rea-
sonable entropy, and practically this avoids getting trapped
in poor local optima. We implement the constraint by a
Lagrange relaxation similar to SAC (Haarnoja et al., 2018).

Actor loss with a single critic While the critic optimiza-
tion uses the double Q heuristic for numerical stability, the
actor loss only uses one of the critics (we select f1). This
actor loss is similar to TD3 (Fujimoto et al., 2018), but
different from SAC (Haarnoja et al., 2018) which takes
mini=1,2 fi(s, a) as the objective. This design choice is
critical to enable ATAC’s IL behavior when β is low. On
the contrary, using the SAC-style loss produces instability
for small β, with the actor loss oscillating in a limit cycle
between the two critics.

5. Experiments
We test the effectiveness of ATAC (Algorithm 2) in terms of
performance and robust policy improvement using the D4RL
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Behavior ATAC∗ ATAC ATAC∗
0 ATAC0 CQL COMBO TD3+BC IQL BC

halfcheetah-rand -0.1 4.8 3.9 2.3 2.3 35.4 38.8 10.2 - 2.1
walker2d-rand 0.0 8.0 6.8 7.6 5.7 7.0 7.0 1.4 - 1.6
hopper-rand 1.2 31.8 17.5 31.6 18.2 10.8 17.9 11.0 - 9.8

halfcheetah-med 40.6 54.3 53.3 43.9 36.8 44.4 54.2 42.8 47.4 36.1
walker2d-med 62.0 91.0 89.6 90.5 89.6 74.5 75.5 79.7 78.3 6.6
hopper-med 44.2 102.8 85.6 103.5 94.8 86.6 94.9 99.5 66.3 29.0

halfcheetah-med-replay 27.1 49.5 48.0 49.2 47.2 46.2 55.1 43.3 44.2 38.4
walker2d-med-replay 14.8 94.1 92.5 94.2 89.8 32.6 56.0 25.2 73.9 11.3
hopper-med-replay 14.9 102.8 102.5 102.7 102.1 48.6 73.1 31.4 94.7 11.8

halfcheetah-med-exp 64.3 95.5 94.8 41.6 39.7 62.4 90.0 97.9 86.7 35.8
walker2d-med-exp 82.6 116.3 114.2 114.5 104.9 98.7 96.1 101.1 109.6 6.4
hopper-med-exp 64.7 112.6 111.9 83.0 46.5 111.0 111.1 112.2 91.5 111.9

pen-human 207.8 79.3 53.1 106.1 61.7 37.5 - - 71.5 34.4
hammer-human 25.4 6.7 1.5 3.8 1.2 4.4 - - 1.4 1.5

door-human 28.6 8.7 2.5 12.2 7.4 9.9 - - 4.3 0.5
relocate-human 86.1 0.3 0.1 0.5 0.1 0.2 - - 0.1 0.0

pen-cloned 107.7 73.9 43.7 104.9 68.9 39.2 - - 37.3 56.9
hammer-cloned 8.1 2.3 1.1 3.2 0.4 2.1 - - 2.1 0.8

door-cloned 12.1 8.2 3.7 6.0 0.0 0.4 - - 1.6 -0.1
relocate-cloned 28.7 0.8 0.2 0.3 0.0 -0.1 - - -0.2 -0.1

pen-exp 105.7 159.5 136.2 154.4 97.7 107.0 - - - 85.1
hammer-exp 96.3 128.4 126.9 118.3 99.2 86.7 - - - 125.6

door-exp 100.5 105.5 99.3 103.6 48.3 101.5 - - - 34.9
relocate-exp 101.6 106.5 99.4 104.0 74.3 95.0 - - - 101.3

Table 1. Evaluation on the D4RL dataset. Algorithms with score within ϵ from the best on each domain are marked in bold, where
ϵ = 0.1|J(µ)|. Baseline results are from the respective papers. For ATAC variants, we take the median score over 10 seeds.

offline RL benchmark’s continuous control domains (Fu
et al., 2020). More details are given in Appendix C.

Setup and hyperaparameter selection We compare
ATAC (Algorithm 2) with recent offline RL algorithms
CQL (Kumar et al., 2020), COMBO (Yu et al., 2021),
TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al.,
2021), as well as the offline IL baseline, behavior cloning
(BC). We also introduce an absolute pessimism version of
ATAC (denoted ATAC0), where we replace LDmini(f, π) in
lcritic of Algorithm 2 with f(s0, π). ATAC0 can be viewed
as a deep learning implementation of the theoretical algo-
rithm PSPI from Xie et al. (2021) with the template of
Algorithm 2.

In Algorithm 2, we use ηfast = 0.0005 and ηslow = 10−3ηfast
based on an offline tuning heuristic, τ = 0.005 from the
work of Haarnoja et al. (2018), and w = 0.5, across all do-
mains. We include an ablation for w later and further details
of our setup are given in Appendix C. The regularization
coefficient β is our only hyperparameter which varies across
datasets, based on an online selection. Specifically, we run
100 epochs of BC for warm start; followed by 900 epochs
of ATAC, where 1 epoch denotes 2K gradient updates. For
each dataset, we report the median results over 10 random
seeds. Since ATAC does not have guarantees on last-iterate
convergence, we report also the results of both the last iterate
(denoted as ATAC and ATAC0) and the best checkpoint (de-
noted as ATAC∗ and ATAC∗

0) selected among 9 checkpoints
(each was made every 100 epochs). The hyperparameter β

is picked separately for ATAC, ATAC0, ATAC∗ and ATAC∗
0.

Comparison with offline RL baselines Overall the ex-
perimental results in Table 1 show that ATAC and ATAC∗

outperform other model-free offline RL baselines consis-
tently and model-based method COMBO mostly. Espe-
cially significant improvement is seen in walker2d-medium,
walker2d-medium-replay, hopper-medium-replay and pen-
expert, although the performance is worse than COMBO
and CQL in the halfhcheetah-rand. It turns out that our
fixed learning rate parameter does not result in sufficient
convergence of ATAC on this domain. Our adaptation of
PSPI (i.e. ATAC0 and ATAC∗

0) is remarkably competitive
with state-of-the-art baselines. This is the first empirical
evaluation of PSPI, which further demonstrates the effec-
tiveness of our design choices in Algorithm 2. However,
ATAC0 and ATAC∗

0 perform worse than ATAC and ATAC∗,
except for pen-human, door-human, and pen-cloned. In
Appendix C we show ATAC and ATAC0’s variability of per-
formance across seeds by adding 25% and 75% quantiles of
scores across 10 random seeds. (For baselines we only have
scalar performance from the published results.)

Robust policy improvement We study whether the practi-
cal version of ATAC also enjoys robust policy improvement
as Proposition 6 proves for the theoretical version. We show
how ATAC∗ performs with various β values in Figure 1
on hopper. The results are consistent with the theoretical
prediction in Proposition 6: ATAC robustly improves upon
the behavior policy almost for all β except very large ones.



Adversarially Trained Actor Critic for Offline Reinforcement Learning

For large β, Proposition 6 shows that the finite-sample sta-
tistical error dominates the bound. ATAC does, however,
not improve from the behavior policy on *-human and *-
cloned even for well-tuned β; in fact, none of the offline RL
algorithms does. We suspect that this is due to the failure
of the realizability assumption µ ∈ Π, as these datasets con-
tain human demonstrations which can be non-Markovian.
We include the variation of results across β for all datasets
as well as statistics of robust policy improvement across
β and iterates in Appendix C. This robust policy improve-
ment property of ATAC means that practitioners can tune
the performance of ATAC by starting with β = 0 and gradu-
ally increasing β until the performance drops, without ever
deploying a policy significantly worse than the previous
behavior policy.

Ablation of DQRA loss We show that the optimization
stability from the DQRA loss is a key contributor to ATAC’s
performance by an ablation. We run ATAC with various w
on hopper-medium-replay. When w = 1 (i.e. using conven-
tional bootstrapping with double Q), the Bellman minimiza-
tion part becomes unstable and the TD error E td

D(f, f, π)
diverges. Using just the residual gradient (w = 0), while
being numerical stable, leads to bad policy performance as
also observed in the literature (Schoknecht & Merke, 2003;
Wang & Ueda, 2021). For w ∈ (0, 1), the stability and per-
formance are usually significantly better than w ∈ {0, 1}.
For simplicity, we use w = 0.5 in our experiments.

6. Discussion and Conclusion
We propose the concept of relative pessimism for offline RL
and use it to design a new algorithm ATAC based on a Stack-
elberg game formulation. ATAC enjoys strong guarantees
comparable to prior theoretical works, with an additional
advantage of robust policy improvement due to relative
pessimism. Empirical evaluation confirms the theoretical
predictions and demonstrates ATAC’s state-of-the-art per-
formance on D4RL offline RL benchmarks.

ATAC shows a natural bridge between IL and offline RL.
From its perspective, IL is an offline RL problem with the
largest uncertainty on the value function (since IL does not
have reward information), as captured by setting β = 0
in ATAC. In this case, the best policy under relative pes-
simism is to mimic the behavior policy exactly; otherwise,
there is always a scenario within the uncertainty where the
agent performs worse than the behavior policy. Only by
considering the reduced uncertainty due to labeled rewards,
it becomes possible for offline RL to learn a policy that
strictly improves over the behavior policy. Conversely, we
can view IL as the most pessimistic offline RL algorithm,
which ignores the information in the data reward labels. In-
deed IL does not make assumption on the data coverage,
which is the core issue offline RL attempts to solve. We

hope that this insightful connection can encourage future
research on advancing IL and offline RL.

Finally, we remark on some limitations of ATAC. While
ATAC has strong theoretical guarantees with general func-
tion approximators, it comes with a computational cost that
its adversarial optimization problem (like that of Xie et al.
(2021)) is potentially harder to solve than alternative offline
RL approaches based on dynamic programming in a fixed
pessimism MDP (Jin et al., 2021; Liu et al., 2020; Fujimoto
& Gu, 2021; Kostrikov et al., 2021). For example, in our
theoretical algorithm (Algorithm 1), we require having a
no-regret policy optimization oracle (Definition 4), which
we only know is provably time and memory efficient for lin-
ear function approximators and softmax policies (Xie et al.,
2021).8 This extra computational difficulty also manifests
in the IL special case of ATAC (i.e. β = 0): ATAC reduces
to IPM-minimization or Wasserstein-GAN for IL which
requires harder optimization than BC based on maximum
likelihood estimation, though the adversarial training ver-
sion can produce a policy of higher quality. How to strike a
better balance between the quality of the objective function
and its computational characteristics is an open question.
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A. Related Works
There is a rich literature on offline RL with function approximation when the data distribution µ is sufficiently rich to cover
the state-action distribution dπ for any π ∈ Π (Antos et al., 2008; Munos, 2003; Munos & Szepesvári, 2008; Farahmand
et al., 2010; Chen & Jiang, 2019; Xie & Jiang, 2020). However, this is a prohibitive assumption in practice where the data
distribution is typically constrained by the quality of available policies, safety considerations and existing system constraints
which can lead it to have a significantly narrower coverage. Based on this observation, there has been a line of recent works
in both the theoretical and empirical literature that systematically consider datasets with inadequate coverage.

The methods designed for learning without coverage broadly fall in one of two categories. Many works adopt the behavior
regularization approach, where the learned policy is regularized to be close to the behavior policy in states where adequate
data is not observed. On the theoretical side, some works (Laroche et al., 2019; Kumar et al., 2019; Fujimoto et al., 2018)
provide safe policy improvement guarantees, meaning that the algorithms always do at least as well as the behavior policy,
while improving upon it when possible. These and other works (Wu et al., 2019; Fujimoto & Gu, 2021) also demonstrate
the benefits of this principle in comprehensive empirical evaluations.

A second class of methods follow the principle of pessimism in the face of uncertainty, and search for a policy with
the best value under all possible scenarios consistent with the data. Some papers perform this reasoning in a model-
based manner (Kidambi et al., 2020; Yu et al., 2020). In the model-free setting, Liu et al. (2020) define pessimism by
truncating Bellman backups from states with limited support in the data and provide theoretical guarantees for the function
approximation setting when the behavior distribution µ is known or can be easily estimated from samples, along with
proof-of-concept experiments. The need to estimate µ has been subsequently removed by several recent works in both
linear (Jin et al., 2021; Zanette et al., 2021) and non-linear (Xie et al., 2021; Uehara et al., 2021) settings.

Of these, the work of Xie et al. (2021) is the closest to this paper. Their approach optimizes a maximin objective where the
maximization is over policies and minimization over all f ∈ F which are Bellman-consistent for that policy under the data
distribution. Intuitively, this identifies an F -induced lower bound for the value of each policy through the Bellman constraint
and maximizes that lower bound. They also develop a regularized version more amenable to practical implementation,
but provide no empirical validation of their approach. While the optimization of a pessimistic estimate of J(π) results
in a good policy with well-chosen hyperparameters, we argue that maximizing an alternative lower bound on the relative
performance difference J(π)−J(µ) is nearly as good in terms of the absolute quality of the returned policy with well-chosen
hyperparameters, but additionally improves upon the behavior policy for all possible choices of certain hyperparameters.

On the empirical side, several recent approaches (Kumar et al., 2020; Yu et al., 2021; Kostrikov et al., 2021) show promising
empirical results for pessimistic methods. Many of these works consider policy iteration-style approaches where the policy
class is implicitly defined in terms of a critic (e.g. through a softmax), whereas we allow explicit specification of both
actor and critic classes. Somewhat related to our approach, the CQL algorithm (Kumar et al., 2020) trains a critic Q by
maximizing the combination of a lower bound on J(πQ)− J(µ), where πQ is an implicit policy parameterized by Q, along
with a Bellman error term for the current actor policy. The actor is trained with respect to the resulting critic. Lacking a
clear objective like Eq.(1), this approach does not enjoy the robust policy improvement or other theoretical guarantees we
establish in this paper. (We provide a detailed comparison with CQL in Appendix D) More generally, our experiments show
that several elements of the theoretical design and practical implementation of our algorithm ATAC allow us to robustly
outperform most of these baselines in a comprehensive evaluation.

B. Guarantees of Theoretical Algorithm
In this section, we provide the guarantees of theoretical algorithm including the the results provided in Section 4.1.

B.1. Concentration Analysis

This section provides the main results regarding ED(f, π) and its corresponding Bellman error. The results in this section
are analogs of the results of Xie et al. (2021, Appendix A), but we use covering numbers to provide finer characteristics of
the concentration. We provide the background of covering number as follows.

Definition 7 (ε-covering number). An ε-cover of a set F with respect to a metric ρ is a set {g1, . . . , gn} ⊆ F , such that for
each g ∈ F , there exists some gi ∈ {g1, . . . , gn} such that ρ(g, gi) ≤ ε. We define the ε-covering number of a set F under
metric ρ, N (F , ε, ρ), to be the the cardinality of the smallest ε-cover.
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Further properties of covering number can be found in standard textbooks (see, e.g., Wainwright, 2019). In this paper, we
will apply the ε-covering number on both function class F and policy class Π. For the function class, we use the following
metric

ρF (f1, f2) := ∥f1 − f2∥∞ = sup
(s,a)∈S×A

|f1(s, a)− f2(s, a)|. (8)

We use N∞(F , ε) to denote the ε-covering number of F w.r.t. metric ρF for simplicity.

Similarly, for the policy class, we define the metric as follows

ρΠ(π1, π2) := ∥π1 − π2∥∞,1 = sup
s∈S
∥π1(·|s)− π2(·|s)∥1, (9)

and we use N∞,1(Π, ε) to denote the ε-covering number of Π w.r.t. metric ρΠ for simplicity.

The following two theorems are the main results of this concentration analysis.

Theorem 8. For any π ∈ Π, let fπ be defined as follows,

fπ := argmin
f∈F

sup
admissible ν

∥f − T πf∥22,ν .

Then, for ED(fπ, π) (defined in Eq.(5)), the following holds with probability at least 1− δ for all π ∈ Π:

ED(fπ, π) ≤ O
(
V 2
max log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N
+ εF

)
=: εr.

We now show that ED(f, π) could effectively estimate ∥f − T πf∥22,µ.

Theorem 9. With probability at least 1− δ, for any π ∈ Π, f ∈ F ,

∥f − T πf∥2,µ −
√
ED(f, π) ≤ O

(
Vmax

√
log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N
+
√
εF,F

)
. (10)

When setting ED(f, π) = εr, Eq.(10) implies a bound on ∥f − T πf∥2,µ which we denote as
√
εb and will be useful later.

That is,

√
εb :=

√
εr +O

(
Vmax

√
log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N
+
√
εF,F

)
. (11)

We first provide some complementary lemmas used for proving Theorems 8 and 9. The first lemma, Lemma 10, is
the only place where we use concentration inequalities on ED, and all high-probability statements regarding ED follow
deterministically from Lemma 10.

Lemma 10. With probability at least 1− δ, for any f, g1, g2 ∈ F and π ∈ Π,∣∣∣∣ ∥g1 − T πf∥22,µ − ∥g2 − T
πf∥22,µ

− 1

N

∑
(s,a,r,s′)∈D

(g1(s, a)− r − γf(s′, π))
2
+

1

N

∑
(s,a,r,s′)∈D

(g2(s, a)− r − γf(s′, π))
2

∣∣∣∣
≤ O

Vmax∥g1 − g2∥2,µ

√
log

|N∞(F,Vmax
N )||N∞,1(Π, 1

N )|
δ

N
+

V 2
max log

|N∞(F,Vmax
N )||N∞,1(Π, 1

N )|
δ

N

 .

Proof of Lemma 10. This proof follows a similar approach as the proof of Xie et al. (2021, Lemma A.4), but ours is
established based on a more refined concentration analysis via covering number. We provide the full detailed proof here for
completeness. By a standard calculation,

1

N

∑
(s,a,r,s′)∈D

(g1(s, a)− r − γf(s′, π))
2 − 1

N

∑
(s,a,r,s′)∈D

(g2(s, a)− r − γf(s′, π))
2

=
1

N

∑
(s,a,r,s′)∈D

(
(g1(s, a)− r − γf(s′, π))

2 − (g2(s, a)− r − γf(s′, π))
2
)
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=
1

N

∑
(s,a,r,s′)∈D

((g1(s, a)− g2(s, a)) (g1(s, a) + g2(s, a)− 2r − 2γf(s′, π))) . (12)

Similarly, letting µ× (P, R) denote the distribution (s, a) ∼ µ, r = R(s, a), s′ ∼ P(·|s, a), we have

Eµ×(P,R)

[
(g1(s, a)− r − γf(s′, π))

2
]
− Eµ×(P,R)

[
(g2(s, a)− r − γf(s′, π))

2
]

(a)
= Eµ×(P,R) [(g1(s, a)− g2(s, a)) (g1(s, a) + g2(s, a)− 2r − 2γf(s′, π))]

= Eµ [E [(g1(s, a)− g2(s, a)) (g1(s, a) + g2(s, a)− 2r − 2γf(s′, π))|s, a]]
= Eµ [(g1(s, a)− g2(s, a)) (g1(s, a) + g2(s, a)− 2 (T πf) (s, a))] (13)
(b)
= Eµ

[
(g1(s, a)− (T πf) (s, a))

2
]
− Eµ

[
(g2(s, a)− (T πf) (s, a))

2
]
, (14)

where (a) and (b) follow from the similar argument to Eq.(12).

By using Eq.(12) and Eq.(14), we know

Eµ×(P,R)

 1

N

∑
(s,a,r,s′)∈D

(g1(s, a)− r − γf(s′, π))
2 − 1

N

∑
(s,a,r,s′)∈D

(g2(s, a)− r − γf(s′, π))
2


= Eµ

[
(g1(s, a)− (T πf) (s, a))

2
]
− Eµ

[
(g2(s, a)− (T πf) (s, a))

2
]
.

Now, let Fε1 be an ε1-cover of F and Πε2 be an ε2-cover of Π, so that we know: i) |Fε1 | = N∞(F , ε1), |Πε2 | =
N∞,1(Π, ε2); ii) there exist f̃ , g̃1, g̃2 ∈ Fε1 and π̃ ∈ Πε2 , such that ∥f − f̃∥∞, ∥g1 − g̃1∥∞, ∥g2 − g̃2∥∞ ≤ ε1 and
∥π − π̃∥∞,1 ≤ ε2, where ∥ · ∥∞ and ∥ · ∥∞,1 are defined in Eq.(8) and Eq.(9).

Then, with probability at least 1− δ, for all f, g1, g2 ∈ F , π ∈ Π, and the corresponding f̃ , g̃1, g̃2, π̃,∣∣∣∣Eµ

[(
g̃1(s, a)−

(
T π̃ f̃

)
(s, a)

)2]
− Eµ

[(
g̃2(s, a)−

(
T π̃ f̃

)
(s, a)

)2]
− 1

N

∑
(s,a,r,s′)∈D

(
g̃1(s, a)− r − γf̃(s′, π̃)

)2
+

1

N

∑
(s,a,r,s′)∈D

(
g̃2(s, a)− r − γf̃(s′, π̃)

)2 ∣∣∣∣
=

∣∣∣∣Eµ

[(
g̃1(s, a)−

(
T π̃ f̃

)
(s, a)

)2]
− Eµ

[(
g̃2(s, a)−

(
T π̃ f̃

)
(s, a)

)2]
− 1

N

∑
(s,a,r,s′)∈D

(
(g̃1(s, a)− g̃2(s, a))

(
g̃1(s, a) + g̃2(s, a)− 2r − 2γf̃(s′, π̃)

)) ∣∣∣∣
≤

√√√√4Vµ×(P,R)

[
(g̃1(s, a)− g̃2(s, a))

(
g̃1(s, a) + g̃2(s, a)− 2r − 2γf̃(s′, π̃)

)]
log

|N∞(F,ε1)||N∞,1(Π,ε2)|
δ

N

+
2V 2

max log
|N∞(F,ε1)||N∞,1(Π,ε2)|

δ

3N
,

where the first equation follows from Eq.(13) and the last inequality follows from the Bernstein’s inequality and union
bounding over Fε1 and Πε2 .

We now upper bound the variance term inside the squareroot of the above expression:

Vµ×(P,R)

[
(g̃1(s, a)− g̃2(s, a))

(
g̃1(s, a) + g̃2(s, a)− 2r − 2γf̃(s′, π̃)

)]
≤ Eµ×(P,R)

[
(g̃1(s, a)− g̃2(s, a))

2
(
g̃1(s, a) + g̃2(s, a)− 2r − 2γf̃(s′, π̃)

)2]
≤ 4V 2

maxEµ

[
(g̃1(s, a)− g̃2(s, a))

2
]
.

where the last inequality follows from the fact of |g̃1(s, a) + g̃2(s, a)− 2r − 2γf̃(s′, π̃)| ≤ 2Vmax. Therefore, w.p. 1− δ,∣∣∣∣ ∥∥∥g̃1 − T π̃ f̃
∥∥∥2
2,µ
−
∥∥∥g̃2 − T π̃ f̃

∥∥∥2
2,µ
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− 1

N

∑
(s,a,r,s′)∈D

(
g̃1(s, a)− r − γf̃(s′, π̃)

)2
+

1

N

∑
(s,a,r,s′)∈D

(
g̃2(s, a)− r − γf̃(s′, π̃)

)2 ∣∣∣∣
≤ 4Vmax∥g̃1 − g̃2∥2,µ

√
log

|N∞(F,ε1)||N∞,1(Π,ε2)|
δ

N
+

2V 2
max log

|N∞(F,ε1)||N∞,1(Π,ε2)|
δ

3N
.

By definitions of f̃ , g̃1, g̃2 and π̃, we know for any (s, a, r, s′) tuple,∣∣∣∣ (g1(s, a)− r − γf(s′, π))
2
+ (g2(s, a)− r − γf(s′, π))

2

−
(
g̃1(s, a)− r − γf̃(s′, π̃)

)2
+
(
g̃2(s, a)− r − γf̃(s′, π̃)

)2 ∣∣∣∣ = O(Vmaxε1 + V 2
maxε2),

and
∥g1 − g2∥2,µ = ∥g̃1 − g̃2 + (g1 − g̃1)− (g2 − g̃2)∥2,µ

≤ ∥g̃1 − g̃2∥2,µ + ∥g1 − g̃1∥2,µ + ∥g2 − g̃2∥2,µ
≤ ∥g̃1 − g̃2∥2,µ + 2ε1.

These implies ∣∣∣∣ ∥g1 − T πf∥22,µ − ∥g2 − T
πf∥22,µ

− 1

N

∑
(s,a,r,s′)∈D

(g1(s, a)− r − γf(s′, π))
2
+

1

N

∑
(s,a,r,s′)∈D

(g2(s, a)− r − γf(s′, π))
2

∣∣∣∣
≲ Vmax∥g1 − g2∥2,µ

√
log

|N∞(F,ε1)||N∞,1(Π,ε2)|
δ

N
+

V 2
max log

|N∞(F,ε1)||N∞,1(Π,ε2)|
δ

N

+ Vmaxε1

√
log

|N∞(F,ε1)||N∞,1(Π,ε2)|
δ

N
+ Vmaxε1 + V 2

maxε2.

(x ≲ y means x ≤ C · y for some absolute constant C)

Choosing ε1 = O(Vmax

N ) and ε2 = O( 1
N ) completes the proof.

Lemma 11. For any π ∈ Π, let fπ and g be defined as follows,
fπ := argmin

f∈F
sup

admissible ν
∥f − T πf∥22,ν

g := argmin
g′∈F

1

N

∑
(s,a,r,s′)∈D

(g′(s, a)− r − γfπ(s
′, π))

2
.

Then, with high probability,

∥fπ − g∥2,µ ≤ O

Vmax

√
log

|N∞(F,Vmax
N )||N∞,1(Π, 1

N )|
δ

N
+
√
εF

 .

Proof of Lemma 11. The proof of this lemma is obtained exactly the same as Xie et al. (2021, Proof of Lemma A.5), we
we only need to change the use of Xie et al. (2021, Lemma A.4) to Lemma 10. This completes the proof.

We now ready to prove Theorem 8 and Theorem 9. Note that the proofs of Theorem 8 and Theorem 9 follow similar
approaches as the proof of Xie et al. (2021, Theorem A.1, Theorem A.2), and we provide the full detailed proof here for
completeness.

Proof of Theorem 8. This proof is obtained by exactly the same strategy of Xie et al. (2021, Proof of Theorem A.1), but we
we change to change the corresponding lemmas to the new ones provided above. The correspondence of those lemmas are
as follows: (Xie et al., 2021, Lemma A.4)→ Lemma 10; (Xie et al., 2021, Lemma A.5)→ Lemma 11. This completes the
proof.
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Proof of Theorem 9. This proof is obtained by the same exactly same strategy of Xie et al. (2021, Proof of Theorem A.2),
but we we change to change the corresponding lemmas to the new ones provided above. The correspondence of those
lemmas are as follows: (Xie et al., 2021, Lemma A.4)→ Lemma 10; (Xie et al., 2021, Lemma A.5)→ Lemma 11. This
completes the proof.

B.2. Decomposition of Performance Difference

This section proves Eq.(6). We provide a more general version of Eq.(6) with its proof as follows.

Lemma 12. Let π be an arbitrary competitor policy, π̂ ∈ Π be some learned policy, and f be an arbitrary function over
S ×A. Then we have,

J(π)− J(π̂)

=
1

1− γ

(
Eµ

[(
f − T π̂f

)
(s, a)

]
+ Eπ

[(
T π̂f − f

)
(s, a)

]
+ Eπ [f(s, π)− f(s, π̂)] + Lµ(π̂, f)− Lµ(π̂, Q

π̂)
)
.

Proof of Lemma 12. Let Rf,π̂(s, a) := f(s, a)− γEs′|s,a[f(s
′, π̂)] be a fake reward function given f and π̂. We use the

subscript “(·)Rf,π̂” to denote functions or operators under the true dynamics but the fake reward Rf,π̂. Since f(s, a) =
(T π

Rf,π̂f)(s, a), we know f ≡ Qπ
Rf,π̂ .

We perform a performance decomposition:

J(π)− J(π̂) = (J(π)− J(µ))− (J(π̂)− J(µ))

and rewrite the second term as

(1− γ) (J(π̂)− J(µ)) = Lµ(π̂, Q
π̂)

= ∆(π̂) + Lµ(π̂, f) (∆(π̂) := Lµ(π̂, Q
π̂)− Lµ(π̂, f))

= ∆(π̂) + Eµ[f(s, π̂)− f(s, a)]

= ∆(π̂) + (1− γ)(JRf,π̂ (π̂)− JRf,π̂ (µ))
(by performance difference lemma (Kakade & Langford, 2002))

= ∆(π̂) + (1− γ)Qπ̂
Rf,π̂ (s0, π̂)− Eµ[R

π̂,f (s, a)]

= ∆(π̂) + (1− γ)f(s0, π̂)− Eµ[R
π̂,f (s, a)]. (by f(·, ·) ≡ Qπ

Rf,π̂ (·, ·))

Therefore,

(1− γ)(J(π)− J(π̂)) = (1− γ) (J(π)− f(d0, π̂))︸ ︷︷ ︸
(I)

+
(
Eµ[R

π̂,f (s, a)]− (1− γ)J(µ)
)

︸ ︷︷ ︸
(II)

−∆(π̂).

We first analyze (II). We can expand it by the definition of Rπ̂,f as follows

(II) = Eµ[R
π̂,f (s, a)]− (1− γ)J(µ)

= Eµ[R
π̂,f (s, a)−R(s, a)]

= Eµ[(f − T π̂f)(s, a)].

We now write (I) as

(I) = (1− γ) (J(π)− f(s0, π̂))

= (1− γ)J(π)− Edπ [Rπ̂,f (s, a)]︸ ︷︷ ︸
(Ia)

+Edπ [Rπ̂,f (s, a)]− (1− γ)f(s0, π̂)︸ ︷︷ ︸
(Ib)

.

We analyze each term above in the following.

(Ib) = Edπ [Rπ̂,f (s, a)]− (1− γ)f(s0, π̂)

= Edπ [f(s, π)− f(s, π̂)].

On the other hand, we can write

(Ia) = (1− γ)J(π)− Edπ [Rπ̂,f (s, a)]
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= Edπ [R(s, a)−Rπ̂,f (s, a)]

= Edπ [(T π̂f − f)(s, a)].

Combine them all, we have

J(π)− J(π̂)

=
1

1− γ
((Ia) + (Ib) + (II)−∆(π̂))

=
1

1− γ

(
Eµ

[(
f − T π̂f

)
(s, a)

]
+ Eπ

[(
T π̂f − f

)
(s, a)

]
+ Eπ [f(s, π)− f(s, π̂)] + Lµ(π̂, f)− Lµ(π̂, Q

π̂)
)
.

This completes the proof.

We now prove a general version of Eq.(6) using Lemma 12, which takes into account the approximation errors in the
realizability and completeness assumptions (Assumption 1 and Assumption 2).

Lemma 13 (General Version of Eq.(6)). Let π be an arbitrary competitor policy. Also let πk and fk be obtained by
Algorithm 1 for k ∈ [K]. Then with high probability, for any k ∈ [K],

(1− γ) (J(π)− J(πk)) ≤ Eµ [fk − T πkfk] + Eπ [T πkfk − fk] + Eπ [fk(s, π)− fk(s, πk)]

+O

(
Vmax

√
log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N
+
√
εF

)
+ β · O

(
V 2
max log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N
+ εF

)
.

Proof of Lemma 13. By Lemma 12, we have

J(π)− J(πk) =
Eµ [fk − T πkfk]

1− γ
+

Eπ [T πkfk − fk]

1− γ
+

Eπ [fk(s, π)− fk(s, πk)]

1− γ
+
Lµ(πk, fk)− Lµ(πk, Q

πk)

1− γ
.

We now bound the term of Lµ(πk, fk)− Lµ(πk, Q
πk).

fπ := argmin
f∈F

sup
admissible ν

∥f − T πf∥22,ν , ∀π ∈ Π

εstat := O
(
V 2
max log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N

)
,

εr := εstat +O (εF ) .

Then, by Theorem 8, we know that with high probability, for any k ∈ [K],

ED(πk, fπk
) ≤ εr. (15)

For |Lµ(πk, Q
πk)− Lµ(πk, fπk

)|, we have,

Lµ(πk, Q
πk) = Eµ [Q

πk(s, πk)−Qπk(s, a)]

= (1− γ) (J(πk)− J(µ))

= (1− γ) (fπk
(s0, πk)− J(µ)) + (1− γ) (J(πk)− fπk

(s0, πk))

= Eµ [fπk
(s, πk)− (T πkfπk

)(s, a)] + Edπk [(T πkfπk
)(s, a)− fπk

(s, a)]
(by the extension of performance difference lemma (see, e.g., Cheng et al., 2020, Lemma 1))

= Lµ(πk, fπk
) + Eµ [fπk

(s, a)− (T πkfπk
)(s, a)] + Edπk [(T πkfπk

)(s, a)− fπk
(s, a)]

=⇒ |Lµ(πk, Q
πk)− Lµ(πk, fπk

)| ≤ ∥fπk
− T πkfπk

∥2,µ + ∥T πkfπk
− fπk

∥2,dπk

≤ O(
√
εF ), (16)

where the last step is by Assumption 1. Also, by applying standard concentration inequalities on LD (the failure probability
will be split evenly with that on ED from Lemma 10):

|Lµ(πk, fk)− LD(πk, fk)|+ |Lµ(πk, fπk
)− LD(πk, fπk

)| ≤
√
εstat, ∀k ∈ [K]. (17)

Therefore,

Lµ(πk, fk)− Lµ(πk, Q
πk)

≤ Lµ(πk, fk) + βED(πk, fk)− Lµ(πk, Q
πk) (ED(·) ≥ 0)

≤ Lµ(πk, fk) + βED(πk, fk)− Lµ(πk, fπk
)− βED(πk, fπk

) +O(
√
ϵF ) + βεr (by Eq.(15) and Eq.(16))
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≤ LD(πk, fk) + βED(πk, fk)− LD(πk, fπk
)− βED(πk, fπk

)

+O(
√
ϵF ) +

√
εstat + β · O (εstat + εF ) (by Eq.(17))

≤ O (
√
εF ) +

√
εstat + β · O (εstat + εF ) (by the optimality of fk)

≤ O

(
√
εF + Vmax

√
log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N

)
+ β · O

(
V 2
max log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N
+ εF

)
.

This completes the proof.

B.3. Performance Guarantee of the Theoretical Algorithm

This section proves a general version of Theorem 5 using Lemma 12, which relies on the approximate realizability and
completeness assumptions (Assumption 1 and Assumption 2).

Theorem 14 (General Version of Theorem 5). Under the same condition as Theorem 5, let C > 0 be any constant, ν be an
arbitrarily distribution that satisfies C (ν;µ,F , πk) ≤ C, εstat := O

(
V 2
max log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N

)
, and π be an

arbitrary competitor policy. Then, we choose β = O
(

V 1/3
max

(εF+εstat)2/3

)
and with probability at least 1− δ,

J(π)− J(π̄)

≤ O

(√
C
(√

εF +
√
εF,F +

√
εstat + (VmaxεF + Vmaxεstat)

1/3
)

1− γ

)
+
⟨dπ \ ν, fk − T πkfk⟩

1− γ
.

Proof of Theorem 14. Over this proof, let

εstat := O
(
V 2
max log |N∞(F,Vmax/N)||N∞,1(Π,1/N)|/δ

N

)
.

By the definition of π̄, we have
J(π)− J(π̄)

=
1

K

K∑
k=1

(J(π)− J(πk))

≤ 1

K

K∑
k=1

(
Eµ [fk − T πkfk]

1− γ︸ ︷︷ ︸
(I)

+
Eπ [T πkfk − fk]

1− γ︸ ︷︷ ︸
(II)

+
Eπ [fk(s, π)− fk(s, πk)]

1− γ︸ ︷︷ ︸
(III)

+
√
εF +

√
εstat + β · O(εF + εstat)

)
.

(by Lemma 13)

By the same argument of Xie et al. (2021, Proof of Theorem 4.1), we know for any k ∈ [K],

(I) ≤
√
εb +

√
Vmax/β

1− γ
(εb is defined in Equation (11))

and

(II) ≤
2
√
C(
√
εb +

√
Vmax/β)

1− γ
+
⟨dπ \ ν, fk − T πkfk⟩

1− γ
,

where C ≥ 1 can be selected arbitrarily and ν is an arbitrarily distribution that satisfies C (ν;µ,F , πk) ≤ C.

Also, using the property of the no-regret oracle, we have

1

K

K∑
k=1

(III) = o(1)

Note that
√
εb = O(

√
εF +

√
εF,F +

√
εstat). Then, combine them all, we obtain,

J(π)− J(π̄)

≤ O

√C
(√

εF +
√
εF,F +

√
εstat +

√
Vmax/β

)
1− γ

+ β(εF + εstat)

+
1

K

K∑
k=1

⟨dπ \ ν, fk − T πkfk⟩
1− γ

.
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Algorithm 3 ATAC (Detailed Practical Version)
Input: Batch data D, policy π, critics f1, f2, constants β ≥ 0, τ ∈ [0, 1], w ∈ [0, 1], entropy lower bound Entropymin

1: Initialize target networks f̄1 ← f1, f̄2 ← f2
2: Initialize Lagrange multiplier α← 1
3: for k = 1, 2, . . . ,K do
4: Sample minibatch Dmini from dataset D.
5: For f ∈ {f1, f2}, update critic networks

lcritic(f) := LDmini(f, π) + βEwDmini
(f, π)

# f ← ProjF (f − ηfast∇lcritic)
f ← ADAM(f,∇lcritic, ηfast)
f ← ClipWeightL2(f)

6: Update actor network
# lactor(π) := −LDmini(f1, π)
# π ← ProjΠ(π − ηslow∇lactor)
l̃actor(π, α) = −LDmini(f1, π)− α(EDmini [π log π] + Entropymin)
π ← ADAM(π,∇π l̃actor, ηslow)
α← ADAM(α,−∇α l̃actor, ηfast)
α← max{0, α}

7: For (f, f̄) ∈ {(fi, f̄i)}i=1,2, update target networks
f̄ ← (1− τ)f̄ + τf .

8: end for

Therefore, we choose β = Θ
(

V 1/3
max

(εF+εstat)2/3

)
, and obtain

J(π)− J(π̄)

≤ O

(√
C
(√

εF +
√
εF,F +

√
εstat + (VmaxεF + Vmaxεstat)

1/3
)

1− γ

)
+

1

K

K∑
k=1

⟨dπ \ ν, fk − T πkfk⟩
1− γ

.

This completes the proof.

C. Experiment Details
C.1. Implementation Details

We provide a more detailed version of our practical algorithm Algorithm 2 in Algorithm 3, which shows how the actor and
critic updates are done with ADAM. As mentioned in Section 4.2, the projection in π ← ProjΠ(π − ηslow∇lactor) of the
pseudo-code Algorithm 2 is done by a further Lagrange relaxation through introducing a Lagrange multiplier α ≥ 0. We
update α in the fast timescale ηfast, so the policy entropy ED[−π log π] can be maintained above a threshold Entropymin,
roughly following the path of the projected update in Line 5 in the pseudo code in Algorithm 2. Entropymin is set based on
the heuristic used in SAC (Haarnoja et al., 2018).

In implementation, we use separate 3-layer fully connected neural networks to realize the policy and the critics, where each
hidden layer has 256 neurons and ReLU activation and the output layer is linear. The policy is Gaussian, with the mean and
the standard deviation predicted by the neural network. We impose an l2 norm constraint of 100 for the weight (not the bias)
in each layer of the critic networks.

The first-order optimization is implemented by ADAM (Kingma & Ba, 2015) with a minibatch size |Dmini| = 256, and
the two-timescale stepsizes are set as ηfast = 0.0005 and ηslow = 10−3ηfast. These stepsizes ηfast and ηslow were selected
offline with a heuristic: Since ATAC with β = 0 is IPM-IL, we did a grid search (over ηfast ∈ {5e− 4, 5e− 5, 5e− 6} and
ηslow = {5e − 5, 5e − 6, 5e − 7}, on the hopper-medium and hopper-expert datasets) and selected the combination that
attains the lowest ℓ2 IL error after 100 epochs.

We set w = 0.5 in Eq.(7), as we show in the ablation (Figure 3) that either w = 0 and w = 1 leads to bad numerical stability
and/or policy performance. We use τ = 0.005 for target network update from the work of Haarnoja et al. (2018). The
discount is set to the common γ = 0.99.
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Figure 3. Ablation of the DQRA loss with different mixing weights w in Eq.(7). The plots show the policy performance and TD error
across optimization epochs of ATAC with the hopper-medium-replay, hopper-medium, and hopper-medium-expert datasets from top to
buttom. The stability and performance are greatly improved when w ∈ (0, 1). For each w, the plot shows the 25th, 50th, 75th percentiles
over 10 random seeds.

The regularization coefficient β is our only hyperparameter that varies across datasets based on an online selection. We
consider β in ∈ {0, 4−4, 4−3, 4−2, 4−1, 1, 4, 42, 43, 44}. For each β, we perform ATAC training with 10 different seeds: for
each seed, we run 100 epochs of BC for warm start and 900 epochs of ATAC, where 1 epoch denotes 2K gradient updates.
During the warmstart, the critics are optimized to minimize the Bellman surrogate EwDmini

(f, π) except for β = 0.

Since ATAC does not have guarantees on last-iterate convergence, we report also the results of both the last iterate (denoted
as ATAC and ATAC0) and the best checkpoint (denoted as ATAC∗ and ATAC∗

0) selected among 9 checkpoints (each was
made every 100 epochs).

We argue that the online selection of β and few checkpoints are reasonable for ATAC, as ATAC theory provides robust
policy improvement guarantees. While the assumptions made in the theoretical analysis does not necessarily apply to the
practical version of ATAC, empirically we found that ATAC does demonstrate robust policy improvement properties in the
D4RL benchmarks that we experimented with, which we will discuss more below.

C.2. Detailed Experimental Results

We used a selection of the Mujoco datasets (v2) and Adroit datasets (v1) from D4RL as our benchmark environments. For
each evaluation, we roll out the mean part of the Gaussian policy for 5 rollouts and compute the Monte Carlo return. For
each dataset, we report the statistical results over 10 random seeds in Table 2.

Compared with the summary we provided in the main text (Table 1), Table 2 includes also the confidence interval which
shows how much the 25th and the 75th percentiles of performance deviate from the median (i.e. the 50th percentile). In
addition, Table 2 also provides the selected hyperparamter β for each method.

Overall, we see that confidence intervals are small for ATAC, except for larger variations happening in hopper-rand,
pen-human, and hammer-human. Therefore, the performance improvement of ATAC from other offline RL baselines and
behavior policies is significant. We also see that ATAC most of the time picks β = 64 for the Mujoco datasets, except for the
halfcheetah domain, and has a tendency of picking smaller β as the dataset starts to contain expert trajectories (i.e. in *-exp
datasets). This is reasonable, since when the behavior policy has higher performance, an agent requires less information
from the reward to perform well; in the extreme of learning with trajectories of the optimal policy, the learner can be optimal
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Table 2. Experimental results of ATAC and ATAC0 on the D4RL dataset and its confidence interval. We report the median score and the
25th and 75th percentiles, over 10 random seeds.
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ATAC∗ ATAC CQL TD3+BC
halfcheetah-rand 2.3 2.3 35.4 10.2
walker2d-rand 8.2 6.5 7.0 1.4
hopper-rand 12.1 12.0 10.8 11.0

halfcheetah-med 42.9 42.6 44.4 42.8
walker2d-med 84.0 83.0 74.5 79.7
hopper-med 53.3 33.5 86.6 99.5

halfcheetah-med-replay 43.3 41.7 46.2 43.3
walker2d-med-replay 33.7 21.8 32.6 25.2
hopper-med-replay 39.2 29.5 48.6 31.4

halfcheetah-med-exp 108.4 107.5 62.4 97.9
walker2d-med-exp 111.8 109.1 98.7 101.1
hopper-med-exp 112.8 112.5 111.0 112.2

Table 3. Results of mujoco-v0 dataset. We grayed out the results of hopper-v0 because these datasets have bug (see D4RL github).

just by IL.

We also include extra ablation results on the effectiveness of DQRA loss in stabilizing learning in Figure 3, which includes
two extra hopper datasets compared with Figure 2. Similar to the results in the main paper, we see that w = 1 is unstable,
w = 0 is stable but under-performing, while using w ∈ (0, 1) strikes a balance between the two. Our choice w = 0.5 has the
best performance in these three datasets and is numerically stable. We also experimented with the max-aggregation version
recently proposed by Wang & Ueda (2021). It does address the instability issue seen in the typical bootstrapped version
w = 1, but its results tend to be noisier compared with w = 0.5 as it makes the optimization landscape more non-smooth.

Lastly, we include experimental results of ATAC on D4RL mujoco-v0 datasets in Table 3. We used v2 instead of v0 in the
main results, because 1) hopper-v0 has a bug (see D4RL github; for this reason they are grayed out in Table 3), and 2) some
baselines we compare ATAC with also used v2 (or they didn’t specify and we suspect so). Here we include these results for
completeness.

C.3. Robust Policy Improvement

We study empirically the robust policy improvement property of ATAC. First we provide an extensive validation on how
ATAC∗ performs with different β on all datasets in Figure 4 and Figure 5, which are the complete version of Figure 1. In
these figures, we plot the results of ATAC∗ (relative pessimism) and ATAC∗

0 (absolute pessimism) (which is a deep learning
implementation of PSPI (Xie et al., 2021)) in view of the behavior policy’s performance. These results show similar trends
as we have observed in Figure 1. ATAC can robustly improve from the behavior policy over a wide range of β values. In
particular, we see the performance degrades below the behavior policy only for large βs, because of the following reasons.
When β → 0 ATAC converges to the IL mode, which can recover the behavior policy performance if the realizability
assumption is satisfied. On the other hand, when β is too large, Proposition 6 shows that the statistical error will start to
dominate and therefore lead to substandard performance. This robust policy improvement property means that practitioners
of ATAC can online tune its performance by starting with β = 0 and the gradually increasing β until the performance drop,
without ever dropping below the performance of behavior policy much.

Figure 4 and Figure 5 show the robustness of ATAC∗ which uses the best checkpoint. Below in Table 4 we validate further
whether safe policy improvement holds across iterates. To this end, we define a robust policy improvement score

scoreRPI(π) :=
J(π)− J(µ)

|J(µ)|
(18)

which captures how a policy π performs relatively to the behavior policy µ. Table 4 shows the percentiles of the robust
policy improvement score for each dataset, over all the β choices, random seeds, and iterates from the 100th epoch to the
900th epoch of ATAC training. Overall, we see that in most datasets (excluding *-human and *-clone datasets which do not
satisfy our theoretical realizability assumption), more than 50% of iterates generated by ATAC across all the experiments are
better than the behavior policy. For others, more than 60% of iterates are within 80 % of the behavior policy’s performance.
This robustness result is quite remarkable as it includes iterates where ATAC has not fully converged as well as bad choices
of β.
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10th 20th 30th 40th 50th 60th 70th 80th 90th 100th

halfcheetah-rand 0.9 1.0 1.0 1.0 1.0 1.1 1.4 1.5 1.8 5.5
walker2d-rand 1.9 2.3 3.5 5.6 16.5 64.6 134.0 139.1 159.2 519.1
hopper-rand 0.1 0.2 1.3 3.5 6.7 10.6 11.4 12.6 23.2 63.3

halfcheetah-med -0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.4
walker2d-med 0.1 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5
hopper-med 0.2 0.2 0.3 0.4 0.4 0.6 0.7 0.9 1.1 1.4

halfcheetah-med-replay 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0
walker2d-med-replay -1.0 -1.0 -1.0 -0.2 3.5 4.4 4.8 5.0 5.2 5.5
hopper-med-replay -1.0 -0.9 -0.9 1.1 5.4 6.0 6.0 6.1 6.1 6.2

halfcheetah-med-exp -0.6 -0.5 -0.4 -0.3 -0.2 -0.0 0.2 0.4 0.5 0.5
walker2d-med-exp -0.1 -0.1 0.0 0.3 0.3 0.3 0.3 0.4 0.4 0.4
hopper-med-exp -0.6 -0.4 -0.2 -0.2 -0.1 -0.1 0.0 0.6 0.7 0.8

pen-human -1.0 -1.0 -1.0 -0.9 -0.9 -0.9 -0.8 -0.8 -0.7 -0.2
hammer-human -1.1 -1.1 -1.1 -1.1 -1.0 -1.0 -1.0 -1.0 -1.0 0.9

door-human -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.0 -0.9 -0.1
relocate-human -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.9

pen-cloned -1.0 -1.0 -1.0 -0.9 -0.9 -0.8 -0.7 -0.6 -0.5 0.5
hammer-cloned -1.3 -1.3 -1.3 -1.3 -1.3 -1.2 -1.2 -1.1 -1.0 9.2

door-cloned -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.1 -1.0 -0.8 1.4
relocate-cloned -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.7

pen-exp -0.4 -0.2 -0.1 0.0 0.1 0.2 0.2 0.3 0.4 0.6
hammer-exp -1.0 -1.0 -1.0 -0.8 -0.6 -0.2 0.1 0.3 0.3 0.4

door-exp -1.0 -0.8 -0.6 -0.4 -0.2 -0.2 -0.0 0.0 0.0 0.1
relocate-exp -0.4 -0.3 -0.3 -0.2 -0.2 -0.1 -0.1 -0.0 0.0 0.1

Table 4. The robust policy improvement scores of ATAC. We report for each dataset, the percentiles of iterates over all 9 choices of β, 10
seeds, and 800 epochs (from the 100th to the 900th epochs). In most datasets (excluding *-human and *-clone datasets which likely do
not satisfy our theoretical realizability assumption), more than 50% of iterates generated by ATAC across all seeds and βs are better than
the behavior policy. For others, more than 60% of iterates are within 80% of the behavior policy’s performance.



Adversarially Trained Actor Critic for Offline Reinforcement Learning

(a) halfcheetah-random (b) halfcheetah-medium (c) halfcheetah-medium-replay (d) halfcheetah-medium-expert

(e) hopper-random (f) hopper-medium (g) hopper-medium-replay (h) hopper-medium-expert

(i) walker2d-random (j) walker2d-medium (k) walker2d-medium-replay (l) walker2d-medium-expert

Figure 4. Robust Policy Improvement of ATAC in the Mujoco domains. ATAC based on relative pessimism improves from behavior
policies over a wide range of hyperparameters that controls the degree of pessimism. On the contrary, absolute pessimism does not have
this property and needs well-tuned hyperparameters to ensure safe policy improvement. The plots show the 25th, 50th, 75th percentiles
over 10 random seeds.
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(a) pen-human (b) pen-cloned (c) pen-exp

(d) hammer-human (e) hammer-cloned (f) hammer-exp

(g) door-human (h) door-cloned (i) door-exp

(j) relocate-human (k) relocate-cloned (l) relocate-exp

Figure 5. Robust Policy Improvement of ATAC in the Adroit domains. ATAC based on relative pessimism improves from behavior
policies over a wide range of hyperparameters that controls the degree of pessimism for the *-exp datasets. On the contrary, absolute
pessimism does not have this property and needs well-tuned hyperparameters to ensure safe policy improvement. For *-human and
*-cloned datasets, robust policy improvement is not observed empirically, likely because human demonstrators cannot be modeled by
Markovian Gaussian policies (i.e. µ /∈ Π). The plots show the 25th, 50th, 75th percentiles over 10 random seeds.
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D. Comparison between ATAC and CQL
We compare ATAC with CQL (Kumar et al., 2020) in details, since they share a similar pessimistic policy evaluation
procedure. In a high level, there are several major differences at the conceptual level:

1. (Conceptual Algorithm) ATAC describes an explicit solution concept, whereas CQL does not have a clear objective
but is described as an iterative procedure. Since the convergence property and fixed point of CQL is unclear for general
setups, we cannot always compare ATAC and CQL.

2. (Maximin vs Minimax) ATAC decouples the policy and the critic, whereas CQL aims to derive the policy from a
critic. Specifically, ATAC uses a maximin formulation that finds policies performing well even for the worst case critic,
whereas CQL uses a minimax formulation that finds the optimal policy for the worst case critic. In general, maximin
and minimax leadto different policies.

3. (Robust Policy Improvement) Because of the difference between maximin and minimax in the second point, ATAC
recovers behavior cloning when the Bellman term is turned off but CQL doesn’t. This property is crucial to establishing
the robust policy improvement property of ATAC.

ATAC and CQL also differ noticeably in the implementation design. ATAC uses the novel DQRA loss, projections, and
two-timescale update; on the other hand, CQL adds an inner policy maximization, uses standard double-Q bootstrapping,
and more similar step sizes for the critic and the actor.

Given such differences in both abstract theoretical reasoning and practical implementations, ATAC and CQL are two
fundamentally different approaches to general offline RL, though it is likely there are special cases where the two produce
the same policy (e.g. bandit problems with linear policies and critics).

Below we discuss the core differences between the two algorithms in more details.

D.1. Conceptual Algorithm

First we compare the two algorithms at the conceptual level, ignoring the finite-sample error. ATAC has a clear objective
and an accompanying iterative algorithm to find approximate solutions, whereas CQL is described directly as an
iterative algorithm whose fixed point property is not established in general.

Specifically, recall that ATAC aims to find the solution to the Stackelberg

π̂⋆ ∈ argmax
π∈Π

Eµ[f(s, π)− f(s, a)]

s.t. fπ ∈ argmin
f∈F

Eµ[f(s, π)− f(s, a)] + βEµ[((f − T πf)(s, a))2] (19)

and we show that an approximate solution to the above can be found by a no-regret reduction in Algorithm 1.

On the other hand, CQL (specifically CQL (R) in Eq.(3) of (Kumar et al., 2020)) performs the update below9

fk+1 ← argmin
f∈F

max
π∈Π

αEµ[f(s, π)− f(s, a)]−R(π) + Eµ[((f − T πkfk)(s, a))
2] (20)

Kumar et al. (2020) propose this iterative procedure as an approximation of a pessimistic policy iteration scheme, which
alternates between pessimistic policy evaluation and policy improvement with respect to the pessimistic critic:

We could alternate between performing full off-policy evaluation for each policy iterate, πk, and one step of policy
improvement. However, this can be computationally expensive. Alternatively, since the policy πk is typically
derived from the Q-function, we could instead choose µ(a|s) to approximate the policy that would maximize the
current Q-function iterate, thus giving rise to an online algorithm. (Kumar et al., 2020).

Note µ in the quote above corresponds to π in the inner maximization in (20). When presenting this conceptual update
rule, Kumar et al. (2020) however do not specify exactly how πk is updated but only provide properties on the policy
exp(fk(s, a)/Z(s)). Thus, below we will suppose CQL aims to find policies of quality similar to exp(fk(s, a)/Z(s)).

9Assume the data is collected by the behavior policy µ.
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D.2. Maximin vs. Minimax

Although it is unclear what the fixed point of CQL is in general, we still can see ATAC and CQL aim to find very different
policies. ATAC decouples the policy and the critic to find a robust policy, whereas CQL aims to derive the policy from
a critic function.. This observation is reflected below.

1. ATAC is based on a maximin formulation, whereas CQL is based on minimax formulation.

2. ATAC updates policies by a no regret routine, where each policy is slow updated and determined by all the critics
generated in the past iterations, whereas CQL is more akin to a policy iteration algorithm, where each policy is derived
by a single critic.

We can see this difference concretely, if we specialize the two algorithms to bandit problems. In this case, CQL is no longer
iterative and has a clear objective. Specifically, if we let α = 1

β , the two special cases can be written as

π̂⋆ ∈ argmax
π∈Π

min
f∈F

Eµ[f(s, π)− f(s, a)] + βEµ[((f − r)(s, a))2] (ATAC)

f̂⋆ ← argmin
f∈F

max
π∈Π

Eµ[f(s, π)− f(s, a)] + βEµ[((f − r)(s, a))2]− βR(π) (CQL)

If we further ignore the extra regularization termR(π) (as that can often be absorbed into the policy class), then the main
difference between the two approaches, in terms of solution concepts, is clearly the order of max and min. It is well known
maximin and minimax gives different solutions in general, unless when the objective is convex-concave (with respect to the
policy and critic parameterizations). For example, in this bandit special case, suppose the states and actions are tabular; the
objective is convex-concave when Π and F contains all tabular functions, but convex-concave objective is lost when F
contains a finite set of functions. In the latter scenario, CQL and ATAC would give very different policies, and CQL would
not enjoy the nice properties of ATAC.

D.3. Robust Policy Improvement

We now illustrate concretely how the difference between ATAC and CQL affects the robust policy improvement property.
For simplicity, we only discuss in population level.

By Proposition 3 and Proposition 6, we know π̂⋆, the learned policy from ATAC, provably improves behavior policy µ under
a wide range of β choice of Eq.(19), including β = 0. In other word, as long as µ ∈ Π, ATAC has J(π̂⋆) ≥ J(µ) even if
β = 0 in Eq.(19).

However, the following argument shows that: In CQL, if πf ∈ Π, ∀f ∈ F and F contains constant functions, then setting
β = 0 cannot guarantee policy improvement over µ, even when µ ∈ Π, where πf denotes the greedy policy with respect to
f .

Based on what’s shown before, the corresponding CQL update rule with β = 0 can be written as
fk+1 ← argmin

f∈F
max
π∈Π

Eµ[f(s, π)− f(s, a)].

We now prove that fk+1 is constant across actions in every state on the support of µ for any k:

1. minf∈F maxπ∈Π Eµ[f(s, π)− f(s, a)] = 0, by

0 = min
f∈F

Eµ[f(s, π)− f(s, a)]

∣∣∣∣
π=µ

≤ min
f∈F

max
π∈Π

Eµ[f(s, π)− f(s, a)] ≤ max
π∈Π

Eµ[f(s, π)− f(s, a)]

∣∣∣∣
f≡0

= 0.

2. For any f ′ ∈ F , if there exists (s1, a1) ∈ S × A such that µ(s1) > 0 and f ′(s1, a1) > maxa∈A\a1
f ′(s1, a),

then maxπ∈Π Eµ[f
′(s, π) − f ′(s, a)] ≥ Eµ[f

′(s, πf ′) − f ′(s, a)] ≥ µ(s1)(f
′(s1, a1) − f ′(s1, µ)) ≥ µ(s1)(1 −

µ(a1|s1))(f ′(s1, a1)−maxa∈A\a1
f ′(s1, a)) > 0.

3. Combining the two bullets above, we obtain that fk+1 for all k must have fk+1(s1, a1) = fk+1(s1, a2) for all
(s1, a1, a2) ∈ S ×A×A such that µ(s1) > 0, i.e., fk+1 is constant across actions in every s ∈ S in the support of µ.

Therefore, for CQL with β = 0, the policies are updated with per-state constant functions, leading to arbitrary learned
policies and failing to provide the safe policy improvement guarantee over the behavior policy µ.


