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Abstract

Virology has largely focused on viruses that are pathogenic to humans or
to the other species that we care most about. There is no doubt that this
has been a worthwhile investment. But many transformative advances have
been made through the in-depth study of relatively obscure viruses that do
not appear on lists of prioritized pathogens. In this review, I highlight the
benefits that can accrue from the study of viruses and hosts off the beaten
track. I take stock of viral sequence diversity across host taxa as an estimate of
the bias that exists in our understanding of host-virus interactions. I describe
the gains that have been made through the metagenomic discovery of thou-
sands of new viruses in previously unsampled hosts as well as the limitations
of metagenomic surveys. I conclude by suggesting that the study of viruses
that naturally infect existing and emerging model organisms represents an
opportunity to push virology forward in useful and hard to predict ways.
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INTRODUCTION

It feels somewhat absurd to be making the case for studying obscure viruses during a pandemic. But
the point of this review is not that virology should not be spending time and money on pathogens
that are clearly important to public health or economic security (1). Rather, it addresses the ques-
tion of overall resource allocation and the return on investment from a diversified virology re-
search portfolio (2, 3).

The idea that resources in virology might not be optimally allocated struck me when I pub-
lished my first paper as a graduate student. The lab I had joined worked on proteins that blocked
retroviruses, and we had found that they also blocked retrotransposons (4). Three other papers
with more or less the same conclusion were published in quick succession before and after my own
(5-7). There is value in confirmation, and competition can spur research, but wouldn’t it have been
better if our labs hadn’t been quadruplicating efforts? Wouldn’t the overall quality of science be
better if virologists were working less redundantly on a more diverse array of questions, without
rushing because of the looming fear of being scooped? In this review, I highlight the long-term
payoffs from basic virology and take stock of the fertile fields of inquiry opened by unprecedented
metagenomic virus discovery.

WHAT BENEFITS ACCRUE FROM BROAD AND IN-DEPTH STUDY
OF VIRUSES?

The rationale for working on viruses that are pathogenic to humans or to species that we care
about is clear. But why spend time and money on viruses that are not obviously pathogenic or that
do not infect a species that we view as important? The rationale may not seem as obvious, but the
fact is that enormous benefits have accrued from basic research on viruses and hosts from across
the taxonomy, often when the value of the research was not immediately apparent.

Basic virology has produced significant advances in our understanding of fundamental bio-
logical processes. There is perhaps no better single example than that of Rous sarcoma virus, a
tumor-causing chicken retrovirus named after Peyton Rous, who began working on this virus in
the early twentieth century (8). Rous showed that a sarcoma could be transmitted to other chick-
ens via injection of a filtered homogenate from the original tumor (9). Decades of work on Rous
sarcoma virus and related viruses led to transformative advances in cancer biology and three Nobel
prizes: for demonstrating that viruses can cause cancer, for the discovery of reverse transcriptase
(10, 11), and for the existence of oncogenes (12).

Virology has also generated significant insights into cellular function and molecular biology.
These include advances resulting from the study of bacteriophages during the early years of molec-
ular biology: the determination that DNA is the genetic material (13) and the discovery that 3 bases
make a codon (14), for instance (15). Similarly, studies of an array of animal viruses were instru-
mental to determining the capped, spliced, and polyadenylated structure of eukaryotic messenger
RNA (mRNA) (16-19).

The catalogs of biotechnology companies are full of virus-derived enzymes that are the
workhorses of modern molecular biology. The mRNA vaccines that have proven so effective at
preventing severe coronavirus disease (COVID) are produced using viral enzymes: Bacteriophage
RNA polymerases synthesize spike-encoding mRNAs, which are capped by vaccinia virus guan-
ylyltransferase (20-23). Baculovirus-vectored protein production in insect cells is one of the best
ways to generate large quantities of recombinant protein with appropriate eukaryotic cell modifi-
cations (24).

Other useful tools have resulted from wide-ranging studies of host immune responses.
Single-domain antibodies (nanobodies), derived from camels and related species, are smaller than

Stenglein



Annu. Rev. Virol. 2022.9:157-172. Downloaded from www .annualreviews.org
Access provided by Colorado State University on 01/30/23. See copyright for approved use.

traditional antibodies and have a number of resulting advantages as reagents and therapeutics (25,
26). Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas tools, components
of bacterial immune systems, have enabled radical advances in the laboratory and the clinic (27, 28).

Our understanding of the evolution and function of the immune system has been improved
through studies of a diverse range of viruses and hosts. B cells were shown to be responsible for
antibody production through experiments in chickens (29, 30). (B cells are actually named after the
bursa of Fabricius, an organ in birds that is functionally analogous to mammalian bone marrow.)
The defensive role of Toll(-like) receptors in innate immunity was first identified in fruit flies
(31, 32). Studies of the immune systems of phylogenetically far-flung organisms such as lampreys,
placazoans, and choanoflagellates have proved critical to the understanding of the evolution of the
adaptive and innate immune systems (33-35).

The extent to which we have been prepared for pandemics often reflects past work on relatively
unknown viruses. When the human immunodeficiency virus (HIV) pandemic was first recognized
in the 1980s, decades of research on other animal retroviruses such as Rous sarcoma virus provided
a foundation of knowledge and tools (36). Prior work on other coronaviruses provided essential
capabilities and understanding when the original severe acute respiratory syndrome coronavirus
(SARS-CoV) emerged in 2003 (37). For example, infectious clone systems that had been developed
for coronaviruses pathogenic to mice and swine provided a ready platform to study the new human
pathogen (38-40). Similarly, prior work stabilizing the spike protein of common cold coronavirus
HKUT1 allowed the rapid structural determination of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) spike protein and enabled faster development of spike-based vaccines (41,42).

Finally, there is what is sometimes called the One Health rationale. Despite our belief that we
are special, humans are animals, and our self-regard does not prevent zoonotic virus infection. A
frightening array of human pathogens have origins in other animals, and today’s animal virus is
tomorrow’s human virus (43-46). Furthermore, all species are part of an interconnected web of
life, and there are straightforward veterinary and conservation rationales for studying viruses of
noneconomically important species.

The above examples highlight the benefits that accrue from basic virology research, and the
advances I have described share a number of properties. First, this research was proactive. In-
vestigators were in most cases not responding to “the viral concerns of today” (2, p. vii), but were
engaged in basic research on questions they thought were interesting and important. Second, these
advances resulted from in-depth focus on a problem over years or decades. Third, in many cases,
the long-term benefits of the research were not always immediately obvious. A recent recounting
of the decades of work that led to the extraordinary success of the SARS-CoV-2 mRNA vaccines
noted the “happenstance” involved along the “unpredictable, zigzagging path” of basic research
(47). Finally, a property these advances do not share is focus on a single type of virus or host.
Instead, the diversity of systems is the conspicuous feature.

HOW (IM)BALANCED IS VIROLOGY RESEARCH?

So, if it is useful to study a broad diversity of viruses and hosts, to what extent is this being done?
How would we know if we were devoting sufficient resources to basic virology research? Many
authors have noted that virology tends to focus on a relatively low number of viruses from rela-
tively few hosts (e.g., 2, 48-54). This seems correct, but it can be difficult to actually quantify the
extent to which this is true. One way to try to do this would be to count virus sequences in public
databases and to assess their distribution across viral and host taxa.

There are a number of obvious limitations to this strategy. It depends on sequence annotation,
which can be incorrect or missing: In the National Center for Biotechnology Information (NCBI)
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Nucleotide database, for instance, only 6.2 x 10° of the 6.8 x 10° viral sequences (91%) have an
annotated host (55). It also depends on classification of viruses and hosts and the representation
of this taxonomy in the NCBI Taxonomy database (56, 57). More importantly, it assesses virus
sequences and not viruses themselves or knowledge about viruses (58). Indeed, virology existed
for decades before the advent of sequencing (59). And most virology research neither requires nor
produces new sequences.

Nevertheless, scientists have been sequencing viruses for more than 50 years (60), and gen-
erating virus sequences requires time and money. So, the number of sequences from a particular
virus or host is directly proportional to resources expended by virologists. Sequences in public
databases therefore provide a reasonable estimate of virology effort and interest.

I obtained metadata for the nearly 7 million virus sequences from the NCBI Virus portal (61)
and tabulated the number of sequences per viral taxa and the number of virus sequences associated
with individual hosts (Tables 1-4, Figure 1). An extended and reproducible version of this analysis
is available (62).

Table 1 The 20 most-sequenced viruses?

Percentage of Cumulative
Representative virus Thousand virus all virus percentage of virus
Virus species or abbreviation sequences sequences sequences
Severe acute respiratory SARS-CoV-2 3,036.1 49.2 49.2
syndrome-related coronavirus
Human immunodeficiency virus 1 HIV-1 985.5 16.0 65.2
Influenza A virus Influenza A virus 725.9 11.8 77.0
Hepacivirus C Hepatitis C virus 155.0 2.5 79.5
Influenza B virus Influenza B virus 112.0 1.8 81.3
Hepatitis B virus Hepatitis B virus 89.0 1.4 82.7
Rotavirus A Rotavirus A 85.0 1.4 84.1
Simian immunodeficiency virus SIV 49.4 0.8 84.9
Norwalk virus Norovirus 37.3 0.6 85.5
Enterovirus A Human enterovirus A 32.0 0.5 86.0
Dengue virus Dengue virus 1 31.6 0.5 86.5
Porcine reproductive and PRRSV 27.6 0.4 87.0
respiratory syndrome virus
Human orthopneumovirus Respiratory syncytial 25.6 0.4 87.4
virus
Rabies lyssavirus Rabies virus 22.4 0.4 87.8
Pestivirus A Bovine viral diarrhea 18.5 0.3 88.1
virus 1
Enterovirus B Coxsackievirus B3 18.4 0.3 88.4
Measles morbillivirus Measles virus 16.9 0.3 88.6
Orthohepevirus A Hepatids E virus 16.4 0.3 88.9
Simian-human immunodeficiency SHIV 16.3 0.3 89.2
virus
Human immunodeficiency virus® HIV 15.4 0.2 89.4

*As represented in the National Center for Biotechnology Information (NCBI) Nucleotide database. Values based on metadata downloaded from the

NCBI Virus portal on January

4,2022.

bThese sequences have been classified as “Human immunodeficiency virus.” The NCBI Taxonomy database notes that “[a]ll of them are probably ‘Human

immunodeficiency virus type 1
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Table 2 The hosts with the most (virus sequences)

Host common Thousand virus Percentage of all virus Cumulative percentage
Host taxon name sequences sequences of virus sequences
Homo sapiens Human 5,224.4 84.7 84.7
Sus scrofa Pig 178.9 2.9 87.6
Gallus gallus Chicken 93.3 1.5 89.1
Anas platyrhynchos Mallard 50.2 0.8 89.9
Bos taurus Cattle 45.9 0.7 90.7
Macaca mulatta Rhesus monkey 34.9 0.6 91.2
Anatidae Waterfowl 31.7 0.5 91.7
Simiiformes Simians 20.9 0.3 921
Canis lupus Dog and wolf 20.2 0.3 924
Equus caballus Horse 17.7 0.3 92.7
Arenaria interpres Ruddy turnstone 13.6 0.2 92.9
Ovis aries Sheep 10.1 0.2 93.1
Aves Birds 9.3 0.2 93.2
Vitis vinifera Wine grape 8.9 0.1 93.4
Solanum lycopersicum Tomato 8.6 0.1 93.5
Spatula discors Blue-winged teal 8.4 0.1 93.6
Felis catus Domestic cat 8.0 0.1 93.8
Anas acuta Northern pintail 6.5 0.1 93.9
Meleagris gallopavo Turkey 6.0 0.1 94.0
Macaca nemestrina Pig-tailed macaque 5.5 0.1 94.1

As might be expected, virus sequences are strongly biased toward certain types of viruses
(Tables 1-4, Figure 1). Pandemic viruses are by far the most sequenced. The SARS-CoV-2 pan-
demic has produced an unprecedented flood of genome sequencing, and the greater than 3 x 10°
SARS-CoV-2 sequences in the NCBI Nucleotide database account for nearly half of all virus se-
quences (49.7%). By the time this review is published, there is no doubt SARS-CoV-2 sequences
will be the majority of virus sequences in NCBI. In fact, there are already more SARS-CoV-2 se-
quences (>7 x 10°) in the Global Initiative on Sharing Avian Influenza Data (GISAID) database
than there are virus sequences in NCBI (63). Human and simian immunodeficiency viruses and
influenza viruses are the next most-sequenced types of viruses. Together, sequences from sarbe-
coviruses (SARS-CoV-2 and related viruses), lentiviruses (HIV and related viruses), and influenza
viruses account for 80.4% of all virus sequences (Figure 1).

The effect of this can be seen in a plot of the cumulative distribution of virus sequences plotted
against individual virus species ordered by their number of virus sequences (Figure 14). This
curve goes almost straight up, with nearly all virus sequences accounted for by the most sequenced
viruses. The 20 most-sequenced viruses account for 89.4% of sequences (Table 1).

Virus sequences are even more biased toward particular hosts, with the top 20 hosts account-
ing for 94.1% of all virus sequences (Table 2). The 5.2 x 10° sequences from humans account
for 84.7% of all virus sequences. Other hosts with the most virus sequences include agricultur-
ally important animals and plants (e.g., pigs, chickens, grapes, and tomatoes), nonhuman hosts of
lentiviruses and influenza viruses (simians, pigs, and waterfowl), and companion animals (dogs,
cats, and horses). Viruses from pigs are highly sequenced because pigs are both agriculturally im-
portant and host to influenza viruses.

It could be argued that the over-representation of pandemic virus sequences confounds
this analysis. But even if sarbecoviruses, lentiviruses, and influenza viruses are removed from
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Table 3 The most-sequenced viruses, excluding sarbecoviruses, influenza viruses, and lentiviruses

Thousand Percentage of Cumulative percentage
Representative virus or | remaining virus | remaining virus of remaining virus
Virus species abbreviation sequences sequences sequences
Hepacivirus C Hepatitis C virus 155.0 12.8 12.8
Hepatitis B virus Hepatitis B virus 89.0 7.4 20.2
Rotavirus A Rotavirus A 85.0 7.0 27.3
Norwalk virus Norovirus 37.3 3.1 30.4
Enterovirus A Human enterovirus A 32.0 2.7 33.0
Dengue virus Dengue virus 1 31.6 2.6 35.6
Porcine reproductive and PRRSV 27.6 23 37.9
respiratory syndrome virus
Human orthopneumovirus Respiratory syncytial virus 25.6 2.1 40.0
Rabies lyssavirus Rabies virus 224 1.9 41.9
Pestivirus A Bovine viral diarrhea 18.5 1.5 434
virus 1
Enterovirus B Coxsackievirus B3 18.4 1.5 44.9
Measles morbillivirus Measles virus 16.9 1.4 46.3
Orthohepevirus A Hepatitis E virus 16.4 1.4 47.7
Alphapapillomavirus 9 Human papillomavirus 16 15.3 1.3 49.0
Mumps orthorubulavirus Mumps virus 10.8 0.9 49.9
Foot-and-mouth disease virus | Foot-and-mouth disease 10.2 0.8 50.7
virus
Avian coronavirus Infectious bronchitis virus 9.7 0.8 51.5
Avian orthoavulavirus 1 Newcastle disease virus 8.0 0.7 52.2
Enterovirus C Poliovirus 7.4 0.6 52.8
Porcine circovirus 2 Porcine circovirus 2 7.0 0.6 53.4
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analysis, the list of most-sequenced viruses remains dominated by human and livestock pathogens
(Table 3). Even without the contribution of the highly sequenced pandemic viruses, humans
remain the host with the most associated virus sequences, accounting for 56.8% of remaining
virus sequences (Table 4).

This paints a picture of a focused field. But there is another message from this analysis. Al-
though it is true that the cumulative distribution curves have steep initial slopes, accounted for by
the most-sequenced viruses, they also have extremely long flat tails (Figure 1a,c). In other words,
at the same time that a few viruses account for most sequences, there are sequences from thousands
of different viruses and hosts (35,781 viral taxa and 8,322 hosts).

In fact, most viral taxa and many hosts are represented by only a single virus sequence
(Figure 1b,d). Although the mean number of viruses per virus species is 172 and the mean number
of viruses per host is 741, the median values are only 1 sequence per virus and 4 per host. The
majority of viral taxa (20,712, 58%) are represented by a single sequence. Randomly selected ex-
amples of such viruses include Wenling bighead beaked sandfish astrovirus (50), moosepox virus
GoldyGopher14 (64), and Streptococcus phage Javan520 (65). Likewise, 2,068 hosts (24.8%) are
associated with only 1 virus sequence. Randomly selected hosts from among this list include Fal-
sistrellus mackenziei, an Australian bat (66), and Gymmnosporia buxifolia, an African plant known as a
spike-thorn (67).
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Table 4 The hosts with the most virus sequences, excluding sarbecoviruses, influenza viruses, and lentiviruses

Thousand Percentage of Cumulative percentage
remaining virus remaining virus of remaining virus
Host taxon Host common name sequences sequences sequences
Homo sapiens Human 685.9 56.8 56.8
Sus scrofa Pig 773 6.4 63.2
Bos taurus Cattle 4.7 3.7 66.9
Gallus gallus Chicken 26.5 2.2 69.1
Canis lupus Dog and wolf 16.7 1.4 70.5
Vitis vinifera Wine grape 8.9 0.7 71.3
Solanum lycopersicum "Tomato 8.6 0.7 72.0
Equus caballus Horse 7.0 0.6 72.6
Ovis aries Sheep 6.3 0.5 73.1
Felis catus Domestic cat 6.2 0.5 73.6
Apis mellifera Honey bee 4.9 0.4 74.0
Solanum tuberosum Potato 4.6 0.4 74.4
Sus Wild and domestic pigs 4.6 0.4 74.8
Salmo salar Atlantic salmon 4.1 0.3 75.1
Prunas persica Peach 4.1 0.3 75.5
Capra bircus Goat 3.5 0.3 75.7
Macaca mulatta Rhesus monkey 34 0.3 76.0
Manibot esculenta Cassava 3.1 0.3 76.3
Oryctolagus cuniculus European rabbit 3.1 0.3 76.5
Capsicum annuum Pepper plant 29 0.2 77.0

Clearly the description of viral diversity is nowhere close to being exhausted (52). Not only are
most virus species and most hosts represented by one or a few virus sequences, but also the vast
majority of species have no associated virus sequences. There are records for 626,899 species of
cellular life in the NCBI Taxonomy database. This captures only a small fraction—perhaps 10%—
of actual species diversity, meaning that virus sequences have been described for only something
like 0.1% of hosts (8,322/626,899/10) (56).

So, yes, there has been a strong bias toward a few particularly important viruses. At the same
time, there has been an enormous amount of study of many viruses beyond the usual suspects
(as reflected in the basic virology advances described in the previous section) and a recent mas-
sive expansion in the number of sequenced viruses. In the next section, I describe the impact of
metagenomics on our understanding of viral diversity and evolution, and discuss the limits of
metagenomics.

METAGENOMICS IS TRANSFORMING OUR UNDERSTANDING
OF THE VIROSPHERE, BUT IS IT ENOUGH?

Metagenomic virus discovery—the identification of virus sequences in shotgun sequencing data
sets—is the main reason that there is such a long tail in the cumulative distribution plots of se-
quences per virus or host (Figure 1). Prior to metagenomics, virology focused for the most part
on the subset of viruses for which infection produced an obvious phenotype. This was by necessity.
There was no way to know that a viral infection was present if it did not produce a measurable
phenotype. Often the phenotype was disease or cytopathic effect in cultured cells, but not always.
For instance, sigma viruses of Drosophila were noticed and studied because they caused flies to
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Figure 1

A very small number of viruses and hosts account for most virus sequences. At the same time, most viruses
and hosts are represented by only a single virus sequence. (#) The cumulative number of virus sequences
associated with individual virus species, which are ordered by their number of sequences. The blue line is

all virus sequences in the National Center for Biotechnology Information Nucleotide database. The yellow
line is with sequences from the taxa Sarbecovirus, Lentivirus, Alphainfluenzavirus, Betainfluenzavirus,
Gammainfluenzavirus, and Deltainfluenzavirus removed. (b) A histogram of the number of sequences per virus
species. The x axis is cut off at 40 to emphasize the point that most viral taxa and most hosts are represented
by only one or a few virus sequences. Data in panels ¢ and 4 are as in panels # and » but depicting virus
sequences per host.

fail to recover from carbon dioxide anesthetization, which I'Heritier and Teissier (68) noted as
a “physiological anomaly.” Cryptic viruses of plants and fungi provide another example. As their
name suggested (former genus Cryptovirus; current classification Partitiviridae), these viruses did
not produce apparent phenotypes (69, 70). Instead, they were discovered because they produced
abundant virus particles evident in electron micrographs of samples from apparently healthy plants
(71).

In contrast, metagenomic virus discovery does not require that you be able to culture a virus
or see the effect of infection. Instead, metagenomics uses random sequencing of nucleic acid to
identify virus sequences among the sequences from hosts and other organisms in a sample. This
methodological advance has unleashed a golden age of virus discovery and revealed a previously
unimaginable diversity and abundance of viruses. Many excellent reviews have been written on
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cggtgctgeg ctggagaaac aggatgrgga nctg atttacageg geagccataa ggtggatgge aacccctaca g
coggagacac tocagteccg gatga o (-4 ¢ 68 (e a gaaggtgtcg geatataccg goctgtcegt gc
agactgeagt gtacageggt caggaggcca ttgatgecgg actggctgat gaacttgtta acageaccga tgegatcacc gt
tocacgtaaa tcccgtctct caggagegcg aatgaccasa gagactcaat caacaactgt ttcagccact gottcgeagg ct
ccagcgacag agggcgagaa cgecagedeg gegeageegg acgtgaacge geagatcacc geageggttg cggcagasaa ca
tcaactgtga ggaggctcac ggacgcgaag aacaggeacg cgtgotggca gaaacccocg gtatgaccgt gaaaacggec cg
accacagagt gcacaggege geagtgacac tgegctggat cgtctgatge agggggeace ggcaccgetg getgeaggta ac
aacgatttgc tgaacacacc agtgtaaggg atgtttatga cgagcaaaga aacctttacc cattaccagc cgcagggcaa ©
caaccgcgee cggeggattg agtgegaaag cgcctgcaat gacccogetg atgetggaca cotccageeg taagetggtt ge|
cagtgctgee gttggcattc ttgeggttge tgctgaccag accagcacca cgetgacgtt ctacaagtce ggcacgttcc gt
ccggaggctg ccagegacga gacgaasaaa cggaccgegt ttgccggaac ggcaatcage atcgtttaac tttaccettc at
cggctttttt tacgggattt ttttatgtcg atgtacacaa ccgcccaact getggcggca aatgagcaga aatttaagtt tg
totttttecg tgagagetat cocttcacca cggagasagt ctatctctca caaattccgg gactggtaaa catggcgetg ta
cogtgaggtt atccgttcce gtggeggetc cacctctgaa tttacgecdg gatatgtcaa gocgaageat gaagtgaatc c
ctg:cggltg aagatccgca glatCKQQCQ gacceggett accgccgecg tegeatcatc atgeagaaca tgcgtgacga a
caqgcagtt ttaagggean otacaccats accggtgaag cottcgatce ogttgaggtg g2
bpecial sup] nt'to’N iC:ACId arch e
atatcatcgt eggctogs cactattced ttcottcasa gecgteangy agaagctgga ta

ccgagctgga gacagcggtg aaagacctgg gcaaageggt gtcctataag gggatgtatg

aaacggegtc aaaaagaact tcctgccgga :aa:acgatg gggga acactcagge

gcacagegeg aaggeattaa cgootetgee wt (. tgagt gaccaccgge
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tiacgaaa gatgaactga ttgcccgtct ccgetegy t9a tgtcagectg acggggacga aagaagaact gg
agga gettgatgac acgga Ctsnrsgtca ggacaccct cf €ggg aaaatgtgct gaccggacat a3

Figure 2

All the virus sequences used to fit in a book. The author’s copy of the 1985 Nucleic Acids Research special
supplement contained all of the then-existing virus sequences in GenBank (89). Now, the 9.9 x 10'? bases of
virus sequence would need a book 33 million pages long (assuming 3,000 bases per page, an estimate from
the pictured volume).

metagenomic viral discovery, and this review does not go in depth into the history or technical
details of this field (e.g., 52, 54, 72-75). Early metagenomic surveys used cloning and Sanger se-
quencing or microarrays to identify new viruses (76-78). Now, metagenomic virus discovery uses
next-generation sequencing to identify virus sequences. In the early days of sequencing, determi-
nation of even part of a viral genome sequence could be sufficient for a high-profile paper (79-81)
(Figure 2). Nowadays, leading papers describe hundreds or thousands of new viral genome se-
quences in one go (e.g., 48-50, 82-85). Sequencing data sets generated for other purposes (e.g.,
gene expression analysis) often contain virus sequences, and existing public data sets remain a rich
and largely untapped resource for virus discovery (84, 86-88).

All of these new virus sequences have produced significant advances in the understanding of
viral diversity and evolution (52, 54, 72, 90). New viruses have led to the establishment of entirely
new families and orders of viruses and indeed a wholesale reorganization of virus taxonomy (57,
75). The known host range of most groups of viruses has been substantially expanded. It is now
clear that the genome structure of viruses is much more plastic than previously thought and that
horizontal gene transfer between viruses and between viruses and hosts is common, at least on
evolutionary timescales (49).

Metagenomic sequencing has also produced candidate etiological agents for infectious diseases
that had proven intractable to traditional diagnostic methods. This has been a boon for infectious
diseases of hosts such as reptiles that lack the economic importance of; say, livestock (91-100). In
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the case of a new high-priority pathogen such as SARS-CoV-2, metagenomic sequencing can be
used to determine a genome sequence within hours or days of sample collection (101).

Despite its extraordinary power, metagenomics has limitations (58). The fundamental issue is
that sequencing only produces sequences, and there is a limit to how much you can infer about the
biology of a virus from its sequence. For instance, it is often not clear from metagenomic data what
the host of a virus (sequence) is. Even when a sample derives from a single host, virus sequences
might actually derive from the putative host’s diet or its microbiota, or even from reagent contam-
ination (102). As one example, Twyford virus, originally identified in association with Drosophila
melanogaster, proved to have a fungal host (a possibility the discoverers were careful to note in the
original paper) (53, 103). There is even more uncertainty about the host when metagenomics is
based on environmental samples, complex samples such as feces, or pools of samples from different
organisms, which have been the basis for many of the most fruitful studies (49, 104).

Even when it is possible to link a virus sequence to a host (105), metagenomics reveals little
about the effect of infection on the host. The sequence of a virus does not tell you how pathogenic
avirus is or even if it is pathogenic at all (51). Sequences alone do not reveal anything about tissue
tropism, mechanisms of transmission, or interactions with the host’s immune system [sequencing
of small RNAs in organisms with antiviral RNA interference provides one exception (53)]. Can-
didate etiologic agents from metagenomics must be validated by other means such as a strong
association with disease or experimental infection studies (106).

This has led to something of a paradox. At the same time that so many new viruses are being
discovered, so little is known about most of them beyond their phylogenetic placement and pri-
mary sequence. As an example, large-scale sequencing of pools of invertebrates revealed viruses
so divergent that they ended up founding a completely new order of RNA viruses, the Fingchuvi-
rales, a cousin taxon to mononegaviruses, orthomyxoviruses, and bunyaviruses (48, 57, 107). Since
their initial discovery, dozens of papers using metagenomics have revealed that jingchuviruses are
widespread in a diverse array of hosts (e.g., 50, 108-112). But still vanishingly little is known about
their basic biology (113, 114). This is like discovering an entire new continent and having explored
only a tiny fraction of its interior, and leads to questions about the proper balance between dis-
covery of new viruses and experiments to actually study them.

THE WAY FORWARD?

So where to go from here? It is safe to assume that there is value in studying some of these new
viruses, but which ones? Metagenomics has created an embarrassment of riches: far more possible
targets than there are time and money to study. One possible way forward would be to recognize
that scientific progress is unpredictable and to not even try to pick winners. Another perhaps more
practical approach would be to focus on natural viruses of existing and emerging model organisms.
This strategy would narrow down the long list of candidates to viruses that infect hosts that at least
have existing genomic resources and experimental capabilities.

Traditional model organisms such as mice and fruit flies have been a mainstay of virus research
for decades (115-117). More recently, there has been a renewed interest in studying viruses that
naturally infect these organisms. This is in part because of work highlighting the importance of
natural microbiota to immune system development (118). Metagenomic surveys of wild-caught
individuals from these species have also contributed (53, 119-122). Natural viruses of other long-
studied model species, such as Caenorbabditis elegans (nematodes) and Danio rerio (zebrafish), have
also only recently been identified (123-127). The powerful existing resources associated with these
organisms mean that mechanistic studies of host-virus interactions are relatively straightforward
to design and implement (127-131).
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Established models are great, but they represent only a small fraction of overall host diversity.
Recent advances in genomic and gene-editing technologies have increased the feasibility of work-
ing with nontraditional model organisms (132, 133). In response, biologists have begun working
increasingly with phylogenetically disparate species to answer questions about a range of biologi-
cal processes such as cellular regeneration, the origins of multicellularity, and survival in extreme
conditions (134-136). Viruses of these emerging models represent another promising avenue of
research. Collaboration between virologists and scientists who have been using these organisms to
answer other questions (and, importantly, who have been learning how to work with them) have
great potential (35). In tandem, development of even more new models and targeted metagenomic
surveys will continue to expand the list of candidates.

It is an exciting time to be a virologist. Advances in metagenomics are revolutionizing our
understanding of virus evolution and diversity. At the same time, we have just scratched the surface
of viral diversity, and new discoveries provide fertile ground for exploration. New techniques offer
previously unimaginable opportunities to dissect host-virus interaction, even in species that were
previously considered too hard to work with. The terrible cost of the SARS-CoV-2 pandemic has
reinforced the importance of virology in the public eye. Many virologists pivoted to contribute to
the pandemic response, the effectiveness of which was thanks in large part to decades of prior basic
research. When it comes time to pivot back, virologists and funders would do well to remember
the value of basic virology and invest in the promise of discovery.
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