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Abstract:

Splicing is highly regulated and is modulated by numerous factors. Quantitative
predictions for how a mutation will affect precursor messenger RNA (mRNA) structure
and downstream function is particularly challenging. Here we use a novel chemical
probing strategy to visualize endogenous precursor and mature MAPT mRNA structures
in cells. We used these data to estimate Boltzmann suboptimal structural ensembles,
which were then analyzed to predict consequences of mutations on precursor mRNA
structure. Further analysis of recent cryo-EM structures of the spliceosome at different
stages of the splicing cycle revealed that the footprint of the B2** complex with precursor
mMRNA best predicted alternative splicing outcomes for exon 10 inclusion of the

alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a f3-
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regression weighting framework that incorporates splice site strength, RNA structure,
and exonic/intronic splicing regulatory elements capable of predicting, with 90%
accuracy, the effects of 47 known and six newly discovered mutations on inclusion of
exon 10 of MAPT. This combined experimental and computational framework
represents a path forward for accurate prediction of splicing-related disease-causing

variants.

Introduction

Precursor messenger RNA (pre-mRNA) splicing is a highly regulated process in
eukaryotic cells (Z. Wang and Burge 2008). Numerous factors control splicing including
trans-acting RNA-binding proteins (RBPs), components of the spliceosome, and the
pre-mRNA itself. Pre-mRNA structure is a key attribute that directs splicing, particularly
alternative splicing, but we have a limited understanding of pre-mRNA structure-
mediated splicing mechanisms (Taylor and Sobczak 2020). It has proven challenging to
develop quantitative models capable of predicting splicing outcome, specifically the
percent spliced in (PSI) for alternatively spliced exons. It is especially difficult to predict
outcome alterations due to genetic variation at exon-intron junctions because mutations
affect both the binding by RBPs and also pre-mRNA structure (Tazi, Bakkour, and
Stamm 2009).

The consequences of mutations on pre-mRNA structure are difficult to predict. First,
little is known about native pre-mRNA structure because pre-mRNAs are relatively
short-lived in cells (Herzel et al. 2017). Only recently has high-resolution in-cell
experimental characterization been applied to pre-mRNA structure determination
(Mustoe, Busan, et al. 2018; Sun et al. 2019; Liu et al. 2021; Bubenik et al. 2020).
Second, it is not clear which structures within a pre-mRNA modulate spliceosome
assembly and activity. Finally, quantitative measures for the relative weighting of RBP
affinity for individual motifs within a pre-mRNA relative to the importance of pre-mRNA

structure are lacking.
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In this study, we exploited several technical developments that address these issues to
develop an integrated, RNA structure-based framework that accurately predicts splicing
outcomes. We measured endogenous pre-mRNA structure in cells taking advantage of
recent developments in mutational profiling (MaP) approaches for read-out of chemical
probing data (Homan et al. 2014) with targeted amplification of specific exon-intron
junctions. This novel approach enabled us to obtain single-nucleotide RNA structure
probing data for endogenous pre- and mature mRNAs in the same cell. Our RNA
structure modeling considers the equilibrium between multiple alternative structures
(Dethoff et al. 2012; Lai et al. 2018) and employed data-guided Boltzmann suboptimal
sampling (Spasic et al. 2018) to predict free energies of unfolding for structures in the
ensemble. We additionally leveraged recent high-resolution structures of the
spliceosome at various stages of the splicing cycle to deduce the effective spliceosomal
footprint on pre-mRNA (L. Zhang et al. 2019), quantitative analysis of exonic and
intronic splicing enhancers/silencers (Fairbrother et al. 2002; Z. Wang et al. 2004; Yang
Wang, Ma, et al. 2012; Yang Wang, Xiao, et al. 2012) and a B-regression weighting
(Ferrari and Cribari-Neto 2004).

For validation of our framework, we studied the effects of 47 experimentally measured
mutations near the exon 10 — intron 10 junction of the human MAPT gene, which
encodes the Tau protein (Park, Ahn, and Gallo 2016; Catarina Silva and Haggarty
2020). Exons 9, 10, 11, and 12 encode the critical microtubule binding repeat domain in
Tau. Exons 9, 11, and 12 are constitutively spliced, but exon 10 is alternatively spliced
resulting in MAPT isoforms with either four microtubule binding repeats (4R) or three
repeats (3R) when exon 10 is included or skipped, respectively. The normal ratio of 3R
to 4R isoforms is approximately 1:1 (Hefti et al. 2018). Twenty-nine clinically validated
disease-causing mutations have been identified in the region of the exon 10 — intron 10
junction (Stenson et al. 2003). These mutations result in impaired Tau function and are
implicated in neurodegenerative disease (Spillantini et al. 1998; Hutton et al. 1998;
Clark et al. 1998; Rizzu et al. 1999; Goedert et al. 1999). Although some mutations alter
the Tau protein sequence (Mirra et al. 1999; Iseki et al. 2001), 20 of the disease-

associated mutations deregulate MAPT pre-mRNA splicing altering the ratio of 3R to 4R
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(Hutton et al. 1998; D’Souza et al. 1999; Hasegawa et al. 1999; Jiang et al. 2000). The
effect of an additional 27 mutations on exon 10 inclusion have been experimentally
determined using cell-based splicing assays (D’Souza and Schellenberg 2000; Tan et
al. 2019; Grover et al. 1999). The exon 10 junction is the best experimentally
characterized junction of clinical importance in the human genome and is thus an
excellent system for developing forward-predictive models of splicing. Our work
provides a framework for integrating endogenous pre-mRNA structure probing data with
a structure-based understanding of spliceosome assembly and trans-acting RBPs to

qualitatively predict the effect of mutations at exon-intron junctions on splicing.

Results

MAPT 3R and 4R mRNA isoforms are expressed at a consistent 1:1 ratio across
tissues

To confirm that MAPT pre-mRNA splicing results in a 1:1 ratio of alternatively spliced
isoforms (Goedert et al. 1989; Andreadis 2005) in a large population, we analyzed RNA-
sequencing data from the Genotype-Tissue Expression (GTEx) database (Lonsdale et
al. 2013). We analyzed data from tissue types with median MAPT transcripts per million
greater than 10 (Figure 1-figure supplement 1A) and calculated the PSI value for exon
10 for each sample (Figure 1A-source data 1; Materials and methods). We examined
data from 2,315 tissue samples from 375 individuals of median age 61 (Figure 1A and
Figure 1—figure supplement 1B). A PSI of 0 indicates that none of the MAPT transcripts
in a sample included exon 10 (3R), whereas a PSI of 1 corresponds to exon 10

inclusion in all transcripts in a sample (4R).

PSI for exon 10 varied across tissue types and within and between individuals.
However, 75% of samples were within a standard deviation of the median PSI of 0.54,
demonstrating that the 3R to 4R isoform ratio was close to 1:1 among individuals and
across tissues. Within the brain, the pituitary gland demonstrated the largest variation in
PSI and the cerebellum the least variation. The pituitary gland also had the lowest
median PSI (0.38). However, the median PSI differed by no more than 0.25 across all
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brain tissues. Interestingly, although MAPT function in breast tissue is not understood
compared with its function in the brain, there was greater variation in PSI in breast
tissue, and the median PSI in breast tissue was lower than in the pituitary gland (Figure
1—figure supplement 1B). There was also a large amount of variation within tissues of
an individual (Figure 1-figure supplement 1C), although there was significantly greater
variation between than within individuals (see Supplementary file 1 for ANOVA table).
Furthermore, exon 10 inclusion variability (0.2) was between the variability for a MAPT
constitutively spliced exon (0.1) and another MAPT alternatively spliced exon (0.3)
(Figure 1-figure supplement 1D). As levels of RBP expression varied considerably
across individuals and tissues (Figure 1-figure supplement 1E), sequence and

structural features of the MAPT pre-mRNA likely regulate inclusion of exon 10.

Structures of 3R and 4R MAPT mature mRNA isoforms are similar and mostly
unstructured

The structures of the mature 3R and 4R isoforms and MAPT pre-mRNA have not been
assessed in their endogenous context in cells. Here, we used dimethyl sulfate probing
read out by mutational profiling (DMS-MaP) as described previously (Mustoe et al.
2019; Homan et al. 2014) to asses MAPT pre-mRNA and mature mRNA structures in
T47D cells, a breast cancer line, and in neuronal SH-SY5Y cells. We used region-
specific primers (Smola et al. 2015) to selectively amplify mature 3R and 4R transcripts
during library preparation (Supplementary file 4; Materials and methods). This approach
leverages the read-through capability of MaP technology to probe the structure of
distinct alternatively spliced isoforms in the same cells. High DMS reactivities
correspond to less structured regions, whereas low DMS reactivities correspond to
more structured regions. DMS reactivities for replicates and cell lines were highly
correlated (Figure 1-figure supplement 2A; Figure 1—figure supplement 2B; Figure 1—

figure supplement 2D; Figure 1-figure supplement 2E).

As an internal control for our probing experiments, we also collected DMS-MaP data for
the small subunit ribosomal RNA (SSU), which has a well-defined secondary structure

(Petrov et al. 2014). As expected, the DMS reactivities of unpaired nucleotides were
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significantly higher than for paired nucleotides both for RNA probed in cells and for RNA
isolated from cells prior to probing (Figure 1-figure supplement 3A and B). This
experiment confirmed that our DMS probing recapitulates native RNA secondary
structure regardless of the presence of proteins, consistent with previous studies
(Woods et al. 2017; Lackey et al. 2018). We used the SSU in-cell reactivity data to
calibrate the estimation of equilibrium ensembles (Materials and methods), and we
confirmed that structure modeling guided by experimental DMS reactivities yielded a
more accurate estimation of the SSU structure than the model not informed by chemical

probing data (Figure 1-figure supplement 3C).

The median in-cell DMS reactivity of the mature MAPT isoforms was 0.22, significantly
greater than the median in-cell DMS reactivity of the SSU, which was 0.008 (Figure 1—
figure supplement 3D). This difference was recapitulated in cell-free samples (Figure 1—
figure supplement 3D). These results suggested that the nucleotides of the mature
MAPT isoforms were more accessible and less paired overall as compared with the
highly structured SSU. Reactivities of exon 9 and exon 11 were highly correlated
between the 3R and 4R isoforms (Figure 1B and C; Figure 1—figure supplement 2C). In
the 4R isoform, approximately 89% of base pairs were contained within the exon units;
only 11% of base pairs were between residues from exon 10 with those of exon 11
(Figure 1-figure supplement 2F). This result suggests that the mature exons fold as

independent structural units.
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Figure 1: 3R and 4R mature MAPT transcripts are expressed in a 1:1 ratio in samples
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from human subjects and mature exons appear to fold as independent structural units.

A) Ratio of 3R and 4R MAPT transcripts is approximately 1:1 among brain tissues.
There are 14 exons alternatively spliced in MAPT. Exons 4A, 6, and 8 are not
found in brain mRNA. The four exons highlighted in color are repeat regions that
form the microtubule binding domain in the Tau protein. Exon 10 is alternatively
spliced to form the 3 repeat (3R) or 4 repeat (4R) isoform. This is highlighted by
the alternate lines from the 5’ splice site of Exon 9 to either the 3’ splice site of
Exon 10 (4R) or the 3’ splice site of Exon 11 (3R). The six canonical transcripts
found in the central nervous system can be separated into 3R and 4R transcripts.
Percent Spliced In (PSI) of Exon 10 was calculated from RNA-seq data for 2315
tissue samples representing 12 central nervous system tissue types and
collected from 375 individuals in GTEx v8 database. The violin plot for each
tissue type and the corresponding region on the brain diagram is colored by the
median PSI for all samples of a given type. The patterned regions on the brain

diagram indicate tissue types with no data. Tissue types Spinal cord and Nucleus
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accumbens are not visualized on the brain diagram. The median PSI of 0.54
among all tissue samples is indicated by the red dotted line.

In-cell DMS-MaP structure probing data across Exon 9 — Exon 11 junction of 3R
mature MAPT transcript. T47D cells were treated with DMS. Structure probing
data for junctions of interest were obtained using amplicon sequencing with
region-specific primers (Supplementary file 4) following RT of extracted RNA.
DMS reactivity is plotted for each nucleotide across spliced junctions. Each value
is shown with its standard error and colored by reactivity based on color scale.
High DMS reactivities correspond to less structured regions, whereas low DMS
reactivities correspond to more structured regions. The base pairs of the
predicted secondary structure guided by DMS reactivities (using A/C nucleotides
only) are shown in the arcs colored by pairing probabilities.

C) In-cell DMS-MaP structure probing data across Exon 9 — Exon 10 — Exon 11

junction of 4R mature MAPT transcript

MAPT pre-mRNA Exon 10-Intron 10 junction is more structured than the mature

isoforms in cells
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RNA structure around exon-intron junctions has been shown to regulate alternative
splicing (Warf and Berglund 2010; Buratti and Baralle 2004), and a hairpin structure at
the exon 10 — intron 10 junction of MAPT pre-mRNA is implicated in establishing the 3R
to 4R 1:1 isoform ratio (Hutton et al. 1998; Varani et al. 1999; Grover et al. 1999;
Donahue et al. 2006). The structure of the MAPT pre-mRNA in the exon 10 — intron 10
junction region has been studied using biophysical techniques and chemical probing of
in vitro-transcribed fragments and using computational methods (Varani et al. 1999;
Lisowiec et al. 2015; Tan et al. 2019; Chen et al. 2019), but the pre-mRNA structure had
not previously been analyzed in cells. We obtained DMS-MaP data for this junction from
endogenous pre-mRNA in T47D cells (Figure 2A). Replicates were highly correlated
(Figure 2—figure supplement 1A). Similar reactivity data were also observed in SH-SY5Y
cells (Figure 2—figure supplement 1C), despite the likely differences in RBP populations

compared to T47D cells (Figure 1—figure supplement 1E).

The reactivities for exon 10 in the pre-mRNA and mature 4R isoform were highly
correlated (Figure 2—figure supplement 1B). This high correlation was unexpected given
that the pre-mRNA undergoes splicing during the 5-minute treatment of the cells with
DMS. As we observed for the mature 4R isoform, exon 10 in the pre-mRNA mostly
formed base pairs with other exon 10 nucleotides (Figure 2—figure supplement 1F).
However, when we compared DMS reactivities for pre-mRNA and the mature 4R
isoform, we found that DMS reactivity in exon 10 was significantly lower for the pre-
mRNA (median in-cell DMS reactivity: 0.08) than for the 4R isoform (median in-cell
DMS reactivity: 0.22) (Figure 2—figure supplement 1D, E). This was also the case for
RNA probed under cell-free conditions. The pre-mRNA is thus apparently more

structured than mature mRNA independent of protein protection.

Disease mutations change the MAPT pre-mRNA structural ensemble and splicing

of exon 10

Many RNAs adopt an ensemble of structures instead of a single structure (Halvorsen et

al. 2010; Adivarahan et al. 2018). We posited that a structural ensemble near the MAPT

exon 10 — intron 10 junction regulates exon 10 splicing and that disease-associated
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mutations alter the composition of the structural ensemble to disrupt splicing regulation.
We used Boltzmann sampling of RNA structures supported by DMS reactivity data
(Spasic et al. 2018) (Materials and methods) to sample 1000 structures each for the
wild-type. We also generated ensembles for two RNAs that bear mutations in intron 10
that are known to alter MAPT splicing: (i) an A to C mutation at position +15 (+15A>C)
that favors 3R isoform, and (ii) a C to G mutation at position +19 (+19C>G) that favors
the 4R isoform (Tan et al. 2019). These mutant ensembles were generated using the
same DMS reactivities as the wild-type RNA, with the exception of the mutation site
(see Materials and methods), and thus provide a well-controlled prediction of the impact
that each mutation will have on the ensemble.

We visualized the structural ensemble for the 3000 structures using t-Distributed
stochastic neighbor embedding (t-SNE) (Van Der Maaten and Hinton 2008) and
identified five clusters (Figure 2B; Materials and methods). Each dot in the t-SNE plot
(Figure 2B) corresponds to a single structure and is colored by the AG* of unfolding
(Mustoe, Busan, et al. 2018) of the 5’ splice site, defined as the last three nucleotides of
Exon 10 and the first six nucleotides of Intron 10 (Yeo and Burge 2004). The AG# is the
cost of disrupting a given structure without allowing the RNA to refold (Mustoe, Busan,
et al. 2018; Mustoe, Corley, et al. 2018). We quantified and visualized the density of
structures from the t-SNE plot (Figure 2C) and calculated representative structures for
each cluster (Figure 2D and Figure 2—figure supplement 2B; Materials and methods).
The wild-type sequence forms structures distributed across the entire space with about
70% of structures found in Clusters 2, 3, and 4 (Figure 2—figure supplement 2B). By
contrast, in the +19C>G mutant that strongly favors the 3R isoform (Tan et al. 2019),
more than 55% of structures belong to Cluster 1, which is defined by a fully base-paired
5’ splice site (Figure 2D). Conversely, greater than 50% of structures in the ensemble of
the +15 A>C mutant (Cluster 5), which shifts the isoform balance entirely to 4R (Tan et
al. 2019), were characterized by lower AG* of unfolding for the splice site region (Figure
2B, C). Correspondingly, the 5’ splice site for the Cluster 5 representative structure was

less structured than that of Cluster 1 (Figure 2D). Based on these results, we concluded

10
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that mutations shift the structural ensemble of the MAPT exon 10 — intron 10 junction,

and these structural shifts correspondingly change exon 10 splicing.

11
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Figure 2: The 4R and 3R mutations shift DMS reactivity-guided structural ensemble of

Exon 10 — Intron 10 junction to be less structured and more structured, respectively.

A)

In-cell DMS-MaP structure probing data across Exon 10 — Intron 10 junction of
precursor MAPT transcript in T47D cells. Structure probing data for junctions of
interest were obtained using amplicon sequencing with primers (Supplementary
file 4) following RT of extracted RNA. DMS reactivity is plotted for each
nucleotide. Each value is shown with its standard error and colored by reactivity
based on the color scale. High median DMS reactivities correspond to less
structured regions, whereas low median DMS reactivities correspond to more
structured regions. Base pairs of predicted secondary structure guided by A/C
DMS reactivities are shown by arcs colored by pairing probabilities. Strongly
predicted hairpin structure near exon-intron junction is highlighted by dotted box.
t-SNE Visualization of structural ensemble of wildtype (WT) and, +19C>G (3R)
and +15A>C (4R) mutations. Structures were predicted using Boltzmann
suboptimal sampling and guided by DMS reactivity data for A/C nucleotides
generated in A. Data were visualized using t-Distributed Stochastic Neighbor
Embedding (t-SNE). Shown are 3000 structures corresponding to 1000
structures per sequence. Each dot represents a single structure and is colored by
the calculated unfolding free energy of the 5’ splice site at exon-intron junction (3
exonic, 6 intronic bases). Clusters have been circled and enumerated using k-
means clustering with k=5.

Density contour plots of structural ensemble of WT and, 3R and 4R mutations.
Contour plots were derived from the distribution of points on the t-SNE plot in B.
The darker the blue, the higher the density of structures. Contour lines
additionally represent density of points. Color scales for the three plots are
identical. Inserts are gel images from representative of splicing assays using a
reporter plasmid expressing either the wild-type sequence (WT), the +19C>G
(BR) mutation or +15A>C (4R) mutation in HEK293 cells, where the RNA was
extracted and reverse transcribed to measure the isoform ratio using specific
PCR amplification (Materials and methods). In WT, both 3R (Exon 9 — Exon 11)
and 4R (Exon 9 — Exon 10 — Exon 11) isoforms are expressed (two bands). In

13
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the presence of the 3R mutation, only the 3R isoform is expressed (one band)
whereas for the 4R mutation only the 4R isoform is expressed (one band). Gel
insets for the 3R and 4R mutation are in their respective density plots.

D) Representative structures for the five clusters are shown. The cluster number is
indicated below each structure. The exon-intron junction is marked by EIJ on
each structure. Positions of 3R and 4R mutations are marked by a red asterisk

on their respective representative structures.

Unfolding mRNA within the spliceosome B2°t complex footprint yields the best

prediction of Exon 10 splicing level

14
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RNA structure has been shown to control alternative splicing by regulating accessibility
of key regions to spliceosome components (McManus and Graveley 2011; Warf and
Berglund 2010). The 5’ splice site is the minimum region of RNA that must be
accessible for base pairing with the U1 snRNA (Blanchette and Chabot 1997; Singh,
Singh, and Androphy 2007). In our structural ensemble analysis of the MAPT exon 10 —
intron 10 junction (Figure 2), we found that shifts in the unfolding energy of the 5’ splice
site in wild-type and mutant pre-mRNAs corresponded to changes in exon 10 inclusion
levels. However, the splicing cycle, orchestrated by the spliceosome, traverses multiple
stages to prepare the pre-mRNA and catalyze the two-step splicing reaction (Matera
and Wang 2014) (Figure 3A). The RNA itself adopts many conformations as different
components of the spliceosome bind to it (L. Zhang et al. 2019). Hence, we
hypothesized that more than just the 5’ splice site nucleotides might need to unpair to
facilitate the splicing reaction. We analyzed high-resolution cryo-EM structures of the
human spliceosome at Pre-B (PDB ID: 6QX9), B (PDB ID: 509Z), Pre-B2¢! (PDB ID:
7ABF), and B?°t (PDB ID: 5Z56) stages (Charenton, Wilkinson, and Nagai 2019;
Bertram et al. 2017; Townsend et al. 2020; X. Zhang et al. 2018) to quantify the number
of nucleotides around the 5’ splice site associated with the spliceosome (Materials and
methods). The number of pre-mRNA nucleotides, as observed in each structure,

increased through the splicing cycle (Figure 3A).

To identify the spliceosome complex footprint that best predicts splicing outcome, we
examined the relationship between unfolding energy and splicing outcome for 20
synonymous or intronic mutations in exon 10 and intron 10 (Figure 3—figure supplement
1A). These mutations are more likely to affect splicing (Supek et al. 2014; H. Lin et al.
2019) and structure (Sharma et al. 2019; C. L. Lin, Taggart, and Fairbrother 2016) than
mutations that alter the protein sequence. The distribution of AG* of unfolding of the 5’
splice site in the presence of these mutations was correlated with exon 10 PSI (Figure
3-figure supplement 1B). We then calculated the AG* of unfolding of the RNA for
regions overlapping the 5’ splice site that correspond to the footprints of each of the four
spliceosome intermediates. Features of the unfolding AG* distribution, including mean

and standard deviation, were then used in a B-regression to predict exon 10 PSI

15
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(Materials and methods; Eq. 2). Unfolding larger regions around the 5’ splice site
improved the predictive power of the model, and the B2t complex footprint yielded the
best prediction accuracy (R? = 0.89; Figure 3B). Crucially, we found that using features
of the distribution of unfolding AG* in the structural ensemble produced greater
predictive power than simply using the unfolding AG* of a single minimum free energy
structure, supporting the importance of RNA ensemble behavior to splicing outcome
(Figure 3—figure supplement 1C). We performed bootstrapping cross-validation and
confirmed that unfolding the RNA within the B2 spliceosome complex yielded the best
prediction (Figure 3C). Synonymous mutations that alter exon 10 inclusion lie a mean
distance of 54 nucleotides from the exon-intron junction, whereas those in the intron are
a mean of 14 nucleotides from the junction. The variation in bootstrapped correlation
coefficients decreased as a larger region around the exon-intron junction was unfolded,

suggesting that the synonymous mutations affect distal structures.

We then tested the structural ensemble-based model on an additional 24 non-
synonymous and compensatory mutations found in exon 10 and intron 10.
Compensatory mutations are double mutations that were designed to rescue changes in
exon 10 splicing caused by a single mutation (Grover et al. 1999). Although the model
performed well for compensatory mutations (median bootstrapped R?=0.76), it yielded
significantly less accurate predictions for non-synonymous mutations (median
bootstrapped R?=-0.21) (Figure 3—figure supplement 1D). One clear limitation of this
structure-only model is that it does not account for the effects of mutations on potential
splicing regulatory elements (SREs) in the sequence, which are also known to control
alternative splicing (Z. Wang and Burge 2008).

16
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A)

Spliceosome footprint on pre-mRNA during splicing cycle. Structure in the center
of the cycle is the WT representative structure from Fig 2B. The dotted box
indicates the zoomed-in region at each stage of interest. Cryo-EM structures of
the human spliceosome complex at stages Pre-B (PDB ID: 6QX9), B (PDB ID:
509Z), Pre-B2°t (PDB ID: 7ABF) and B2t (PDB ID: 5Z56) are available in the
Protein Data Bank. The region around the 5’ splice site of pre-mRNA within the
spliceosome at each stage is highlighted in blue on the zoomed-in representative
structure. The number of nucleotides for each stage is as follows: Pre-B (2
exonic, 8 intronic); B (10 exonic, 17 intronic); Pre-B3% (9 exonic, 20 intronic); B3t
(12 exonic, 31 intronic). These values represent the minimum number of
nucleotides required to be unfolded to be accessible to the spliceosome. The
mean free energy and standard error to unfold RNA within the spliceosome at
each stage is calculated for the WT structural ensemble and indicated under the
zoomed-in structure.

Exon 10 PSls of synonymous and intronic mutations predicted with the unfolding
free energy of pre-mRNA within the spliceosome in B, Pre-B, Pre-B3®, B! stages
versus corresponding experimental PSls measured in splicing assays. Exon 10
PSIs were predicted using Eq. 2. Grey line represents the best fit with dotted
lines indicating the 95% confidence interval. Pearson correlation coefficients (R?)
of experimental to predicted PSls were calculated for each stage. Violin plots
(inset) show R?2s calculated for each mutation category by training and testing on
subsets of all mutations by non-parametric bootstrapping; Synonymous (n=6),
Intronic (n=14), Wildtype (n=1).

C) Overall Pearson correlation coefficients (R?) calculated for experimental versus

predicted Exon 10 PSIs by nonparametric bootstrapping of mutations. Subsets of
mutations were randomly sampled 10 times, trained and tested using unfolding
free energy of the exon-intron junction region of pre-mRNA within the
spliceosome for the respective splicing stage. Pearson’s R? was calculated by
comparing predicted PSls to experimental PSls. A two-tailed Wilcoxon Rank

Sum test was used to determine significance between B2 complex and the other
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three complexes. Level of significance: ***p-value < 106, **p-value < 0.001, * p-

value < 0.01

Consideration of motif strengths of splicing regulatory elements improves
prediction of Exon 10 PSI for non-synonymous mutations

Exon 10 splicing is highly regulated by differential binding of RBPs to cis-SREs within
exon 10 and intron 10 (Qian and Liu 2014). The expression patterns of RBPs known to
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bind MAPT pre-mRNA vary across tissues and individuals (Figure 1-figure supplement
1E) and are not predictive of exon 10 PSI. Additionally, while our structure-only model
performs moderately well for 47 mutations (R?=0.74) (see Supplementary file 2 for
further details about mutations), the structure only model performs particularly poorly for
non-synonymous mutations (median bootstrapped R? = -0.21, Figure 4-figure
supplement 1B). Hence, we hypothesized that consideration of mutation-induced
changes in binding of SREs might improve our model. We identified SREs by similarity
to reported general enhancer and silencer hexamer motifs (Fairbrother et al. 2002; Z.
Wang et al. 2004; Yang Wang, Ma, et al. 2012; Yang Wang, Xiao, et al. 2012)
(Materials and methods), and calculated changes to splice site, enhancer, and silencer
motif strengths due to mutations (Figure 4A; Materials and methods). We found that
using splice site strength as the sole predictor yielded poor prediction of exon 10 PSI for
all mutation categories (Figure 4B; Eq. 4). There was a weak positive correlation
between PSI and enhancer strength and a significant negative correlation between PSI
and silencer strength (Figure 4A and Figure 4—figure supplement 1B). When exon 10
PSI was modeled with the changes to the motif strength of all splicing regulatory
elements, prediction accuracy increased (R?=0.51; Figure 4C) compared with that
obtained when only splice site strength was considered (R?=0.29); for non-synonymous

mutations accuracy was even higher (R2=0.75).

Many RBPs have been identified that regulate MAPT exon 10 splicing (Qian et al. 2011;
lan D’'Souza and Schellenberg 2006; Kondo et al. 2004; J. Wang et al. 2004; Gao et al.
2007; S. Ding et al. 2012; Broderick, Wang, and Andreadis 2004; Yan Wang et al. 2010;
Kar et al. 2006, 2011; P. Ray et al. 2011). To determine whether focusing on binding
motifs for these proteins would improve model accuracy, we identified RBP sites based
on previous data from high-throughput sequencing of bound RNAs (Dominguez et al.
2018; D. Ray et al. 2013) (Materials and methods). Unlike SRE motifs, there was no
clear pattern or correlation between motif strength changes due to MAPT mutations and
exon 10 PSI (Figure 4—figure supplement 2A, B). Model prediction accuracy was lower
(R2=0.08, Figure 4—figure supplement 2C) than when predictions considered general
SRE motifs. Thus, going forward we chose to use SRE motifs for our combined models.
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Figure 4: Combining the strength of all splicing regulatory elements significantly
improves prediction of Exon 10 PSI compared to using only splice site strength

A) Heatmap of splicing regulatory element (SRE) relative strength for 47 mutations
compared with wildtype (WT). A value of 0 indicates mutation does not change
WT SRE strength, positive values indicate SRE strength is greater than WT, and
negative values indicate SRE strength is weaker than WT. Splice site strengths
were calculated using MaxEntScan; a splice site was defined as the last 3
nucleotides of the exon and first 6 nucleotides of the intron. Enhancer and
silencer strengths were calculated from position weight matrices of known motifs
derived from cell-based screens (Materials and methods). Mutation Type refers
to whether the mutation is exonic non-synonymous, exonic synonymous, intronic
or compensatory. Experimental Label is the label given by the original study that
experimentally validated each mutation using a splicing assay.

B) Exon 10 PSls of 47 mutations predicted from change in splice site strength and
plotted against experimental PSls measured in splicing assays. Exon 10 PSls
predicted using Eq. 4. Each point on the scatterplot represents a mutation and is
colored by mutation category. Grey line represents the best fit with dotted lines

indicating the 95% confidence interval. Pearson correlation coefficient (R?)
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calculated of experimental to predicted PSls. Violin plot shows R2s calculated for

each category by training and testing on subsets of all mutations by non-

parametric bootstrapping; Exonic non-synonymous (n=11), Exonic synonymous

(n=7), Intronic (n=15), Compensatory (n=14), Wildtype (n=1).

C) Exon 10 PSls of 47 mutations predicted by combining change in splice site,

enhancer, and silencer strength and plotted against experimental PSls measured

in splicing assays. Exon 10 PSls predicted using Eq. 5.

Model with both RNA structure and SRE motif changes yields best prediction of
exon 10 PSI
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We next set out to determine if combining both structural and SRE features further
improved prediction. Indeed, a combined interactive model consistently produced more
accurate predictions of Exon 10 PSI compared with a structure-only model and an SRE-
only model for all mutation categories (R? = 0.89; Figure 5A, B). An alternative additive
model had lower prediction accuracy (R?= 0.80) (Figure 5-figure supplement 1A),
particularly for non-synonymous mutations (Figure 5-figure supplement 1B. This
suggests that considering the category of mutation is critical in accurately modeling the

effects on splicing.

To determine whether structure or SRE changes were responsible for the splicing
phenotype of each individual mutant, we hierarchically clustered the four primary
features (structure around 5’ splice site, 5’ splice site strength, enhancer strength,
silencer strength) for the 47 mutants that have been experimentally characterized
(Materials and methods). Six categories emerged from the clustering of features (Figure
5C, and Figure 5—figure supplement 1C). For about 51% of mutations, both structure
and SRE motif strength were altered in the same direction to either promote or inhibit
exon 10 inclusion (Figure 5D). For the remaining mutations, structure and SRE strength
changed in opposite directions. For 17% of mutants, structure dominated the direction
of splicing. For about 23%, SRE strength was dominant (Figure 5D). Overall, these
results support the conclusion that structure and SREs have equally important effects

on regulation of splicing at this exon-intron junction.
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Figure 5. Combining structure and SRE strength into a unified model best predicts exon
10 PSI

A) Exon 10 PSls of 47 mutations predicted from combined model using structure

and SRE strength and fit to experimental PSls measured in splicing assays.

Exon 10 PSls predicted using Eq. 7. Each point on scatterplot represents a

mutation and is colored by mutation category. Grey line represents the best fit

with dotted lines indicating the 95% confidence interval. Pearson correlation

coefficient (R?) calculated of experimental to predicted PSls.

B) Violin plots of correlation coefficients for each mutation category for structure

model, SRE model, and combined model. R2s calculated for each mutation

category by training and testing on subsets of all mutations by non-parametric

bootstrapping 10 times. Structure model uses unfolding free energy of pre-mRNA

within spliceosome at B2t stage as predictor. SRE strength model uses relative

25



614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

change in SRE strength as predictor. Combination model using both structure
and SRE strength and weighs the features based on if mutation is
intronic/synonymous or non-synonymous (Materials and methods).

Heatmap of the normalized changes in structure and SRE strength for each
mutation clustered by affected features. Features were normalized such that a
value of 1 predicts Exon 10 being spliced in (4R isoform, blue), whereas a value
of 0 implies Exon 10 should be spliced out (3R isoform, red). Mutations were
clustered using hierarchal clustering on normalized features (Materials and
methods). Experimental PSls are plotted for each mutation with a PSI of 1
colored as blue, PSI of 0.5 colored as white and PSI of 0 colored as red.

Pie chart showing the features that regulate Exon 10 splicing for the 47
experimentally validated mutations. The pie chart was generated based on the
heatmap in C. Exon 10 splicing for 51.1% of mutations is supported by changes
in both structure and SRE, which implies that structure, at least one SRE, and
PSI are either all blue or all red in the heatmap in Figure 5C. Exon 10 splicing for
23.4% of mutations is supported by changes in SRE wherein one of the SREs is
the same color as PSI. For 17.0% of mutations, structural changes support Exon
10 splicing wherein structure and PSI are the same color. For 4 mutations

(8.5%), the colors of none of the features match the color of PSI.

Mutations around the MAPT exon 10 — intron 10 junction skew to exon 10

inclusion
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We next interrogated the model by performing a systematic in silico mutagenesis
analysis of the 100 nucleotides spanning the exon 10 — intron 10 junction (Figure 6A).
Our model predicted that most mutations should result in inclusion of exon 10. This bias
is consistent with the observation that about 75% of known disease-associated
mutations in this region induce exon 10 inclusion (Figure 6B and Figure 6—figure
supplement 1A). We found that a significantly greater proportion of disease-inducing
mutations (76.4%) result in changes to both structure and SRE compared with
uncategorized mutations (36.0%) (Figure 6C). Thus, mutations that alter both structure
and SREs have a greater likelihood of causing disease than mutations that alter only
structure or only an SRE. Intriguingly, mutations overall caused a slight skew toward a
more structured exon-intron junction that would be expected to decrease inclusion of
exon 10 (Figure 6A, Figure 6-figure supplement 1B); however, these same mutations
altered SRE strength in a manner that skewed toward increased inclusion of Exon 10
(Figure 6-—figure supplement 1C), indicating that SREs act to counter the effect of
structural changes. Our modeling suggests that a complex balance of structure and
RBP binding results in the observed 1:1 ratio of the 3R to 4R MAPT isoforms.

To assess the general applicability of our model beyond our mutation training set, we
predicted Exon 10 PSils for 55 variants of unknown significance (VUSs) found in dbSNP
(see Supplementary file 3 for further details of VUSs). VUSs are mutations observed in
the human population but are not currently associated with disease. The mean Exon 10
PSI for VUSs was 0.66, and 70% were within a standard deviation of the mean (Figure
6D). We observed that only a few mutations were predicted to have a PSI of zero (3R)
(Figure 6D red bar). We therefore used splicing assays to experimentally determine the
splicing preference of six instructive variants (Materials and methods): 3 VUSs predicted
to be 3R, 1 VUS predicted to be 4R, and 2 VUSs predicted to maintain the WT splicing
ratio (Figure 6D). We found that all six predictions were correct (Figure 6E, Figure 6-
figure supplement 1D). The three 3R VUSs caused the region around the exon-intron
junction to become more structured while the 4R VUS made this region less structured
compared to WT (Figure 6-figure supplement 1E). SRE strength changes correctly
predict Exon 10 splicing direction for +30U>C and -6G>A (Figure 6-figure supplement
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675 1F). For +23U>C and +26G>A, we observed changes in the degree of structure around
676  the exon-intron junction and silencer strengths in diverging directions (Figure 6-figure
677 supplement 1E, F) suggesting that these opposing changes preserve the WT 3R/4R

678 ratio.
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A)

B)

Heatmap of predicted Exon 10 PSils for every possible mutation around 100
nucleotide window of Exon 10 — Intron 10 junction. Combined model was trained
using 47 mutations with experimental PSls measured from splicing assays as
shown in Figure 5A and then used to predict PSls for all mutation combinations
for 100 nucleotides around the junction. Tiles with sequence indicate the wild-
type nucleotide at the position. Heatmap of mean PSI per position and mean
relative change in unfolding free energy of pre-mRNA within spliceosome at Bat
stage compared with wild type is shown below the gene diagram.

Violin plot of predicted PSls for all possible mutations around Exon 10 — Intron 10
junction and only disease mutations. All possible mutations (n=300), disease
mutations (n=17). A two-tailed Wilcoxon Rank Sum test was used to determine

* k%

significance between the two categories. Level of significance: ***p-value < 108,
**p-value < 0.001, * p-value < 0.01

Pie chart showing features that drive Exon 10 splicing for disease and presently
uncategorized mutations. The pie chart was generated by quantifying the number
of mutations for which the direction of predicted Exon 10 PSI matched the
direction of structure or SRE change. Exon 10 splicing for 76.4% of disease
mutations is supported by changes to both structure and SRE compared with
only 36.0% of uncategorized mutations. The difference in proportions was tested
with a one-tailed Fisher’'s exact test.

Histogram displaying the distribution of predicted PSls using the combined model
for 55 variants of unknown significance (VUSs) found in dbSNP. Density curve
was overlaid on top of histogram showing that predicted PSls skew away from
3R. Dotted line shows mean predicted PSI of 0.66. VUSs tested in splicing
assays are indicated by their dbSNP RS IDs.

Representative gel of RT-PCR data for splicing assay in the presence of VUSs.
Splicing reporter was transfected into HEK293 cells. The mean Exon 10 PSI
displayed for each variant was calculated from three replicates and standard
error is shown in brackets below. Structure diagram on left displays the location
of the VUSs tested.
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Discussion

Splicing specificity is complex (Baralle and Giudice 2017). The spliceosome does not
rely on sequence alone to correctly identify 5" and 3’ splice sites; other cues ensure
correct binding to appropriate locations. The MAPT exon 10 — intron 10 junction is a
well-studied example of the effect of 5’ splice site secondary structure on splicing
regulation. A hairpin was initially hypothesized to play a major role in splice site
accessibility because disease mutations in this structure, close to the exon-intron
junction, shifted the isoform balance to completely exclude or completely include exon
10 in the mature mRNA (Hutton et al. 1998; Grover et al. 1999). NMR, cell-free
chemical probing, and computation analyses confirmed the presence of the hairpin
(Varani et al. 1999; Chen et al. 2019; Lisowiec et al. 2015). Recent studies have shown
that structures determined in cell-free conditions can differ dramatically from those in
cells (Sun et al. 2019; Rouskin et al. 2014). Our results suggest that this is not the case
for the exon 10 — intron 10 junction region: In-cell chemical probing of the endogenous
MAPT pre-mRNA provided strong evidence for formation of this hairpin in cells and for

structural features not previously captured.

Our analysis also revealed that in cells, exonic regions were less structured than
introns, as also observed by Sun et al (Sun et al. 2019). Mature MAPT 3R and 4R are
less structured in the region of exon 9 through exon 11 than is the pre-mRNA. The high
correlations between structures of the exon in different MAPT isoforms and our finding
that predicted exon 10 folding is only slightly impacted by the presence of intron 10 or

exon 11 residues agrees with previous observations of mMRNAs. Specifically mRNAs
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which encode yeast ribosomal proteins that indicate that RNA folding in both pre- and
post-spliced exons is highly local and that most base-pairs are intra-exon (Zubradt et al.
2016).

Unlike non-coding RNAs such as the ribosome and tRNA that rely on folding to a single,
well-defined structure (Petrov et al. 2014), most RNAs are dynamic, unfolding and
refolding within a landscape (Cruz and Westhof 2009; Giegé et al. 2012). We showed
that structural ensembles have an important function at the Exon 10 — Intron 10
junction. If the 5’ splice site was always paired, only the 3R isoform would be produced.
However, the presence of 3R and 4R isoforms, usually in a 1:1 ratio implies that the
junction is accessible in a subset of the structures. We found disease-causing mutations
produced distinct shifts in the ensemble of the MAPT exon 10 — intron 10 junction
region; these shifts showed strong correlation with changes in the 3R to 4R isoform ratio
and confirmed that ensembles are essential at this junction. Our ability to accurately
predict the effects of mutations on ensembles significantly improved our quantitative
model (Figure 3 - figure supplement 1C).

The U1 snRNA base pairs with a nine nucleotide sequence around the exon-intron
junction (Roca et al. 2012). However, our analysis of cryo-EM structures of the human
spliceosomal assembly cycle revealed that a larger region of the pre-mRNA interacts
with the spliceosome and must be unfolded during splicing. Our structural model
performed most accurately when we required 43 nucleotides around the 5" exon-intron
junction to be unfolded, corresponding to the region within the spliceosome Bact
complex. This observation suggests that a large region of the pre-mRNA is dynamically
remodeled by the spliceosome, and that structures distal to the exon-intron junction can
regulate splicing. Our finding corroborates evidence that RNA structure near this exon-
intron junction is extensive (Tan et al. 2019). Note that we do not claim that all 43
nucleotides need to remain fully unpaired during the splicing cycle, as the entire cycle is
dynamic and likely involves other intermediate structures. Rather, our model argues that
mRNA unfolding and accommodation into the B2° complex is a key rate limiting step in

splicing, and considering this step is necessary to accurately model splicing outcome for
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a diverse set of mutations. Broadly, our definition of a functional footprint for splicing
parallels a similar idea for translation initiation by the ribosome (Corley et al. 2017,
Mustoe, Busan, et al. 2018; Mustoe, Corley, et al. 2018), for which the footprint is
roughly 30 nucleotides. Thus, for both translation initiation and splice site selection,

there is a region in which RNA structure functions as a rheostat.

Considerable evidence supports a function for both splicing regulatory elements (and
their corresponding RBPs) and RNA structure in controlling alternative splicing of exon
10 of MAPT (Andreadis 2012). However, the relative importance of these two factors
has been controversial. The regression model we developed clarifies that there is a
cooperative relationship between RNA structure and SREs in driving splicing outcome.
Exonic non-synonymous mutations promote splicing changes primarily by altering SRE
motifs, whereas exonic synonymous and intronic mutations altered RNA structure. A
combined model that accounted for both structure and SREs was the most accurate
predictor of exon 10 PSI (Figure 5D). It was previously proposed that exon 10 is
alternatively spliced due to a weak 5’ splice site (lan D’Souza and Schellenberg 2005),
and, indeed, we found that mutations that strengthened the splice site increase
inclusion of exon 10 (Figure 4A). SRE strength alterations overall skewed more toward
increased exon 10 inclusion, which suggest that SREs and the RBPs that bind them
buffer the effects of RNA structure to maintain the 1:1 isoform ratio.

Although structure and SREs had opposite effects on splicing outcomes, disease
variants often resulted in a synergistic effect on splicing outcome. The combined model
was directly validated by accurate prediction of the effects of six previously untested
VUSs on exon 10 splicing (Figure 6E). Few VUSs were predicted to completely exclude
exon 10 from the mature mRNA: Only five VUSs had PSls less than 0.25. Our model
accurately predicted the effect of the three with the lowest predicted PSI. Our
systematic computational mutagenesis revealed a hotspot for mutations around 25-30
nucleotides downstream of the exon-intron junction that were predicted to result in
production of only the 3R isoform (Figure 6A). Indeed, the experimentally validated
VUSs with PSils less than 0.25 were in this region.
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In principle, our splicing model can be extended to other exon-intron junctions, although
RBPs that recognize SRE motifs have different binding contexts (Dominguez et al.
2018) and the exact binding preferences of the RBPs that regulate the junction of
interest are currently unknown. Another limitation is that the current model does not
consider structural and sequence features around the 3’ splice site (in the case of
MAPT exon 10, the intron 9 — exon 10 junction), that are expected to impact exon 10
splicing regulation. Although our model provides an exact PSI prediction for each
mutation, we emphasize that its principal utility is in predicting the direction in which the
3R to 4R isoform ratio shifted from the wild-type ratio.

In brain tissue from healthy individuals, exon 10 PSls varied between individuals and
between tissues within an individual (Figure 1A). Even in individuals with progressive
supranuclear palsy, a tauopathy in which MAPT variants are implicated, there was
variability in exon 10 PSls in different brain tissues (Majounie et al. 2013). Thus,
although our model combines both structural and sequence features to achieve
quantitative prediction accuracy of the 3R to 4R ratio for a wide range of disease
mutations (synonymous, non-synonymous, intronic and exonic), it is not clear that PSI
alone is predictive of severity of disease for the broad class of tauopathies (Majounie et
al. 2013). Disease severity is compounded by other factors including gene-gene
interactions and environmental factors. As such, the value of our model stems more
from how it incorporates RNA structure in predicting alternative splicing, rather than as a
direct predictor of disease severity. Many neurodegenerative diseases are caused by
mutations around the MAPT exon 10 — intron 10 junction, and there are no approved
therapeutics that target this junction. Our work suggests that it is crucial to consider the
larger structural context of this region of the pre-mRNA and the interplay between
structure and SREs when considering the consequences of mutations on splicing

regulation and the design of potential therapeutics to alter this ratio.
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Materials and methods

Analyses of MAPT sequencing data for GTEx tissue types

Aligned BAM files of individual samples from the GTEXx v8 project for tissue types with
MAPT transcripts per million (TPM) greater than 10, were accessed in the AnVIL/Terra
environment (Kumar 2020a). Reads aligning to MAPT were extracted (Kumar 2020b)
and downloaded. Exons 2, 4, and 10 PSIs were quantified per BAM file with Outrigger
(Song et al. 2017) using the MAPT transcriptome reference from Ensembl GRCh38.
Only samples with at least 10 reads mapping across the exon-intron junction of interest
were considered. For exon 10 PSI, median values for each tissue type were calculated
and then visualized on the brain diagram with R package, CerebroViz (Bahl, Koomar,
and Michaelson 2017). Source file for Figure 1 provides exon 10 PSI values for the
2,962 samples. An ANOVA test was run in R to test significance in variation of exon 10
PSI between individuals versus within an individual (for individuals with MAPT
expression in more than seven tissues) (Supplementary file 1). TPMs for RBPs known
to affect the splicing regulation of MAPT exon 10 were extracted, and their distributions

in brain tissues were plotted using ggplot2.

Culture of T47D and SH-SY5Y cells

Mammary gland carcinoma cells (T47D) were cultured in RPMI 1640 medium,
supplemented with 10% Fetal Bovine Serum (FBS) and 0.2 units/mL of human insulin at
37°C and 5% COz2. Bone marrow neuroblastoma SH-SY5Y cells were cultured in 1:1
mixture of 1X Minimum Essential Medium (MEM) and 1X F12 medium, supplemented
with 10% FBS at 37 °C and 5% COz:.

In-cell DMS-MaP probing of MAPT RNA

Approximately 20 million T47D cells and 30 million SHSY-5Y cells were harvested by
centrifugation and resuspended in 300 mM bicine, pH 8.3, 150 mM NaCl, 5 mM MgCl2
followed by treatment with DMS (1:10 ethanol diluted) for 5 min at 37 °C as previously
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described (Mustoe et al. 2019). For the negative control (unmodified RNA) ethanol,
instead of DMS, was added to cells. After incubation, the reactions were neutralized by
addition of equal volume of ice cold 20% B-mercaptoethanol. Total RNA was extracted
using Trizol (ThermoFisher Scientific), treated with TURBODNase (ThermoFisher
Scientific), purified using Purelink RNA mini kit (ThermoFisher Scientific), and quantified

based on absorbance determined with a NanoDrop spectrophotometer.

Cell-free DMS-MaP probing for MAPT RNA

Approximately 10 million T47D cells in 10 cm plates were used. Growth media was
removed, following which cells were trypsinzed (Tryple, ThermoFisher Scientific) and
the pellet was washed with PBS. Total RNA was extracted by Trizol (ThermoFisher
Scientific), chloroform and isoamyl alcohol (24:1, Sigma-Aldrich) using phase lock
heavy tubes (5PRIME Phase Lock Gel) followed by Purelink RNA mini kit purification
(ThermoFisher Scientific) and on-column DNase digestion (PureLink DNase,
ThermoFisher Scientific). RNA was quantified by NanoDrop™ spectrophotometer. 10
ug of RNA was resuspended in 90 uL of bicine buffer (200 mM Bicine pH 8, 100 mM
NaCl and 10 mM MgCI2) with 20 U of RNase inhibitor (NEB) and incubated at 37°C for
10 minutes. Samples were treated with 10 uL of DMS diluted in ethanol (1:10) for 5 min
at 37°C. For the negative control (unmodified RNA), instead of DMS, an equivalent
amount of ethanol was added to the extracted RNA. After incubation, all reactions were
neutralized by addition of 100 uL of ice cold 20% by volume B-mercaptoethanol and
kept on ice for 5 minutes. Reaction by-products were removed by RNA purification with
the Purelink RNA mini kit (ThermoFisher Scientific) before error-prone reverse

transcription.

DMS-MaP cDNA synthesis, library construction, and sequencing of MAPT RNA
Purified RNA (9 ng) was reverse transcribed using Random Primer 9 (NEB) and
SuperScript Il reverse transcriptase under MaP conditions as described previously
(Smola et al., 2015). A no-reverse transcriptase control was also prepared. The
resultant cDNA was purified over a G50 column (GE Healthcare) and subjected to

second-strand synthesis (NEBNext Second Strand Synthesis Module). Supplementary
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file 4 lists PCR primers used for library generation. The cDNA was amplified with the
NEB Q5 HotStart polymerase. Secondary PCR was performed to introduce TrueSeq
barcodes (Smola et al. 2015). All samples were purified using the Ampure XP beads
(Beckman Coulter), and quantification of the libraries was performed with Qubit dsDNA
HS Assay kit (ThermoFisher Scientific). Final libraries were run on Agilent Bioanalyzer
for quality check. TrueSeq libraries were then sequenced as paired-end 2x151 and
2x301 read multiplex runs on MiSeq platform (lllumina) for pre-mRNA and mature
MRNA, respectively. Sequenced reads have been uploaded to the NCBI SRA database
under BioProject ID PRJNA762079 for in-cell data and PRJNA812003 for cell-free data.

In-cell DMS-MaP probing of SSU

For in-cell rRNA structure data, approximately 10 million T47D cells were used for each
condition. Growth media was removed, followed by addition of 1.8 mL of 200 mM bicine,
pH 8.3 and treatment at 37 °C with 200 pL of DMS diluted in ethanol (1.25% final DMS)
for 5 min. For the negative control ethanol was added instead of DMS. After incubation,
all reactions were neutralized by addition of equal volume ice cold 20% 3-
mercaptoethanol and kept on ice for 5 min. Total RNA was extracted using Trizol
(ThermoFisher Scientific) and chloroform and isoamyl alcohol using phase lock heavy
tubes (5PRIME Phase Lock Gel). RNA was purified using a Purelink RNA mini kit
(ThermoFisher Scientific), treated with TURBODNase (ThermoFisher Scientific), and

quantified.

Cell-free DMS-MaP probing of SSU

Approximately 10 million T47D cells were trypsinzed (Tryple, ThermoFisher Scientific),
and the pellet was washed with PBS. Total RNA was extracted using Trizol
(ThermoFisher Scientific) and chloroform and isoamyl alcohol (24:1, Sigma-Aldrich)
using phase lock heavy tubes (5PRIME Phase Lock Gel) followed by purification using
a Purelink RNA mini kit purification (ThermoFisher Scientific) and on-column DNase
digestion (PureLink DNase, ThermoFisher Scientific). RNA was quantified based on
absorbance determined using NanoDrop spectrophotometer. For each sample, 10 ug of
RNA was resuspended in 90 yL of 200 mM bicine, pH 8, 100 mM NaCl, and 10 mM
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MgCl2 with 20 U of RNase inhibitor (NEB) and incubated at 37 °C for 10 min. Samples
were treated with 10 L of DMS diluted in ethanol (1:10) for 5 min at 37 °C. For the
negative control, samples were treated with ethanol. After incubation, all reactions were
neutralized by addition of 100 yL of ice cold 20% B-mercaptoethanol and kept on ice for
5 min. Reaction by-products were removed using a Purelink RNA mini kit

(ThermoFisher Scientific) before error-prone reverse transcription.

DMS-MaP cDNA synthesis, library construction, and sequencing of SSU

Purified RNA was reverse transcribed using Random Primer 9 (NEB) and SuperScript Il
reverse transcriptase under error prone conditions (Smola et al., 2015). The resultant
cDNA was purified using G50 column (GE Healthcare) and subjected to second-strand
synthesis (NEBNext Second Strand Synthesis Module). A standard Nextera DNA library
protocol (lllumina) was used to fragment the cDNA and add sequencing barcodes.
Samples were purified using Ampure XP beads (Beckman Coulter), and quantification
of the libraries was performed with Qubit dsDNA HS Assay kit (ThermoFisher
Scientific). Final libraries were run on Agilent Bioanalyzer for quality check. Gel
purification (GenedET, ThermoFisher Scientific) was performed as needed to remove
primer dimer bands from libraries before sequencing. Libraries were sequenced as
paired-end 2x151 read multiplex runs on MiSeq platform (lllumina). Sequenced reads
have been uploaded to the NCBI SRA database under BioProject ID PRINA762079 for
in-cell data and PRJNA812003 for cell-free data.

DMS-MaP analysis

Sequenced reads were analyzed using the ShapeMapper pipeline (Busan and Weeks
2018), version (v2.1.4). DMS probing data were collected for the exon 9 — exon 11 and
exon 9 —exon 10 — exon 11 junctions using a single pair of primers listed in
Supplementary file 4. The ShapeMapper pipeline ran for the two junctions in a single
run with reference sequences for both junctions entered in one FASTA file. For the
SSU, sequenced reads were first aligned to the SSU rRNA sequence using Bowtie2

parameters from Busan and Weeks (Busan and Weeks, 2018). Using samtools,
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alignments with MAPQ score greater than 10 were kept, sorted, and converted back

into FASTQ files after which the ShapeMapper pipeline was executed.

Per-nucleotide mutation rates were obtained from the profile file output by
ShapeMapper. Raw DMS reactivities are computed as:

R; = mutrg — mutry
where mutrs is the mutation rate in the sample treated with DMS, mutru is the mutation
rate in the untreated control. Raw reactivities were then normalized within a sample and
per nucleotide type (A, C, U, G). For each nucleotide type, reactivity rates were
normalized by dividing the mean reactivity of the top 10% of reactivities after the most
reactive 2% were removed (Busan and Weeks, 2018). The Gs and Us were further
normalized to have a maximum value of 0.1 to minimize their impact on plotting
reactivities. Though only As and Cs were only used in structure modeling, all 4
nucleotide types were plotted in the reactivity figures and reported in the supplementary

material.

DMS-reactivity guided structure prediction

Previous versions of Rsample only utilized SHAPE parameters for calculation of the
partition function. In order to use DMS data to guide secondary structure modeling by
Rsample (Spasic et al. 2018)(Reuter and Mathews 2010), we used our SSU data to
calibrate the expected relationship between DMS reactivity and base-pairing status.
Since DMS primarily reacts with As and Cs, we only used reactivity data for these two
nucleotides in all of our structure modeling. Using the SSU in-cell data and the known
secondary structure (Petrov et al. 2014), we determined distributions for DMS
reactivities for unpaired nucleotides, nucleotides paired at helix ends, and nucleotides
paired in base pairs stacked between two other base pairs, which provide the sampling
distributions needed for Rsample calculations (Spasic et al. 2018). These DMS data can
be invoked by Rsample by the “--DMS” command line switch as part of RNAstructure
6.4 or later. The distributions had long tails to relatively high reactivities. We empirically
found that limiting reactivities in the histograms and in the input data to a reactivity of 5

(where higher values are set to 5) gave the best performance at improving SSU
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secondary structure prediction. The “--max 5" parameter is used with Rsample to apply

this limitation.

Base-pairing probabilities for SSU

The partition function for the SSU was generated using Rsample, using either the
sequence or using the sequence and the DMS reactivities. All possible i-j base pairing
probabilities were summed for each nucleotide jto generate a base pairing probability

per nucleotide i.

ROC curves for predicting SSU base pairs

Using the known secondary structure of the SSU, we assigned a nucleotide as either O
or 1 if it was paired or unpaired. Only As and Cs were considered. DMS reactivities
were used to predict whether a nucleotide was paired; the higher the DMS reactivity, the
more likely a nucleotide is unpaired. ROC curves and AUC values were generated
using the plotROC (Sachs 2017) R package.

Minimum free energy and base-pairing probability modeling

Minimum free energy and base-pairing probability “arc” plots were generated using
Superfold (Siegfried et al. 2014; Smola et al. 2015) modified to process DMS reactivity
data. The original Superfold function used SHAPE parameters (Deigan et al. 2009) to
fold an RNA sequence using the Fold and Partition functions of the RNAstructure
package. In our modified version of Superfold, base pairing probabilities were computed
using Rsample with DMS-specific parameters for A and C nucleotides. MFE structures
were computed using Fold from RNAstructure with DMS reactivities input using the “--
DMS” option. For structure modeling applications, G and U reactivites were set to -999

(no data).

In silico co-transcriptional folding of exon 10 — exon 11 and exon 10 - intron 10
regions
We folded exon 10 using the modified Superfold function as described above, inputting

a truncated DMS reactivity map file containing just reactivities of exon 10. We then
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added nucleotides from exon 11 or intron 10 one at a time and re-ran Superfold after
each addition inputting the DMS reactivity map file modified to only the folded
nucleotides. At every additional nucleotide, we calculated the number of base pairs
within exon 10 and the total number of base pairs for the current sequence. We plotted
the percentage of intra-exon/intron base pairs of total number of base pairs at every

additional nucleotide.

Generating a structural ensemble of the exon 10 — intron 10 region of MAPT

The partition function of the exon 10 — intron 10 region of MAPT for wild type and
mutants was calculated with DMS reactivities from the wild-type pre-mRNA as restraints
using Rsample (Spasic et al. 2018). For modeling mutant sequences, DMS reactivities
collected for the WT sequence were used to restrain the structural space with the
reactivity at each mutation site set to -999. The program stochastic (Reuter and
Mathews 2010) was used to sample 1000 structures from the Boltzmann distribution
wherein the likelihood a structure is sampled was proportional to the probability that it
occurred in the distribution (Y. Ding and Lawrence 2003).

t-SNE visualization of structural ensembles

For each sequence, the 1000 structures in CT format for each ensemble were
converted to dot-bracket (db) format with ct2dot (Reuter and Mathews 2010), after
which the db structure was transformed into the element format using rnaConvert in the
Forgi package (Kerpedjiev, Honer Zu Siederdissen, and Hofacker 2015). In the element
format, every base is represented by the subtype of RNA structure in which it is found:
stem (s), hairpin (h), loop(m), 5" end (f), and 3’ end (t). Hence, each db structure is a
string of characters. These characters were digitized (f, t:0, s:1, h:2, m:3) to create a
numerical matrix with 1000 rows and 234 columns, the length of the exon 10 —intron 11
region. Combining the matrices for the three sequences resulted in a 3000x234 matrix.
This matrix was entered into the tSNE function from the scikit-learn Python package
(Pedregosa et al. 2011), and dimensionality was reduced to a 3000x2 matrix, which was
then plotted with ggplot2 (Wickham 2016) in R. The AG* of unfolding of the splice site
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was calculated for each of the 3000 structures as described below. Source file for

Figure 3B lists t-SNE reduced data with corresponding free energies.

Identification of representative structures for clusters

The 3000x2 matrix obtained after t-SNE dimensionality reduction, was clustered using
k-means clustering with the k-means function from the scikit-learn Python package
(Pedregosa et al. 2011). The value of k was set to 5 as determined visually. Boundaries
for each cluster were marked and colored using the ggscatter function in the R ggpubr
package. A custom Python script was used to deduce the representative structure for
each cluster by first calculating the most common RNA structure subtype at each
nucleotide. The structure in the ensemble that was most similar to the RNA structure
with the most common subtypes at each position, was chosen as representative of that

cluster.

Visualizing density of structures in t-SNE plot

To evaluate density of structures in clusters, a meshgrid was created for the three
matrices corresponding to WT, 3R and 4R mutant structures using the meshgrid
function of NumPy (Harris et al. 2020) with a 1000-point interpolation, which returns
two-dimensional arrays that represent all the possible x-y coordinates for the three
matrices. A Gaussian kernel was fit and evaluated for each 1000x2 matrix with SciPy
gaussian_kde function (Virtanen et al. 2020) to smoothen over the meshgrid. Contour
lines were generated for the smoothed data with Matplotlib contour function (Hunter
2007), and contourf was used to plot the data.

Quantifying nucleotides around the 5’ splice site in cryo-EM structure

The Protein Databank (PDB) files for Pre-B (PDB ID: 6QX9), B (PDB ID: 509Z), Pre-
Bact (PDB ID: 7ABF), and B2 (PDB ID: 5Z56) complexes were downloaded from the
PDB website. A custom Python script was used to extract pre-mRNA from each PDB
file. The number of nucleotides were counted for mRNA found upstream and
downstream of the 5’ exon-intron junction. The result was visually confirmed by

visualizing the PDB on PyMol.
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Calculating AG* of unfolding of a region of interest
The AG* of unfolding energies of regions of interest were calculated using a custom
Python script. The non-equilibrium unfolding energy of the region, defined as the energy
require to unfold a specific region without allowing refolding (Mustoe, Busan, et al.
2018) is defined as follows:

AGH = AGfold _ Agunfold [1]
The AG of the original folded structure (AG™) was calculated with the efn2 program in
RNAstructure (Reuter and Mathews 2010). Next, the base pairs within a region of
interest were made single stranded by setting the base pair column value to be 0 in the
CT file. From this modified CT file, we evaluate the AG of the unfolded structure
(AGUnold) with efn2. This was done for every suboptimal structure in the Boltzmann
ensemble. For example, to determine the AG* of unfolding of the splice site, we made
all nucleotides within the last 3 nucleotides of the exon and the first 6 nucleotides of the
intron single stranded.

Calculating changes in strength of splice site and SRE motifs

The strength of the WT splice site was calculated with MaxEntScan (Yeo and Burge
2004). Strength was recalculated if mutations were located in the last 3 bases of exon
10 or first 6 bases of intron 10. WT strength was subtracted from the mutant strength. A
value of 0 implied no change in splice site strength, positive values implied that a
mutation made the splice site stronger, resulting in increased inclusion of exon 10, and
negative values implied that a mutation made splice site weaker and decreased

inclusion of exon 10.

Overrepresented hexamers in cell-based screens of general exonic and intronic splicing
enhancers (ESEs and ISEs) and silencers (ESSs and ISSs) were obtained from
previous reports (Fairbrother et al., 2002, Wang et al., 2004, Wang, Ma et al., 2012 and
Wang, Xiao et al., 2012). Position weight matrices (PWMs) of hexamers for each
category, calculated as described (Fairbrother et al., 2002), are collated in

Supplementary file 5. There were eight clusters of ESE motifs, seven of ESS maotifs,
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seven of ISE motifs, and eight of ISS motifs; each cluster had an associated PWM. For
each PWM, a threshold strength was found by taking the 95" percentile value of
strength of all possible k-mers of PWM length. This threshold was used to determine
whether there was a valid SRE motif at a particular position. The strength of the PWM
motif was calculated across the exon-intron junction using a sliding window. The only
windows that differed between the WT and mutants were around the location of the
mutation, and only windows with strength above the threshold were considered. The
WT strength was subtracted from the mutation strength for each window, and all
windows were then summed to yield a Astrength for every PWM per mutation. The
average of the non-zero Astrengths was calculated for ESE, ESS, ISE, and ISS
categories. The ESE and ISE Astrengths were summed to obtain an enhancer strength,
and the ESS and ISS Astrengths were summed to obtain a silencer strength.

Supplementary file 6 presents all SRE Astrengths for the 47 mutations and 55 VUSs.

Calculating the change in strength of RBP motifs

Previously determined position frequency matrices for SRSF1, SRSF2, SRSF7, SRSF9,
SRSF10, PCBP2, RBM4, and SFPQ (Ray et al. 2013) were converted into PWMs by
normalizing frequencies to 0.25 (the prior probability for nucleotide frequency) and
calculating the log2 value. Position frequency matrices were calculated based on
previously reported overrepresented hexamers for SRSF11, SRSF4, SRSF5, and
SRSF8 (Dominguez et al., 2018). PFMs for these RBPs were calculated as described
previously (Fairbrother et al., 2002). Astrength values for RBP motifs were calculated as
described for SRE motifs. The averages of non-zero values of RBPs implicated in either
the inclusion or exclusion of exon 10 were computed separately. All RBP Astrengths for

the 47 mutations are listed in Supplementary file 6.

Models and bootstrapping

Exon 10 PSI was limited to values between 0 and 1 with 0 signifying that no transcripts
had exon 10 and 1 that all transcripts had exon 10. Hence, standard linear regression
was not appropriate, and features were fit with a beta regression model to exon 10 PSI.

Regression parameters were determined using the betareg package (Cribari-Neto and
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Zeileis 2010) in R. Bootstrapping was performed by sampling without replacement 70%

of the mutants. Pearson R? values between true values and predictions of the sample

were calculated for the training set. This bootstrapping was executed 10 times resulting

in a range of R?s, ensuring that no subset of mutations skewed model performance.
Since there were only four mutants that maintained the wild-type 1:1 3R to 4R ratio in
our training set, we added three VUSs from dbSNP, which we experimentally verified

preserved the wild-type splicing pattern (Supplementary file 7). The VUSs tested and

added to the training set were assigned a PSI of 0.5 to indicate equivalence to the WT

sequence. Eq. 2, the structure ensemble model, uses four characteristics describing X,

the AG! of unfolding of the region of interest around the exon-intron junction for 1000
structures in the ensemble. The mean, standard deviation (SD), skew, and kurtosis
were calculated for the AG* values of 1000 structures in each ensemble. Eq. 3, the
minimum free energy model, uses just Y, the AG* of unfolding of the exon-intron

junction found within the spliceosome at the B3t stage for the single minimum free

energy structure. Eq. 4, the splice site model, uses the difference in splice site strength

between WT sequence and a mutation where SS represents splice site. Eq. 5, the

combined SRE model, uses the difference in SRE strength between WT sequence and

a mutation where SS represents splice site, E represents enhancer, and S represents

silencer. Eq. 6, the RBP model, uses the difference in RBP motif strength between WT

sequence and a mutation where Ex represents RBPs involved in the exclusion of Exon

10 and In represents RBPs involved in the inclusion of Exon 10. Eq. 7 is the interactive

model between structure and SRE, and Eq. 8 is the additive model. isNonSynonymous,

isSynonymous and isintronic represent the category of mutation and is either 0 or 1.

Supplementary file 6 summarizes the performance of the models and features utilized.

PSI ~ Mean(X) + SD(X) + Skew(X) + Kurtosis(X)

PSI ~Y

PSI ~ ASS

[3]

[4]

[2]
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PSI ~AE + AS + ASS  [5]

PSI ~AEx +Aln  [6]

PSI ~ [Mean(X) + SD(X) + Skew(X) + Kurtosis(X)] * [isSynonymous + isIntronic]
+ [AE + AS + ASS] * [isNonSynonymous] [7]

PSI ~ [Mean(X) + SD(X) + Skew(X) + Kurtosis(X)] + [AE + AS + ASS] [8]

Clustering of changes in structural and SRE features

For each feature, non-zero values greater than the 95™ percentile value were set to the
95" percentile or, if less than the 5™ percentile value, were set to the 5" percentile for
visualization, after which all values were normalized to the maximum absolute value.
Silencer Astrength and mean AG* of unfolding of ensembles were inverted to follow the
visualization such that values closer to 1 would result in greater exon 10 inclusion and
values closer to 0 would result in lower exon 10 inclusion. Features were then assigned
values 0 or 1 depending on whether the feature changed at all in the presence of the
mutation. These digitized features were clustered by hierarchal clustering resulting in six
clusters. Each individual cluster was then clustered again by hierarchal clustering using

the normalized feature values instead of values of 0 and 1.

Splicing assays

HEK-293 cells (ATCC CRL-1573) were grown at 37 °C in 5% COz2 in Dulbecco’s
Modified Eagle Medium (Gibco) supplemented with 10% FBS (Omega Scientific) and
0.5% penicillin/streptomycin (Gibco). The wild-type splicing reporter plasmid was
generously provided by the Roca lab (Tan et al., 2019). Single-nucleotide point
mutations were generated using a Q5 site-directed mutagenesis kit (NEB) and
confirmed by Sanger sequencing or were custom ordered directly from GenScript.
Reporter plasmids (2 ug) were transfected into HEK-293 cells in 6-well plates when
cells were 60-90% confluent using Lipofectamine 3000 (ThermoFisher Scientific). Cells
were harvested after 1 day by aspirating the media. Cells were resuspended in 1 mL

45



1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

1225
1226
1227
1228
1229

1230

1231

1232
1233
1234
1235
1236
1237
1238

1239
1240

Trizol reagent (ThermoFisher Scientific). RNA was isolated using the PureLink RNA
Isolation Kit (ThermoFisher Scientific) with on-column DNase treatment, following
manufacturer’s instructions. RNA (1 ug) was reverse transcribed to cDNA using
Superscript VILO reverse transcriptase (ThermoFisher Scientific). Reverse
transcriptions were performed by annealing (25 °C, 10 min), extension (50 °C, 10 min),
and inactivation (85 °C, 10 min) steps. Heat-inactivated controls were prepared by
heating the reaction without RNA at 85 °C for 10 min prior to adding RNA, then following
the described reaction conditions. The cDNA was PCR amplified with NEB Q5 HotStart
polymerase (NEB) using splicing assay primers from IDT
(AGACCCAAGCTGGCTAGCGTT forward, GAGGCTGATCAGCGGGTTTAAAC
reverse) with 25 cycles. PCR product was purified and concentrated using the PureLink
PCR micro clean up kit (ThermoFisher Scientific) following manufacturer’s instructions.
Splicing products were visualized by loading ~200 ng of DNA on a 2% agarose gel in 1X
tris-acetate EDTA (TAE) buffer and staining with ethidium bromide. Gel images were
quantified with ImageJ.

Supplementary files, figure source files, SNRNASMs and code are available at
GitHub repository: https:/qgit.io/JuSW8
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