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Abstract 

RNA research is advancing at an ever-increasing pace. The newest and 

most state-of-the-art instruments and techniques have made possible the 

discoveries of new RNAs, and they have carried the field to new frontiers of 

disease research, vaccine development, therapeutics, and architectonics. Like 

proteins, RNAs show a marked relationship between structure and function. A 

deeper grasp of RNAs requires a finer understanding of their elaborate 

structures. In pursuit of this, cutting-edge experimental and computational 

structure-probing techniques output several candidate geometries for a given 

RNA, each of which are perfectly aligned with experimentally determined 

parameters. Identifying which structure is the most accurate however, remains a 

major obstacle. In recent years, several algorithms have been developed for 

ranking candidate RNA structures in order from most to least probable, though 

their levels of accuracy and transparency leave room for improvement. Most 

recently, improvements in both areas are demonstrated by rsRNASP, a novel 

algorithm proposed by Tan et al.  It is a residue-separation-based statistical 

potential for 3D structure evaluation, and it outperforms the leading algorithms in 

the field.  
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Introduction 

RNA is a single-stranded biomolecule with myriad key roles in regulating 

gene activity (1), catalyzing chemical reactions (2), and encoding plus decoding 

genetic information (3). Its single-stranded nature enables intramolecular base-

pairing, which allows the polymer to fold into intricate 3D structures. A ubiquitous 

example is the amino-acid-carrier tRNA. Via base-pairing, tRNAs adopt a 2D 

cloverleaf topology. Interactions between the leaves then create a 3D “L”-shaped 

architecture, the exact dimensions of which precisely fit through a ribosome’s 

entry portal and facilitate protein synthesis (4). Alongside tRNAs, a whole host of 

other structured RNAs play leading and supporting roles in almost every process 

on the cellular stage; examples include ribozymes (2), mRNAs (5,6), riboswitches 

(7), spliceosomes (8), ribosomes (9), and miRNAs (10). The rapid development 

of new structural techniques such as cryo-EM (11,12,13), SHAPE-JuMP (14), 

smFRET (15), and SAXS (16), as well as the refinement of more traditional 

techniques like NMR (17) and crystallography (18), has focused the stage lights. 

Nonetheless each of these methods have experimental limits on their resolution, 

and as such, computational techniques are required to further refine atomic 

resolution models from these data. 

 Like in proteins, RNA structure and RNA function are closely tied (19,20). 

Even certain single point mutations can augment RNA structures and lead to 

disease states (21). While the number of genes encoding functional RNAs 

greatly exceeds the number that encode proteins, to date, only 1% of Protein 

Data Bank entries include RNAs. A sharper understanding of RNA structure, its 
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various roles, and its patterns of evolution holds much promise in informing the 

functions of uncharacterized RNAs, clarifying mechanisms of noncoding disease 

mutations (22), guiding aptamer-based (23) and other therapies (24), and 

buttressing the science of RNA nanostructures (25,26). 

 Critical to understanding RNA is the ability to probe their structures reliably 

and accurately. This is no simple task as RNAs are quite flexible and could even 

be said to exhibit an RNA version of the Levinthal paradox (27), eg. just a 20-

base RNA composed of ten A’s and ten U’s has almost 10 million distinct folding 

conformations. Frequently used experimental methods like NMR (17), cryo-EM 

(11,12,13), and SHAPE-JuMP (14) yield experimental constraints either in the 

form of distances or density, that when combined with computational structural 

modeling produce a cloud of probable structures, each of which agrees equally 

well with the experimental data. Computational methods like fragment assembly 

(see FARNA) and homology modeling, piece together an RNA’s structure based 

on its chemical similarity to already-known local RNA structures. But whatever 

the method, a set of candidate structures is output, and ranking these structures 

to identify the most accurate, or native-like, structure remains computationally 

challenging (see Figure 1A). 

 A great need in the field of RNA structure prediction is an accurate, 

reliable, and efficient way of evaluating and ranking candidate RNA structures. 

One of the most common methods for achieving a similar end in the protein-

world is a type of energy function: the knowledge-based statistical potential. Such 

a function relies on a reference state, which in the RNA-world, can be determined 



Wienecke et al.  

5 

by information latent in the sequences, chemical bonds, and configurations of a 

well-characterized training set of RNA structures. Output by this energy function 

is a potential energy value for each input geometry; the geometry with the lowest 

energy is taken as the best estimate of the native structure. Several such 

functions have been proposed and are currently in use: RASP (28), 3dRNAscore 

(29), DFIRE-RNA (30), and RNA3DCNN (31). 

 

The New and Noteworthy 

 In this issue of Biophysical Journal, Tan et al propose a new energy 

function: a residue-separation-based statistical potential (rsRNASP) for 3D RNA 

structure evaluation. Different from RNA3DCNN, which relies on the “black box” 

of 3D convolutional neural networks, the inner workings of rsRNASP are 

transparent. Based on the inverse Boltzman law, rsRNASP relies on three 

factors: the temperature, the probabilities of nucleotide separation for native 

state, and the probabilities of nucleotide separation for reference state. These 

parameters are weighted to factor in distance, an important consideration given 

the hierarchical nature of RNA folding patterns (32). Output is an energy value in 

units of kBT; the lower a candidate structure’s energy, the higher its predicted 

similarity to the true native structure. 

 Tan et al’s comprehensive testing on three large datasets indicate the high 

quality of rsRNASP in parsing native from decoy RNA structures. These decoys 

were computationally generated either by normal mode perturbation, fragment 

assembly, replica-exchange, shifting atom distances or rearranging dihedral 
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angles. Each RNA in these datasets has one accepted native structure, and 

several associated decoy structures. While its performance was not perfectly 

accurate, rsRNASP most successfully and most consistently identified the correct 

native structure and ranked the decoys. Its performance remained high for small 

RNAs with very similar decoys, for large RNAs with very variable decoys, and for 

the most realistic RNA-puzzles dataset. This approach appears to achieve a 

better balance of short- vs. long-range interactions and it functions at a higher 

resolution, perhaps explaining its outperformance of 3dRNAscore and RASP, as 

mentioned by Tan et al. 

 Tan et al consider their test set III as the most realistic. This set includes a 

known native structure and multiple computer-generated decoy structures for 1) 

each of the 22 RNAs in the RNA-puzzles dataset, and 2) each of 20 selected 

RNAs with known structures in the Protein Data Bank (see Figure 1A). For a 

given RNA, the energy function ranks the associated array of one native and 

several decoy structures (see Figure 1B). It receives no input on which structure 

is native and which is decoy. During testing, this ranking scheme is then 

compared to a reference list of structures, ordered by a measure of structural 

deformation. This “deformation index” quantifies the divergence between the 

shape of each structure and the known native structure; a high deformation index 

implies a high divergence. Thus, for a given RNA, if the Pearson correlation 

coefficient between the energy function ranking and the reference list is 1, the 

energy function accurately identifies structures most similar and most dissimilar 

to the known native structure (see Figures 1B and 1C for a visualization of 
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rsRNASP’s performance on the 71-base-long mc6 RNA riboswitch, 3LA5). For 

every RNA in their test set III, Figure 1D highlights how rsRNASP, RASP, 

3dRNAscore, DFIRE-RNA, and RNA3DCNN compare in ranking the structures of 

RNAs (see Figure 1D) with a variety of lengths (see Figure 1E). 

As more and more RNA structures continue to be probed, it is imperative 

for there to be an efficient, accurate, and reliable mechanism that ranks their 

candidate structures. rsRNASP meets this need. 

 

Figure Captions 
 
Figure 1. rsRNASP’s ranking of native and decoy 3LA5 RNA structures, and 

visualizing the performance of Tan et al’s rsRNASP relative to four other energy 

functions. (A) Commonly-used experimental and computational techniques 

output several candidate RNA structures. A reliable way of choosing the most 

accurate, or native-like, structure is crucial. (B) Visualization of 3D 3LA5 RNA 

structures at ten positions of the rsRNASP ranking. These structures include the 

native and nine computationally-generated decoys (taken from Tan et al’s test 

set III). rsRNASP determines rank by computing an energy value, in units of kBT, 

which is reported below each structure; the lower the energy value, the higher 

the rank and the higher the predicted similarity to the native. Since this is a test 

case this ranking scheme is compared to an independent reference list, which is 

determined by the deformation index. This index measures the deviation of a 

given structure from the accepted native structure in the Protein Data Bank. The 

gray box highlights the native 3LA5 structure, which rsRNASP correctly identifies 
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and gives a rank of 1. In practice, the true native structure is unknown. (C) 

Scatterplot of the rsRNASP rank vs. the reference list rank for all 42 3LA5 

structures. The Pearson correlation coefficient (PCC) is 0.88, indicating a strong 

predictive ability of rsRNASP. Datapoints outlined in black are featured in part B. 

(D) Scatterplot of the ranking accuracy, as measured by the PCC, of rsRNASP, 

RNA3DCNN, 3dRNAscore, DFIRE-RNA, and RASP for each of the 42 RNAs in 

Tan et al’s most realistic test set (test set III). Each RNA has an associated array 

of structures. The energy functions have no knowledge of which structure is the 

“native” and which are the “decoys”. A PCC of 1 indicates that the energy 

function correctly identifies the native structure, and ranks the decoys in order of 

their structural similarity to the native deposited in the Protein Data Bank. (E) 

Violin plot displaying the distribution of RNA lengths in test set III, with the middle 

bar representing the median. 
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