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Abstract

RNA research is advancing at an ever-increasing pace. The newest and
most state-of-the-art instruments and techniques have made possible the
discoveries of new RNAs, and they have carried the field to new frontiers of
disease research, vaccine development, therapeutics, and architectonics. Like
proteins, RNAs show a marked relationship between structure and function. A
deeper grasp of RNAs requires a finer understanding of their elaborate
structures. In pursuit of this, cutting-edge experimental and computational
structure-probing techniques output several candidate geometries for a given
RNA, each of which are perfectly aligned with experimentally determined
parameters. ldentifying which structure is the most accurate however, remains a
major obstacle. In recent years, several algorithms have been developed for
ranking candidate RNA structures in order from most to least probable, though
their levels of accuracy and transparency leave room for improvement. Most
recently, improvements in both areas are demonstrated by rsRNASP, a novel
algorithm proposed by Tan et al. It is a residue-separation-based statistical
potential for 3D structure evaluation, and it outperforms the leading algorithms in

the field.
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Introduction

RNA is a single-stranded biomolecule with myriad key roles in regulating
gene activity (1), catalyzing chemical reactions (2), and encoding plus decoding
genetic information (3). Its single-stranded nature enables intramolecular base-
pairing, which allows the polymer to fold into intricate 3D structures. A ubiquitous
example is the amino-acid-carrier tRNA. Via base-pairing, tRNAs adopt a 2D
cloverleaf topology. Interactions between the leaves then create a 3D “L"-shaped
architecture, the exact dimensions of which precisely fit through a ribosome’s
entry portal and facilitate protein synthesis (4). Alongside tRNAs, a whole host of
other structured RNAs play leading and supporting roles in almost every process
on the cellular stage; examples include ribozymes (2), mRNAs (5,6), riboswitches
(7), spliceosomes (8), ribosomes (9), and miRNAs (10). The rapid development
of new structural techniques such as cryo-EM (11,12,13), SHAPE-JuMP (14),
smFRET (15), and SAXS (16), as well as the refinement of more traditional
techniques like NMR (17) and crystallography (18), has focused the stage lights.
Nonetheless each of these methods have experimental limits on their resolution,
and as such, computational techniques are required to further refine atomic
resolution models from these data.

Like in proteins, RNA structure and RNA function are closely tied (19,20).
Even certain single point mutations can augment RNA structures and lead to
disease states (21). While the number of genes encoding functional RNAs
greatly exceeds the number that encode proteins, to date, only 1% of Protein

Data Bank entries include RNAs. A sharper understanding of RNA structure, its



Wienecke et al.

various roles, and its patterns of evolution holds much promise in informing the
functions of uncharacterized RNAs, clarifying mechanisms of noncoding disease
mutations (22), guiding aptamer-based (23) and other therapies (24), and
buttressing the science of RNA nanostructures (25,26).

Critical to understanding RNA is the ability to probe their structures reliably
and accurately. This is no simple task as RNAs are quite flexible and could even
be said to exhibit an RNA version of the Levinthal paradox (27), eg. just a 20-
base RNA composed of ten A’s and ten U’s has almost 10 million distinct folding
conformations. Frequently used experimental methods like NMR (17), cryo-EM
(11,12,13), and SHAPE-JuMP (14) yield experimental constraints either in the
form of distances or density, that when combined with computational structural
modeling produce a cloud of probable structures, each of which agrees equally
well with the experimental data. Computational methods like fragment assembly
(see FARNA) and homology modeling, piece together an RNA'’s structure based
on its chemical similarity to already-known local RNA structures. But whatever
the method, a set of candidate structures is output, and ranking these structures
to identify the most accurate, or native-like, structure remains computationally
challenging (see Figure 1A).

A great need in the field of RNA structure prediction is an accurate,
reliable, and efficient way of evaluating and ranking candidate RNA structures.
One of the most common methods for achieving a similar end in the protein-
world is a type of energy function: the knowledge-based statistical potential. Such

a function relies on a reference state, which in the RNA-world, can be determined
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by information latent in the sequences, chemical bonds, and configurations of a
well-characterized training set of RNA structures. Output by this energy function
is a potential energy value for each input geometry; the geometry with the lowest
energy is taken as the best estimate of the native structure. Several such
functions have been proposed and are currently in use: RASP (28), 3dRNAscore

(29), DFIRE-RNA (30), and RNA3DCNN (31).

The New and Noteworthy

In this issue of Biophysical Journal, Tan et al propose a new energy
function: a residue-separation-based statistical potential (rsRNASP) for 3D RNA
structure evaluation. Different from RNA3DCNN, which relies on the “black box”
of 3D convolutional neural networks, the inner workings of rsRNASP are
transparent. Based on the inverse Boltzman law, rsRNASP relies on three
factors: the temperature, the probabilities of nucleotide separation for native
state, and the probabilities of nucleotide separation for reference state. These
parameters are weighted to factor in distance, an important consideration given
the hierarchical nature of RNA folding patterns (32). Output is an energy value in
units of kgT; the lower a candidate structure’s energy, the higher its predicted
similarity to the true native structure.

Tan et al’'s comprehensive testing on three large datasets indicate the high
quality of rsRNASP in parsing native from decoy RNA structures. These decoys
were computationally generated either by normal mode perturbation, fragment

assembly, replica-exchange, shifting atom distances or rearranging dihedral
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angles. Each RNA in these datasets has one accepted native structure, and
several associated decoy structures. While its performance was not perfectly
accurate, rsRNASP most successfully and most consistently identified the correct
native structure and ranked the decoys. lts performance remained high for small
RNAs with very similar decoys, for large RNAs with very variable decoys, and for
the most realistic RNA-puzzles dataset. This approach appears to achieve a
better balance of short- vs. long-range interactions and it functions at a higher
resolution, perhaps explaining its outperformance of 3dRNAscore and RASP, as
mentioned by Tan et al.

Tan et al consider their test set Il as the most realistic. This set includes a
known native structure and multiple computer-generated decoy structures for 1)
each of the 22 RNAs in the RNA-puzzles dataset, and 2) each of 20 selected
RNAs with known structures in the Protein Data Bank (see Figure 1A). For a
given RNA, the energy function ranks the associated array of one native and
several decoy structures (see Figure 1B). It receives no input on which structure
is native and which is decoy. During testing, this ranking scheme is then
compared to a reference list of structures, ordered by a measure of structural
deformation. This “deformation index” quantifies the divergence between the
shape of each structure and the known native structure; a high deformation index
implies a high divergence. Thus, for a given RNA, if the Pearson correlation
coefficient between the energy function ranking and the reference list is 1, the
energy function accurately identifies structures most similar and most dissimilar

to the known native structure (see Figures 1B and 1C for a visualization of
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rsRNASP’s performance on the 71-base-long mc6 RNA riboswitch, 3LAS). For
every RNA in their test set Ill, Figure 1D highlights how rsRNASP, RASP,
3dRNAscore, DFIRE-RNA, and RNA3DCNN compare in ranking the structures of
RNAs (see Figure 1D) with a variety of lengths (see Figure 1E).

As more and more RNA structures continue to be probed, it is imperative
for there to be an efficient, accurate, and reliable mechanism that ranks their

candidate structures. rsRNASP meets this need.

Figure Captions

Figure 1. rsRNASP’s ranking of native and decoy 3LAS RNA structures, and
visualizing the performance of Tan et al’'s rsRNASP relative to four other energy
functions. (A) Commonly-used experimental and computational techniques
output several candidate RNA structures. A reliable way of choosing the most
accurate, or native-like, structure is crucial. (B) Visualization of 3D 3LA5 RNA
structures at ten positions of the rsRNASP ranking. These structures include the
native and nine computationally-generated decoys (taken from Tan et al’s test
set lll). rsRNASP determines rank by computing an energy value, in units of kgT,
which is reported below each structure; the lower the energy value, the higher
the rank and the higher the predicted similarity to the native. Since this is a test
case this ranking scheme is compared to an independent reference list, which is
determined by the deformation index. This index measures the deviation of a
given structure from the accepted native structure in the Protein Data Bank. The

gray box highlights the native 3LAS structure, which rsRNASP correctly identifies
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and gives a rank of 1. In practice, the true native structure is unknown. (C)
Scatterplot of the rsRNASP rank vs. the reference list rank for all 42 3LA5
structures. The Pearson correlation coefficient (PCC) is 0.88, indicating a strong
predictive ability of rsRNASP. Datapoints outlined in black are featured in part B.
(D) Scatterplot of the ranking accuracy, as measured by the PCC, of rsRNASP,
RNA3DCNN, 3dRNAscore, DFIRE-RNA, and RASP for each of the 42 RNAs in
Tan et al’'s most realistic test set (test set Ill). Each RNA has an associated array
of structures. The energy functions have no knowledge of which structure is the
“native” and which are the “decoys”. A PCC of 1 indicates that the energy
function correctly identifies the native structure, and ranks the decoys in order of
their structural similarity to the native deposited in the Protein Data Bank. (E)
Violin plot displaying the distribution of RNA lengths in test set Ill, with the middle

bar representing the median.
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