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ABSTRACT

Nickel-based superalloys (Ni-alloys) are widely used in flight-critical aeroengine components because of their
excellent material properties at high temperatures such as yield strength, ductility, and creep resistance.
However, these desirable high-temperature properties also make Ni-alloys very difficult to machine. This
manuscript provides an overview and benchmarking of various constitutive models to provide the process
modeling community with an objective comparison between various calibrated material models to increase
the accuracy of process model predictions for machining of Ni-alloys. Various studies involving the Johnson-
Cook model and the calibration of its constants in finite element simulations are discussed. It was found that
significant discrepancies exist between researchers’ approaches to calibrating constitutive models. To this
end, various ‘physics-based’ models are discussed as an alternative to widely used ‘phenomenological’
models like the Johnson-Cook model, supplemented by a discussion on the more precise inverse method for
constitutive model calibration. This manuscript also provides a comprehensive overview of pedigreed
physical material properties for a range of Ni-alloys—the variation of thermal properties and thermally
induced stresses over machining temperature regimes are modeled for a variety of Ni-alloys. The chemical
compositions and applications for a range of relevant Ni-alloys are also explored. Overall, this manuscript
identifies the need for more comprehensive analysis and process-specific (e.g., in-situ) characterization of
thermomechanical properties for difficult-to-machine Ni-alloys to improve machining performance and

aeroengine component quality.

1. INTRODUCTION

Nickel-based superalloys (Ni-alloys) such as Inconel 718 are widely used in the
aerospace industry because of their exceptional mechanical and physical properties at
elevated service temperatures [1]. Many Ni-alloys can operate at temperatures beyond
600 °C, which requires exceptional yield strength (YS) and creep resistance, as well as

oxidation and wear resistance properties [2]. One of the most commonly utilized Ni-
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alloys, Inconel 718, has great weldability, an exceptional YS of up to 1125 MPa, heat
resistance above 1200 °C, etc. [3]. Ni-alloys derive their exceptional properties from
their microstructure, which typically features a face-centered cubic (FCC) lattice and a
variety of strengthening phases including gamma (y), gamma prime (y’), and gamma
double prime (y”’) [4].

The behavior of Ni-alloys has been studied across a broad range of ‘service-
specific’ thermomechanical regimes (i.e., stresses, strain rates, and temperatures
representative of the service environment of gas turbine engines). For example, Czyrska-
Filemonowicz et al. [5] measured creep, oxidation, and fatigue resistance at various
stress and temperature levels to measure the increase in creep strength, oxidation
resistance, and thermomechanical fatigue resistance per material. Wang et al. [6]
employed similar techniques such as the tensile test to measure strain rates over a wide
range of temperatures to understand the behaviors and performance of Ni-alloys under
service-specific regimes.

1.1. Summary of Common Ni-alloys

The thermomechanical properties of Ni-alloys are based on their alloying
elements (chemical composition) and microstructure [7]. The chemical composition and
the effect it has on thermomechanical properties in machining has been researched for
several Ni-alloys and the findings are presented in Table 1. The chemical composition of
most Ni-alloys is chosen based on their corrosion/creep resistance, strength, and fatigue

performance [2, 8]. Mo is added for increasing solid solution strengthening, copper (Cu)
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for increasing thermal conductivity, and Al, Co, W, and Ti for increasing precipitation

hardness [9]. Al and Cr increase oxidation and creep resistance [9, 10].

Table 1. Overview of common Ni-alloys. Adapted from Thakur and Gangopadhyay [11].

Different grades
and corresponding
machining
operations

Composition [%]

Properties

Inconel 100
Turning [12, 13]

Ni 60, Co 15, Cr 10, Al
5.5,Ti47,Mo3,C
0.18, Zr 0.06, B 0.014

Precipitation hardenable with a high rupture strength
through 870 °C. The high percentages of Ti, Al, and low
refractory metals increase the strength to density
ratio.

Inconel 718
Turning [14-20]
Milling [21-24]
Drilling [25-27]
Face turning [28,
29]

Broaching [30, 31]

Ni 54.48, Fe 22.3, Cr
17.5, Nb 4.9, Ti 0.96,
Al 0.66

Precipitation hardenable, high creep-rupture strength
at high temperatures to about 700 °C and excellent
strength. Precipitates of primary niobium carbide
(NbC), titanium carbide (TiC), disc-shaped gamma
double prime (y”), and needle-like precipitates of &
(NisNb) present.

Inconel 713 LC

Ni 74.2, Cr 12.6, Mo

Good combination of tensile and creep-rupture

Drilling [32] 4.9,Al5.7,Nb 1.96, Ti properties because of gamma-prime strengthening
0.63,7r0.1,C0.047, enhanced by solid solution and grain-boundary
B 0.007 strengthening. Good castability.

Inconel 825 Ni37.1, Fe 32.2, Cr Good resistance to pitting, inter-granular corrosion,

Turning [33]

22.8, Mo 3.24, Cu
2.07,Ti0.859, C
0.0155

chloride-ion stress-corrosion cracking, and general
corrosion in a wide range of oxidizing and reducing
environments.

Udimet 720 LI
Turning [34]

Ni 57.4, Cr 16, Co 15,
Ti 5, Mo 3, Al 2.5, W
1,C0.1

Solid solution strengthened with W and Mo and
precipitation-hardened with Ti and Al. High strength,
excellent impact strength retention at elevated
temperatures, good oxidation and corrosion
resistance, and high degree of work hardening.

FGH 95
Milling [35]

Ni 62.5, Cr 12.98, Co
8.00, Nb 3.5, Al 3.48,
Mo 3.4, W34,Ti
2.55,C0.060,B0.012

Precipitation-hardened with a higher tensile and YS at
650 °C. Compact structure after hot isostatic pressing
consisting of coarse gamma prime phase (y’')
precipitated along previous particle boundaries (PPB)
appear in the grain.

ME-16
Turning [36]

Ni 56.3, Co 20.5, Cr
10.4, A13.1,W3,Ti
2.6, Tal.4,Nb 1.4,
Mo 1.3

Good strength and creep resistance at high
temperatures (600-800 °C). Good resistance to fatigue
crack initiation at lower temperatures (300-600 °C).
Can maintain strength and lower density at elevated
temperatures.




Journal of Manufacturing Science and Engineering

RR 1000
Turning [37]
Milling [38]
Drilling [39, 40]
Reaming [41]
Broaching [42]

Ni 52.4, Co 18.5,Cr
15, Mo 5, Ti 3.6, Al 3,
Ta 2, Hf 0.5, C0.03

Solid solution strengthened with Co, Cr, and Mo. Good
strength, toughness, creep resistance, oxidation
resistance, and corrosion resistance at high
temperatures.

Nimonic 75 Ni 80.5, Cr 19.5 Good corrosion and heat resistance, high-temperature
Turning [32] strength and outstanding oxidation-resistance.
Nimonic 80A Ni 76, Cr 19.5, Ti 2.4,  Age-hardenable creep-resistant alloy for service at
Turning [43] Al1.4 temperatures up to ~815 °C.

Nimonic 105 Ni 54, Co 20, Cr 15, Age-hardenable superalloy with increased Al for

Turning [44]

Mo 5, Al4.7,Ti1.3

improved oxidation-resistance and strength, and high
creep-rupture properties up to ~950 °C. Strengthened
by additions of Al, Mo, and Ti.

Nimonic C-263 Ni 51, Co 20, Cr 20, Readily weldable, age-hardenable superalloy with
Turning [45] Mo 5.8, Ti 2.2, Al 0.5 excellent strength, ductility, and corrosion resistance
Milling [46] up to ~850 °C. Solid-solution strengthened by Mo.
Hastelloy C-2000 Ni 47, Cr 22, Fe 18, Localized corrosion resistance, good resistance to hot
Milling [47] Mo 9, Co 1.5, WO0.6 acids and excellent resistance to stress-corrosion
cracking.

Haynes 282 Ni 57, Cr 20, Co 10, V' precipitation strengthened Ni-alloy with excellent
Twist drill [48] Mo 8.5, Ti 2.1, Al 1.5,  creep properties, fabricability and thermal stability.
Milling [49] Fe 1.5, Mn 0.3, Si

0.15, C0.06, B 0.005
Waspaloy Ni57.59,Cr19.4,Co  Precipitates of NbC and TiC and y'/y” phases cause

Turning [50, 51]

13.2, Fe 1.2, C 0.03,
Mo 4.1, Al 1.3, Ti 3.1,
Nb ~0, B 0.005, Mn
0.03, Si 0.05

precipitation hardening, adhesion, and extreme heat
generation. There are also significantly less carbides
present in Waspaloy than in Inconel 718, resulting in
less tool-wear during turning.

Alvac 718+ [52]
Broaching [53]

Ni 52.07, Cr 18, Co
9.1,2.7 Mo, W 1, Nb

Low Fe and higher Al, W, and Co content yields better
high temperature properties. Has higher hardness than

Milling [53] 5.4,Al1.45,Ti0.75, Inconel and exhibits less thermal softening during
0.006, B 0.005

91
92 Increasing the percentage of an alloying element such as Ti and/or Al during
93  material processing (e.g., from molten until cooling, aging, and heat treatment) allows
94  for the alloy to enter the y, y’, and y’’ phases where the strength increases with each
95 phase [4]. The y phase, also known as the alloy matrix, is an FCC austenitic phase that is
96  based in nickel. Ni-alloys also contain significant percentages of other elements such as
97  tungsten, Co, Cr, and molybdenum (Mo) [54, 55].
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The y’ phase contains Ti and Al within the precipitate and exhibits increased
strength at high temperatures and creep resistance over the y phase [54, 55].
Additionally, the y’ phase develops a film at the grain boundary under heat treatments
that improves rupture properties [54-56]. Due to the excellent strengthening properties
at higher temperatures, greater amounts of y’ were added to superalloys over time,
with earlier alloys containing 25% by volume and more modern superalloys containing
up to 45% [54, 57].

The y’ and y”’ phases precipitate with each other in some alloys such as Inconel
718, from iron acting as a catalyst for the formation of y”’ [54]. Compared to the y’
phase, the y”’ phase does increase the strength of these alloys at lower temperatures
but y”’ rapidly loses strength at temperatures above 650 °C [54]. The y”’ phase has a
combination of Ni and niobium (Nb) and has good strength at lower temperatures but
has less strength at higher temperatures above 650 °C [56]. This phase still sees use in
high temperature turbines that take advantage of excellent lower temperature
properties due to transpiration cooling [58]. The dislocation generation of y, y’, and y”
precipitates during plastic deformation is what causes the material to continue to
strengthen at room temperature (RT) [4].

Davies and Stoloff [59] studied these phases and how dislocation-precipitate
interactions affect flow stress in a Ni-based superalloy. They showed that the size of the
V' grains as well as dislocations caused by aging and heat treatment have a strong effect
on the YS of the alloy, particularly at elevated temperatures. Ni-alloys have properties

that allow them to continue to increase their YS as temperature increases—there can be
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continual increases in YS until 800 °C for most of these superalloys [60]. However, the YS
sharply decreases at temperatures above 800 °C, where it is only a fraction of the peak
YS when the temperature reaches 1200 °C [60]. Piearcey et al. [61] found that the y’
phase continued to increase the strength of Mar-M200 alloy as temperatures increased,

highlighting the strong influence of this phase on high temperature properties.

1.2. Applications of Ni-alloys in Jet Engines

Jet engines are extremely sophisticated pieces of equipment whose components
require specific tolerances, complex geometries, and special materials. Materials used
should be lightweight yet sufficiently strong to resist the significant forces and
temperatures encountered at high altitudes; these come in the form of superalloy

metals. Figure 1 is a schematic of the major components of a jet engine.

Combustion
Chamber

Low-pressure
Turbine

Low-pressure
Compressor

Fan Blades

High-pressure
Turbine

High-pressure
Compressor

Fig. 1. Major components of a jet engine. Adapted from Eickemeyer et al. [62].

As can be seen in Fig. 1, the cold section is where frigid air enters—the fan sucks

air in towards the hot section where it is compressed through the low and high-pressure
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compressors. It is then funneled into the combustion chamber where it combusts with
fuel. Lastly, the heated air is expanded and discharged via the high and low-pressure
turbines: the hot air turns the turbine blades, where it is pushed out the exhaust nozzle,
generating thrust that propels the aircraft. The components for these different sections
are constructed from high-grade, durable metals. The fan blades are typically made of
several materials including aluminum (Al), titanium (Ti), and stainless steel. The
compressor is typically made of nickel (Ni), cobalt (Co), or iron (Fe) alloys, with Al, Ti,
and chromium (Cr) as additives. The combustion chamber can reach temperatures
above 1900 °C, which is above the melting point of most materials [63]. Thus, the
properties of materials in this section are especially crucial. Commonly used metals
include tungsten (W), molybdenum silicide, niobium silicide, and carbon silicide [64].
High-pressure turbine components will generally be made of nickel-based superalloys
and the low-pressure turbine is usually made of iron-based superalloys, stainless steel,
or titanium alloys. The exhaust nozzle is commonly comprised of Inconel alloys and
stainless steel [65]. Lightweight materials such as Al are used for the shell.

Before a Ni-alloy component goes into service, it must be machined to the
desired geometry and surface integrity [66]. Ever since early pioneering work by Kahles
and Field [67] dealing with the impact of surface integrity characteristics like residual
stress and surface roughness on the performance of Ni-alloy components, a wide range
of studies have further established that machining-induced near-surface damage can
lead to premature component failure with potentially catastrophic consequences [68-

70].



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Journal of Manufacturing Science and Engineering

Tool and workpiece geometry play a key role in the development of machining-
induced surface integrity and fatigue performance. The high strength of Ni-alloys results
in poor machinability due to high cutting forces, temperatures, and rapid tool wear,
which in turn presents poor surface integrity such as deformed grains and tensile
residual stresses [55, 71-73]. The machining of Ni-alloys has been widely researched,
with most studies being empirical and describing relationships between process
parameters (‘feeds and speeds’) and the resulting performance metrics (e.g., cutting

forces [2, 74, 75], tool-life [76], surface integrity [77], etc.).

1.3. Scope of Manuscript

Modeling approaches are widely employed to predict the response of workpiece
materials to thermomechanical loads during machining. Constitutive models that
predict thermomechanical responses such as the Johnson-Cook (JC) model [78] return
results for variables such as the flow stress. Modern process modeling is typically carried
out with the help of software such as MATLAB, using finite element (FE) software, or
physics-based analytical models [79, 80]. This study is primarily concerned with the use
of constitutive models in FE simulations, where the validation of the numerical results
from FE simulations for the prediction of material behavior during machining is one of
the biggest hurdles in the research field of manufacturing [81].

Modeling of machining processes with numerical simulations is difficult because
it requires inputs of process-specific constitutive and friction response [79, 82], neither
of which are well understood. Melkote et al. [79] explained that the flow stress of the

temperature at the tool-chip interface is overestimated by models due to the inability of

9
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dynamic mechanical tests to replicate the higher strains and temperature in the shear
zone. Astakhov et al. [83] compared friction data from orthogonal tests with numerical
modeling and there was a discrepancy of 50-100% for the friction coefficient. Industry
models like this are unreliable because they are not ‘physics-based’, of which there is a
large demand [84]. A physics-based model is founded on ‘“first principles’ such as
activation energies, fundamental constants, and physics-based variables. This stands in
contrast of phenomenological models, which model specific phenomena (e.g., strain
hardening, thermal softening) by including a set of functions and constants that are
calibrated through empirical trials and curve fitting techniques. Liu et al. [85] give a good
explanation on the difference between the two types of constitutive models. They state
that phenomenological models use functions that incorporate the strains, strain rates,
and temperatures but neglect physics at the microscale (i.e., microstructural effects).
Physics-based models do account for these microscale physics, using characteristics like
dislocation density, twinning, and phase transformations for computing the flow stress
[85, 86].

A fundamental problem limiting the adoption of physics-based models is that the
behavior of materials in extreme regimes is unknown and cannot be accurately
predicted without significant extrapolation [79]. This is problematic because predictions
determine the machining parameters, which ultimately dictate component quality [87].
Furthermore, there are issues with the current standard of calibrating the material
constants in constitutive models with mechanical tests, which are not representative of

machining conditions [81]. Thus, there is a need for direct measurement of calibration

10
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201  data via orthogonal machining tests, which will also be discussed later in this
202  manuscript. Fig. 2 summarizes the current and future state of constitutive modeling and

203  serves as a graphical abstract for this manuscript.

Materials Characterization Techniques
» Mechanical Properties
+ Thermal Properties

Constitutive Models

+ Phenomenological Laws

« Physically-based Laws

« Microstructurally-based Laws

Key challenge: Lack of robust in-situ calibration

Schoop etal., 2022 Apouridouane et al., 2015 Zhang et al., 2019

1
Strain [mmimm]

Future State: High Strain Material Response Characterized In-Situ Under Machining
204 Specific Thermomechanical Regimes for More Physics-Based Modeling

205  Fig. 2. Current and future state of constitutive modeling for machining processes.
206  Compiled figures from [79, 88-93].

207 Accurate model predictions require thorough analysis and characterization of
208  the way material properties change due to the thermomechanical loads of machining
209  process and their effect on defects [79, 87]. A recent review [84] shows that

210  considerable progress has been made toward the development of constitutive models,
211  but there remain several key shortcomings, namely the response of metals under the
212 extreme stress, strain, and temperature gradients. While ‘handbook’ data exists for
213 many alloys [54, 56, 94], there is currently no comprehensive resource for constitutive
214  model parameters and physical properties of common Ni-alloys. Thus, academia and
215  industry continue to use an empirical approach that is time and cost intensive.

216  Therefore, this manuscript seeks to enable a more model-based approach by critically

11



217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

Journal of Manufacturing Science and Engineering

reviewing suitable constitutive models and calibration regimes used in literature as well
as characterizing the behavior of material properties under increasing temperature.
While much effort has been focused on the constitutive response of Ni-alloys, little work
has addressed the impact of physical properties (density, thermal conductivity,
emissivity, etc.), which are essential to understanding the behavior of the material.
Material properties, both physical and mechanical, are often co-dependent on each
other. For instance, increasing ductility will cause a decrease in strength; increasing
thermal conductivity will cause an increase in thermal diffusivity. Modeling then
becomes important because it uses this knowledge of physical property behaviors to
predict the performance of materials in an array of service settings. Without knowledge
of physical property behaviors, it would not be possible to comprehend how the
material performs in different regimes. Many studies treat these properties as either
constant [95-97] or not mutually interconnected, when literature clearly shows that
they are temperature sensitive [98-100]. Since physical properties have a direct
influence on mechanical properties, this manuscript aims to explore the effect of

temperature on said physical properties.

2. OVERVIEW OF CONSTITUTIVE MODELING

This section introduces the two most used constitutive models (Johnson-Cook
and Zerilli-Armstrong), as well as some of the notable modified versions of the Johnson-
Cook model. The key differences between the Johnson-Cook and Zerilli-Armstrong
models are discussed, as well as modeling efforts using other models like the

Mechanical Threshold Stress. Notably, this section addresses the lacking availability of

12
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calibration techniques for material constants, as well as the influence and importance of

constitutive model selection in FE simulations.

2.1. Summary of Common Constitutive Models

Constitutive models serve the purpose of predicting the constitutive behavior of
ductile materials. According to Zhang et al. [101], they “describe the material responses
to the different mechanical and/or thermal loading conditions, which provide the stress-
strain relations to formulate the governing equations, together with the conservation
laws and kinematic relations.” The most widely used constitutive model is the JC model
because of its simplistic nature [78, 102]. The basic form of the JC model is shown

below:

o=[A+Be"[1+Cln (é)] [1- (%)m] (1)
where g is the equivalent von Mises flow stress, €™ is the equivalent plastic strain, € is
the plastic strain rate, &, is the reference plastic strain rate, T is the absolute
temperature, T is the RT, T, is the absolute melting temperature, and 4, B, C, m, and
n are material constants that are unique to each model [78]. Each set of brackets utilizes
various parameters: the first set considers stress as it relates to strain, the second set
considers the strain rates of the material, and the third set considers the temperature of
the material [78]. The material constants translate as follows: A represents yield stress,

B and n represent strain hardening, and C represents the strain rate effect. These

constants can be identified through isothermal tension or torsion tests [78]. The final

13
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constant, m, represents the thermal softening effect and is found through averaging the
data previously found in the tension or torsion tests [78].

Since the basic version of the JC model is purely phenomenological, many
authors have modified it to account for microstructural effects which are known to have
a major effect on the behavior of the flow stress [103-106]. Calamaz et al. [103] were
the first to introduce a modified JC (MJC) model that accounts for flow softening at high
strains due to dynamic recovery (DRV) and dynamic recrystallization (DRX) by the
addition of the hyperbolic tangent function, which is strain and temperature dependent.

This MIJC is given below [79]:

o= ol e 2l () e 2
h(e,,T) = D + (1 — D) tanh|(z, +5) | (3)
D=1- (Tl)d (4)

)

where a, b, ¢, and d are additional material constants and o, €™, €, &,, T, Ty, and Ty, are
the same as in equation 1 and can be determined empirically [102]. Rotella and
Umbrello [104] also developed a MJC using the hyperbolic tangent function to account
for flow softening, but their model also calculates the initial YS based on the lamella
thickness. The MJC by Denguir et al. [105] utilizes an additional term to account for DRV
and DRX, but they also incorporate the stress triaxiality (ratio between the hydrostatic

stress and the von Mises stress) to reflect the influence of hydrostatic pressure on grain

14
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dislocations [107]. In addition to the stress triaxiality, Cheng et al. [106] added the Lode
angle to their MJC to describe the state of stress at the microscale [85].

While both the basic JC and MJC models are widely used, there is a tradeoff
between them. The basic JC is simple to calibrate, but MJC models are much more
difficult to calibrate because of the added variables. The addition of the hyperbolic
tangent function (equation 3), for example, accounts for the strain softening of the
material and also allows for second-order interactions [103], neither of which are
possible in the basic version. The biggest problem with the basic JC is that it has often
been shown to be inaccurate at higher strain rates (> 10° s) [79].

The second most widely used constitutive model is the Zerilli-Armstrong (ZA)
model. Like the JC, it has a simpler form based off assumptions for summations of
thermal and non-thermal stresses [84] which has worked well for materials such as AlSI
1045 steel [108] and some carbon steels [109]. Alongside the JC, the ZA has successfully
been used to model the flow stress of materials; Lin et al. [110] used the JC and ZA
models in tandem to model strain rate and temperature with respect to the
deformation of high strength steels, which revealed how these coupled effects interact.
This breakthrough led to both models becoming commonplace. The ZA model consists
of smaller equations with few variables, so it is simple to use and calibrate. It uses strain
rate and temperature to analyze how thermal effects influence the flow stress, and it
also accommodates second-order interactions. Although unlike the JC models, the ZA
models implicitly account for the material’s microstructure and its effect on flow stress

[111]. However, the ZA model has its shortcomings; the biggest being that it does not

15
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consider material softening under large strains or temperatures [79]. The ZA model will
be discussed further in Section 4.1.

Besides the JC and ZA, there are numerous other models for predicting the
response of metals to cutting operations. Regarding phenomenological models, this
manuscript will focus on the JC, as it is by far the most widely used for FE simulations
and can be readily benchmarked because of the quantity of works on it. However,
numerous notable physics-based models will be discussed in Section 4.1. Other more
niche models will not be discussed in detail in the present work, but other authors have
already compared the JC and ZA with such models.

Bobbili et al. [112] studied Ti-alloy IMI 834 at various strain rates with ballistic
tests to understand material behavior under varying strain rates, temperatures, and
stress triaxialities. They compared the basic JC, basic ZA, and Cowper-Symonds (CS)
models. All were in good agreement with experimental results, but the JC was most
accurate. Kotkunde et al. [113] investigated how strain, strain rate, and temperature
affect flow behavior of Ti-6Al-4V. The models used were the basic JC, Khan-Huang-Liang,
Fields-Backofen, and Mechanical Threshold Stress (MTS)—all models gave satisfactory
results, but the MTS was preferred because it is physics-based (the MTS model will be
discussed in detail in Section 4.1). On the same material, Kotkunde et al. [114] later used
a variety of hardening models (basic JC, modified Zerilli-Armstrong (MZA), and modified
Arrhenius) when looking at principal strain limits for forming limit diagrams, and the

modified Arrhenius model showed the best results.
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Melkote et al. [84] reviewed several popular models such as the JC, ZA, Strain
Path Dependance, Power Viscosity Law, Bammann-Chiesa-Johnson, and MTS for pure
titanium. They concluded that there is a need for a testing technique for determining
which model is most suitable for a specific material—this could be used to create a
comprehensive database to assist in selecting the most appropriate model for a given
alloy. Indeed, the present work identifies using the machining process as its own
material characterization technique, e.g., using in-situ techniques, as key for more
reliable constitutive models. They also call for the development of new fracturing
models. Liu et al. [85] present an excellent timeline for the evolution of constitutive
models, both phenomenological and physics-based, over the decades. Notably, they
identify the ZA model as phenomenological, while others have characterized ZA as
physics-based due to consideration of microstructure and second order interactions

[79].

Raise of the model Modification towards metal cutting

y el. B: . Microstructure constituents
BCJ model, Bamman- Enhanced ZA model. Liu et — oy 5

|
|
|
Chiesa-Johnson, 1996 I al. 2013 % towards JC-TANH model.
| ) Rotella and Umbrello, 2014
ZA model, Zerilli and | | Modification of JC-TANH JC-modified model with
Armstrong, 1987 | model. Sima and Ozel, 2010 %  microstructure effects,
| Denguir et al., 2016
JC model, Johnson and — | | JC-TANH model, Calamaz JC-modified model with
Cook, 1983~1985 | etal., 2008 —— state of stress, Cheng et al.,
| 2019
Phenomenological laws | |
l 60
O] 0] V) (0]0]
— o Past —— — —— — = A 2R 0.0 _Q _ _ _ present-S——
[m] | 0 00 0
- | ¥
Phy5|cs-based laws | Homogenization of DDB
| model, Ding etal., 2011
MTS model, Follansbee and | Twinning for MTS model,
Kocks, 1988 BB Grain size effects for MTS Rinaldi et al., 2021
| model, Liuetal., 2014
DDB model, Estrin et al., | MSB flow stress model.
1998 N | Dislocation drag for MTS —>  Saez-de-Buruaga etal.,
| model, Liu etal., 2015 2015
I

Fig. 3. Timeline for the development of constitutive models [85]
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While more complicated models can prove to be preferable to the JC or ZA in
certain circumstances, the JC and ZA are consistently agreeable under a wide variety of
machining conditions. Thus, it is difficult to make broad assessments about the
suitability of a particular constitutive model for a specific machining operation. It is
therefore of chief importance to ensure that a chosen model is well-calibrated for the
material and machining operation [84].

Both phenomenological (e.g., JC and its variants) and physics-based (e.g., ZA,
MTS, etc.) constitutive models are fundamentally limited in their predictive abilities
based on the availability of high strain rate, large strain, and high temperature
stress/strain calibration data. This results in inaccurate models at higher strain rates that
are not useful for metal cutting [89, 91]. The thermomechanical regimes of machining
differ from that of conventional materials characterization techniques, including high
strain rate techniques such as the Split-Hopkinson Pressure Bar (SHPB) test and similar
mechanical tests. Strains in machining may be on the order of 10, while most ductile
metals will fail at strains on the order of 10! when subjected to high strain rate tensile,
compression, or shear testing. This order of magnitude of differences clearly indicates
the state of triaxial stress and path history of metals being deformed during cutting
differs significantly from that of more simplified geometries.

Based on the limitations of conventional high strain rate materials
characterization techniques, the authors of the present work propose that the most
effective means for characterizing the constitutive behavior of materials during

machining-specific thermomechanical regimes must be the cutting process itself. This is
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by no means a novel insight or proposal, as the origins of this approach can be traced
back to early work by Oxley [115, 116] and many other researchers since. More recently,
the availability of ultra-high speed in-situ optical and thermal techniques has enabled
more efficient analysis of strain, strain rate, and temperatures during cutting. A recent
in-situ characterization and inverse constitutive material property identification study by
Zhang et al. [92] concisely summarizes the challenges and motivation for such efforts: “A
direct measurement of the strain and strain rate in metal cutting and thus describe the
material behavior remains still a challenge. This paper is motivated by the requirements
to provide the material constitutive models for metal cutting process, in which the strain
may reach 1-2 and the strain rate up to 10° s*1. Unfortunately, this task cannot be
fulfilled by the conventional SHPB tests, because the strain and strain rates covered by
SHPB are lower to those usually found in metal cutting process.” Further discussion of
the use of in-situ methods for model calibration is provided in Section 4.2.
2.2. Influence of Constitutive Model Selection on Output Values

Tool-chip interface parameters like contact pressure, friction coefficient, and
thermal resistance are simultaneously being influenced by the machining process while
also changing the thermomechanical effects. Because of this, numerical modeling is the
only suitable avenue for accurately predicting machining behavior [117]. For a
constitutive model to be ideal for computational software, it should contain few material
constants and require minimal experimental data for calibration [118)]. However, besides
selecting the optimal material constants for a given model, the selection of the

constitutive model itself is also crucial. Depending on the cutting conditions and material,
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various models will yield different results [79]. For instance, Jaspers et al. [119] assessed
the results obtained using the JC and ZA models and found that the JC model provided
more accurate results for aluminum alloy AA 6082-T6 whereas the ZA model was the
better choice for steel alloy AISI 1045.

In terms of output values, Adibi-Sedeh et al. [120] studied the variation between
FE simulations of the JC model, the Oxley model [121], and the strain history model [122].
They observed that the JC model produced the best chip thickness predictions whereas
the Oxley model produced the best thrust force predictions—however, none of the
models performed the best in all categories of output values. Liu et al. [123] benchmarked
several constitutive models to evaluate their efficacy in the FE modeling of machining
titanium alloy Ti-6Al-4V. Among the models that were compared are the JC and ZA
models, where they found that the JC underestimated whereas the ZA overestimated the
peak temperature in the cutting zone.

Models that do not account for thermal softening will have difficulty predicting
the chip temperature, as was shown by Styger et al. [124], who compared the basic JC
model and a MJC model that both do not include thermal softening with a MJC model
that does account for it. Results showed that the models that did not encompass the
softening effect overestimated the chip temperature when compared to experimental
data. However, important to note is that the lack of thermal softening in a constitutive
model may not necessarily impact the ability for the FE simulation to predict the chip
formation, as both MJC models in the study by Styger et al. [124] were able to accurately

predict the onset of adiabatic shear banding (which drives the chip formation). To
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accurately capture adiabatic shear band development, constitutive models must include
a damage evolution model to accurately capture the adiabatic shear band formation (i.e.,
accounting for the inverse Hall-Petch effect) [79, 84]. Moreover, the type of constitutive
model has a significant influence on the chip morphology because it affects the
thermoplastic shear and hot mechanical properties [123].

In addition to identifying an adequate constitutive model, it must be able to
accurately characterize the friction and heat transfer at the tool-chip interface, as this will
dictate the results of output values such as chip thickness and temperature [117]. For
example, Styger et al. [124] cite that the poor accuracy of feed force predictions obtained
with various versions of the JC model could be attributed to the chosen friction law and
coefficient of friction. Shi and Attia [125] proposed an approach to characterize behavior
at the tool-chip interface using a friction model based on the empirical model by
Shirakashi and Usui [126] and the thermal constriction model by Attia and Kops [127]. In
their modified model, they formulated the shear friction factor (m) to be variable and
compared it to other works that assumed this parameter to be constant. Simulated results
in DEFORM-2D for the cutting forces, chip thicknesses, and cutting temperature showed
that the errors for the model with a variable m were considerably smaller than the models
where it was constant. The approach laid out by Shi and Attia [125] is advantageous
because m is calculated as a function of the rake face’s normal contact pressure, so it only
requires minimal experimental data for calibration and the same coefficients can be used

for the same cutting tool and workpiece material. Alternatively, the common approach
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used in literature for the Usui model involves calculating a new m each time to match the
experimental data, which is of course inefficient [125].

To summarize, the main output value of interest must be considered before
selecting a model. Some output values are more sensitive to the constitutive model
chosen than others, such as the cutting force, which has been shown to be more
dependent on the type of model than any other output value, making it ideal for
comparison and validation [118, 128]. Similarly, speaking to the importance of the
formulation technique, FE programs are known to struggle with simulating chip

I”

formation, relying on unrealistic “artificial” chip separation methods—the Lagrangian
and ALE formulations are beneficial in this respect because of their remeshing technique
[96]. Thus, the formulation method is also very impactful on modeling results. All these

factors must be considered when attempting to model machining processes, especially

using numerical approaches such as the finite element method.

2.3. Thermomechanical Regimes & Deformation Zones of Machining Processes

Machining processes are characterized by extreme stresses, strains/strain rates,
and temperatures, so an adequate model should consider the behavior of workpiece
material under these conditions. The operating temperature of jet engines can surpass
900 °C [129], resulting in significant potential for high-temperature creep and
thermomechanical cyclical loading. While jet turbine materials need to exhibit high
creep resistance, hot hardness/strength, corrosion resistance, and fatigue strength,
these properties are characterized at low strain rates—most material ‘handbook data’

(i.e., tensile and compressive test data) is obtained under quasi-static conditions (strain
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rates on the order of 102 s™2). In contrast, the strain rates of most machining processes
may exceed 10% s, which results in significantly altered material behavior. Thus, the
difference between operation-specific and machining-specific regimes cannot be
ignored when formulating a material model. Figure 4 shows the key deformation zones
in machining processes outlined by Warnecke [130]: plastic deformation zone (PDZ),
secondary deformation zone (SDZ), and tertiary deformation zone (TDZ), as well as two
additional zones identified by the authors: the heat damage zone (HDZ) and elastic
deformation zone (EDZ). Notably, while elastic deformations in the EDZ are on the order
of 0.010 s, accumulation of infinitesimal/elastic strains as the tool slides over a given
point in the subsurface results in total strains that can be up to an order of magnitude
larger (e.g., 0.010 as shown in Fig. 4). Indeed, incremental accumulation of miniscule
local strains in the EDZ is the physical mechanism responsible for the development of
residual stress and strain hardening, both of which are plastic deformation phenomena
that occur far below the TDZ [90]. In this sense, the EDZ may more accurately be
referred to as the ‘Infinitesimal Strain Domain’, while the PDZ, SDZ, and TDZ occur in the

‘Finite Strain Domain’.
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Fig. 4. Deformation zones in cutting processes illustrated qualitatively on an in-situ
micrograph of the orthogonal cutting process. Micrograph taken at v. = 60 m/min, h =
50 um for orthogonal cutting of Inconel 718 at 60,000 fps and 10X objective

magnification.

Each zone shown in Fig. 4 endures different levels of stress and strain. Because
of this, a machined part will have varied properties in different areas. Besides the
geometry, machining changes the material in other ways, like the layer of plastic
deformation and embedded residual stresses. As discussed in Section 2.1, there are
several models that are commonly used in the industry, but there is no universal model
that can account for all these machining byproducts. Some models are effective with
certain materials based on the inputs into the model; this manuscript examines studies
using these models to gain a better understanding of how inputs can affect the validity

of the results.

3. BENCHMARKING OF THE JOHNSON-COOK PHENOMONELOGICAL MODEL
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This section will discuss the state of the art in using the most famous constitutive
model, the JC model, in FE simulations. The approaches for numerous authors are
compared (i.e., their methods for calibrating the material constants, the FE software
used, the formulation, etc.). Finally, a number of these models were analyzed by the

authors of the present work and compared to experimental data for validation.

3.1. Ni-Based Superalloy Inconel 718

Inconel 718 is the most widely utilized Ni-alloy for aeroengine components
because of its exceptional strength at high temperatures. It is used for the discs, casing,
shafts, and many other components. The alloy is also used in other high heat
applications such as reciprocating engines (i.e., turbochargers, metal processing tools,
exhaust parts, and space vehicles components) [131]. The chemical composition of
Inconel 718 was shown in Table 1. Other elements can be added to enhance the
material (e.g., increased creep resistance) such as carbon (C), Co, Cu, phosphorus (P),
and sulfur (S) [132]. Inconel 718 is expensive, costing over 50 USD per kilogram, so
machining it requires expertise to avoid significant losses [133]. Acceptable surface
integrity for materials that experience cyclical mechanical loading and substantial
thermal loads (like Inconel 718) is imperative because microstructural flaws become
more prominent at elevated temperatures and act as stress risers and crack initiation
sites [134]. Inconel 718 is difficult to machine due to its poor thermal conductivity, high
toughness, pronounced work hardening, and chemical affinity for most tools [96]. It was

chosen as the focal point for this study because it is the most widely used Ni-alloy and
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serves as a baseline for other similar alloys. Moreover, there is an abundance of work on

this material, making it an ideal focus for literature review.

3.2. Formulations for Finite Element Simulations

Besides choosing a commercial FE software package for machining simulations,
there are also different options for the formulation method. The three main types are
Eulerian, Lagrangian, Arbitrary Lagrangian Eulerian (ALE), and Coupled Eulerian
Lagrangian (CEL). Eulerian has a much lower computation time because it uses a fixed
mesh, eliminating distortion—however, Eulerian does not consider material elasticity;
this makes it so that the chip shape must be predefined, and it cannot predict residual
stress [81]. Eulerian allows for the steady-state flow of the chip to be obtained; this
involves computing the material flow through a fixed region in space, which is
problematic because it requires the geometry of the chip to be predefined [135, 136].

Pure and updated Lagrangian formulations do not require the chip shape to be
predefined, and allow for the entire process to be simulated, including unsteady flows
[81, 135]. Although it should be noted that the Lagrangian formulation struggles with
simulating severe plastic deformation because of mesh element distortion [137]. ALE
was introduced to capitalize on the benefits of both approaches, where ALE can
simulate unconstrained flow at high deformation rates by eliminating the need for a
mesh on the workpiece, which is difficult if not impossible for Eulerian or Lagrangian
[138, 139]. However, ALE cannot simulate serrated chips [137]. Finally, with the CEL
formulation, the tool is a fixed Lagrangian body and the chip is simulated via a cross-

sectional Eulerian mesh [140]. The workpiece is mesh-free, which allows for large plastic

26



515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

Journal of Manufacturing Science and Engineering

deformation to be calculated since no remeshing is required [140]. Additionally, CEL has
been shown to minimize computational times to 4 hours, as opposed to several days for
ALE [141]. Furthermore, the formulation being used in the FE simulation is crucial, as
improper choice of formulation based on the cutting conditions could drastically skew

the results.

3.3. State of the Art for Constitutive Modeling with the Johnson-Cook Model

As discussed previously, the machining of Inconel 718 is most modeled with the
JC model—especially for FE simulations. Thus, this section will aim at presenting an
analysis of many recent approaches to using the JC model in FE software packages. The
JC model can be calibrated in two ways: values can be obtained via experiment (which is
costly and time consuming, typically by the SHPB test), or via FEM. Constants for the
constitutive model such as 4, B, C, m, and n are found via quasi-static tensile tests
because this test examines the strain hardening behavior. Meanwhile, FEM simulates
cutting processes to obtain values for thermal and mechanical properties. Many
researchers use DEFORM 2D/3D or ABAQUS to attain values for constitutive models. FE
simulations can be validated and calibrated via experimental methods, and literature
review revealed this to be the preference.

Da Silva et al. [142] proposed a plasticity model based on JC and the model by
Algarni et al. [143] that encompasses strain rate, strain hardening, thermal softening,
stress triaxiality, and lode angle to predict residual stress. ABAQUS 2D with Lagrangian
formulation was used for the simulations. Numerical results showed good accuracy

when compared to the experimental results. Jafarian et al. [144] articulated a JC model
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in DEFORM 2D in orthogonal turning of Inconel 718 by identifying one of seven models
found in literature and calibrating it using an iterative process that utilized experimental
and simulation methods. They emphasize that FEM was deliberately chosen to present
the pros and cons in the approach. The authors incorporated the constant shear friction
factor (m), global heat transfer coefficient (hy;), and the Coulomb constant (u.) to
emulate the friction and heat transfer between tool and chip contact. Due to Inconel
718 chips forming adiabatic shear bands, the Cockroft and Latham criterion was also
included to predict chip segmentation [144]. Each of the seven models were simulated
under three testing conditions and compared with experimental data to select the most
accurate model. For the chosen model, the thermal, frictional, and fracture criterion
were calibrated and validated with experimental data. Once a sufficient JC model was
derived, the FE software was mended to account for microstructural and microhardness
changes using the Zener-Hollomon parameter and Hall-Petch equation [144].

The following paragraphs relate to the seven JC models discussed by Jafarian et
al. [144], the first of which being by DeMange et al. [95], who used the SHPB test to
identify new material constants for annealed and aged Inconel 718 (although Jafarian et
al. [144] were only concerned with aged Inconel 718). The sampled Inconel 718 was
induced to strain rates up to 1000 s™* and temperatures ranging from 72-400 °C. Wang
et al. [145] also obtained results via the SHPB test with strain rates in the range of 5000-
11000 s and temperatures in the range of 500-800 °C. They proposed that C, the strain

rate softening effect, was dependent on temperature and stain rate:
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€ = 0.0232 — [0.00372 + 0.0021 sin (227 )| sin (T ) (6)

Again by the SHPB test, Pereira et al. [146] studied annealed and aged Inconel
718 at strain rates of 1600-5000 s™* while at RT. However, they neglected the thermal
softening effect in their JC model. This may have impacted the work done by Mitrofanov
et al. [98], as they utilized constants C and n from Pereira et al., but they calculated
constants A and B from material property data. Lorentzon et al. [147] formulated a JC
model that accounted for the thermal softening effect, m. This is analogous to the work
done by Sievert et al. [148], although Sievert et al. [148] developed the thermal
softening effect using annealed Inconel 718 whereas the proposed JC model was for
aged Inconel 718.

Jafarian et al. [144] then discuss the work done by Ozel et al. [96], who created a
MJC model that incorporates the dynamic behavior of Inconel 718. This model also

included the effect of temperature-dependent flow softening in addition to the

standard parameters [96], and can be seen as equation 7:

o = [A+ Be"] [1 +Cln (é)] [1 - (Tnf;i—Tmm)m] [D +(1-D) [tanh ( <£+lsy)] s] (7)

Del Prete et al. [149] introduced a hardness-based flow stress model. The initial

workpiece hardness was accounted for by adding two functions, F and G:

_ £ _(I=To \" (8)
o = [A+ (F +200) + Ge + Be"] [1 +Cln (8,0)] [1 (Tm_ To) ]
Jafarian et al. [144] then graphed the discussed JC models using DEFORM 2D in
Fig. 5. The results from the models were then compared with experimental results to

yield the optimal flow stress for the simulation. The curves were graphed at RT and at a

strain rate equal to the quasi-static tensile test. Table 2 shows the corresponding
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579  optimal constants to the curves in Fig. 5; the M1 model by DeMange et al. [95] was

580 identified as the best for orthogonal cutting [144].

581  Table 2. Corresponding optimal material constants for flow stress curves shown in Fig. 5.
582  Adapted from Jafarian et al. [144].

Model A[MPa] B[MPa] (o n m & [s?] Other constants
M1 1290 895 0.016 0.526  1.55 0.03 N/A
M2 963 937 Variable  0.33 1.3 0.001 C = Equation 6
M3 1485 904 0.0134 0.777 1.589 0.001 N/A
M4 1241 622 0.0134 0.6522 1.3 1 N/A
M5 1241 622 0.0134 0.6522 1.3 1 D=06,5=0,5=5,r=1
M6 1562 300 0.0164 0.25 1.7 1 N/A
M7 1241 622 0.0134 0.6522 1.3 1 F=18& G=1.36
3000
2500
& 2000 e 7
E B o o
0 <
@ 1500 y . il B SN
i o il -
b » L B B B T R N R NI |
3 1000 : e M|
i . —_—M2
. - == M3
500 : o— M4
: = M5
- - M6
0; o -M7
0 0.2 0.4 0.6 0.8 1 1.2 14
583 Strain [mm/mm]
584  Fig. 5. Flow stress curves in relation to strain for various JC models [144]
585 Uhlmann et al. [150] used FEM (DEFORM 2D and ABAQUS) to produce turning

586  simulations of annealed Inconel 718 under dry conditions. They used model parameters
587  from Sievert et al. [148] (Table 3) to calibrate the FE simulations, except that B and C
588  were slightly modified. The numerical specific and calculated cutting forces were

589  graphed after integrating the data.

30



590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

Journal of Manufacturing Science and Engineering

Table 3. Model parameters proposed by [148, 150]

A[MPa] B[MPa] C n m §&l[s?
450 1700 0.017 0.65 1.3 1.001

Since most FE software uses 2D orthogonal plane strain assumptions, arbitrary
damage criterion, or remeshing techniques for simulating the chip, Ozel et al. [96] argue
that only 3D FE software can accurately simulate machining. They used ABAQUS 3D and
DEFORM 3D to derive a JC model for Inconel 718. Temperature, strain, and stress values
were obtained via simulation and compared with experimental data. They highlight that
Pereira et al. [146] neglected to include thermal softening effects, whose model was
used as reference in the work by [147, 150-153]. For instance, Ozel et al. [96] reason
that the model proposed by Sievert et al. [148] incorporates ductile damage and uses a
combination of annealed and aged Inconel 718, but that they fail to provide the source
of the parameters and the conditions of their dynamic tests.

First, Ozel et al. [96] used ABAQUS 3D with ALE formulation. It should be noted
that this approach only affects the mechanical solution which is directly influenced by
mass scaling—the thermal solution is not affected. Mass scaling will however influence
the accuracy of the mechanical solution. Since Ozel et al. [96] chose the Coulomb
friction law to model contact friction, they used parameters obtained by Lorentzon et al.
[147], which are listed under M7 in Table 2. They also used a friction coefficient of
u = 0.6, which Lorentzon et al. [147] found using the Coulomb friction model in FEM.

Next, Ozel et al. [96] used DEFORM 3D with updated Lagrangian formulation,
which allows for the modeling of deformation and heat transfer using implicit

integration. They used the JC model proposed by Lorentzon et al. [147] to model the
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behavior of the workpiece. However, Ozel et al. [96] modified the model to account for
the flow softening phenomenon that occurs at high stress and strain rates by using the
hyperbolic tangent function and additional parameters. Strain hardening, strain rate
sensitivity, and temperature softening were also accounted for. The model can be seen
in equation 9 and the parameters are listed in Table 4. The authors plotted the results of
the model across various temperature and strain rate regimes to compare it with the

basic JC, which can be seen in Fig. 6.

a_{A+B@w”1+Cm()H1—(T7b) |[p+a- Dﬂmm((wyﬂj (9)

Tmett—To

Table 4. MJC material constants proposed by Ozel et al. [96]

Parameter A [MPa] B [MPa] (o n m D S s r u
Value 1241 622 0.0134 0.6522 13 06 0 5 1 0.6

—+—mod JC 200°C 10/s —+—mod JC 200°C 1000/s mod JC 200°C 10000/s
—&— mod JC 600°C 10/s —e—mod JC 600°C 1000/s mod JC 600°C 10000/s
—4+—mod JC 1000°C 10/s —+—mod JC 1000°C 1000/s mod JC 1000°C 10000/s
-<= JC 200°C 10000/s -4~ JC 600°C 10000/s == JC 1000°C 10000/s
2200 ¥

2000 §
1800 +
1600 §
= 1400 $

1000 $
800 $
600 +
400 $
200 3 T S

0 0.5 1 15 2 25
strain [mm/mm]

Fig. 6. Comparison of basic and MJC model at three different regimes Ozel et al. [96]

Flow stress [MPa]
X
o
o

The authors then compared the cutting forces obtained from both the ABAQUS

and DEFORM simulations to the experimental trials, which are shown in Table 5. Each
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trial used a new tool, and conditions were wet, which caused severe tool wear. The
percentages shown in Table 5 refer to the prediction error for the simulated trials. It was

found that DEFORM 3D with the MJC yielded the best results.

Table 5. Comparison of simulated and experimental results for cutting forces by Ozel et
al. [96]

Trial F.[N] Fy [N] Fy [N]
Experimental V=30 m/min 175 37 180
V=70 m/min 173 30 182
ABAQUS V=30 m/min, JC 306 (75%) 29 (22%) 204 (13%)
V=70 m/min, JC 274 (58%) 24 (20%) 189 (4%)
V=30m/min,JC 349 (99%) 34 (8%) 249 (38%)
DEEORM V=70 m/min, JC 304 (76%) 27 (1%) 200 (10%)

V=30 m/min, MIC 222 (27%) 23 (38%) 173 (4%)
V=70 m/min, MIC 188 (9%) 21 (30%) 157 (14%)

Jafarian et al. [134] used DEFORM 2D with updated Lagrangian code to achieve
optimal parameters for the JC model in orthogonal turning of Inconel 718. The results
were compared to the SHPB test conducted by Del Prete et al. [149] to assess accuracy.
Jafarian et al. [134] used the Genetic Algorithm, which is a new technique based on the
evolutionary optimization algorithm, to determine new material constants for the seven
models analyzed in their previous work, Ref. [144]. They extracted experimental values
for temperature, strain, and strain rate from literature; the difference between
numerical and experimental flow stress was defined as the objective function to be
optimized. When applying the Genetic Algorithm, the variables were updated for each
iteration over several iterations. It should be noted that the specific range for each

respective variable was accounted for. The optimized flow stress from the experimental
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data is plotted in Fig. 7, and the sets of constants obtained from optimization for each of

the seven models are shown in Table 6.

Table 6. JC material constants obtained via optimization by Jafarian et al. [134]

Model A [MPa] B[MPa] C n m
M1 1016 899.1 0.0152 0477 143
M2 964 937 0.016 0.444 15

M3 963 735.7 0.014 0.258 1.3
M4 900 752.1 0.023 0.561 1.65
M5 921.1 998.9 0.02 0.519 2.7
M6 906.7 999 0.017 0.290 1.24
M7 900 1054 0.017 0.460 2.1
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1000

800 - T=20 ()
500 = = = T=500 (c)
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400 -

200

0 T I I U
0 0.05 0.1 0.15 0.2
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Fig. 7. Flow stress from experimental data at a strain rate of 0.001 s [134]

The authors then tested each model in Table 6 using DEFORM 2D to determine
the best one. It is important to note that they considered the Coulomb friction constant
and the Cockroft and Latham damage criterion in the simulations to model chip
segmentation. They also assumed the hybrid friction model variables to be constant

(m=1and u=0.3). The hardness-based flow stress model that dictated the FE
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simulations are shown as equations 10-12. When comparing the numerical results to
experimental data, Jafarian et al. [134] found that M7 yielded the lowest error at 12.8%,

whereas M3 had the highest error at 24.1%.

. £ T— To\™
F(HRC) = 2.008 x HRC? — 141.97 X HRC + 2305.4 (11)
G(HRC) = —0.292 x HRC? + 28.72 x HRC — 700.3 (12)

Wang et al. [145] used the SHPB test experimental approach to determine
constants for the JC model. Their experiments tested the dynamic behavior of Inconel
718 at elevated temperatures (500-800 °C) and high strain rates (5000-11000 s). They
reason that many modeling attempts are subject to strain rates below 5000 s, despite
industrial machining processes occurring at 10%-10° s™. In their work, experiments were
supplemented with Third Wave FE simulations for efficiency. The power-law model was
utilized, but the parameters are unknown. The highest strain rates observed from the
software were 9500 s™* and 16000 s, and the highest temperatures were 700 °C and
900 °C. To account for strain rate not being constant, the simulation was repeated three
times and the values with good repeatability were used. Additionally, Wang et al. [145]
conducted quasi-static compression tests at RT and a strain rate of 0.001 s* to obtain
quasi-static stress-strain data, which allowed for true stress and strain values to be
calculated. Since instantaneous strain rate was found to not be constant during the
SHPB test (which started at 800 °C), the stable part was averaged and used as the actual

strain rate. The results of the compression and SHPB tests are shown in Fig. 8.
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Fig. 8. Stress-strain curve for (a) compression test; (b) SHPB test [145]

Wang et al. [145] state that since the SHPB test is an adiabatic process,
temperature could not be neglected. Therefore, the change in temperature was
calculated using the following equation:

AT = fo‘g%ads (13)

The standard form of the JC (equation 1) was used with a plastic strain rate of
0.001 s}, Ty =20 °C, and T, = 1320 °C. It was found that the basic JC model considers
strain hardening, strain rate hardening, and the thermal softening effect as
independent, but the SHPB test data revealed that they are not. The test also revealed
that the effect of strain rate is dependent on temperature and there exists strain rate
hardening and softening. Therefore, the authors suggested that the second bracketed
term of the JC model should be modified to account for said variables, and this was
done by deriving equation 6 for C since it was found to be strain rate and temperature
sensitive. Figure 9 shows the flow stress curves for different strain rates at various

temperatures and Figure 10 is a plot of the numerical results against the experimental

results. Using this data and equation 6, the authors derived a series of constants for the
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JC model, which are listed in Table 7. The percent error found between the numerical

and experimental results was less than 8.5%, which the authors deemed as accurate.
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Fig. 10. Comparison between numerical and experimental results [145]

Table 7. JC material constants parameters proposed by Wang et al. [145]

A [MPa] B[MPa] C n m
963 937 variable 0.333 1.3

Klocke et al. [154] used DEFORM 2D to attain values for their JC model. They
reason that an accurate friction model is necessary for attaining values given that
calculated forces are used to calibrate material constants. Further, they explain that
friction has a considerable influence on the calculated cutting forces and chip
parameters. They analyzed orthogonal cutting for AISI 1045 and Inconel 718 (for the
purposes of this study, only the results for Inconel 718 will be discussed). They included
the Cockcroft and Latham damage criterion because they mention that it affects chip
geometry. The friction model used in this approach is hybrid, combining both simulation
and experimental models and was developed by Puls et al. [155]. The purpose of this
hybrid model was to develop the coulomb friction coefficients. Klocke et al. compared
the material constants used in FEM models to those obtained experimentally. For
constants A, B, and n of the JC model, the authors used values from an existing quasi-
static flow stress curve: A = 1485 MPa, B = 904 MPa, n = 0.777 since they describe strain
hardening behaviors. Constants C and m describe the impact of strain-rate and
temperature. The cutting forces necessary for calculating the constants were obtained
via broaching. Chip geometry values were analyzed by optical microscopy. To attain the
true stress-strain curves, the method of least squares was used to fit constants A, B, and
n. Relationships between material constants, predicted cutting forces, and chip

parameters were used to interpolate values for C and m to decrease simulation error.
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After 160 trials, the authors concluded that Trial 81 yielded the best solution, so they
chose € =0.015 and m = 1.689.

Muthu et al. [131] used DEFORM 2D with updated Lagrangian formulation to
attain data for the strain, temperature, and damage distributions in dry turning of
Inconel 718. They highlight that while the JC model is widely used, it lacks the ability to
predict flow stress at deformations below RT, as well as insight in the interaction
between strain, strain rate, and temperature, and accounting for thermal softening

phenomena. The parameters of their JC model are provided in Table 8:

Table 8. JC material constants parameters proposed by Muthu et al. [131]

A[MPa] B[MPa] C n m
1029.1 1477.5 0.06 0.33 1.44

The authors state that the material properties of the workpiece and tool
materials, in addition to the flow stress data of Inconel 718, were incorporated into the
simulations, although this data is not shown. Like the previous researchers discussed,
they incorporated the Cockroft and Latham damage criterion to account for the fracture
phenomena that causes serrated chips. They also included the Coulomb friction
constant, as shown:

T= Uo, (14)

The authors chose u = 0.6 and D = 100 for the friction coefficient and critical
damage value, respectively. After performing simulations with tool nose radii of 0.6, 0.8,
and 1 mm, it was found that a negative rake angle causes greater stress on the material,

plastic strain is higher in the PDZ, and heat transfer primarily takes place in the shear
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zone. It was also found that the damage distribution is dependent on the nose radius,
and no chip serrations were observed.

Mabhalle et al. [156] conducted a comparative analysis of the modified Cowper-
Symonds (MCS), MJC, MZA, and integrated JC-ZA models. The material was hot-rolled
Inconel 718, and the quasi-static hot tensile test was employed. Temperatures ranged
from RT to 973 K, increasing in increments of 100 K. The strain rates tested are as
follows: 0.0001, 0.001, 0.01 and 0.1 s™.. By analyzing the experimental data from the
stress-strain curves, Mahalle et al. [156] derived a formula for strain rate sensitivity

based on the modified Hollomon equation:

&do _ 6(no)

= sde  s(ne)

(15)

The authors then assessed each constitutive model, starting with the MCS, which
describes true stress using the uniaxial effective plastic strain and strain rate [156].
Equation 16 was then derived which gives the isothermal condition to the CS model. The
values that optimize the MCS model for Inconel 718 are shown in equation 17. Mahalle
et al. [156] also calculated the values for the material constants at various

temperatures, as shown in Table 9.

o, (,€) = a5(e) [1 + (E)E] £ (16)

1.6221
T—298] (17)

o = (430.06 + 3.2325 x 103£09936) (1 +0.0078 lnﬁ) [1 e

Table 9. MCS material constants at various temperatures proposed by Mahalle et al.
[156]

Temperature [K] K[MPa] C P n
RT 438.69 6.21 7.02 0435
373 402.58 7.52 9.653 0.379
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473 395.29 939 14.2 0.375
573 365.96 9.66 15.65 0.367
673 325.18 10.93 16.14 0.264
773 321.54 13.52 11.55 0.152
873 308.06 15.56 8.097 0.157
973 292.63 16.35 9.577 0.255

The authors then discuss their MJC model. They note that the basic JC is
incapable of defining material properties at high strain rates and temperatures, which is

why a MJC was proposed to rectify this:

0= (A, + Bje+ B,&?) (1 +C;In gi) e[(/llﬁLz Ing;) (T~ )] (18)
0
where constants A, By, B2, A1, and A, were added to account for the coupled effects of

strain and strain rate with temperature. They then calculate values for the model:

o = (444.95 + 3180.3¢ + 187.29¢2) (1 +

(19)

0-00361nﬁ) e[(—0.0002+ 0.00131n0_%)(r_ 298)]

The authors then discuss a MZA model, which is based on thermal activation by

dislocation:

(=Ca+ C48)(T— To)+ [Cs + Co(T—T) In(E ]
o= (Cl n ngn)e 3 4 0 [ 5 6 0 n(fo)] (20)

where C; is the YS of Inconel 718 at a strain rate and temperature, C, is the strain
hardening coefficient, and n and C3-Cg are the material constants that account for the
influence of strain rate, temperature, and the coupled effects of temperature with strain

and strain rate. The constants are then calculated:

o= (260 +
(21)

0884), [—(7.7465><10—4—7.533><1o—4s)(T—298)+ [0.0173-6.8605x1075(T—298) ln(ﬁ)”

1452.5¢
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Lastly, the authors address the integrated JC-ZA model, which combines the
strain hardening term from the JC and the strain rate-temperature coupled term from
the ZA. The authors modified the equation to account for the plastic deformation
yielding:

o= (A+ Be") [(33 (T + AT) + C,4(T + AT)In (i)] (22)
where 4, B, C3, C4, and n are material constants at a strain rate of 0.01 s> and AT is the
average temperature rise because of deformation heat required to overcome plastic
work. After comparing each model with experimental data, the JC-ZA exhibited the
smallest error, and the MZA had the largest error.

Like many others, Grzesik et al. [157] used the SHPB test for obtaining
experimental calibration data for the JC model. They looked at temperatures between
20-700 °C and strain rates at 10 and 10 s*. They used the FE software AdvantEdge to
compare their three developed models applicable for different levels of strain rates to
those found in literature as well experimental SHPB data. Their models had much lower
prediction errors than the literature models, but they only tested low strain rates.

Hao et al. [99] studied the plastic behavior of Inconel 718 in the cutting zone
with a JC model calibrated with the SHPB test in the regimes of 500-800 °C and 5000-
10500 s. They obtained 4, B, and n through fitting of the experimentally derived
stress-strain curves. The parameter m was determined by averaging the slopes of the
stress-strain curves at different strain rates. Finally, C was calculated by simply rewriting
the JC equation and solving using the other parameters while holding temperature

constant—they observed good agreement when validating with ABAQUS simulations.
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3.4. Benchmarking of Johnson-Cook Models for Inconel 718

Although FE analysis is more efficient, the relevant FE outputs such as cutting
forces, chip morphology, and surface integrity (residual stress, hardness, microstructure,
etc.) change based on process parameters such as cutting speed, uncut chip
thickness/feed, and tool geometry, may include of the machined surface [79, 81, 85].
Occasionally, studies will omit the material chemical composition, whether it was aged
or annealed, and what strain rates were present for Inconel 718. Furthermore, in some
cases the thermal softening effect parameter, m, was assumed to be zero. This was the
case for Mitrofanov et al. [153] and Pereira et al. [146]; studies that neglected the m
parameter in their JC model could not be compared to other works that included it. Qiu
et al. [158] showed that FE simulations are sensitive to changes in the JC parameters of
A, B, m, and n, but unaffected by C. Additionally, they found that there were varying
degrees of influence among the former four, with A being the most prevalent.

Although timely and more expensive, obtaining a constitutive model
experimentally is more beneficial because it does not require input values and
knowledge about the parameters for machining superalloys is accessible. Furthermore,
it ensures that false information is not replicated by future authors, further escalating
inaccuracies [96, 159]. It is crucial that authors explicitly outline the cutting parameters
for their FE simulations to allow future researchers to understand how the constitutive
model was obtained, as was done by Ozel et al. [96], which was not always the case
based on literature review. Predicted cutting forces presented by Refs. [98, 147, 148]

showed mismatches when compared to experimental data, and various works used the
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parameters presented by these authors which raises questions about their validity [96].
Ozel et al. [96] asserts that 3D FE software is necessary to obtain accurate results, even
though most of the authors discussed in Section 3.3 used 2D. In the literature reviewed,
it is evident that FEM has high uncertainty given that all studies must compare
numerical results to experimental data—this makes the success of several JC models
guestionable given that many were not compared to experimental results [144].
Nevertheless, FE parameters are typically calibrated with experimental data regardless.
Thus, a comparison between numerical and experimental results is necessary.
Flow stress curves for four of the deformation zones shown in Fig. 4 (PDZ, SDZ, TDZ, and
EDZ) were created to compare the numerical methods for age hardened Inconel 718 to
an expected curve. The plots assess models from authors discussed by Jafarian et al.
[144] as well as the one by Muthu et al. [131] and are shown in Fig. 11 (colored curves).
The temperature and strain rate were in accordance for each respective zone, although
the strain rate of SDZ was taken at 5100 s to match the data from Wang et al. [145]
(black curves), which is slightly outside the interval depicted in Fig. 4. Strain values were
input ranging from 0.005-5.585 s%, but the graphs only display values from 0-2.5 s™.
Unless otherwise stated, a melting temperature of 1773 K was used. The methodology
by Wang et al. [145] of calculating a different C parameter at each respective
temperature and strain rate was accounted for in their model. Muthu et al. [131] does

not provide an initial strain rate input, so a value of 0.001 s™* was assigned.
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Fig. 11. Flow stress curves for aged Inconel 718 in the: (a) PDZ; (b) SDZ; (c) TDZ; (d) EDZ
using models discussed by Jafarian et al. [144] (colored curves) as well as SHPB data
from Wang et al. [145] (black curves) under similar thermomechanical regimes

As can be observed in Fig. 11, the models do not resemble a typical experimental
stress-strain curve which are represented by the black curves, based on the data
obtained by Wang et al. [145] in Fig. 9. This notable difference between models and
calibration data is attributed to the method by which the authors attained the constants
to their models, which is the SHPB test. The SHPB test does not represent the state of
stress and other thermomechanical loading characteristics unique to machining, so it is
proposed that SHPB data is not truly representative of the material behavior during
machining. The SHPB test is only applicable for highly simplified tensile, compressive,
and shear loading conditions, so the flow stress at extremely high strains cannot be
extrapolated from SHPB data since fracture will occur at far lower strains due to the lack
of extreme hydrostatic stress during deformation, as is typically the case during severe

plastic deformation in machining.
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4. FUTURE DIRECTIONS FOR MORE RELIABLE CONSTITUTIVE MODELING OF MATERIAL
BEHAVIOR DURING MACHINING PROCESSES

This section discusses the future state of constitutive modeling, namely
regarding physics-based models and direct calibration of material constants through
machining experiments. First, several notable physics-based models are compared,
including both their strengths and shortcomings. This is followed by a discussion of the
important of boundary conditions and process parameters in FE simulations. Finally, the
novel in-situ approach is analyzed in the context of constitutive modeling, and recent

studies using in-situ techniques in this context are explained.

4.1. Physics-Based Modeling

Phenomenological models like the JC have their limits and cannot be relied upon
to give the most accurate modeling results because they usually do not consider
microstructural refinement mechanisms [160]. In the case of JC, the most widely used
model, the parameters are uncoupled—that is, the effects due to strain and temperature
are assumed to be independent of one another [161]. This is where physics-based models
come in, because unlike phenomenological models, they model the behavior of
temperature and strain with respect to grain dislocations, which allows them to describe
deformation behavior due to plastic flow [162, 163]. Ni-alloys are crystalline materials
where the microstructure is easily changed due to things like DRX, twinning, and phase
transformations which occur at extreme levels of strain and temperature—understanding

these mechanisms is necessary for accurate modeling [85]. This section will briefly
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describe physics-based models to shed light on how they can capture effects not possible
with phenomenological models.

Plasticity is attributed to the dislocations of crystals, and dislocation density (a
measure of the length of dislocation per crystalline unit volume) is typically the basis for
most physics-based constitutive models [162]. Strain hardening (the tendency of a
material to strengthen with deformation) occurs because of rapidly increasing dislocation
density with strain at high temperature compression, so it is a very relevant parameter in
machining [160]. Dislocation density is also an indicator of the onset of DRX, which is the
refinement in grain size due to permanent deformation. DRX nucleation is tied to the
deformation temperature and strain rate: as the deformation temperature increases, the
volume fraction of the DRX increases because the nucleation and growth rates increase
[160]. DRX also increases with strain rate because strain rate raises the grain storage
energy and subsequently the driving force of nucleation, resulting in a higher nucleation
rate [160]. Zhu et al. [160] proposed a model based on the critical dislocation density

where DRX occurs:

o, = ky * sinh™? [n3 (g . e%)“] (23)
0ss = ko * sinh™1 [ns (g' * e%)né] (24)
o =0, — (0, — Og) [1 —exp [_.Ba (Sg;zc)kd]:l (25)

where oy is the saturated stress, g is the steady stress, k4, k5, n3, n4, ns, ng, and 4 are
the material constants to be calibrated, €. is the critical strain, &, 5 is the strain at a DRX

volume fraction of 50%, Q is the activation energy, and ¢ is the flow stress. Physics-based
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models such as this can then be coupled with dislocation density models, as was done by
Zhu et al. [160] with the Laasroui-Jonas formulation to model dislocation density and the
Goetz formulation to model dynamic recovery. This approach showed excellent
agreement with experimental data.

The most widely used physics-based model is the ZA model, which was introduced
earlier in Section 2.1 The ZA model has been famously utilized in FE simulations of Ni-
alloys because it is based on a theory that specifies how thermal loads induce dislocation
motion [164]. The ZA model specifically introduced a dislocation-mechanics based
constitutive equation for the calculation of material flow stresses [118]. The ZA model is
sometimes preferred to the JC model because it couples strain rate and temperature; the
issue with the ZA model is that it cannot be used to predict flow stress at elevated
temperatures (exceeding 70% of melting temperature) and lower strain rates [118]. The
ZA model is unique in that it considers the crystal lattice type, differentiating between

FCC and body-centered cubic (BCC) [81, 85]:

o= Cy+ Ciexp [—C3T + C4Tln( )] + Cse™ for BCC (26)

£
&

0 =Cy+ Cre™exp [_CgT + C,T In (i)] for FCC (27)
where o is the flow stress, €™ is the equivalent plastic strain, € is the plastic strain rate,
&p is the reference plastic strain rate, T is the temperature. C,, Cy, C,, C3, and C, are the
strain-dependent, strain rate-dependent, and temperature-dependent constants based
on the crystal structure [85].

Gurusamy et al. [118] modified the ZA and validated the flow stresses predicted by

their proposed model with those calculated by the distributed primary zone deformation
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model (DPZD), by comparing the FE predictions of cutting forces calculated from the ZA
model with experimental data, and by comparing the flow stresses predicted by the ZA
model with SHPB test data. The FE model was generated using the CEL formulation in
ABAQUS/EXPLICIT. As was previously established in Section 3.4, the SHPB test is not
adequate for calibrating material constants. Thus, Gurusamy et al. [118] used a semi-
analytical method where machining data was used in conjunction with models by
Merchant [165] and Oxley [166] (this approach will be discussed further in Section 3.2).
Excellent agreement was reached for the first two validation methods (comparison with
values obtained from the DPZD model and values of experimental cutting force data),
where the error was within 8% [118]. However, the stress-strain curves of the MZA model
and the SHPB test data were only in agreement between 0.4 and 0.6, which is extremely
low; this once again shows the shortcomings of the SHPB test in the context of machining.
Other studies [167, 168] have reported similar findings with their ZA models, where
agreement with mechanical tests like the SHPB but also tensile and hot compression tests
was only shown for strain rates lower than 0.6.

The MTS model by Follansbee and Kocks [169] is a well-known physics-based
constitutive model. In the MTS model, a single hardening function is used to describe
forest dislocations by treating the thermal barriers in between dislocations as individual
threshold stresses [170]. The output of the model is the yield stress (o,) at any state
[171]—the MTS model is shown in Fig. 12. Liu et al. [172] modified the MTS model to
include the contributions of grain size on the flow stress (green box in Fig. 12). Rinaldi et

al. [173] modified the MTS model to include the contribution of twinning, which is
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prominent at high strain rates, poor crystal symmetry, or low temperature (blue box in

Fig. 12).
Total flow stress
o= O-u + O-lh + O-G T o-d + O—lw
- = 3
I Flow stress induced by Flow stress induced by interactions of

dislocation density evolution + dislocations with long-range barriers
Ip

| I
| " I
o, =aGb,\/p,, kT £ I

| B 1~ sIn| =% o,
| goltb & |
I

Initial form of MTS model

| I
| I
| |
| I
| I
| e e e e e e e e et e e I
I Flow stress from Flow stress from grain I
I + dislocation drag | g size effect . Grain size evolution law |
; < \

I 0y =08 o; = a'“;l\/g d=d, +(d,~d, )tanh[i—:) |
I
: Modification with Hall-Petch effect and dislocation drag I
| Flow stress induced by Mean spacing of twin I
| + mechanical twinning lamella |
1 1) ¢ 1_ 1 £ |

I c,.=Mg, (Ih[; - K] L2 1- _f;“
| |
| I

Modification with mechanical twinning effect

Fig. 12. Variations of the MTS model [85]

The nomenclature of all the variables in Fig. 12 is discussed by Liu et al. [85]. Like Zhu
et al. [160], Atmani et al. [174] also coupled a physics-based model (MTS) a with
dislocation density models for increased accuracy. Using this combined MTS-DD model,
they simulated orthogonal cutting in ABAQUS 2D with ALE formulation. The dislocation
density-based (DDB) model by Estrin et al. [175] describes the existence of a ‘dislocation
cell’ during deformation that consists of dislocation cell walls and dislocation cell
interiors—these each have their own dislocation densities. Besides the cell wall
dislocation density (pw) and cell interior dislocation density (pc), there is the statistical

dislocation density (pws) and geometrically necessary dislocation density (owg). However,
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the big drawback of the DDB is that it is driven by a single deformation mechanism, so it
cannot account for multi-deformation mechanisms and is also limited to single-phase
materials [85]. MTS was used for modeling the cutting process and the DD model was
used for predicting the grain size of the workpiece. Atmani et al. [174] compared the true
stress-strain curves obtained using the combined MTS-DD model with the basic JC and
the former showed much better results than the later, further illustrating the superiority

of physics-based modeling:

450 ¢ 450 -
4001 P 400}
350} /8 350}
— 300+ 43 3001
=, 2501 G 02; 250 EGIERO “
@ 2000 [ EXP-25°C-6000S™" 2 200/ EXP-25°C-6000S
4 s 4 P s EXP25°C-00004s1 O ‘ & EXP-25°C-0.0004S™"
2 o EXP-269°C-0.15™" @ 1501/, o EXP-269°C-0.15”"
100} —— MTS-25°C-60005"" 100 {f<5 —— JC-25°C-6000S "
50 § — MTS-25°C-0.0004S" 50 — JC-25°C-0.0004S"
0 ‘ ‘ — MTS-269°C-0.15"1 0 ‘ ___scaercors!
00 02 04 06 08 10 1.2 00 02 04 06 08 10 12
(a) Strain (b) Strain

Fig. 13. Comparison between (a) MTS and (b) JC with experimental data [174]

Since Ni-alloys are usually poor thermal conductors, heat tends to accumulate in the
PDZ, which results in shear localization and furthermore chip segmentation [84, 176]. Chip
segmentation is an indicator of undesirable vibrations which cause oscillating cutting
forces that can lead to more rapid tool wear and subsequently poor surface integrity [84,
177]. Additionally, microstructural behavior is more sensitive in the chip as opposed to
the machined surface because the bulk of plastic strain occurring in the PDZ—
microstructural effects can alter chip morphology, which then changes the

thermomechanical loading [85, 174]. Thus, accounting for the chip formation mechanism
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is imperative in physics-based modeling. Melkote et al. [84] also coupled a physics-based
model with a grain refinement model to characterize the constitutive behavior of high
DRX in the adiabatic shear bands. The model, based on thermal activation theory, states

that the flow stress is given by superposition of three other stresses:

0 =04+ 0oy + 0y (28)
Oq =0g+0, = %ﬁ+ apr\/E (29)
. 1/p (30)
_ _ KT (2 1/q
Oth = [1 [gOGb3 ln(e)] ] %0
Oy = az€ (31)

where g, is the athermal stress, gy, is the thermal stress, and g, is the dislocation drag
stress. The athermal stress is determined by summing, o; and g, which represent the
stresses due to resistance of grain dislocations (at the boundaries and in forests,
respectively); a; and @, are parameters related to the strength of these interactions. Two
particularly relevant parameters are D and p (grain size and dislocation density,
respectively), which are internal state variables. o is the stress for “overcoming short
range obstacles” and « is the dislocation drag coefficient [84]. K, T, &, €, go, b, p and q
are the same as in the MTS model (shown in Fig. 12).

Melkote et al. [84] then performed FE analysis in AdvantEdge 2D. Like Refs. [96, 131,
144, 154], they included the Coulomb friction law to account for contact at the tool-chip
interface. In addition to analyzing cutting force data, they also simulated and compared
the chip morphology to experimental data. They calculated the chip peaks, valleys, and
segmentation frequency. The focus of this study was to model the microstructural

changes in the chip, particularly along the adiabatic shear bands (see Fig. 14). At A there
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is little grain refinement because of low plastic strain. Moderate grain refinement
occurred at the periphery of the shear band (B), so there was large plastic strain here.
Finally, C yielded an ultrafine grain size, meaning that there was severe plastic

deformation. Small cracks were seen at D.

Grain Size Dislocation
Density
(1/m?)

3E+15
2E+15
1E+15
9E+14
8E+14
TE+14
6E+14
SE+14
4E+14

100 um \\‘}

(a) (b) ()
Fig. 14. (a) Micrograph of chip microstructure along adiabatic shear band; (b) grain size
and (c) dislocation density distribution along the shear band [84]

When simulating machining processes, it is important to understand the effects of
boundary conditions, as they can considerably affect the accuracy of modeling results.
Arguably the most prominent of these boundary conditions is the rake angle, as it has
significant effects output values like the cutting forces and chip size. For instance, a
positive rake angle will yield lower forces because it reduces compression whereas a
negative rake angle will yield higher forces because it increases compression [178]. In
terms of chip formation, the rake angle is a critical parameter because of its effect on chip
segmentation, which shifts from continuous to serrated when the rake angle is adjusted
from positive to negative [179]. Additionally, it has been shown that a positive rake angle

will create larger chips whereas a negative rake angle will create the smaller chips [178].
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For the purposes of FE simulations, a neutral rake angle of 0° is preferred because it
generates the largest thickness for the PDZ, which is desirable for calculating the physical
guantities of flow stress, strain, strain rate, and temperature in the PDZ for analytical
modeling [179, 180]. It has indeed been shown that the 0° rake angle yields the most
accurate flow stress prediction [179, 181].

In terms of feeds and speeds, feed rate is not usually a controllable parameter in FE
modeling, so its effects are not fully understood. Cutting speed, however, has been shown
to have a strong influence on simulations. For instance, there is little to no sawtooth chip
formation at low speed because of the low temperature and sufficient time for heat
conduction (adiabatic shear banding happens once the tool tip reached a certain
temperature) [182]. It has been shown that chips transitioned from continuous to
serrated when the cutting speed was increased [177, 183]. Jomaa et al. [184] observed
that chip curling and segmentation frequency increased with cutting speed.

At higher velocities, the cutting forces can also increase with cutting speed due to
dominant strain (rate) hardening [178]. When cutting at low speeds, model configurations
can be modified to exclude certain criterion that are not applicable in lower regimes. For
example, Zhang et al. [185] omitted the sensitivity of flow stress to thermal and strain
rate in their power law model because they held the cutting speed at 0.1 m/min. Ding and
Shin [141] also performed cuts at 0.1 m/min and they disregarded DRX since it is not
applicable at very low speeds. Boundary conditions have a significant effect on cutting
temperature: it has been shown that cutting temperature increases with higher cutting

speed, depth of cut, and edge radius [186-188]. The tool materials, like the coating, can
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also affect the simulation. Lower temperatures at the tool-chip interface have been
obtained with coating carbide tools than uncoated [189, 190].

Other physics-based modeling efforts include Yuan et al. [191], who studied the
influence of heat treatment on the plastic flow behavior of laser metal deposited Inconel
718 in the regimes of 25-1000 °C and 500-12000 s™. They proposed a microstructural-
based constitutive model to determine true stress and true strain. Variations in plastic
flow behavior were determined based on the amplitude of the flow stress, the strain
hardening component and temperature strain rate dependence. The differences in plastic
flow behavior were assumed to be because of changes in grain geometry, volume fraction
and y” precipitates during heat treatments [191], which is supported by Ghorbanpour et
al. [192]. The proposed microstructural constitutive model was accurate based on the
experimental results. Tan et al. [193] analyzed the behavior of fine-grained Inconel 718 at
low strain rates and high temperatures during compression tests. They observed that the
flow stress would rapidly rise to a peak value, then decrease because of flow softening
due to DRX. They compared the true stress-strain curves with curves predicted using the
hyperbolic-sine Arrhenius model, which gives the relationship between strain rate and
peak flow stress and temperature. They calibrated their constants through linear fitting
of experimental data; numerical and experimental results were in excellent agreement.
Another important aspect is dynamic strain aging, as observed by Voyiadjis et al. [194].
They looked at the inadequacies of various constitutive models that do not consider
dynamic strain aging and developed a model that does consider these effects. After

comparing modeled results to values obtained from experimentation, they saw that
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values predicted by considering dynamic strain aging were much more accurate than
those that did not.

This section has demonstrated the ability of physics-based models to capture features
not possible with phenomenological models. There are however, limitations to physics-
based models, as outlined by Liu et al. [85]:

e They assume the material has a single-crystal microstructure, which means they
cannot be applied to materials with dual-phase grains and in scenarios where
there are phase transformations, with the latter being an especially limiting factor.

e The sheer quantity of material constants in physics-based models makes
calibration difficult. Some of the variables must be identified by fitting
phenomenological models, which obviously defeats the purpose of using physics-
based models.

Liu et al. [85] further reason that physics-based laws cannot be the definitive
replacement to phenomenological laws, as most modeling approaches typically require
aspects of both. For instance, phenomenological laws can still be used in numerical
simulations by adding microstructure models as state variables. For materials like Ni and
Ti-based alloys that typically have a multi-crystal microstructure, phenomenological

models would be more practical [85].

4.2. Direct Calibration of Material Constants

The SHPB test is the most widely used method for determining material constants in
constitutive models, however it has already been established that it cannot reach the

stresses and strains present in machining [81, 85, 92]. In machining operations, maximum
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strains in the PDZ, SDZ, and TDZ can reach values of 1, 4, and 4, respectively—meanwhile,
the strains for tensile and compression tests only reach values of 0.2 and 1, respectively
[161, 185]. The SHPB test can reach strain rates of up to 10% s, which is not representative
of high-speed machining conditions [161, 195]. Another reason the SHPB test is an
outdated calibration method is because it carries high equipment costs and its heavily
reliant on user expertise [196].

The alternative to conventional mechanical methods like SHPB is the inverse
approach based on response surface methodology. The inverse method is performed by
measuring cutting forces and chip thicknesses from orthogonal machining tests and used
to analytically calculate the flow stress, strains, and temperatures in the PDZ; material
constants are then determined via nonlinear regression [179, 197]. In the context of
machining, the inverse method is synonymous with the term in-situ, which connotes
direct and real-time observation of the cutting process by multiple sensor modalities,
most commonly optical microscopy techniques [198]. By observing the complex process
of chip formation and thermomechanical loading of the chip, tool, and workpiece in real-
time, valuable data not previously possible with the SHPB test can be obtained. Namely,
digital image correlation (DIC) can be used to analyze grain displacement by capturing
high speed video of the cutting process—by comparing images between the loaded and
unloaded condition, the displacement field of the material can be generated. This section
will discuss works that have used in-situ techniques like DIC to calibrate constitutive
models, which has proven to yield more accurate material constants than conventional

means [179, 197].
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Tian et al. [97] used the reverse identification method to calibrate JC parameters
for Inconel 718 in the solutioned annealed and precipitation hardened state with an
analytical-experimental approach. The parameters of A, B, and n were determined by
fitting the true stress-strain curve from quasi-static compression tests but constants C
and m were found by comparing with orthogonal cutting test data. Cutting force and chip
morphology data as inputs into Oxley’s [166] parallel shear zone model but also
substituted in the Waldorf [199] slip line model to account for the ploughing force, which
is neglected in the Oxley [166] model since it assumes a sharp edge. The equivalent stress,
strain, and strain rate in the PDZ could then be calculated and used as the optimization
parameters in the least-squares method based on the Genetic Algorithm. However, it is
important to note that the tests were conducted at ambient conditions, where the
temperature was only 20 °C and the strain rate was 0.001 s, which is not representative
of machining regimes. The C and m parameters were inversely identified with the least
squares method which is based on the Genetic Algorithm. They verified their calibrated
parameters by comparing experimental results to numerical results in DEFORM 2D, based
on the Lagrangian formulation. While the authors obtained very good accuracy in this
regard, they make clear that their model may only be suitable for low-speed cutting. They
also highlight that there was a distinction in the behavior of Inconel 718 in the solution
annealed state versus the precipitation hardened state, which resulted in significantly
different constitutive parameters.

Similarly, Thimm et al. [161] also used quasi-static compression tests for constants

A, B, and n but the inverse method for constants C and m. However, they used Oxley and
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Welsh’s [200] procedure to calculate the cutting forces and shear strain rate in the PDZ
based on initially chosen values for C and m. These calculated values would be compared
to the measured values and optimized over several iterations to find the constants that
yielded the minimum deviation with experimental data, where the optimization
algorithm would change C and m with every iteration [161]. While the cutting forces were
captured with a dynamometer, the shear strain rate was captured optically via DIC, which
was not employed by Tian et al. [97] The constants obtained by Thimm et al. [161] are

shown in Table 10.

Table 10 JC material constants proposed by Thimm et al. [161]

A [MPa] B [MPa] C n m &y [s1]
492 585 0.0088 0.1677 1.2162 0.001

Zhang et al. [92] also used an analytical-experimental approach for identifying the
material constants in the JC model. In their study, experiments were conducted on an
orthogonal cutting in-situ setup capable of high-speed imaging. Then like Thimm et al.
[161], they performed DIC to generate the strain field in the PDZ in the x and y-directions.
After normalizing the displacement data using the least-squares method, the equivalent
strain rate was calculated, which was determined by integrating the equivalent strain
rate. The authors used quasi-static compression tests to determine constants A, B, and
n, but C and m were obtained via in-situ data of the orthogonal machining tests. C and
m were determined using least-squares optimization, where the inputs are the predicted
and measured forces along the primary shear plane. The predicted shear force (f5) is

given by the integral of the stress in the PDZ, which is assumed to be pure shear according
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to Oxley and Shaw [166]—this shear stress can be derived to be a function of C and m.
The true shear force is simply calculated using the measured cutting and thrust forces (F;
and F;, respectively) and the shear angle (¢), observed from DIC. Their final constants for
the nickel aluminum bronze alloy studied are shown in Table 11. Using the known JC
model constants, simulations for the strain, strain rate, and temperature fields were
performed in DEFORM and compared with the DIC data—results were found to be

consistent [92].

Table 11 JC material constants proposed by Zhang et al. [92]

A [MPa] B[MPa] (o n m
295 7955 0.0217 0.4757 0.7775

Furthermore, studies like Zhang et al. [92] and Thimm et al. [161] show that
mechanical tests can be used successfully in conjunction with the inverse method, as well
as demonstrate the value of also harnessing the untapped potential of DIC. Bergs et al.
[140] used DIC to calculate the strain rate in the PDZ. The results were validated against
analytical predictions using the parallel-sided shear zone model by Oxley [166] and FE
simulations in ABAQUS with CEL formulation. The DIC values were shown to match Oxley’s
[166] model far better than the numerical values. Recently, the authors of the present
study have developed another direct approach for calibration of physics-informed models
of process-induced surface integrity in Inconel 718 by using in-situ characterized sub-
surface displacement fields, which are proportional to the state of stress within the elastic

limit. By comparing the measured displacement fields with model-generated stress fields,
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Schoop et al. [90] demonstrated the ability to accurately predict subsurface residual stress

profiles in turning of Inconel 718:

Calibration of 2D RS model inputs (a, u., p,) from 2D DIC data
(a) Model-generated von Mises stress plots (b) Experimental inputs: forces and DIC displacement fields

Equivalent Friction, y, v, =60 m/min h=20pum
r, 5
B

 Identification of effective contact width (2a) p
through model/data pattern matching

Stress Intensity, p/k

Fig.‘15. Schematic illustration of the process for calibrating contact width: (a) modeling
results of von Mises stress; (b) calibrating contact width from DIC displacement field
[90]

Jomaa et al. [197] took a hybrid approach similar to Refs. [92, 97, 161], where both
mechanical and machining data was utilized for calibrating constants of the Marusich’s
constitutive equation (MCE)—the MCE (shown as equations 32-34) has shown promising
results but has seldom been explored or tested because material constants have not been
published in literature [138, 197]. While the MCE is not microstructure based, it does
account for dynamic effects like heat conduction and mesh-on-mesh frictional contact
[138]. For the MCE model, Jomaa et al. [197] proposed a two-step approach, where
constants would be calibrated via different methods depending on the regime. For the

low strain rate regime, material constants would be attained via tensile/compression

experiments (tensile tests, radial collapse of thick-walled cylinder, SHPB, etc.) and for the
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high strain rate regime, material constants would be attained via the inverse method

(orthogonal machining tests) [197].

. m1
Y _(_o . . . (32)
(1 + é0) = (g(gp)) for &, < & (low strain rate)
. M2 q my (33)
& m . . . .
(1 + ﬁ) (1 + z—;) o= (ﬁsﬂ) for &, > & (high strain rate)
(34)

g(fp) =[1—ay, (T —Ty)]og (1 + i_z)n%n,

In the above equations of the MCE: o is the equivalent von Mises stress, g, is the
yield stress, &, is the equivalent plastic stress, &, is the equivalent plastic strain rate, ny,,
is the strain hardening exponent, ay;, is the thermal softening coefficient, m; and m, are
low and high strain rate sensitivity coefficients, and T is the temperature. gy, ny;, and my
are the low strain rate parameters, calibrated with dynamic tests. m, and ay; are the
high strain rate parameters, calibrated with machining tests. Also for the high strain rate
regime, two different temperature models from Oxley [201] and Loewen and Shaw [202]
were each used to inversely calculate the constants from the machining data. Two sets of
constants (one for each model) were generated and compared to determine the
temperature sensitivity of each respective model.

Finally, DEFORM 2D was used to simulate the cutting process for three different
alloys using the MCE with the Oxley temperature model (M1), the MCE with the Loewen
and Shaw temperature model (M2), as well as the JC model with the Cockroft and
Latham criterion for chip segmentation. These three models were analyzed with respect
to the cutting forces, chip thickness, and tool-chip contact length. Tool-chip contact

length is an output that is traditionally overlooked in optimization models but has been
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shown to improve results when included; it can even be measured using DIC [185].
Results showed that MCE hybrid model was found to be much more accurate than JC,
particularly regarding the cutting forces, as the latter would underestimate with errors
of up to 55% in some cases [197]. The study showed that the selection of the
temperature model has a major impact on the sensitivity of predictions for not only the
temperatures, but the predicted responses as well [197]. Material constants for M1
proved more accurate for certain materials whereas the material constants for M2

performed better for others [197].

5. MATERIAL PROPERTIES & RESIDUAL STRESS TEMPERATURE CHARACTERIZATION

This section shows the strong temperature dependence of physical and
mechanical properties of Ni-alloys. Many profiles and models were generated via curve
fitting of experimental/tabular data for many different materials. The applications and

traits of said materials are also briefly discussed.

5.1. Thermophysical Properties of Ni-alloys

This section presents the thermal profiles for the physical properties of a
plethora of Ni-alloys. These properties include the thermal conductivity, linear thermal

expansion coefficient, specific heat, thermal diffusivity, and density.

5.1.1. Temperature Dependence of Various Thermophysical Properties

Figures 16-19 show the temperature dependence of several physical properties

for numerous Ni-alloys. Thermophysical property values at RT and other key
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1185 temperatures were obtained for Ni-alloys from various data tables. Using the

1186  thermophysical property values, the plots were constructed using the lowest order
1187  polynomial regression that fit the experimental and model-generated data was used to
1188  create these profiles in MATLAB. In most cases, these were second and third order
1189  polynomials.

1190 One of the reasons Ni-alloys are difficult to machine is because of their poor
1191  thermal conductivity (A), which leads to increased temperature at the tool rake face,
1192  resulting in work hardening and a strong tendency for adhesion and built-up-edge
1193  conditions [42]. Although the thermal conductivity of Ni-alloys increases with

1194  temperature (as seen in Fig. 16), it is still much lower than it is for pure Ni [203]. The
1195  alloys in Fig. 16 increased by an average of 115% (or 16 W/m*K) between RT (taken at
1196 20 °C) and 810 °C. A higher thermal conductivity (i.e., higher heat removal rate) is

1197  desired because it mitigates thermally induced damage during machining [204].

1198  Louzguine-Luzgin et al. [205] mentions that Ni-alloys have a lower glass formability
1199  because of their low thermal conductivity compared to copper-based alloys. The

1200  thermomechanical coupling effect of the chip sliding against the rake face of the tool
1201  lowers the thermal conductivity but increases electrical conductivity for both workpiece

1202  and tool, which may trigger adhesion [204].
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Fig. 16. Variation of thermal conductivity with temperature for several Ni-alloys. Curve
fit data from [206-212].

The linear thermal expansion coefficient (a;) corresponds to the rate at which a
material expands or contracts due to changes in temperature. Materials with a low
average thermal expansion coefficient develop fewer microcracks during machining
applications [213]. Ni-alloys tend to have high thermal expansion coefficients, which
leads to dimensional instability over a wide range of temperatures [214, 215]. Modifying
a material’s chemical compositions influences the thermal expansion coefficient, as
reported by Karunaratne et al. [216]. They discovered that Ni-alloys with increased
guantities of Mo exhibited lower coefficients values. Further investigation is needed to
understand the correlation between the thermal expansion coefficient and
microstructure. Figure 17 shows the variation of the linear thermal expansion coefficient
with temperature for several Ni-alloys, which increased by an average of 25% (or

3.14x10°® m/m) between RT and 810 °C.
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Fig. 17. Variation of the linear thermal expansion coefficient with temperature for
several Ni-alloys. Curve fit data from [206-212].

The specific heat (c,,) of a material is the amount of heat energy per unit mass
required to increase the temperature by one heat unit [217]. Like most other physical
properties, the specific heat is temperature dependent. The fluctuation of the specific
heat can be detected in the solid-liquid ranges in metals during rapid cooling and
heating, and thus can be used to partially determine the state of a material’s
microstructure [217]. However, this claim requires further validation. Figure 18 shows
the variation of the specific heat with temperature for several Ni-alloys, which increased

by an average of 46% (or 194 J/kg*K) between RT and 810 °C.
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Fig. 18. Variation of specific heat with temperature for several Ni-alloys. Curve fit data
from [206-212].

Thermal diffusivity (ar) is the rate at which a material diffuses its thermal energy
[217]. It is an important parameter because it serves as a ratio for most of a material’s

thermomechanical properties [218] and is given by:

ar = (35)
where Ais the thermal conductivity, p is the density, and ¢, is the specific heat. By
equation 35, it becomes obvious that the thermal diffusivity can be used to calculate
other thermomechanical properties. Parker et al. [219] used this relation in their flash
method experiment to obtain the thermal conductivity. The thermal diffusivity can be
calculated experimentally, such as using the thermal-wave-mirage technique, which
employs an optical beam to deflect the thermal features of a material to create a
thermal deflection profile [220, 221]. Figure 19 shows the variation of the thermal

diffusivity with temperature for several Ni-alloys, which increased by an average of 50%

(or 1.79x10°® m?/s) between RT and 810 °C.
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1245  Fig. 19. Variation of thermal diffusivity with temperature for several Ni-alloys. Curve fit
1246  data from [206-212].

1247  5.1.2. Temperature Dependence of Density

1248 Temperature variance in Ni-alloys creates a notable change in the material
1249  density. In performing experiments on Inconel 600 using pushrod dilatometry,

1250  differential scanning calorimetry, and the laser-flashing technique, Blumm et al. [100]
1251  discovered a decrease in density because of an increase in volume due to arise in
1252  temperature. Using the same curve fitting technique as in Section 4.1.1, the thermal
1253  density and volumetric expansion profiles for Inconel 600 were plotted in Fig. 20. The

1254  results coincide with the plot obtained by Blumm et al. [100].
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Fig. 20. Density and volume as a function of temperature for Inconel 600

To compute density as a function of temperature (as shown in the figure), the
authors first developed an equation for the change in volume using the thermal
expansion coefficient and temperature displacement:

=L = 3(a,AT) + 3(a, AT)? + 3(a, AT)? (36)
where AVV is the volumetric expansion, «; is the linear thermal expansion coefficient, and

AT is the temperature displacement. The density as a function of temperature is then

given by:

(37)

. . . . AV . . .
where p is the density, p, is the density at RT, and 7V is the volumetric expansion from

equation 36. Valencia et al. [217] determined a similar equation, except the

denominator is cubed in their formulation. By integrating equation 37, another relation
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that allows for density displacement to be written as a function of temperature was

developed:
Ap = pyln (1 + AVV) (38)
where Ap is the density displacement, and p, and AVV are the same as before. Equation

38 is analogous to the computation of true strain.

When machining a material, the Péclet number (Pe) must be determined to fully
understand the thermal behavior of the material. Density is proportionally linked to the
Pe number and other thermal properties through equation 44 (The Pe number is
discussed more in the following section). Using equation 37, the thermal diffusivity can
be rewritten as equation 39, which can compute a slightly more precise value for the Pe
number.

AV
1457

PCp

(39)

ar =21
Materials such as Inconel 718 can heat up to ~1000 °C in aeroengine

applications. Since Inconel 718 has a high linear thermal expansion coefficient, it
expands rapidly as the temperature increases. This in turn increases the volume,
resulting in the density decreasing [100, 217]. Figure 21 displays density as a function of
temperature for both Inconel 600 and Inconel 718, which was created by first
computing the volumetric expansion via equation 36. Using the volumetric expansion,
the density at each temperature was calculated via equation 37. By taking several
iterations, the points were plotted with a curve-fit in MATLAB. This procedure was also

partially repeated for the other seven Ni-alloys discussed in Section 5.2 to find the
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1285  average density change when going from RT to 800 °C, which was 4%. The change in
1286  density due to temperature also affects the Pe number and other thermal properties as
1287  well, so not considering this effect would have a major influence on constitutive model

1288  predictions.
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1290  Fig. 21. Density of Inconel 600 and Inconel 718 as a function of temperature

1291  5.1.3. Incorporating Thermophysical Properties in Constitutive Models

1292 A clear drawback of not only phenomenological constitutive (mechanical

1293  response) laws like the JC model but also physics-based laws like the ZA model is that
1294  they do not explicitly consider thermophysical properties such as the thermal

1295  conductivity, density, specific heat, etc. as variables in their equations. As was just

1296 illustrated in Sections 5.1.1 and 5.1.2, thermophysical properties change considerably
1297  with temperature, and thus have a causal influence on the thermomechanical response
1298  of the material as well—it has been shown that these properties are just as influential

1299  with respect to temperature as the flow stress or friction between tool and chip [222].
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For example, a reduced thermal number (i.e., the Pe number; a reduction in the ratio of
cutting speed to thermal diffusivity) at elevated temperature would likely promote
adiabatic shear localization, thus changing the mode of plastic deformation. The inability
of the workpiece to dissipate heat at high speeds will localize the heat at the PDZ, which
will generate serrated formation and create a considerably different constitutive
response than with continuous chip formation. A higher linear thermal expansion
coefficient at elevated temperature would mean that the material is more susceptible
to thermal damage such as tensile residual stress, which is very harmful to fatigue life
[223]. Effects such as these are what are lacking in conventional constitutive models
that do not account for second order thermophysical property interactions.

Nieslony et al. [224] performed AdvantEdge simulations to analyze the influence
of temperature dependence in thermophysical properties using the Power Law
constitutive model. They compared the numerical results obtained using thermophysical
values in the FE database (which are assumed to be constant) with the results obtained
using constants by Kalhori [225], which were calibrated by modeling the temperature

dependence of several thermophysical properties:

A(T) = A(AO + AlT + -+ AsTS) (40)
cp(T) = cp(cp, + ¢p, T+ -+ ¢y T) (41)
a(T) = a(ag + a;T + -+ asT>) (42)

where compare A(T) is the thermal conductivity, ¢, (T) is the specific heat, and a(T) is
the linear thermal expansion coefficient at different temperatures. The model by Kalhori

[225] showed excellent agreement with measured cutting forces and temperature,
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whereas the model utilizing constant physical properties was shown to greatly
overestimate these values. Regarding the output of FE simulations, the changes in the
thermal conductivity and specific heat in Kahlori’s [225] caused significantly lower
temperature distributions along the isotherms of the tool rake face [224]. Thus, future
modeling efforts should consider incorporating thermophysical variables into their
constitutive frameworks.

One such model that accounts for thermophysical properties is the semi-
analytical Eager-Tsai model. Hariharan et al. [226] studied the microstructural evolution
during laser powder bed fusion (LPBF) of Ni-alloy Haynes 282, and they used the Eager-
Tsai model to simulate the thermal field generated during LPBF, which can be seen

below:

_Gtvn?ey? 22 43
NoP Ti:texz’[ 202%+4at 4a‘rd_ ( )
l

pcpy/4mar To=0 (0242a1)71/?

T(x,y,z) =Ty +
where T, is the reference temperature, 1, is the efficiency of energy absorption, P is
the laser power, p is the density, ¢, is the specific heat, ar is the thermal diffusivity, v is
the scan speed, x, y, z represent position with respect to the heat source, 7; is the time
integration variable, o is the standard deviation of Gaussian profile, and 7 represents
the available time for conduction. Not only is the Eager-Tsai model significantly faster
than FE thermal models, but it has the ability to re-use solutions without having to
recalculate with each iteration [226]. Such a useful model integrates thermophysical
properties to speak to the dynamic physics of a material and can result in more
complete simulations. Since the model is semi-analytical, it can also be calibrated with

experimental data.
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5.2. Semi-Analytical Comparison of Thermal Damage Sensitivity in Ni-alloys

This section discusses thermomechanical properties related specifically to
machining. A useful metric for comparing the thermal response of workpiece materials
during cutting processes is provided by the Pe number, or thermal number, of the
tool/workpiece contact. It is a dimensionless number that is given by the ratio between
the flow and diffusion rates, which in cutting may be interpreted as the relative speed of
thermal conduction compared to the cutting speed of the tool on the workpiece
surface:

Pe = 52 (44)
where v, is the cutting speed, a is the half-width of contact, and p, ¢,,, and 1 are the
same as before. The Pe number determines the shape of the thermal field within the
workpiece material, which may be quasi-static (approximately symmetrical about the
center of the thermal contact area) or transient (with the peak/flash temperature

moving towards the trailing edge of the tool/workpiece contact on the tool’s flank face)

[227]; this concept is illustrated in Fig. 22.
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Fig. 22. Péclet number influence on thermal field [228]

In the context of machining, thermal damage due to thermal expansion stresses
that exceed the YS of the workpiece material is an important consideration. Such
thermal damage may exhibit itself as undesirable tensile residual stress, which may
significantly reduce fatigue life, or the presence of thermal cracks, when the thermal
expansion stress exceeds the ultimate tensile strength (TS). The critical temperature (CT)
can be found by computing the equivalent thermal expansion stress and plotting it with
the YS as a function of temperature.

The CT is the temperature at which the equivalent thermal expansion stress
exceeds the YS (causing plastic deformation) and where a tensile residual stress begins
to form. It is unique for each workpiece material, allowing for qualitative comparisons of
sensitivity to localized thermal expansion. The tensile residual stress is approximately
equal to the difference between the equivalent thermal expansion stress and the YS

(once the equivalent thermal expansion stress has surpassed the YS; before this point,
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the tensile residual stress is zero). Due to thermal softening, the YS decreases with
increasing temperature while the equivalent thermal expansion stress increases with
thermal loading. This process was used to characterize the thermal stress profile for
various Ni-alloys (shown as Figs. 23-31) by plotting the evolution of YS, thermal
expansion stress, and resulting thermally induced tensile residual stress.

The YS curves were created by curve fitting values from material datasets in
MATLAB (the polynomial functions are shown on each respective figure). The equivalent
thermal expansion and thermally induced tensile stresses were computed via the model
by Schoop et al. [228] (shown in blue and red on the figures, respectively). This model
implies that once the tensile residual stress surpasses the equivalent thermal stress,
cracks and tears begin to nucleate on the surface of the component. It should be noted
that the increase in temperature with increasing cutting speed is very complicated, due
to the presence of various heat sources (primary and tertiary shear zones,
tool/workpiece friction, etc.).

Inconel 600 is a popular Ni-alloy used in aero-engine, nuclear, and medical
applications due to its creep resistance, corrosion resistance, high toughness, high
strength, and high stiffness [229, 230]. Like Inconel 718, it is also difficult to machine,
particularly because of the emergence of tensile residual stresses. As can be seen in Fig.

23, the CT is ~175 °C, which lends credence to the material being difficult to machine.
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1389  Fig. 23. Thermal residual stress profile for Inconel 600. YS curve fit data from [210].

1390 Inconel 625 is another Ni-alloy with exceptional properties like high YS, creep
1391  strength, fatigue strength, oxidation resistance, and corrosion resistance [231]. Typical
1392  applications include heat shields, gas turbine engine ducting, and seawater applications
1393 [232, 233]. The CT for Inconel 625 is ~230 °C (see Fig. 24), signifying that it has a superior

1394  vyield and TS to Inconel 600, and that it is slightly easier to cut.
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Fig. 24. Thermal stress profile for Inconel 625. YS curve fit data from [233].

Inconel 718 is by far the most utilized Ni-alloy for aerospace applications. Like

Inconel 600 and 625, the Ni and Cr percentages provide great resistance to

carburization, oxidation, and corrosion along with a high fatigue and TS [234]. Inconel

718 also has great mechanical properties at cryogenic temperatures [235], which is a

rare characteristic. The CT for Inconel 718 is very high at approximately 400 °C (see Fig.

25), which translates to good thermal stress resistance [236]. This makes Inconel 718

relatively much easier to machine than Inconel 600 and 625. It has a low thermal

conductivity [237] and is very adhesive, which causes significant tool wear. This

especially becomes a problem at high cutting speeds and feed rates [238].
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Fig. 25. Thermal stress profile for Inconel 718. YS curve fit data from [239].

Incoloy 825 is a Ni-alloy with high corrosion resistance but low strength and

hardness [240]. It has many applications in the aerospace, oil, and power industries

[241]. Typically, alloys with Ni, Cr, and Mo are costly, but Incoloy 825 is inexpensive due
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to the decreased Ni content [242]. As can be seen in Fig. 26, the YS of Incoloy 825 is low,
which contributes to its low CT. Despite this, its maximum service temperature remains
high due to its high corrosion resistance at elevated temperatures [206]. When
machining Incoloy 825, chemical vapor deposition (CVD) multilayer coated
(TiN/TiCN/AI,03/ZrCN) inserts have been found to produce a better surface finish at high
cutting speeds and a decrease in work hardening at low-medium cutting speeds [33].
Use of an uncoated tool results in an increase of white layer formation and work

hardening [33].
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Fig. 26. Thermal stress profile for Incoloy 825. YS curve fit data from [243].

Monel K500 has a high thermal conductivity, specific heat, and thermal
expansion coefficient, but low thermal diffusivity [56]. It has high strength, fracture
toughness, and is corrosion resistant in marine environments, but is susceptible to
hydrogen environment-assisted cracking [244, 245]. Research shows that machining

Monel K500 at high cutting speeds gives a better surface finish and that a low to
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1426  moderate feed rate with a small nose radius minimizes tool wear [246]. Figure 27 shows

1427  that Monel K500 has an acceptable CT.
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1429  Fig. 27. Thermal stress profile for Monel K500. YS curve fit data from [208].

1430 René 41 is an older Ni-alloy developed in the 1950s with high strength, great
1431  corrosion and oxidation resistance, great microstructural stability for up to 980 °C [247].
1432 It has been used in nozzles, the hot sections of engines, and more [64]. However, the
1433  use of René 41 is limited due to strain age cracking during welding and heat treatment
1434 [248]. In welding, cracks form from weakened grain boundaries due to oxygen

1435  absorption, and there is decreased ductility [249]. As can be seen in Fig. 28, René 41 has
1436  a high and consistent YS, giving it a relatively high CT. There have since been

1437  developments for more effective René alloys such as René 180, but data on such alloys

1438  is not readily available.
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Fig. 28. Thermal stress profile for René 41. YS curve fit data from [209].

Hastelloy B-2 is an alloy with a particularly high Mo percentage and subsequently
high corrosion resistance in acid environments. It is used in pipes, pumps, and reactors
[250]. However, Hastelloy B-2 may become brittle if exposed to temperatures at 500-
850 °C or while cooling from an elevated temperature [251]. This implies that as the
temperature drops, the hardness/brittleness rises with the alloy’s strength [252]. This
embrittlement can be averted by avoiding prolonged heating in the material by cooling
it rapidly after the annealing process to avoid additional phases [253]. The work
hardening in Hastelloy B-2 is due to the high percentage of Mo, which means that
guantities of this element should be limited [250]. From Fig. 29, it is shown that
Hastelloy B-2 has a lower CT than René 41 and Inconel 718, but higher than Inconel 600,
625, and Incoloy 825. Nonetheless, Hastelloy B-2 is difficult-to-machine due to its

excessive work hardening.
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Fig. 29. Thermal stress profile for Hastelloy B-2. YS curve fit data from [254].

Hastelloy X has high fatigue strength, corrosion resistance, and oxidation
resistance at elevated temperatures. It is used in jet engines, afterburners, and tailpipes
[255]. However, Hastelloy X is difficult to weld and machine. For instance, the Cr
precipitation produces dynamic strain aging [256]. Another problem is solidification and
liquidation cracks due to the forced separation of Mo and Cr rich elements at the end of
the solidification process [257]. As can be observed from Fig. 30, it has a low CT—thus,
tensile stresses are more likely to occur. Moreover, low cutting speeds and feed rates

should be employed.
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Fig. 30. Thermal stress profile for Hastelloy X. YS curve fit data from [258].

Haynes 230 is a high thermal strength, corrosion resistant alloy [259]. It is used in
gas turbines and solid-oxide fuel cells [260]. It possesses elevated temperature strength,
great oxidization and nitridation resistances, high formability, and weldability along with
long-term thermal stability [261]. The carbon in Haynes 230 allows for it to have a solid-
solution and be carbon-strengthened which, unlike other Ni-alloys, maintain its
mechanical properties at exceedingly high temperatures [261]. Figure 31 shows that
Haynes 230 has a low CT and YS, which makes it difficult to machine. Thus, low feed

rates and high cutting speeds are recommended.
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Fig. 31. Thermal stress profile for Haynes 230. YS curve fit data from [262].

As can be seen in the above plots, the tensile residual stress is induced when the
equivalent thermal expansion stress surpasses the YS of the material—resulting in
permanent deformation. This occurs at the CT, which is summarized for each alloy in
Table 12. Not shown in Figs. 23-31 is the TS from RT to the maximum service
temperature (MST), so this information is provided in Table 12 for each alloy alongside
the CTs. The TS values were computed using the same technique for the YS in Figs. 23-
31. The model used can explain the effects of thermal stress due to the thermal
properties of the cutting speed, half-width of contact, tool width, and the thermal
properties on a material being cut [227].

As can be seen, there are significant differences between the various Ni-alloys
regarding their CT and TS at RT, implying unique machining responses. Notably, Inconel
718 has the highest CT at approximately 400 °C, while most other alloys feature CTs in

the range between 170-310 °C. Thus, the data in Table 12 suggests that most Ni-alloys
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are relatively susceptible to thermally induced damage (tensile stress and surface

cracks), which is consistent with practical and experimental observations. Increasing the
CT (e.g., via decreased thermal expansion coefficient or increased high-temperature YS)
could offer improved resistance to ‘abusive machining’ and should be pursued in future

integrated computational and experimental materials engineering (ICEME) efforts.

Table 12. CT and TS at key temperatures for various Ni-alloys

. o TS at 600 °C TS at MST
Ni-alloy CT [°C] TS at RT [MPa] [MPa] [MPa/°C]
Inconel 600 175 804 488 60/1090

Inconel 625 230 952 707 128/1090
Inconel 718 400 1555 1218 988/700
Incoloy 825 170 697 493 75/980
Monel K500 290 1075 501 696/500
René 41 310 1256 1251 893/950
Hastelloy B-2 250 966 725 605/870
Hastelloy X 190 788 569 28/1200
Haynes 230 195 865 700 43/1050

The MST represents the highest temperature at which a material can operate
without significant changes to its material properties. For most of the Ni-alloys
discussed, the MST falls around 1000 °C. The MST should not be mistaken for the CT,
which represents the nucleation of thermally induced stress concentrations (tensile
residual stresses) in a component. Rather, the MST is the resulting failure of said
component via thermal stress concentrations. Another important observation is that for
several of the Ni-alloys, the MST occurs when the YS becomes approximately zero. This
implies that the reported MST values are likely not intended to be used for structural
(e.g., turbine disc) service and components, but rather the maximum temperature at

which the material could safely be used without suffering severe oxidation or creep.
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Notably, the MST falls within the range of typical machining temperatures, particularly
in the primary and secondary deformation zones. This again emphasizes that the unique
high-temperature properties of Ni-alloys make them uniquely difficult-to-cut, and future
work should investigate novel cutting tool materials that feature even greater resistance
to temperatures (e.g., nanocrystalline ceramics and polycrystalline boron nitride
materials).
5.2.1. Models for Capturing the Temperature Dependence of Stress

As can be seen from the thermal profiles in Section 5.2, temperature has a
significant effect on the various stresses of Ni-alloys; not many models can accurately
predict the flow stress at extremely high temperatures (1000 °C). This section will briefly
discuss some of the more recent approaches for characterizing flow stress in this
regime. One such method is the Garofalo-Arrhenius (G-A) creep model, which is used for
predicting material behavior in the hot deformation of metals [263, 264]. The G-A is
especially useful because it utilizes the hyperbolic sine function (equation 45) from
Garofalo [265], which allows it to predict stress at all levels, unlike the power and

exponential law versions of the Arrhenius model.

A[sinh(ao)]™ (45)

where A, a, and n are constants that are a function of strain to be calculated via linear
regression analysis [263] and o is the flow stress at any level, according to Garofalo
[265]. Zener and Hollomon [266] introduced a stress-strain relation that could be
established with one parameter considering the strain-rate and the diffusion-rate

(which incorporates material properties):
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Z = éexp (2) (46)
RT

where R is the universal gas constant, T is the temperature, and Q is the deformation
activation energy that characterizes the micro-movements influencing the strain
hardening and thermal softening of a material. Equating equations 45 and 46 to each
other and isolating o gives the flow stress as a function of strain, strain rate, and
temperature:
1 47
o(e,&T) = %smh—l g<_e"p(z%))]>” @)
The G-A creep model is known for its accurate measurements of flow stress at
elevated temperatures surpassing 70% of the material’s melting temperature. Zuo et al.
[263] compared the G-A model with an artificial neural network (ANN) to predict the
flow stress of Ni-alloy N0O8028 between 1100 °C and 1200 °C. Since ANNs are used to
predict patterns in human behavior and decision making, the case could be made for
harnessing them to predict material behaviors such as the flow stress [267]. Back-
propagation ANN (B-P ANN) methods are the most capable for engineering applications
[268]. B-P ANN models have three layers: the input layer, the output layer, and other
hidden layers [269]. The input layers predict the output layers and validated target data
is then used to propagate the errors backwards to optimize the constants. The purpose
of the study by Zuo et al. [263] was to determine whether changes to the initial
microstructure, as the result of hot deformation testing, was a determinant of flow

stress.
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Zuo et al. [263] used strain, strain-rate, temperature, and the initial
microstructure as the input layer and flow stress as the output layer. They were able to
utilize the B-P ANN model to get a more accurate prediction of flow stress than the G-A
creep model, namely because the BP-ANN model accounts for microstructural effects
like the phase changes that come with the rise in temperature whereas the G-A does
not incorporate microstructural effects. This once again points back to the advantages
of physics-based models and shows the potential for using ANNs in the modeling of

machining processes.

6. CONCLUSION

This review provides and summary of advances in the constitutive modeling and
physical properties of Ni-alloys used in turbine applications, with a focus on machining-
specific thermomechanical regimes. Some of the key findings of this study include:

e While the widely used JC model is simple to calibrate, MJC models can account
for physically relevant factors like strain softening and second-order
interactions. The biggest challenge with the basic JC model is that it is often
inaccurate at higher strain rates, which tend to characterize cutting processes.

e While 2D FE software is most commonplace for machining simulations, some
authors argue that the orthogonal plane strain assumptions of such 2D models
do not represent the triaxiality of stress found in most industrial cutting
processes. Thus, these researchers argue that only 3D FE is suited for physics-

based modeling machining applications.
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When plotting various JC models from literature, the plots did not resemble a
typical stress-strain curve on that strain domain, even when the models were
calibrated using the SHPB test. Consequently, there is an urgent need for
machining-specific materials characterization techniques that cover the strain,
strain rate, and temperature regimes of machining.

The alternative to using data from mechanical tests like tensile and quasi-static
compression and SHPB experiments, is direct calibration using the inverse
method with orthogonal machining tests. Unlike the SHPB tests, for instance,
the inverse method relies on in-situ machining data where the strains and
temperatures are representative of the actual process. Constants can then be
calibrated with optimization algorithms by comparing measured cutting forces
and chip thicknesses to those predicted by analytical models. A novel approach
to the inverse method is DIC, which is allows for the strain and strain rates in
the PDZ to be determined with high accuracy, which shows great potential for
constitutive model calibration.

Phenomenological models cannot be relied on exclusively given their lack of
consideration for microstructural behavior. Physics-based models do address
this, by incorporating phenomena like grain dislocations and phase
transformations, which have a major effect on the material response in
machining regimes. However, physics-based models come with their limitations,

such as only accommodating single-crystal materials and difficult calibration due
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to the number of constants. Thus, it phenomenological models may prove to be
more appropriate for certain materials.

The boundary conditions of rake angle, cutting speed, and tool coating can all
drastically change the output of FE simulations. It has been shown that the rake
angle alters the chip morphology and yields better flow stress predictions when
it is zero. Raising the cutting speed leads to serrated chip formation, higher
cutting forces, and higher cutting temperature. Tool coating can also suppress
the temperature at the cutting area.

The chemical composition of Ni-alloys has a significant effect on their service
performance. For instance, the high Ni and Cr percentages can provide great
resistance carburization, oxidation, and corrosion. Most phenomenological
models neglect chemical effects, and even physics-based material models often
oversimplify the effects of chemistry and inclusions.

Little work has addressed the impact of physical properties on the constitutive
response of Ni-alloys. Many studies treat these properties as either constant or
not mutually interconnected when they are temperature-sensitive and co-
dependent on each other. Furthermore, neither phenomenological nor physics-
based models treat these properties as functions as temperature, which is
undoubtedly affecting the accuracy of predictions. This study showed via
regression modeling of material property data that a change from RT to a
machining-specific regime of 810 °C, 4, a;, ¢,, and ar were shown to increase

by an average of 115%, 25%, 46%, and 50%, respectively.
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Of the Ni-alloys analyzed, the density was found to decrease by an average of
4%, which directly affects other properties such as the thermal diffusivity.
Moreover, thermophysical properties also have a direct impact on aspects like
work hardening, adhesion, and cracking, which is why their temperature
dependence needs to be considered in constitutive modeling.

As was observed from the modeled thermal stress profiles, the critical
temperature CT of Ni-alloys, beyond which tensile residual stress is induced due
to localized heating, is well below typical cutting temperatures experienced in
machining or (bulk) service temperatures for these alloys. This finding implies
that Ni-alloys require especially careful selection of feeds and speeds, as well as
tailored cooling and lubrication strategies to avoid undesirable near-surface

tensile residual stress.

7. OUTLOOK AND DIRECTIONS FOR FUTURE WORK

Modeling of the machining-specific material response of Ni-alloys is a highly

challenging task. First, selecting a constitutive model and associated parameters from

the plethora of available (previously calibrated) models requires a careful understanding

of how each model was calibrated, and on what basis it was considered a reasonable

representation of the ‘true’ constitutive response of a given Ni-alloy. This review shows

that many, if not most, available JC models do not correlate well with experimentally

measured stress/strain response of Ni-alloys. The key problem lies in the determining

the value of flow stress at high values of strain, which occur in machining but cannot

currently be replicated using available characterization techniques, such as the SHPB
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test. By relying on substantial extrapolation, often over an order of magnitude beyond
available data, the predicted flow stress at high strain, as well as high strain rates and
elevated temperatures, often does not correlate with established experimental data.

In addition to adopting physics-based models, the experimental characterization
method for determining the material constants (i.e., model calibration) is just as
important. The SHPB has already been established to lack the ability to replicate the
intensive thermomechanical regimes in machining. The authors of this work proposed
that the emerging inverse method, also known as in-situ characterization, offers a
promising way forward as it can capture the true thermomechanical conditions of
machining processes. Recent developments towards higher resolution in-situ process
characterization include high-speed optical microscopy via DIC and particle image
velocimetry (PIV) techniques appear to be a promising path, perhaps realizing the
longstanding vision to utilize ‘machining as its own materials characterization
technique’.

Notably, future work to characterize machining-specific material behavior should
include the effects of microstructural factors, such as grain-scale anisotropy and effects
such as DRX that have been widely incorporated in modeling research, but not yet
directly observed to occur during cutting (in-situ)—there is a notable consensus in the
machining community that DRX may hold the answer to the observed discrepancy
between SHPB and observed SPD strain values in machining, future work should focus
on addressing this scientific question. The authors also envision the development of a

shared database of ‘pedigreed’ constitutive model parameters and
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calibration/validation data for both process model performance and material properties
to ensure the use of reliable and physically meaningful process model inputs. Such a
database would furthermore require the utilization of in-situ characterization
techniques that allow for severe plastic deformation (SPD) to be observed at high strain
rate and temperature. This endeavor could be sponsored by the International Academy
for Production Engineering (CIRP) to be used by academic researchers and industry
practitioners [79].

Finally, this study highlights the needs for more careful consideration of
temperature dependent physical properties, as these properties have a significant effect
on the mode of deformation, and consequently machining performance. To date, few
studies have managed to incorporate physically relevant thermal property models
within machining process models. In this context, the response of Ni-alloys to localized
heating (i.e., localized thermal expansion resulting in tensile yield and tensile residual
stress upon cooling), will need to be explored further. Based on an improved
fundamental understanding of the propensity of different Ni-alloys to be damaged and
‘abused’ during cutting, we envision the ability avoid these undesirable conditions
through process modeling, which could ultimately enable more pro-active engineering

of the surface quality of machined aeroengine components in the future.
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1681  NOMENCLATURE

T
Tm
ALE
ANN

B-P ANN

Oth
BCC
Pc
Pw

Hc
CEL

CS

cT

Po

DIC
DDB
agq
Oq

DPZD

Absolute temperature
Absolute melting temperature
Arbitrary Lagrangian Eulerian
Artificial neural network
Athermal stress

Available time for conduction
Back-propagation ANN
Thermal stress

Body-centered cubic

Cell interior dislocation density
Cell wall dislocation density
Constant shear friction factor
Coulomb constant

Coupled Eulerian Lagrangian
Cowper-Symonds

Critical damage value

Critical temperature

Cutting speed

Cutting force

Deformation activation energy
Density

Density at RT

Density displacement

Digital image correlation
Dislocation density-based
Dislocation drag coefficient
Dislocation drag stress

Distributed primary zone deformation

95



Journal of Manufacturing Science and Engineering

DRV Dynamic recovery

DRX Dynamic recrystallization

Mo Efficiency of energy absorption
EDZ Elastic deformation zone

en Equivalent plastic strain

Ocq Equivalent thermal expansion stress
FCC Face-centered cubic

F; Thrust force

FE Finite element

FEM Finite element method

u Friction coefficient

Y Gamma

y' Gamma prime

Gamma double prime

G-A Garofalo-Arrhenius

Pwg Geometrically necessary dislocation density
hpe Global heat transfer coefficient

D Grain size

a Half-width of contact

B Hardening modulus JC parameter

HDZ Heat damage zone

ICEME Integrated computational and experimental materials engineering
JC Johnson-Cook

LBPF Laser powder bed fusion

P Laser power

ap Linear thermal expansion coefficient

MCE Marusich’s Constitutive Equation

MST Maximum service temperature

MTS Mechanical Threshold Stress
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hnin Minimum uncut chip thickness
MCS Modified Copwer-Symonds
MJC Modified Johnson-Cook

MZA Modified Zerilli-Armstrong

Pe Péclet number

PDZ Plastic deformation zone

&p Plastic strain

€ Plastic strain rate

fS Predicted shear force

h Programmed uncut chip thickness
o Reference plastic strain rate
RT Room temperature

Ty Room temperature

1% Scan speed

SDZ Secondary deformation zone
1) Shear angle

Cp Specific heat

SHPB Split-Hopkinson Pressure Bar

Pws Statistical dislocation density

o Standard deviation of Gaussian profile

C, Strain hardening coefficient

n Strain hardening JC parameter

C Strain rate sensitivity JC parameter

0o Stress for overcoming short range obstacles
AT Temperature displacement

A Thermal conductivity

TDZ Tertiary deformation zone

ar Thermal diffusivity

Ors Thermally induced tensile residual stress
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m

Thermal softening JC parameter
Thermal stress

Time integration variable
Ultimate tensile strength
Universal gas constant
Volumetric expansion
Equivalent von Mises flow stress
Yield strength

Yield strength

Yield Strength JC parameter

YS MZA parameter

Zerilli-Armstrong
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