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Abstract: 21 

Splicing is highly regulated and is modulated by numerous factors. Quantitative 22 

predictions for how a mutation will affect precursor messenger RNA (mRNA) structure 23 

and downstream function is particularly challenging. Here we use a novel chemical 24 

probing strategy to visualize endogenous precursor and mature MAPT mRNA structures 25 

in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, 26 

which were then analyzed to predict consequences of mutations on precursor mRNA 27 

structure. Further analysis of recent cryo-EM structures of the spliceosome at different 28 

stages of the splicing cycle revealed that the footprint of the Bact complex with precursor 29 

mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the 30 

alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a -31 
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regression weighting framework that incorporates splice site strength, RNA structure, 32 

and exonic/intronic splicing regulatory elements capable of predicting, with 90% 33 

accuracy, the effects of 47 known and six newly discovered mutations on inclusion of 34 

exon 10 of MAPT. This combined experimental and computational framework 35 

represents a path forward for accurate prediction of splicing-related disease-causing 36 

variants.  37 

 38 

Introduction 39 

Precursor messenger RNA (pre-mRNA) splicing is a highly regulated process in 40 

eukaryotic cells (Z. Wang and Burge 2008). Numerous factors control splicing including 41 

trans-acting RNA-binding proteins (RBPs), components of the spliceosome, and the 42 

pre-mRNA itself. Pre-mRNA structure is a key attribute that directs splicing, particularly 43 

alternative splicing, but we have a limited understanding of pre-mRNA structure-44 

mediated splicing mechanisms (Taylor and Sobczak 2020). It has proven challenging to 45 

develop quantitative models capable of predicting splicing outcome, specifically the 46 

percent spliced in (PSI) for alternatively spliced exons. It is especially difficult to predict 47 

outcome alterations due to genetic variation at exon-intron junctions because mutations 48 

affect both the binding by RBPs and also pre-mRNA structure (Tazi, Bakkour, and 49 

Stamm 2009).  50 

 51 

The consequences of mutations on pre-mRNA structure are difficult to predict. First, 52 

little is known about native pre-mRNA structure because pre-mRNAs are relatively 53 

short-lived in cells (Herzel et al. 2017). Only recently has high-resolution in-cell 54 

experimental characterization been applied to pre-mRNA structure determination 55 

(Mustoe, Busan, et al. 2018; Sun et al. 2019; Liu et al. 2021; Bubenik et al. 2020). 56 

Second, it is not clear which structures within a pre-mRNA modulate spliceosome 57 

assembly and activity. Finally, quantitative measures for the relative weighting of RBP 58 

affinity for individual motifs within a pre-mRNA relative to the importance of pre-mRNA 59 

structure are lacking.  60 

 61 
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In this study, we exploited several technical developments that address these issues to 62 

develop an integrated, RNA structure-based framework that accurately predicts splicing 63 

outcomes. We measured endogenous pre-mRNA structure in cells taking advantage of 64 

recent developments in mutational profiling (MaP) approaches for read-out of chemical 65 

probing data (Homan et al. 2014) with targeted amplification of specific exon-intron 66 

junctions. This novel approach enabled us to obtain single-nucleotide RNA structure 67 

probing data for endogenous pre- and mature mRNAs in the same cell. Our RNA 68 

structure modeling considers the equilibrium between multiple alternative structures 69 

(Dethoff et al. 2012; Lai et al. 2018) and employed data-guided Boltzmann suboptimal 70 

sampling (Spasic et al. 2018) to predict free energies of unfolding for structures in the 71 

ensemble. We additionally leveraged recent high-resolution structures of the 72 

spliceosome at various stages of the splicing cycle to deduce the effective spliceosomal 73 

footprint on pre-mRNA (L. Zhang et al. 2019), quantitative analysis of exonic and 74 

intronic splicing enhancers/silencers (Fairbrother et al. 2002; Z. Wang et al. 2004; Yang 75 

Wang, Ma, et al. 2012; Yang Wang, Xiao, et al. 2012) and a -regression weighting 76 

(Ferrari and Cribari-Neto 2004). 77 

 78 

For validation of our framework, we studied the effects of 47 experimentally measured 79 

mutations near the exon 10 – intron 10 junction of the human MAPT gene, which 80 

encodes the Tau protein (Park, Ahn, and Gallo 2016; Catarina Silva and Haggarty 81 

2020). Exons 9, 10, 11, and 12 encode the critical microtubule binding repeat domain in 82 

Tau. Exons 9, 11, and 12 are constitutively spliced, but exon 10 is alternatively spliced 83 

resulting in MAPT isoforms with either four microtubule binding repeats (4R) or three 84 

repeats (3R) when exon 10 is included or skipped, respectively. The normal ratio of 3R 85 

to 4R isoforms is approximately 1:1 (Hefti et al. 2018). Twenty-nine clinically validated 86 

disease-causing mutations have been identified in the region of the exon 10 – intron 10 87 

junction (Stenson et al. 2003). These mutations result in impaired Tau function and are 88 

implicated in neurodegenerative disease (Spillantini et al. 1998; Hutton et al. 1998; 89 

Clark et al. 1998; Rizzu et al. 1999; Goedert et al. 1999). Although some mutations alter 90 

the Tau protein sequence (Mirra et al. 1999; Iseki et al. 2001), 20 of the disease-91 

associated mutations deregulate MAPT pre-mRNA splicing altering the ratio of 3R to 4R 92 
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(Hutton et al. 1998; D’Souza et al. 1999; Hasegawa et al. 1999; Jiang et al. 2000). The 93 

effect of an additional 27 mutations on exon 10 inclusion have been experimentally 94 

determined using cell-based splicing assays (D’Souza and Schellenberg 2000; Tan et 95 

al. 2019; Grover et al. 1999). The exon 10 junction is the best experimentally 96 

characterized junction of clinical importance in the human genome and is thus an 97 

excellent system for developing forward-predictive models of splicing. Our work 98 

provides a framework for integrating endogenous pre-mRNA structure probing data with 99 

a structure-based understanding of spliceosome assembly and trans-acting RBPs to 100 

qualitatively predict the effect of mutations at exon-intron junctions on splicing. 101 

 102 

Results 103 

MAPT 3R and 4R mRNA isoforms are expressed at a consistent 1:1 ratio across 104 

tissues 105 

To confirm that MAPT pre-mRNA splicing results in a 1:1 ratio of alternatively spliced 106 

isoforms (Goedert et al. 1989; Andreadis 2005) in a large population, we analyzed RNA-107 

sequencing data from the Genotype-Tissue Expression (GTEx) database (Lonsdale et 108 

al. 2013). We analyzed data from tissue types with median MAPT transcripts per million 109 

greater than 10 (Figure 1–figure supplement 1A) and calculated the PSI value for exon 110 

10 for each sample (Figure 1A-source data 1; Materials and methods). We examined 111 

data from 2,315 tissue samples from 375 individuals of median age 61 (Figure 1A and 112 

Figure 1–figure supplement 1B). A PSI of 0 indicates that none of the MAPT transcripts 113 

in a sample included exon 10 (3R), whereas a PSI of 1 corresponds to exon 10 114 

inclusion in all transcripts in a sample (4R).  115 

 116 

PSI for exon 10 varied across tissue types and within and between individuals. 117 

However, 75% of samples were within a standard deviation of the median PSI of 0.54, 118 

demonstrating that the 3R to 4R isoform ratio was close to 1:1 among individuals and 119 

across tissues. Within the brain, the pituitary gland demonstrated the largest variation in 120 

PSI and the cerebellum the least variation. The pituitary gland also had the lowest 121 

median PSI (0.38). However, the median PSI differed by no more than 0.25 across all 122 
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brain tissues. Interestingly, although MAPT function in breast tissue is not understood 123 

compared with its function in the brain, there was greater variation in PSI in breast 124 

tissue, and the median PSI in breast tissue was lower than in the pituitary gland (Figure 125 

1–figure supplement 1B). There was also a large amount of variation within tissues of 126 

an individual (Figure 1–figure supplement 1C), although there was significantly greater 127 

variation between than within individuals (see Supplementary file 1 for ANOVA table). 128 

Furthermore, exon 10 inclusion variability (0.2) was between the variability for a MAPT 129 

constitutively spliced exon (0.1) and another MAPT alternatively spliced exon (0.3) 130 

(Figure 1–figure supplement 1D). As levels of RBP expression varied considerably 131 

across individuals and tissues (Figure 1–figure supplement 1E), sequence and 132 

structural features of the MAPT pre-mRNA likely regulate inclusion of exon 10. 133 

 134 

Structures of 3R and 4R MAPT mature mRNA isoforms are similar and mostly 135 

unstructured 136 

The structures of the mature 3R and 4R isoforms and MAPT pre-mRNA have not been 137 

assessed in their endogenous context in cells. Here, we used dimethyl sulfate probing 138 

read out by mutational profiling (DMS-MaP) as described previously (Mustoe et al. 139 

2019; Homan et al. 2014) to asses MAPT pre-mRNA and mature mRNA structures in 140 

T47D cells, a breast cancer line, and in neuronal SH-SY5Y cells. We used region-141 

specific primers (Smola et al. 2015) to selectively amplify mature 3R and 4R transcripts 142 

during library preparation (Supplementary file 4; Materials and methods). This approach 143 

leverages the read-through capability of MaP technology to probe the structure of 144 

distinct alternatively spliced isoforms in the same cells. High DMS reactivities 145 

correspond to less structured regions, whereas low DMS reactivities correspond to 146 

more structured regions. DMS reactivities for replicates and cell lines were highly 147 

correlated (Figure 1–figure supplement 2A; Figure 1–figure supplement 2B; Figure 1–148 

figure supplement 2D; Figure 1–figure supplement 2E).  149 

 150 

As an internal control for our probing experiments, we also collected DMS-MaP data for 151 

the small subunit ribosomal RNA (SSU), which has a well-defined secondary structure 152 

(Petrov et al. 2014). As expected, the DMS reactivities of unpaired nucleotides were 153 
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significantly higher than for paired nucleotides both for RNA probed in cells and for RNA 154 

isolated from cells prior to probing (Figure 1–figure supplement 3A and B). This 155 

experiment confirmed that our DMS probing recapitulates native RNA secondary 156 

structure regardless of the presence of proteins, consistent with previous studies 157 

(Woods et al. 2017; Lackey et al. 2018). We used the SSU in-cell reactivity data to 158 

calibrate the estimation of equilibrium ensembles (Materials and methods), and we 159 

confirmed that structure modeling guided by experimental DMS reactivities yielded a 160 

more accurate estimation of the SSU structure than the model not informed by chemical 161 

probing data (Figure 1–figure supplement 3C).  162 

 163 

The median in-cell DMS reactivity of the mature MAPT isoforms was 0.22, significantly 164 

greater than the median in-cell DMS reactivity of the SSU, which was 0.008 (Figure 1–165 

figure supplement 3D). This difference was recapitulated in cell-free samples (Figure 1–166 

figure supplement 3D). These results suggested that the nucleotides of the mature 167 

MAPT isoforms were more accessible and less paired overall as compared with the 168 

highly structured SSU. Reactivities of exon 9 and exon 11 were highly correlated 169 

between the 3R and 4R isoforms (Figure 1B and C; Figure 1–figure supplement 2C). In 170 

the 4R isoform, approximately 89% of base pairs were contained within the exon units; 171 

only 11% of base pairs were between residues from exon 10 with those of exon 11 172 

(Figure 1–figure supplement 2F). This result suggests that the mature exons fold as 173 

independent structural units.  174 

 175 

 176 
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 177 
Figure 1: 3R and 4R mature MAPT transcripts are expressed in a 1:1 ratio in samples 178 

from human subjects and mature exons appear to fold as independent structural units. 179 

A) Ratio of 3R and 4R MAPT transcripts is approximately 1:1 among brain tissues. 180 

There are 14 exons alternatively spliced in MAPT. Exons 4A, 6, and 8 are not 181 

found in brain mRNA. The four exons highlighted in color are repeat regions that 182 

form the microtubule binding domain in the Tau protein. Exon 10 is alternatively 183 

spliced to form the 3 repeat (3R) or 4 repeat (4R) isoform. This is highlighted by 184 

the alternate lines from the 5’ splice site of Exon 9 to either the 3’ splice site of 185 

Exon 10 (4R) or the 3’ splice site of Exon 11 (3R). The six canonical transcripts 186 

found in the central nervous system can be separated into 3R and 4R transcripts. 187 

Percent Spliced In (PSI) of Exon 10 was calculated from RNA-seq data for 2315 188 

tissue samples representing 12 central nervous system tissue types and 189 

collected from 375 individuals in GTEx v8 database. The violin plot for each 190 

tissue type and the corresponding region on the brain diagram is colored by the 191 

median PSI for all samples of a given type. The patterned regions on the brain 192 

diagram indicate tissue types with no data. Tissue types Spinal cord and Nucleus 193 



 8 

accumbens are not visualized on the brain diagram. The median PSI of 0.54 194 

among all tissue samples is indicated by the red dotted line. 195 

B) In-cell DMS-MaP structure probing data across Exon 9 – Exon 11 junction of 3R 196 

mature MAPT transcript. T47D cells were treated with DMS. Structure probing 197 

data for junctions of interest were obtained using amplicon sequencing with 198 

region-specific primers (Supplementary file 4) following RT of extracted RNA. 199 

DMS reactivity is plotted for each nucleotide across spliced junctions. Each value 200 

is shown with its standard error and colored by reactivity based on color scale. 201 

High DMS reactivities correspond to less structured regions, whereas low DMS 202 

reactivities correspond to more structured regions. The base pairs of the 203 

predicted secondary structure guided by DMS reactivities (using A/C nucleotides 204 

only) are shown in the arcs colored by pairing probabilities.  205 

C) In-cell DMS-MaP structure probing data across Exon 9 – Exon 10 – Exon 11 206 

junction of 4R mature MAPT transcript  207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

MAPT pre-mRNA Exon 10-Intron 10 junction is more structured than the mature 222 

isoforms in cells 223 
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RNA structure around exon-intron junctions has been shown to regulate alternative 224 

splicing (Warf and Berglund 2010; Buratti and Baralle 2004), and a hairpin structure at 225 

the exon 10 – intron 10 junction of MAPT pre-mRNA is implicated in establishing the 3R 226 

to 4R 1:1 isoform ratio (Hutton et al. 1998; Varani et al. 1999; Grover et al. 1999; 227 

Donahue et al. 2006). The structure of the MAPT pre-mRNA in the exon 10 – intron 10 228 

junction region has been studied using biophysical techniques and chemical probing of 229 

in vitro-transcribed fragments and using computational methods (Varani et al. 1999; 230 

Lisowiec et al. 2015; Tan et al. 2019; Chen et al. 2019), but the pre-mRNA structure had 231 

not previously been analyzed in cells. We obtained DMS-MaP data for this junction from 232 

endogenous pre-mRNA in T47D cells (Figure 2A). Replicates were highly correlated 233 

(Figure 2–figure supplement 1A). Similar reactivity data were also observed in SH-SY5Y 234 

cells (Figure 2–figure supplement 1C), despite the likely differences in RBP populations 235 

compared to T47D cells (Figure 1–figure supplement 1E).  236 

 237 

The reactivities for exon 10 in the pre-mRNA and mature 4R isoform were highly 238 

correlated (Figure 2–figure supplement 1B). This high correlation was unexpected given 239 

that the pre-mRNA undergoes splicing during the 5-minute treatment of the cells with 240 

DMS. As we observed for the mature 4R isoform, exon 10 in the pre-mRNA mostly 241 

formed base pairs with other exon 10 nucleotides (Figure 2–figure supplement 1F). 242 

However, when we compared DMS reactivities for pre-mRNA and the mature 4R 243 

isoform, we found that DMS reactivity in exon 10 was significantly lower for the pre-244 

mRNA (median in-cell DMS reactivity: 0.08) than for the 4R isoform (median in-cell 245 

DMS reactivity: 0.22) (Figure 2–figure supplement 1D, E). This was also the case for 246 

RNA probed under cell-free conditions. The pre-mRNA is thus apparently more 247 

structured than mature mRNA independent of protein protection.  248 

 249 

Disease mutations change the MAPT pre-mRNA structural ensemble and splicing 250 

of exon 10 251 

Many RNAs adopt an ensemble of structures instead of a single structure (Halvorsen et 252 

al. 2010; Adivarahan et al. 2018). We posited that a structural ensemble near the MAPT 253 

exon 10 – intron 10 junction regulates exon 10 splicing and that disease-associated 254 
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mutations alter the composition of the structural ensemble to disrupt splicing regulation. 255 

We used Boltzmann sampling of RNA structures supported by DMS reactivity data 256 

(Spasic et al. 2018) (Materials and methods) to sample 1000 structures each for the 257 

wild-type. We also generated ensembles for two RNAs that bear mutations in intron 10 258 

that are known to alter MAPT splicing: (i) an A to C mutation at position +15 (+15A>C) 259 

that favors 3R isoform, and (ii) a C to G mutation at position +19 (+19C>G) that favors 260 

the 4R isoform (Tan et al. 2019). These mutant ensembles were generated using the 261 

same DMS reactivities as the wild-type RNA, with the exception of the mutation site 262 

(see Materials and methods), and thus provide a well-controlled prediction of the impact 263 

that each mutation will have on the ensemble. 264 

 265 

We visualized the structural ensemble for the 3000 structures using t-Distributed 266 

stochastic neighbor embedding (t-SNE) (Van Der Maaten and Hinton 2008) and 267 

identified five clusters (Figure 2B; Materials and methods). Each dot in the t-SNE plot 268 

(Figure 2B) corresponds to a single structure and is colored by the G‡ of unfolding 269 

(Mustoe, Busan, et al. 2018) of the 5’ splice site, defined as the last three nucleotides of 270 

Exon 10 and the first six nucleotides of Intron 10 (Yeo and Burge 2004). The ∆G‡ is the 271 

cost of disrupting a given structure without allowing the RNA to refold (Mustoe, Busan, 272 

et al. 2018; Mustoe, Corley, et al. 2018). We quantified and visualized the density of 273 

structures from the t-SNE plot (Figure 2C) and calculated representative structures for 274 

each cluster (Figure 2D and Figure 2–figure supplement 2B; Materials and methods). 275 

The wild-type sequence forms structures distributed across the entire space with about 276 

70% of structures found in Clusters 2, 3, and 4 (Figure 2–figure supplement 2B). By 277 

contrast, in the +19C>G mutant that strongly favors the 3R isoform (Tan et al. 2019), 278 

more than 55% of structures belong to Cluster 1, which is defined by a fully base-paired 279 

5’ splice site (Figure 2D). Conversely, greater than 50% of structures in the ensemble of 280 

the +15 A>C mutant (Cluster 5), which shifts the isoform balance entirely to 4R (Tan et 281 

al. 2019), were characterized by lower G‡ of unfolding for the splice site region (Figure 282 

2B, C). Correspondingly, the 5’ splice site for the Cluster 5 representative structure was 283 

less structured than that of Cluster 1 (Figure 2D). Based on these results, we concluded 284 
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that mutations shift the structural ensemble of the MAPT exon 10 – intron 10 junction, 285 

and these structural shifts correspondingly change exon 10 splicing.  286 



 12 

 287 
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Figure 2: The 4R and 3R mutations shift DMS reactivity-guided structural ensemble of 288 

Exon 10 – Intron 10 junction to be less structured and more structured, respectively. 289 

A) In-cell DMS-MaP structure probing data across Exon 10 – Intron 10 junction of 290 

precursor MAPT transcript in T47D cells. Structure probing data for junctions of 291 

interest were obtained using amplicon sequencing with primers (Supplementary 292 

file 4) following RT of extracted RNA. DMS reactivity is plotted for each 293 

nucleotide.  Each value is shown with its standard error and colored by reactivity 294 

based on the color scale. High median DMS reactivities correspond to less 295 

structured regions, whereas low median DMS reactivities correspond to more 296 

structured regions. Base pairs of predicted secondary structure guided by A/C 297 

DMS reactivities are shown by arcs colored by pairing probabilities. Strongly 298 

predicted hairpin structure near exon-intron junction is highlighted by dotted box.  299 

B) t-SNE Visualization of structural ensemble of wildtype (WT) and, +19C>G (3R) 300 

and +15A>C (4R) mutations. Structures were predicted using Boltzmann 301 

suboptimal sampling and guided by DMS reactivity data for A/C nucleotides 302 

generated in A. Data were visualized using t-Distributed Stochastic Neighbor 303 

Embedding (t-SNE). Shown are 3000 structures corresponding to 1000 304 

structures per sequence. Each dot represents a single structure and is colored by 305 

the calculated unfolding free energy of the 5’ splice site at exon-intron junction (3 306 

exonic, 6 intronic bases). Clusters have been circled and enumerated using k-307 

means clustering with k=5.  308 

C) Density contour plots of structural ensemble of WT and, 3R and 4R mutations. 309 

Contour plots were derived from the distribution of points on the t-SNE plot in B. 310 

The darker the blue, the higher the density of structures. Contour lines 311 

additionally represent density of points. Color scales for the three plots are 312 

identical. Inserts are gel images from representative of splicing assays using a 313 

reporter plasmid expressing either the wild-type sequence (WT), the +19C>G 314 

(3R) mutation or +15A>C (4R) mutation in HEK293 cells, where the RNA was 315 

extracted and reverse transcribed to measure the isoform ratio using specific 316 

PCR amplification (Materials and methods). In WT, both 3R (Exon 9 – Exon 11) 317 

and 4R (Exon 9 – Exon 10 – Exon 11) isoforms are expressed (two bands). In 318 
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the presence of the 3R mutation, only the 3R isoform is expressed (one band) 319 

whereas for the 4R mutation only the 4R isoform is expressed (one band). Gel 320 

insets for the 3R and 4R mutation are in their respective density plots. 321 

D) Representative structures for the five clusters are shown. The cluster number is 322 

indicated below each structure. The exon-intron junction is marked by EIJ on 323 

each structure. Positions of 3R and 4R mutations are marked by a red asterisk 324 

on their respective representative structures. 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

Unfolding mRNA within the spliceosome Bact complex footprint yields the best 347 

prediction of Exon 10 splicing level 348 
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RNA structure has been shown to control alternative splicing by regulating accessibility 349 

of key regions to spliceosome components (McManus and Graveley 2011; Warf and 350 

Berglund 2010). The 5’ splice site is the minimum region of RNA that must be 351 

accessible for base pairing with the U1 snRNA (Blanchette and Chabot 1997; Singh, 352 

Singh, and Androphy 2007). In our structural ensemble analysis of the MAPT exon 10 – 353 

intron 10 junction (Figure 2), we found that shifts in the unfolding energy of the 5’ splice 354 

site in wild-type and mutant pre-mRNAs corresponded to changes in exon 10 inclusion 355 

levels. However, the splicing cycle, orchestrated by the spliceosome, traverses multiple 356 

stages to prepare the pre-mRNA and catalyze the two-step splicing reaction (Matera 357 

and Wang 2014) (Figure 3A). The RNA itself adopts many conformations as different 358 

components of the spliceosome bind to it (L. Zhang et al. 2019). Hence, we 359 

hypothesized that more than just the 5’ splice site nucleotides might need to unpair to 360 

facilitate the splicing reaction. We analyzed high-resolution cryo-EM structures of the 361 

human spliceosome at Pre-B (PDB ID: 6QX9), B (PDB ID: 5O9Z), Pre-Bact (PDB ID: 362 

7ABF), and Bact (PDB ID: 5Z56) stages (Charenton, Wilkinson, and Nagai 2019; 363 

Bertram et al. 2017; Townsend et al. 2020; X. Zhang et al. 2018) to quantify the number 364 

of nucleotides around the 5’ splice site associated with the spliceosome (Materials and 365 

methods). The number of pre-mRNA nucleotides, as observed in each structure, 366 

increased through the splicing cycle (Figure 3A).  367 

 368 

To identify the spliceosome complex footprint that best predicts splicing outcome, we 369 

examined the relationship between unfolding energy and splicing outcome for 20 370 

synonymous or intronic mutations in exon 10 and intron 10 (Figure 3–figure supplement 371 

1A). These mutations are more likely to affect splicing (Supek et al. 2014; H. Lin et al. 372 

2019) and structure (Sharma et al. 2019; C. L. Lin, Taggart, and Fairbrother 2016) than 373 

mutations that alter the protein sequence. The distribution of G‡ of unfolding of the 5’ 374 

splice site in the presence of these mutations was correlated with exon 10 PSI (Figure 375 

3–figure supplement 1B). We then calculated the G‡ of unfolding of the RNA for 376 

regions overlapping the 5’ splice site that correspond to the footprints of each of the four 377 

spliceosome intermediates. Features of the unfolding G‡ distribution, including mean 378 

and standard deviation, were then used in a -regression to predict exon 10 PSI 379 
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(Materials and methods; Eq. 2). Unfolding larger regions around the 5’ splice site 380 

improved the predictive power of the model, and the Bact complex footprint yielded the 381 

best prediction accuracy (R2 = 0.89; Figure 3B). Crucially, we found that using features 382 

of the distribution of unfolding G‡ in the structural ensemble produced greater 383 

predictive power than simply using the unfolding G‡ of a single minimum free energy 384 

structure, supporting the importance of RNA ensemble behavior to splicing outcome 385 

(Figure 3–figure supplement 1C). We performed bootstrapping cross-validation and 386 

confirmed that unfolding the RNA within the Bact spliceosome complex yielded the best 387 

prediction (Figure 3C). Synonymous mutations that alter exon 10 inclusion lie a mean 388 

distance of 54 nucleotides from the exon-intron junction, whereas those in the intron are 389 

a mean of 14 nucleotides from the junction. The variation in bootstrapped correlation 390 

coefficients decreased as a larger region around the exon-intron junction was unfolded, 391 

suggesting that the synonymous mutations affect distal structures.  392 

 393 

We then tested the structural ensemble-based model on an additional 24 non-394 

synonymous and compensatory mutations found in exon 10 and intron 10. 395 

Compensatory mutations are double mutations that were designed to rescue changes in 396 

exon 10 splicing caused by a single mutation (Grover et al. 1999). Although the model 397 

performed well for compensatory mutations (median bootstrapped R2=0.76), it yielded 398 

significantly less accurate predictions for non-synonymous mutations (median 399 

bootstrapped R2=-0.21) (Figure 3–figure supplement 1D). One clear limitation of this 400 

structure-only model is that it does not account for the effects of mutations on potential 401 

splicing regulatory elements (SREs) in the sequence, which are also known to control 402 

alternative splicing (Z. Wang and Burge 2008). 403 
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 404 
Figure 3: The best predictor of Exon 10 PSI for intronic and synonymous mutations was 405 

the unfolding free energy of pre-mRNA during the Bact stage of splicing 406 
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A) Spliceosome footprint on pre-mRNA during splicing cycle. Structure in the center 407 

of the cycle is the WT representative structure from Fig 2B. The dotted box 408 

indicates the zoomed-in region at each stage of interest. Cryo-EM structures of 409 

the human spliceosome complex at stages Pre-B (PDB ID: 6QX9), B (PDB ID: 410 

5O9Z), Pre-Bact (PDB ID: 7ABF) and Bact (PDB ID: 5Z56) are available in the 411 

Protein Data Bank. The region around the 5’ splice site of pre-mRNA within the 412 

spliceosome at each stage is highlighted in blue on the zoomed-in representative 413 

structure. The number of nucleotides for each stage is as follows: Pre-B (2 414 

exonic, 8 intronic); B (10 exonic, 17 intronic); Pre-Bact (9 exonic, 20 intronic); Bact 415 

(12 exonic, 31 intronic). These values represent the minimum number of 416 

nucleotides required to be unfolded to be accessible to the spliceosome. The 417 

mean free energy and standard error to unfold RNA within the spliceosome at 418 

each stage is calculated for the WT structural ensemble and indicated under the 419 

zoomed-in structure. 420 

B) Exon 10 PSIs of synonymous and intronic mutations predicted with the unfolding 421 

free energy of pre-mRNA within the spliceosome in B, Pre-B, Pre-Bact, Bact stages 422 

versus corresponding experimental PSIs measured in splicing assays. Exon 10 423 

PSIs were predicted using Eq. 2. Grey line represents the best fit with dotted 424 

lines indicating the 95% confidence interval. Pearson correlation coefficients (R2) 425 

of experimental to predicted PSIs were calculated for each stage. Violin plots 426 

(inset) show R2s calculated for each mutation category by training and testing on 427 

subsets of all mutations by non-parametric bootstrapping; Synonymous (n=6), 428 

Intronic (n=14), Wildtype (n=1).  429 

C) Overall Pearson correlation coefficients (R2) calculated for experimental versus 430 

predicted Exon 10 PSIs by nonparametric bootstrapping of mutations. Subsets of 431 

mutations were randomly sampled 10 times, trained and tested using unfolding 432 

free energy of the exon-intron junction region of pre-mRNA within the 433 

spliceosome for the respective splicing stage. Pearson’s R2 was calculated by 434 

comparing predicted PSIs to experimental PSIs. A two-tailed Wilcoxon Rank 435 

Sum test was used to determine significance between Bact complex and the other 436 
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three complexes. Level of significance: ***p-value < 10-6, **p-value < 0.001, * p-437 

value < 0.01 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

Consideration of motif strengths of splicing regulatory elements improves 464 

prediction of Exon 10 PSI for non-synonymous mutations 465 

Exon 10 splicing is highly regulated by differential binding of RBPs to cis-SREs within 466 

exon 10 and intron 10 (Qian and Liu 2014). The expression patterns of RBPs known to 467 
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bind MAPT pre-mRNA vary across tissues and individuals (Figure 1–figure supplement 468 

1E) and are not predictive of exon 10 PSI. Additionally, while our structure-only model 469 

performs moderately well for 47 mutations (R2=0.74) (see Supplementary file 2 for 470 

further details about mutations), the structure only model performs particularly poorly for 471 

non-synonymous mutations (median bootstrapped R2 = -0.21, Figure 4-figure 472 

supplement 1B). Hence, we hypothesized that consideration of mutation-induced 473 

changes in binding of SREs might improve our model. We identified SREs by similarity 474 

to reported general enhancer and silencer hexamer motifs (Fairbrother et al. 2002; Z. 475 

Wang et al. 2004; Yang Wang, Ma, et al. 2012; Yang Wang, Xiao, et al. 2012) 476 

(Materials and methods), and calculated changes to splice site, enhancer, and silencer 477 

motif strengths due to mutations (Figure 4A; Materials and methods). We found that 478 

using splice site strength as the sole predictor yielded poor prediction of exon 10 PSI for 479 

all mutation categories (Figure 4B; Eq. 4). There was a weak positive correlation 480 

between PSI and enhancer strength and a significant negative correlation between PSI 481 

and silencer strength (Figure 4A and Figure 4–figure supplement 1B). When exon 10 482 

PSI was modeled with the changes to the motif strength of all splicing regulatory 483 

elements, prediction accuracy increased (R2=0.51; Figure 4C) compared with that 484 

obtained when only splice site strength was considered (R2=0.29); for non-synonymous 485 

mutations accuracy was even higher (R2=0.75).  486 

 487 

Many RBPs have been identified that regulate MAPT exon 10 splicing (Qian et al. 2011; 488 

Ian D’Souza and Schellenberg 2006; Kondo et al. 2004; J. Wang et al. 2004; Gao et al. 489 

2007; S. Ding et al. 2012; Broderick, Wang, and Andreadis 2004; Yan Wang et al. 2010; 490 

Kar et al. 2006, 2011; P. Ray et al. 2011). To determine whether focusing on binding 491 

motifs for these proteins would improve model accuracy, we identified RBP sites based 492 

on previous data from high-throughput sequencing of bound RNAs (Dominguez et al. 493 

2018; D. Ray et al. 2013) (Materials and methods). Unlike SRE motifs, there was no 494 

clear pattern or correlation between motif strength changes due to MAPT mutations and 495 

exon 10 PSI (Figure 4–figure supplement 2A, B). Model prediction accuracy was lower 496 

(R2=0.08, Figure 4–figure supplement 2C) than when predictions considered general 497 

SRE motifs. Thus, going forward we chose to use SRE motifs for our combined models. 498 
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 524 
Figure 4: Combining the strength of all splicing regulatory elements significantly 525 

improves prediction of Exon 10 PSI compared to using only splice site strength 526 

A) Heatmap of splicing regulatory element (SRE) relative strength for 47 mutations 527 

compared with wildtype (WT). A value of 0 indicates mutation does not change 528 

WT SRE strength, positive values indicate SRE strength is greater than WT, and 529 

negative values indicate SRE strength is weaker than WT. Splice site strengths 530 

were calculated using MaxEntScan; a splice site was defined as the last 3 531 

nucleotides of the exon and first 6 nucleotides of the intron. Enhancer and 532 

silencer strengths were calculated from position weight matrices of known motifs 533 

derived from cell-based screens (Materials and methods). Mutation Type refers 534 

to whether the mutation is exonic non-synonymous, exonic synonymous, intronic 535 

or compensatory. Experimental Label is the label given by the original study that 536 

experimentally validated each mutation using a splicing assay.   537 

B) Exon 10 PSIs of 47 mutations predicted from change in splice site strength and 538 

plotted against experimental PSIs measured in splicing assays. Exon 10 PSIs 539 

predicted using Eq. 4. Each point on the scatterplot represents a mutation and is 540 

colored by mutation category. Grey line represents the best fit with dotted lines 541 

indicating the 95% confidence interval. Pearson correlation coefficient (R2) 542 
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calculated of experimental to predicted PSIs. Violin plot shows R2s calculated for 543 

each category by training and testing on subsets of all mutations by non-544 

parametric bootstrapping; Exonic non-synonymous (n=11), Exonic synonymous 545 

(n=7), Intronic (n=15), Compensatory (n=14), Wildtype (n=1). 546 

C) Exon 10 PSIs of 47 mutations predicted by combining change in splice site, 547 

enhancer, and silencer strength and plotted against experimental PSIs measured 548 

in splicing assays. Exon 10 PSIs predicted using Eq. 5. 549 

 550 

 551 

 552 

 553 
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 555 
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 557 
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 567 

 568 

 569 

 570 

 571 

Model with both RNA structure and SRE motif changes yields best prediction of 572 

exon 10 PSI 573 
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We next set out to determine if combining both structural and SRE features further 574 

improved prediction. Indeed, a combined interactive model consistently produced more 575 

accurate predictions of Exon 10 PSI compared with a structure-only model and an SRE-576 

only model for all mutation categories (R2 = 0.89; Figure 5A, B). An alternative additive 577 

model had lower prediction accuracy (R2= 0.80) (Figure 5-figure supplement 1A), 578 

particularly for non-synonymous mutations (Figure 5-figure supplement 1B. This 579 

suggests that considering the category of mutation is critical in accurately modeling the 580 

effects on splicing.  581 

 582 

To determine whether structure or SRE changes were responsible for the splicing 583 

phenotype of each individual mutant, we hierarchically clustered the four primary 584 

features (structure around 5’ splice site, 5’ splice site strength, enhancer strength, 585 

silencer strength) for the 47 mutants that have been experimentally characterized 586 

(Materials and methods). Six categories emerged from the clustering of features (Figure 587 

5C, and Figure 5–figure supplement 1C). For about 51% of mutations, both structure 588 

and SRE motif strength were altered in the same direction to either promote or inhibit 589 

exon 10 inclusion (Figure 5D). For the remaining mutations, structure and SRE strength 590 

changed in opposite directions. For 17% of mutants, structure dominated the direction 591 

of splicing. For about 23%, SRE strength was dominant (Figure 5D). Overall, these 592 

results support the conclusion that structure and SREs have equally important effects 593 

on regulation of splicing at this exon-intron junction. 594 

 595 

 596 

 597 

 598 

 599 
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 600 
Figure 5. Combining structure and SRE strength into a unified model best predicts exon 601 

10 PSI 602 

A) Exon 10 PSIs of 47 mutations predicted from combined model using structure 603 

and SRE strength and fit to experimental PSIs measured in splicing assays. 604 

Exon 10 PSIs predicted using Eq. 7. Each point on scatterplot represents a 605 

mutation and is colored by mutation category. Grey line represents the best fit 606 

with dotted lines indicating the 95% confidence interval. Pearson correlation 607 

coefficient (R2) calculated of experimental to predicted PSIs. 608 

B) Violin plots of correlation coefficients for each mutation category for structure 609 

model, SRE model, and combined model. R2s calculated for each mutation 610 

category by training and testing on subsets of all mutations by non-parametric 611 

bootstrapping 10 times. Structure model uses unfolding free energy of pre-mRNA 612 

within spliceosome at Bact stage as predictor. SRE strength model uses relative 613 
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change in SRE strength as predictor. Combination model using both structure 614 

and SRE strength and weighs the features based on if mutation is 615 

intronic/synonymous or non-synonymous (Materials and methods).  616 

C) Heatmap of the normalized changes in structure and SRE strength for each 617 

mutation clustered by affected features. Features were normalized such that a 618 

value of 1 predicts Exon 10 being spliced in (4R isoform, blue), whereas a value 619 

of 0 implies Exon 10 should be spliced out (3R isoform, red). Mutations were 620 

clustered using hierarchal clustering on normalized features (Materials and 621 

methods). Experimental PSIs are plotted for each mutation with a PSI of 1 622 

colored as blue, PSI of 0.5 colored as white and PSI of 0 colored as red.  623 

D) Pie chart showing the features that regulate Exon 10 splicing for the 47 624 

experimentally validated mutations. The pie chart was generated based on the 625 

heatmap in C. Exon 10 splicing for 51.1% of mutations is supported by changes 626 

in both structure and SRE, which implies that structure, at least one SRE, and 627 

PSI are either all blue or all red in the heatmap in Figure 5C. Exon 10 splicing for 628 

23.4% of mutations is supported by changes in SRE wherein one of the SREs is 629 

the same color as PSI. For 17.0% of mutations, structural changes support Exon 630 

10 splicing wherein structure and PSI are the same color. For 4 mutations 631 

(8.5%), the colors of none of the features match the color of PSI. 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

Mutations around the MAPT exon 10 – intron 10 junction skew to exon 10 642 

inclusion 643 
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We next interrogated the model by performing a systematic in silico mutagenesis 644 

analysis of the 100 nucleotides spanning the exon 10 – intron 10 junction (Figure 6A). 645 

Our model predicted that most mutations should result in inclusion of exon 10. This bias 646 

is consistent with the observation that about 75% of known disease-associated 647 

mutations in this region induce exon 10 inclusion (Figure 6B and Figure 6–figure 648 

supplement 1A). We found that a significantly greater proportion of disease-inducing 649 

mutations (76.4%) result in changes to both structure and SRE compared with 650 

uncategorized mutations (36.0%) (Figure 6C). Thus, mutations that alter both structure 651 

and SREs have a greater likelihood of causing disease than mutations that alter only 652 

structure or only an SRE. Intriguingly, mutations overall caused a slight skew toward a 653 

more structured exon-intron junction that would be expected to decrease inclusion of 654 

exon 10 (Figure 6A, Figure 6–figure supplement 1B); however, these same mutations 655 

altered SRE strength in a manner that skewed toward increased inclusion of Exon 10 656 

(Figure 6–figure supplement 1C), indicating that SREs act to counter the effect of 657 

structural changes. Our modeling suggests that a complex balance of structure and 658 

RBP binding results in the observed 1:1 ratio of the 3R to 4R MAPT isoforms.   659 

 660 

To assess the general applicability of our model beyond our mutation training set, we 661 

predicted Exon 10 PSIs for 55 variants of unknown significance (VUSs) found in dbSNP 662 

(see Supplementary file 3 for further details of VUSs). VUSs are mutations observed in 663 

the human population but are not currently associated with disease. The mean Exon 10 664 

PSI for VUSs was 0.66, and 70% were within a standard deviation of the mean (Figure 665 

6D). We observed that only a few mutations were predicted to have a PSI of zero (3R) 666 

(Figure 6D red bar). We therefore used splicing assays to experimentally determine the 667 

splicing preference of six instructive variants (Materials and methods): 3 VUSs predicted 668 

to be 3R, 1 VUS predicted to be 4R, and 2 VUSs predicted to maintain the WT splicing 669 

ratio (Figure 6D). We found that all six predictions were correct (Figure 6E, Figure 6-670 

figure supplement 1D). The three 3R VUSs caused the region around the exon-intron 671 

junction to become more structured while the 4R VUS made this region less structured 672 

compared to WT (Figure 6-figure supplement 1E). SRE strength changes correctly 673 

predict Exon 10 splicing direction for +30U>C and -6G>A (Figure 6-figure supplement 674 
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1F). For +23U>C and +26G>A, we observed changes in the degree of structure around 675 

the exon-intron junction and silencer strengths in diverging directions (Figure 6-figure 676 

supplement 1E, F) suggesting that these opposing changes preserve the WT 3R/4R 677 

ratio.  678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 
Figure 6. Combined model is predictive of exon 10 inclusion ratios for previously 687 

uncharacterized mutations 688 
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A) Heatmap of predicted Exon 10 PSIs for every possible mutation around 100 689 

nucleotide window of Exon 10 – Intron 10 junction. Combined model was trained 690 

using 47 mutations with experimental PSIs measured from splicing assays as 691 

shown in Figure 5A and then used to predict PSIs for all mutation combinations 692 

for 100 nucleotides around the junction. Tiles with sequence indicate the wild-693 

type nucleotide at the position. Heatmap of mean PSI per position and mean 694 

relative change in unfolding free energy of pre-mRNA within spliceosome at Bact 695 

stage compared with wild type is shown below the gene diagram.  696 

B) Violin plot of predicted PSIs for all possible mutations around Exon 10 – Intron 10 697 

junction and only disease mutations. All possible mutations (n=300), disease 698 

mutations (n=17). A two-tailed Wilcoxon Rank Sum test was used to determine 699 

significance between the two categories. Level of significance: ***p-value < 10-6, 700 

**p-value < 0.001, * p-value < 0.01  701 

C) Pie chart showing features that drive Exon 10 splicing for disease and presently 702 

uncategorized mutations. The pie chart was generated by quantifying the number 703 

of mutations for which the direction of predicted Exon 10 PSI matched the 704 

direction of structure or SRE change. Exon 10 splicing for 76.4% of disease 705 

mutations is supported by changes to both structure and SRE compared with 706 

only 36.0% of uncategorized mutations. The difference in proportions was tested 707 

with a one-tailed Fisher’s exact test. 708 

D) Histogram displaying the distribution of predicted PSIs using the combined model 709 

for 55 variants of unknown significance (VUSs) found in dbSNP. Density curve 710 

was overlaid on top of histogram showing that predicted PSIs skew away from 711 

3R. Dotted line shows mean predicted PSI of 0.66. VUSs tested in splicing 712 

assays are indicated by their dbSNP RS IDs. 713 

E) Representative gel of RT-PCR data for splicing assay in the presence of VUSs. 714 

Splicing reporter was transfected into HEK293 cells. The mean Exon 10 PSI 715 

displayed for each variant was calculated from three replicates and standard 716 

error is shown in brackets below. Structure diagram on left displays the location 717 

of the VUSs tested.  718 

 719 
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 720 

 721 

 722 

 723 

 724 

 725 

Discussion 726 

Splicing specificity is complex (Baralle and Giudice 2017). The spliceosome does not 727 

rely on sequence alone to correctly identify 5’ and 3’ splice sites; other cues ensure 728 

correct binding to appropriate locations. The MAPT exon 10 – intron 10 junction is a 729 

well-studied example of the effect of 5’ splice site secondary structure on splicing 730 

regulation. A hairpin was initially hypothesized to play a major role in splice site 731 

accessibility because disease mutations in this structure, close to the exon-intron 732 

junction, shifted the isoform balance to completely exclude or completely include exon 733 

10 in the mature mRNA (Hutton et al. 1998; Grover et al. 1999). NMR, cell-free 734 

chemical probing, and computation analyses confirmed the presence of the hairpin 735 

(Varani et al. 1999; Chen et al. 2019; Lisowiec et al. 2015). Recent studies have shown 736 

that structures determined in cell-free conditions can differ dramatically from those in 737 

cells (Sun et al. 2019; Rouskin et al. 2014). Our results suggest that this is not the case 738 

for the exon 10 – intron 10 junction region: In-cell chemical probing of the endogenous 739 

MAPT pre-mRNA provided strong evidence for formation of this hairpin in cells and for 740 

structural features not previously captured. 741 

 742 

Our analysis also revealed that in cells, exonic regions were less structured than 743 

introns, as also observed by Sun et al (Sun et al. 2019). Mature MAPT 3R and 4R are 744 

less structured in the region of exon 9 through exon 11 than is the pre-mRNA. The high 745 

correlations between structures of the exon in different MAPT isoforms and our finding 746 

that predicted exon 10 folding is only slightly impacted by the presence of intron 10 or 747 

exon 11 residues agrees with previous observations of mRNAs. Specifically mRNAs 748 
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which encode yeast ribosomal proteins that indicate that RNA folding in both pre- and 749 

post-spliced exons is highly local and that most base-pairs are intra-exon (Zubradt et al. 750 

2016). 751 

 752 

Unlike non-coding RNAs such as the ribosome and tRNA that rely on folding to a single, 753 

well-defined structure (Petrov et al. 2014), most RNAs are dynamic, unfolding and 754 

refolding within a landscape (Cruz and Westhof 2009; Giegé et al. 2012). We showed 755 

that structural ensembles have an important function at the Exon 10 – Intron 10 756 

junction. If the 5’ splice site was always paired, only the 3R isoform would be produced. 757 

However, the presence of 3R and 4R isoforms, usually in a 1:1 ratio implies that the 758 

junction is accessible in a subset of the structures. We found disease-causing mutations 759 

produced distinct shifts in the ensemble of the MAPT exon 10 – intron 10 junction 760 

region; these shifts showed strong correlation with changes in the 3R to 4R isoform ratio 761 

and confirmed that ensembles are essential at this junction. Our ability to accurately 762 

predict the effects of mutations on ensembles significantly improved our quantitative 763 

model (Figure 3 - figure supplement 1C). 764 

 765 

The U1 snRNA base pairs with a nine nucleotide sequence around the exon-intron 766 

junction (Roca et al. 2012). However, our analysis of cryo-EM structures of the human 767 

spliceosomal assembly cycle revealed that a larger region of the pre-mRNA interacts 768 

with the spliceosome and must be unfolded during splicing. Our structural model 769 

performed most accurately when we required 43 nucleotides around the 5’ exon-intron 770 

junction to be unfolded, corresponding to the region within the spliceosome Bact 771 

complex. This observation suggests that a large region of the pre-mRNA is dynamically 772 

remodeled by the spliceosome, and that structures distal to the exon-intron junction can 773 

regulate splicing. Our finding corroborates evidence that RNA structure near this exon-774 

intron junction is extensive (Tan et al. 2019). Note that we do not claim that all 43 775 

nucleotides need to remain fully unpaired during the splicing cycle, as the entire cycle is 776 

dynamic and likely involves other intermediate structures. Rather, our model argues that 777 

mRNA unfolding and accommodation into the Bact complex is a key rate limiting step in 778 

splicing, and considering this step is necessary to accurately model splicing outcome for 779 
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a diverse set of mutations. Broadly, our definition of a functional footprint for splicing 780 

parallels a similar idea for translation initiation by the ribosome (Corley et al. 2017; 781 

Mustoe, Busan, et al. 2018; Mustoe, Corley, et al. 2018), for which the footprint is 782 

roughly 30 nucleotides. Thus, for both translation initiation and splice site selection, 783 

there is a region in which RNA structure functions as a rheostat. 784 

 785 

Considerable evidence supports a function for both splicing regulatory elements (and 786 

their corresponding RBPs) and RNA structure in controlling alternative splicing of exon 787 

10 of MAPT (Andreadis 2012). However, the relative importance of these two factors 788 

has been controversial. The regression model we developed clarifies that there is a 789 

cooperative relationship between RNA structure and SREs in driving splicing outcome. 790 

Exonic non-synonymous mutations promote splicing changes primarily by altering SRE 791 

motifs, whereas exonic synonymous and intronic mutations altered RNA structure. A 792 

combined model that accounted for both structure and SREs was the most accurate 793 

predictor of exon 10 PSI (Figure 5D). It was previously proposed that exon 10 is 794 

alternatively spliced due to a weak 5’ splice site (Ian D’Souza and Schellenberg 2005), 795 

and, indeed, we found that mutations that strengthened the splice site increase 796 

inclusion of exon 10 (Figure 4A). SRE strength alterations overall skewed more toward 797 

increased exon 10 inclusion, which suggest that SREs and the RBPs that bind them 798 

buffer the effects of RNA structure to maintain the 1:1 isoform ratio.  799 

 800 

Although structure and SREs had opposite effects on splicing outcomes, disease 801 

variants often resulted in a synergistic effect on splicing outcome. The combined model 802 

was directly validated by accurate prediction of the effects of six previously untested 803 

VUSs on exon 10 splicing (Figure 6E). Few VUSs were predicted to completely exclude 804 

exon 10 from the mature mRNA: Only five VUSs had PSIs less than 0.25. Our model 805 

accurately predicted the effect of the three with the lowest predicted PSI. Our 806 

systematic computational mutagenesis revealed a hotspot for mutations around 25-30 807 

nucleotides downstream of the exon-intron junction that were predicted to result in 808 

production of only the 3R isoform (Figure 6A). Indeed, the experimentally validated 809 

VUSs with PSIs less than 0.25 were in this region.  810 
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 811 

In principle, our splicing model can be extended to other exon-intron junctions, although 812 

RBPs that recognize SRE motifs have different binding contexts (Dominguez et al. 813 

2018) and the exact binding preferences of the RBPs that regulate the junction of 814 

interest are currently unknown. Another limitation is that the current model does not 815 

consider structural and sequence features around the 3’ splice site (in the case of 816 

MAPT exon 10, the intron 9 – exon 10 junction), that are expected to impact exon 10 817 

splicing regulation. Although our model provides an exact PSI prediction for each 818 

mutation, we emphasize that its principal utility is in predicting the direction in which the 819 

3R to 4R isoform ratio shifted from the wild-type ratio.  820 

 821 

In brain tissue from healthy individuals, exon 10 PSIs varied between individuals and 822 

between tissues within an individual (Figure 1A). Even in individuals with progressive 823 

supranuclear palsy, a tauopathy in which MAPT variants are implicated, there was 824 

variability in exon 10 PSIs in different brain tissues (Majounie et al. 2013). Thus, 825 

although our model combines both structural and sequence features to achieve 826 

quantitative prediction accuracy of the 3R to 4R ratio for a wide range of disease 827 

mutations (synonymous, non-synonymous, intronic and exonic), it is not clear that PSI 828 

alone is predictive of severity of disease for the broad class of tauopathies (Majounie et 829 

al. 2013). Disease severity is compounded by other factors including gene-gene 830 

interactions and environmental factors. As such, the value of our model stems more 831 

from how it incorporates RNA structure in predicting alternative splicing, rather than as a 832 

direct predictor of disease severity. Many neurodegenerative diseases are caused by 833 

mutations around the MAPT exon 10 – intron 10 junction, and there are no approved 834 

therapeutics that target this junction. Our work suggests that it is crucial to consider the 835 

larger structural context of this region of the pre-mRNA and the interplay between 836 

structure and SREs when considering the consequences of mutations on splicing 837 

regulation and the design of potential therapeutics to alter this ratio. 838 

 839 

 840 

 841 
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 842 

 843 

Materials and methods 844 

Analyses of MAPT sequencing data for GTEx tissue types  845 

Aligned BAM files of individual samples from the GTEx v8 project for tissue types with 846 

MAPT transcripts per million (TPM) greater than 10, were accessed in the AnVIL/Terra 847 

environment (Kumar 2020a). Reads aligning to MAPT were extracted (Kumar 2020b) 848 

and downloaded. Exons 2, 4, and 10 PSIs were quantified per BAM file with Outrigger 849 

(Song et al. 2017) using the MAPT transcriptome reference from Ensembl GRCh38. 850 

Only samples with at least 10 reads mapping across the exon-intron junction of interest 851 

were considered. For exon 10 PSI, median values for each tissue type were calculated 852 

and then visualized on the brain diagram with R package, CerebroViz (Bahl, Koomar, 853 

and Michaelson 2017). Source file for Figure 1 provides exon 10 PSI values for the 854 

2,962 samples. An ANOVA test was run in R to test significance in variation of exon 10 855 

PSI between individuals versus within an individual (for individuals with MAPT 856 

expression in more than seven tissues) (Supplementary file 1). TPMs for RBPs known 857 

to affect the splicing regulation of MAPT exon 10 were extracted, and their distributions 858 

in brain tissues were plotted using ggplot2. 859 

 860 

Culture of T47D and SH-SY5Y cells 861 

Mammary gland carcinoma cells (T47D) were cultured in RPMI 1640 medium, 862 

supplemented with 10% Fetal Bovine Serum (FBS) and 0.2 units/mL of human insulin at 863 

37°C and 5% CO2. Bone marrow neuroblastoma SH-SY5Y cells were cultured in 1:1 864 

mixture of 1X Minimum Essential Medium (MEM) and 1X F12 medium, supplemented 865 

with 10% FBS at 37 °C and 5% CO2.  866 

 867 

In-cell DMS-MaP probing of MAPT RNA 868 

Approximately 20 million T47D cells and 30 million SHSY-5Y cells were harvested by 869 

centrifugation and resuspended in 300 mM bicine, pH 8.3, 150 mM NaCl, 5 mM MgCl2 870 

followed by treatment with DMS (1:10 ethanol diluted) for 5 min at 37 °C as previously 871 



 35 

described (Mustoe et al. 2019). For the negative control (unmodified RNA) ethanol, 872 

instead of DMS, was added to cells. After incubation, the reactions were neutralized by 873 

addition of equal volume of ice cold 20% β-mercaptoethanol. Total RNA was extracted 874 

using Trizol (ThermoFisher Scientific), treated with TURBODNase (ThermoFisher 875 

Scientific), purified using Purelink RNA mini kit (ThermoFisher Scientific), and quantified 876 

based on absorbance determined with a NanoDrop spectrophotometer.  877 

 878 

Cell-free DMS-MaP probing for MAPT RNA 879 

Approximately 10 million T47D cells in 10 cm plates were used. Growth media was 880 

removed, following which cells were trypsinzed (Tryple, ThermoFisher Scientific) and 881 

the pellet was washed with PBS. Total RNA was extracted by Trizol (ThermoFisher 882 

Scientific), chloroform and isoamyl alcohol (24:1, Sigma-Aldrich) using phase lock 883 

heavy tubes (5PRIME Phase Lock Gel) followed by Purelink RNA mini kit purification 884 

(ThermoFisher Scientific) and on-column DNase digestion (PureLink DNase, 885 

ThermoFisher Scientific). RNA was quantified by NanoDrop™ spectrophotometer. 10 886 

ug of RNA was resuspended in 90 uL of bicine buffer (200 mM Bicine pH 8, 100 mM 887 

NaCl and 10 mM MgCl2) with 20 U of RNase inhibitor (NEB) and incubated at 37°C for 888 

10 minutes. Samples were treated with 10 uL of DMS diluted in ethanol (1:10) for 5 min 889 

at 37°C. For the negative control (unmodified RNA), instead of DMS, an equivalent 890 

amount of ethanol was added to the extracted RNA. After incubation, all reactions were 891 

neutralized by addition of 100 uL of ice cold 20% by volume β-mercaptoethanol and 892 

kept on ice for 5 minutes. Reaction by-products were removed by RNA purification with 893 

the Purelink RNA mini kit (ThermoFisher Scientific) before error-prone reverse 894 

transcription. 895 

 896 

DMS-MaP cDNA synthesis, library construction, and sequencing of MAPT RNA 897 

Purified RNA (9 g) was reverse transcribed using Random Primer 9 (NEB) and 898 

SuperScript II reverse transcriptase under MaP conditions as described previously 899 

(Smola et al., 2015). A no-reverse transcriptase control was also prepared. The 900 

resultant cDNA was purified over a G50 column (GE Healthcare) and subjected to 901 

second-strand synthesis (NEBNext Second Strand Synthesis Module). Supplementary 902 
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file 4 lists PCR primers used for library generation. The cDNA was amplified with the 903 

NEB Q5 HotStart polymerase. Secondary PCR was performed to introduce TrueSeq 904 

barcodes (Smola et al. 2015). All samples were purified using the Ampure XP beads 905 

(Beckman Coulter), and quantification of the libraries was performed with Qubit dsDNA 906 

HS Assay kit (ThermoFisher Scientific). Final libraries were run on Agilent Bioanalyzer 907 

for quality check. TrueSeq libraries were then sequenced as paired-end 2×151 and 908 

2×301 read multiplex runs on MiSeq platform (Illumina) for pre-mRNA and mature 909 

mRNA, respectively. Sequenced reads have been uploaded to the NCBI SRA database 910 

under BioProject ID PRJNA762079 for in-cell data and PRJNA812003 for cell-free data.  911 

 912 

In-cell DMS-MaP probing of SSU 913 

For in-cell rRNA structure data, approximately 10 million T47D cells were used for each 914 

condition. Growth media was removed, followed by addition of 1.8 mL of 200 mM bicine, 915 

pH 8.3 and treatment at 37 °C with 200 µL of DMS diluted in ethanol (1.25% final DMS) 916 

for 5 min. For the negative control ethanol was added instead of DMS. After incubation, 917 

all reactions were neutralized by addition of equal volume ice cold 20% β-918 

mercaptoethanol and kept on ice for 5 min. Total RNA was extracted using Trizol 919 

(ThermoFisher Scientific) and chloroform and isoamyl alcohol using phase lock heavy 920 

tubes (5PRIME Phase Lock Gel). RNA was purified using a Purelink RNA mini kit 921 

(ThermoFisher Scientific), treated with TURBODNase (ThermoFisher Scientific), and 922 

quantified. 923 

 924 

Cell-free DMS-MaP probing of SSU  925 

Approximately 10 million T47D cells were trypsinzed (Tryple, ThermoFisher Scientific), 926 

and the pellet was washed with PBS. Total RNA was extracted using Trizol 927 

(ThermoFisher Scientific) and chloroform and isoamyl alcohol (24:1, Sigma-Aldrich) 928 

using phase lock heavy tubes (5PRIME Phase Lock Gel) followed by purification using 929 

a Purelink RNA mini kit purification (ThermoFisher Scientific) and on-column DNase 930 

digestion (PureLink DNase, ThermoFisher Scientific). RNA was quantified based on 931 

absorbance determined using NanoDrop spectrophotometer. For each sample, 10 µg of 932 

RNA was resuspended in 90 µL of 200 mM bicine, pH 8, 100 mM NaCl, and 10 mM 933 
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MgCl2 with 20 U of RNase inhibitor (NEB) and incubated at 37 °C for 10 min. Samples 934 

were treated with 10 µL of DMS diluted in ethanol (1:10) for 5 min at 37 °C. For the 935 

negative control, samples were treated with ethanol. After incubation, all reactions were 936 

neutralized by addition of 100 µL of ice cold 20% β-mercaptoethanol and kept on ice for 937 

5 min. Reaction by-products were removed using a Purelink RNA mini kit 938 

(ThermoFisher Scientific) before error-prone reverse transcription.  939 

 940 

DMS-MaP cDNA synthesis, library construction, and sequencing of SSU  941 

Purified RNA was reverse transcribed using Random Primer 9 (NEB) and SuperScript II 942 

reverse transcriptase under error prone conditions (Smola et al., 2015). The resultant 943 

cDNA was purified using G50 column (GE Healthcare) and subjected to second-strand 944 

synthesis (NEBNext Second Strand Synthesis Module). A standard Nextera DNA library 945 

protocol (Illumina) was used to fragment the cDNA and add sequencing barcodes. 946 

Samples were purified using Ampure XP beads (Beckman Coulter), and quantification 947 

of the libraries was performed with Qubit dsDNA HS Assay kit (ThermoFisher 948 

Scientific). Final libraries were run on Agilent Bioanalyzer for quality check. Gel 949 

purification (GeneJET, ThermoFisher Scientific) was performed as needed to remove 950 

primer dimer bands from libraries before sequencing. Libraries were sequenced as 951 

paired-end 2×151 read multiplex runs on MiSeq platform (Illumina). Sequenced reads 952 

have been uploaded to the NCBI SRA database under BioProject ID PRJNA762079 for 953 

in-cell data and PRJNA812003 for cell-free data. 954 

 955 

DMS-MaP analysis 956 

Sequenced reads were analyzed using the ShapeMapper pipeline (Busan and Weeks 957 

2018), version (v2.1.4). DMS probing data were collected for the exon 9 – exon 11 and 958 

exon 9 – exon 10 – exon 11 junctions using a single pair of primers listed in 959 

Supplementary file 4. The ShapeMapper pipeline ran for the two junctions in a single 960 

run with reference sequences for both junctions entered in one FASTA file. For the 961 

SSU, sequenced reads were first aligned to the SSU rRNA sequence using Bowtie2 962 

parameters from Busan and Weeks (Busan and Weeks, 2018). Using samtools, 963 
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alignments with MAPQ score greater than 10 were kept, sorted, and converted back 964 

into FASTQ files after which the ShapeMapper pipeline was executed.  965 

 966 

Per-nucleotide mutation rates were obtained from the profile file output by 967 

ShapeMapper. Raw DMS reactivities are computed as:  968 

    𝑅𝑖 = 𝑚𝑢𝑡𝑟𝑆 − 𝑚𝑢𝑡𝑟𝑈 969 

where mutrS is the mutation rate in the sample treated with DMS, mutrU is the mutation 970 

rate in the untreated control. Raw reactivities were then normalized within a sample and 971 

per nucleotide type (A, C, U, G). For each nucleotide type, reactivity rates were 972 

normalized by dividing the mean reactivity of the top 10% of reactivities after the most 973 

reactive 2% were removed (Busan and Weeks, 2018). The Gs and Us were further 974 

normalized to have a maximum value of 0.1 to minimize their impact on plotting 975 

reactivities. Though only As and Cs were only used in structure modeling, all 4 976 

nucleotide types were plotted in the reactivity figures and reported in the supplementary 977 

material.  978 

 979 

DMS-reactivity guided structure prediction 980 

Previous versions of Rsample only utilized SHAPE parameters for calculation of the 981 

partition function. In order to use DMS data to guide secondary structure modeling by 982 

Rsample (Spasic et al. 2018)(Reuter and Mathews 2010), we used our SSU data to 983 

calibrate the expected relationship between DMS reactivity and base-pairing status. 984 

Since DMS primarily reacts with As and Cs, we only used reactivity data for these two 985 

nucleotides in all of our structure modeling. Using the SSU in-cell data and the known 986 

secondary structure (Petrov et al. 2014), we determined distributions for DMS 987 

reactivities for unpaired nucleotides, nucleotides paired at helix ends, and nucleotides 988 

paired in base pairs stacked between two other base pairs, which provide the sampling 989 

distributions needed for Rsample calculations (Spasic et al. 2018). These DMS data can 990 

be invoked by Rsample by the “--DMS” command line switch as part of RNAstructure 991 

6.4 or later. The distributions had long tails to relatively high reactivities. We empirically 992 

found that limiting reactivities in the histograms and in the input data to a reactivity of 5 993 

(where higher values are set to 5) gave the best performance at improving SSU 994 
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secondary structure prediction. The “--max 5” parameter is used with Rsample to apply 995 

this limitation. 996 

 997 

Base-pairing probabilities for SSU 998 

The partition function for the SSU was generated using Rsample, using either the 999 

sequence or using the sequence and the DMS reactivities. All possible i-j base pairing 1000 

probabilities were summed for each nucleotide i to generate a base pairing probability 1001 

per nucleotide i.  1002 

 1003 

ROC curves for predicting SSU base pairs 1004 

Using the known secondary structure of the SSU, we assigned a nucleotide as either 0 1005 

or 1 if it was paired or unpaired. Only As and Cs were considered. DMS reactivities 1006 

were used to predict whether a nucleotide was paired; the higher the DMS reactivity, the 1007 

more likely a nucleotide is unpaired. ROC curves and AUC values were generated 1008 

using the plotROC (Sachs 2017) R package. 1009 

 1010 

Minimum free energy and base-pairing probability modeling 1011 

Minimum free energy and base-pairing probability “arc” plots were generated using 1012 

Superfold (Siegfried et al. 2014; Smola et al. 2015) modified to process DMS reactivity 1013 

data. The original Superfold function used SHAPE parameters (Deigan et al. 2009) to 1014 

fold an RNA sequence using the Fold and Partition functions of the RNAstructure 1015 

package. In our modified version of Superfold, base pairing probabilities were computed 1016 

using Rsample with DMS-specific parameters for A and C nucleotides. MFE structures 1017 

were computed using Fold from RNAstructure with DMS reactivities input using the “--1018 

DMS” option. For structure modeling applications, G and U reactivites were set to -999 1019 

(no data). 1020 

 1021 

In silico co-transcriptional folding of exon 10 – exon 11 and exon 10 – intron 10 1022 

regions 1023 

We folded exon 10 using the modified Superfold function as described above, inputting 1024 

a truncated DMS reactivity map file containing just reactivities of exon 10. We then 1025 
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added nucleotides from exon 11 or intron 10 one at a time and re-ran Superfold after 1026 

each addition inputting the DMS reactivity map file modified to only the folded 1027 

nucleotides. At every additional nucleotide, we calculated the number of base pairs 1028 

within exon 10 and the total number of base pairs for the current sequence. We plotted 1029 

the percentage of intra-exon/intron base pairs of total number of base pairs at every 1030 

additional nucleotide.  1031 

   1032 

Generating a structural ensemble of the exon 10 – intron 10 region of MAPT 1033 

The partition function of the exon 10 – intron 10 region of MAPT for wild type and 1034 

mutants was calculated with DMS reactivities from the wild-type pre-mRNA as restraints 1035 

using Rsample (Spasic et al. 2018). For modeling mutant sequences, DMS reactivities 1036 

collected for the WT sequence were used to restrain the structural space with the 1037 

reactivity at each mutation site set to -999. The program stochastic (Reuter and 1038 

Mathews 2010) was used to sample 1000 structures from the Boltzmann distribution 1039 

wherein the likelihood a structure is sampled was proportional to the probability that it 1040 

occurred in the distribution (Y. Ding and Lawrence 2003).   1041 

 1042 

t-SNE visualization of structural ensembles  1043 

For each sequence, the 1000 structures in CT format for each ensemble were 1044 

converted to dot-bracket (db) format with ct2dot (Reuter and Mathews 2010), after 1045 

which the db structure was transformed into the element format using rnaConvert in the 1046 

Forgi package (Kerpedjiev, Höner Zu Siederdissen, and Hofacker 2015). In the element 1047 

format, every base is represented by the subtype of RNA structure in which it is found: 1048 

stem (s), hairpin (h), loop(m), 5’ end (f), and 3’ end (t). Hence, each db structure is a 1049 

string of characters. These characters were digitized (f, t:0, s:1, h:2, m:3) to create a 1050 

numerical matrix with 1000 rows and 234 columns, the length of the exon 10 – intron 11 1051 

region. Combining the matrices for the three sequences resulted in a 3000×234 matrix. 1052 

This matrix was entered into the tSNE function from the scikit-learn Python package 1053 

(Pedregosa et al. 2011), and dimensionality was reduced to a 3000×2 matrix, which was 1054 

then plotted with ggplot2 (Wickham 2016) in R. The G‡ of unfolding of the splice site 1055 
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was calculated for each of the 3000 structures as described below. Source file for 1056 

Figure 3B lists t-SNE reduced data with corresponding free energies.  1057 

 1058 

Identification of representative structures for clusters 1059 

The 3000×2 matrix obtained after t-SNE dimensionality reduction, was clustered using 1060 

k-means clustering with the k-means function from the scikit-learn Python package 1061 

(Pedregosa et al. 2011). The value of k was set to 5 as determined visually. Boundaries 1062 

for each cluster were marked and colored using the ggscatter function in the R ggpubr 1063 

package. A custom Python script was used to deduce the representative structure for 1064 

each cluster by first calculating the most common RNA structure subtype at each 1065 

nucleotide. The structure in the ensemble that was most similar to the RNA structure 1066 

with the most common subtypes at each position, was chosen as representative of that 1067 

cluster. 1068 

 1069 

Visualizing density of structures in t-SNE plot  1070 

To evaluate density of structures in clusters, a meshgrid was created for the three 1071 

matrices corresponding to WT, 3R and 4R mutant structures using the meshgrid 1072 

function of NumPy (Harris et al. 2020) with a 1000-point interpolation, which returns 1073 

two-dimensional arrays that represent all the possible x-y coordinates for the three 1074 

matrices. A Gaussian kernel was fit and evaluated for each 1000×2 matrix with SciPy 1075 

gaussian_kde function (Virtanen et al. 2020) to smoothen over the meshgrid. Contour 1076 

lines were generated for the smoothed data with Matplotlib contour function (Hunter 1077 

2007), and contourf was used to plot the data.  1078 

 1079 

Quantifying nucleotides around the 5’ splice site in cryo-EM structure 1080 

The Protein Databank (PDB) files for Pre-B (PDB ID: 6QX9), B (PDB ID: 5O9Z), Pre-1081 

Bact (PDB ID: 7ABF), and Bact (PDB ID: 5Z56) complexes were downloaded from the 1082 

PDB website. A custom Python script was used to extract pre-mRNA from each PDB 1083 

file. The number of nucleotides were counted for mRNA found upstream and 1084 

downstream of the 5’ exon-intron junction. The result was visually confirmed by 1085 

visualizing the PDB on PyMol. 1086 
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 1087 

Calculating G‡ of unfolding of a region of interest 1088 

The G‡ of unfolding energies of regions of interest were calculated using a custom 1089 

Python script. The non-equilibrium unfolding energy of the region, defined as the energy 1090 

require to unfold a specific region without allowing refolding (Mustoe, Busan, et al. 1091 

2018) is defined as follows: 1092 

G ‡ =   G𝑓𝑜𝑙𝑑 − G𝑢𝑛𝑓𝑜𝑙𝑑       [𝟏] 1093 

The G of the original folded structure (Gfold) was calculated with the efn2 program in 1094 

RNAstructure (Reuter and Mathews 2010). Next, the base pairs within a region of 1095 

interest were made single stranded by setting the base pair column value to be 0 in the 1096 

CT file. From this modified CT file, we evaluate the G of the unfolded structure 1097 

(Gunfold) with efn2. This was done for every suboptimal structure in the Boltzmann 1098 

ensemble. For example, to determine the G‡ of unfolding of the splice site, we made 1099 

all nucleotides within the last 3 nucleotides of the exon and the first 6 nucleotides of the 1100 

intron single stranded.  1101 

 1102 

Calculating changes in strength of splice site and SRE motifs 1103 

The strength of the WT splice site was calculated with MaxEntScan (Yeo and Burge 1104 

2004). Strength was recalculated if mutations were located in the last 3 bases of exon 1105 

10 or first 6 bases of intron 10. WT strength was subtracted from the mutant strength. A 1106 

value of 0 implied no change in splice site strength, positive values implied that a 1107 

mutation made the splice site stronger, resulting in increased inclusion of exon 10, and 1108 

negative values implied that a mutation made splice site weaker and decreased 1109 

inclusion of exon 10.  1110 

 1111 

Overrepresented hexamers in cell-based screens of general exonic and intronic splicing 1112 

enhancers (ESEs and ISEs) and silencers (ESSs and ISSs) were obtained from 1113 

previous reports (Fairbrother et al., 2002, Wang et al., 2004, Wang, Ma et al., 2012 and 1114 

Wang, Xiao et al., 2012). Position weight matrices (PWMs) of hexamers for each 1115 

category, calculated as described (Fairbrother et al., 2002), are collated in 1116 

Supplementary file 5. There were eight clusters of ESE motifs, seven of ESS motifs, 1117 
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seven of ISE motifs, and eight of ISS motifs; each cluster had an associated PWM. For 1118 

each PWM, a threshold strength was found by taking the 95th percentile value of 1119 

strength of all possible k-mers of PWM length. This threshold was used to determine 1120 

whether there was a valid SRE motif at a particular position. The strength of the PWM 1121 

motif was calculated across the exon-intron junction using a sliding window. The only 1122 

windows that differed between the WT and mutants were around the location of the 1123 

mutation, and only windows with strength above the threshold were considered. The 1124 

WT strength was subtracted from the mutation strength for each window, and all 1125 

windows were then summed to yield a strength for every PWM per mutation. The 1126 

average of the non-zero strengths was calculated for ESE, ESS, ISE, and ISS 1127 

categories. The ESE and ISE strengths were summed to obtain an enhancer strength, 1128 

and the ESS and ISS strengths were summed to obtain a silencer strength. 1129 

Supplementary file 6 presents all SRE strengths for the 47 mutations and 55 VUSs. 1130 

 1131 

Calculating the change in strength of RBP motifs 1132 

Previously determined position frequency matrices for SRSF1, SRSF2, SRSF7, SRSF9, 1133 

SRSF10, PCBP2, RBM4, and SFPQ (Ray et al. 2013) were converted into PWMs by 1134 

normalizing frequencies to 0.25 (the prior probability for nucleotide frequency) and 1135 

calculating the log2 value. Position frequency matrices were calculated based on 1136 

previously reported overrepresented hexamers for SRSF11, SRSF4, SRSF5, and 1137 

SRSF8 (Dominguez et al., 2018). PFMs for these RBPs were calculated as described 1138 

previously (Fairbrother et al., 2002). strength values for RBP motifs were calculated as 1139 

described for SRE motifs. The averages of non-zero values of RBPs implicated in either 1140 

the inclusion or exclusion of exon 10 were computed separately. All RBP strengths for 1141 

the 47 mutations are listed in Supplementary file 6. 1142 

 1143 

Models and bootstrapping 1144 

Exon 10 PSI was limited to values between 0 and 1 with 0 signifying that no transcripts 1145 

had exon 10 and 1 that all transcripts had exon 10. Hence, standard linear regression 1146 

was not appropriate, and features were fit with a beta regression model to exon 10 PSI. 1147 

Regression parameters were determined using the betareg package (Cribari-Neto and 1148 
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Zeileis 2010) in R. Bootstrapping was performed by sampling without replacement 70% 1149 

of the mutants. Pearson R2 values between true values and predictions of the sample 1150 

were calculated for the training set. This bootstrapping was executed 10 times resulting 1151 

in a range of R2s, ensuring that no subset of mutations skewed model performance. 1152 

Since there were only four mutants that maintained the wild-type 1:1 3R to 4R ratio in 1153 

our training set, we added three VUSs from dbSNP, which we experimentally verified 1154 

preserved the wild-type splicing pattern (Supplementary file 7). The VUSs tested and 1155 

added to the training set were assigned a PSI of 0.5 to indicate equivalence to the WT 1156 

sequence. Eq. 2, the structure ensemble model, uses four characteristics describing X, 1157 

the G‡ of unfolding of the region of interest around the exon-intron junction for 1000 1158 

structures in the ensemble. The mean, standard deviation (SD), skew, and kurtosis 1159 

were calculated for the G‡ values of 1000 structures in each ensemble. Eq. 3, the 1160 

minimum free energy model, uses just Y, the G‡ of unfolding of the exon-intron 1161 

junction found within the spliceosome at the Bact stage for the single minimum free 1162 

energy structure. Eq. 4, the splice site model, uses the difference in splice site strength 1163 

between WT sequence and a mutation where SS represents splice site. Eq. 5, the 1164 

combined SRE model, uses the difference in SRE strength between WT sequence and 1165 

a mutation where SS represents splice site, E represents enhancer, and S represents 1166 

silencer. Eq. 6, the RBP model, uses the difference in RBP motif strength between WT 1167 

sequence and a mutation where Ex represents RBPs involved in the exclusion of Exon 1168 

10 and In represents RBPs involved in the inclusion of Exon 10. Eq. 7 is the interactive 1169 

model between structure and SRE, and Eq. 8 is the additive model. isNonSynonymous, 1170 

isSynonymous and isIntronic represent the category of mutation and is either 0 or 1. 1171 

Supplementary file 6 summarizes the performance of the models and features utilized.  1172 

 1173 

𝑃𝑆𝐼 ~ 𝑀𝑒𝑎𝑛(𝑋) + 𝑆𝐷(𝑋) + 𝑆𝑘𝑒𝑤(𝑋) + 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋)            [𝟐] 1174 

 1175 

𝑃𝑆𝐼 ~ 𝑌      [𝟑] 1176 

 1177 

𝑃𝑆𝐼 ~ 𝑆𝑆       [𝟒] 1178 

 1179 
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𝑃𝑆𝐼 ~ 𝐸 + 𝑆 + 𝑆𝑆       [𝟓] 1180 

 1181 

𝑃𝑆𝐼 ~ 𝐸𝑥 + 𝐼𝑛       [𝟔] 1182 

 1183 

𝑃𝑆𝐼 ~ [𝑀𝑒𝑎𝑛(𝑋) + 𝑆𝐷(𝑋) + 𝑆𝑘𝑒𝑤(𝑋) + 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋)] ∗ [𝑖𝑠𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 + 𝑖𝑠𝐼𝑛𝑡𝑟𝑜𝑛𝑖𝑐]1184 

+ [𝐸 + 𝑆 + 𝑆𝑆] ∗ [𝑖𝑠𝑁𝑜𝑛𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠]            [𝟕] 1185 

 1186 

𝑃𝑆𝐼 ~ [𝑀𝑒𝑎𝑛(𝑋) + 𝑆𝐷(𝑋) + 𝑆𝑘𝑒𝑤(𝑋) + 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋)] + [𝐸 + 𝑆 + 𝑆𝑆]            [𝟖] 1187 

 1188 

Clustering of changes in structural and SRE features 1189 

For each feature, non-zero values greater than the 95th percentile value were set to the 1190 

95th percentile or, if less than the 5th percentile value, were set to the 5th percentile for 1191 

visualization, after which all values were normalized to the maximum absolute value. 1192 

Silencer strength and mean G‡ of unfolding of ensembles were inverted to follow the 1193 

visualization such that values closer to 1 would result in greater exon 10 inclusion and 1194 

values closer to 0 would result in lower exon 10 inclusion. Features were then assigned 1195 

values 0 or 1 depending on whether the feature changed at all in the presence of the 1196 

mutation. These digitized features were clustered by hierarchal clustering resulting in six 1197 

clusters. Each individual cluster was then clustered again by hierarchal clustering using 1198 

the normalized feature values instead of values of 0 and 1.  1199 

 1200 

Splicing assays 1201 

HEK-293 cells (ATCC CRL-1573) were grown at 37 °C in 5% CO2 in Dulbecco’s 1202 

Modified Eagle Medium (Gibco) supplemented with 10% FBS (Omega Scientific) and 1203 

0.5% penicillin/streptomycin (Gibco). The wild-type splicing reporter plasmid was 1204 

generously provided by the Roca lab (Tan et al., 2019). Single-nucleotide point 1205 

mutations were generated using a Q5 site-directed mutagenesis kit (NEB) and 1206 

confirmed by Sanger sequencing or were custom ordered directly from GenScript. 1207 

Reporter plasmids (2 g) were transfected into HEK-293 cells in 6-well plates when 1208 

cells were 60-90% confluent using Lipofectamine 3000 (ThermoFisher Scientific). Cells 1209 

were harvested after 1 day by aspirating the media. Cells were resuspended in 1 mL 1210 
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Trizol reagent (ThermoFisher Scientific). RNA was isolated using the PureLink RNA 1211 

Isolation Kit (ThermoFisher Scientific) with on-column DNase treatment, following 1212 

manufacturer’s instructions. RNA (1 g) was reverse transcribed to cDNA using 1213 

Superscript VILO reverse transcriptase (ThermoFisher Scientific). Reverse 1214 

transcriptions were performed by annealing (25 °C, 10 min), extension (50 °C, 10 min), 1215 

and inactivation (85 °C, 10 min) steps. Heat-inactivated controls were prepared by 1216 

heating the reaction without RNA at 85 °C for 10 min prior to adding RNA, then following 1217 

the described reaction conditions. The cDNA was PCR amplified with NEB Q5 HotStart 1218 

polymerase (NEB) using splicing assay primers from IDT 1219 

(AGACCCAAGCTGGCTAGCGTT forward, GAGGCTGATCAGCGGGTTTAAAC 1220 

reverse) with 25 cycles. PCR product was purified and concentrated using the PureLink 1221 

PCR micro clean up kit (ThermoFisher Scientific) following manufacturer’s instructions. 1222 

Splicing products were visualized by loading ~200 ng of DNA on a 2% agarose gel in 1X 1223 

tris-acetate EDTA (TAE) buffer and staining with ethidium bromide. Gel images were 1224 

quantified with ImageJ.  1225 
 1226 

Supplementary files, figure source files, SNRNASMs and code are available at 1227 

GitHub repository: https://git.io/JuSW8 1228 
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