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Abstract: An agent-based model is presented that aims to capture the involvement of inequality and trust
in collective action in a classic commons dilemma before, during, and after communication. The model as-
sumptions are based on the behavioral theory of collective action of Elinor Ostrom and the ‘humanistic rational
choice theory’. The commons dilemma is represented as a spatially explicit renewable resource. Agent’s trust
in others has an impact on the harvesting of shared resources, and trust is influenced by observed harvesting
behavior and cheap talk. We calibrated the model using data from a prior set of lab experiments on inequality,
trust, and communication. The best fit to the data consists of a population with a small share of altruistic and
selfish agents and a majority of conditional cooperative agents sensitive to inequality and who would cooperate
if others did. Communication increased trust explaining the better group performance when communication
was introduced. The modeling results complement prior communication research and clarify the dynamics of
reciprocal cooperation commonly observed in robust resource governance systems.
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Introduction

Overharvesting shared resources has been presented as the inevitable and canonical outcome of allowing groups
to manage a valuable resource without external supervision and intervention by a government (Hardin 1968).
However, from extensive comparative case study analysis and behavioral experiments in the lab, field, and cy-
berspace, we know that a tragedy of the commons is not inevitable. Some groups can learn to manage their
shared resources successfully with minimal or no externalinterventions (Ostrom 1990). Comparative case study
analysis provided insights into broad characteristics of the biophysical, social, and institutional context that cor-
relate with effective self-governance of common-pool resources (Ostrom 1990). Experiments provided insights
into relevant mechanisms that explain self-governance.

Generally speaking, effective enforcement systems do improve cooperation. Experimental behavioral research
often finds that external enforcement or peer punishment improves cooperation in public good dilemma and
common-pool resource experiments (Yamagishi 1986; Ostrom et al. 1992; Bochet et al. 2006). However, exter-
nal enforcement and peer punishment are not always necessary and may backfire by undermining trust and
internal motivations (Bowles 2008), or inciting retaliation (Janssen et al. 2010; Balafoutas et al. 2014). Commu-
nication, commonly referred to as “cheap talk”, which is communication without the ability to enforce promises,
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has surprisingly emerged as an important factor in improving cooperation (Ostrom et al. 1992; Brosig et al. 2003;
Balliet 2010; Janssen et al. 2010; DeCaro et al. 2021).

1.3 Communication often improves cooperation, but there has not been a good explanation. Several potentially
related mechanisms have been identified. Groups often form agreements and use communication to refine con-
servation strategies. They also share important technical information (e.g., resource dynamics) and attempt to
hold one another accountable via informal social sanctions (e.g., shaming and praise; see Balliet 2010; DeCaro
et al. 2021, for review). However, even with minimal option to share text messages, we still see a significant
performance improvement (Janssen et al. 2014).

1.4 Building on her seminal work on societal self-governance, Ostrom (1998) provided an influential theoretical
framework focused on dynamic processes of trust and reciprocity triggered by communication and democratic
decision-making. Ostrom hypothesized that cooperative behavior is the outcome of the reinforcing interac-
tion between the trust that individuals develop via communication, development of positive (i.e., trustworthy)
reputations, and adherence to the reciprocity norm (i.e., cooperating with other cooperators). In this process,
communication has the potential to overcome past inequities and distrust if group members honor their verbal
agreements. Observing initial reciprocity after communication triggers a virtuous cycle of trust and reciprocal
cooperation. However, perceptions and psychosocial processes are rarely measured in more traditional be-
havioral experiments and field studies, making it difficult to determine the central involvement of such trust
perceptions and other social cognitions (Anderies et al. 2011).

1.5 DeCaro et al. (2021) recently addressed this informational gap by conducting a controlled laboratory experi-
ment that specifically measured these perceptions before and after communication in 41 groups across three
experimental phases. Participants’ overall trust perceptions, communication content, and democratic decision-
making processes were correlated with groups’ overall cooperation. The results showed that democratic decision-
making and perceived trust were, indeed, strongly associated with cooperation.

1.6 Specifically, communication improved trust and cooperation by satisfying fundamental needs for procedural
justice, self-determination, security, and equity (i.e., equity aversion; c.f. Fehr & Schmidt 1999; Yang et al. 2016).
This need satisfaction triggered acceptance of the group’s tentative conservation agreement, starting Ostrom’s
virtuous cycle of trust and reciprocity. However,DeCaro et al. (2021) did not conduct a dynamic analysis of
individual behavior or analyze the relationship between trust and inequality. Hence, it is unclear how these
important factors may have interacted over time to produce the observed patterns of cooperation and resource
sustainability dynamically. This information needs to be clarified to improve the understanding of a centrally
important process in cooperative self-governance.

1.7 This paper aims to explore the relationship between communication, trust, and inequality by developing an
agent-based model that could lead to virtuous cycles of trust and reciprocal cooperation. In doing so, we want
to use actual measures of perceived trust, which has not been done in previous models of commons dilemmas.
We, therefore, use the data from DeCaro et al. (2021) experiment to conduct this analysis. DeCaro et al.’s ex-
periment provides a good basis for this since it was designed to assess perceptions associated with trust and
reciprocal cooperation. It was directly informed by Ostrom (1998) behavioral approach to rational choice the-
ory. In fact, it is a test of an extended version of Ostrom’s theory known as Humanistic Rational Choice Theory
(DeCaro 2019).

1.8 In the rest of the paper, we will first summarize the experimental design and the main results of DeCaro et al.
(2021) because this provides the theoretical and empirical bases for the modeling exercise. We then describe
an agent-based model that aims to capture those results. Subsequently, the model is calibrated on empirical
data, and we present a sensitivity analysis as an additional test of the model robustness. We conclude with
implications for rational choice theory and future dynamic models of cooperation.

Experimental Materials and Methods

2.1 DecCaro et al. (2021) experiment was developed to test various aspects of Humanistic Rational Choice Theory
(HRCT; DeCaro 2019), which seeks to clarify psychosocial processes involved in Ostrom (1998) behavioral the-
ory of collective action. HRCT assumes that key factors such as communication, enforcement, and democratic
decision-making influence cooperation by impacting fundamental needs and social cognition integral to trust
formation and institutional acceptance. Communication provides the opportunity for individuals to satisfy
these needs.

2.2 Our model is tailored exactly to the experimental environment participants encountered in DeCaro et al.’s ex-
periment. We do not capture all agents’ perceptions, but we considered trust and inequality aversion, the two
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central elements identified by Ostrom (1998) and DeCaro (2019). Here, we describe the key features of the ex-
perimental environmental design. Note that our model does not capture how communication had animpact on
trust among the participants of the original experiment. This implies that we cannot provide a full understand-
ing as to how communication has a direct impact on cooperation. However, the statistical analysis provided in
the appendix can help to understand how psychological factors are correlated with communication outcomes.

The experiment included a group of four individuals who shared a resource. There were nine rounds in the
experiments. The first three rounds were without communication. Then we collected data via a survey on how
participants experienced the experiment. Subsequently, the group was allowed to communicate before each
of the next three rounds. After round six, another survey was held. The last three rounds of the experiment were
the same as the first three, without the ability to communicate.

A 26 x 26 landscape created the common-pool resource dilemma with resource units accessible to four par-
ticipants. Resource units were initially distributed randomly within the cells of the 26 x 26 grid. The initial
distribution was 169 units, 25% of the total grid. Empty cells replenished with a probability that depended
on the number of adjacent resource units. More adjacent resource units yielded a higher regrowth probabil-
ity. This represents a logistic growth model where the fastest regrowth occurs when each empty cell has four
neighboring cells occupied by a resource unit in a checkerboard pattern.

Participants moved their avatars around the landscape by clicking on the arrow keys. To harvest a resource
unit, they had to press the space bar if the avatar was on a cell with a resource unit. Participant identities were
confidential and unknown to each other. However, participants could see each avatar on the screen in real-
time and see each player’s score (number of tokens harvested) and the remaining time (each round was four
minutes). Incentives were provided since each resource unit was worth $0.02. Participants typically earned
between $10 and $25, dependent on the decision they and other participants made.

The experiment consisted of 9 four-minute rounds. The first three rounds were without communication. During
the next three rounds, participants could exchange chat messages for 5 minutes before each round. Participants
could also chat during each round. Beginning at the 7th round, communication was not allowed. Participants’
self-reported trust was measured after round 3 (no communication) and round 6 (communication). More de-
tails and social-psychological analysis of the experiment, as well as the experimental protocol, can be found in
DeCaro et al. (2021).

Experimental Results

DeCaro et al. (2021) original analysis focused on aggregate, group-level processes and outcomes without ex-
amining individual behavior. However, the outcomes emerged from individuals’ interdependent decisions. We
will now discuss various statistics of the experiment that informed the model development and model per-
formance on the data. We report results during the 4 minutes of each round, which has informed the model
development by representing simple decision rules of agents, aimed at describing how aggregate effects could
occur. At the end of this section, we summarize five qualitative patterns identified as important by the model
to be reproduced.

During the first three rounds (without communication), the resource size declined quickly, replicating the stan-
dard tragedy of the commons (Hardin 1968). This resource decline was faster with each subsequent round
without communication. This is probably caused by observed inequality causing distrust and rivalry, escalat-
ing harvesting rates. When participants communicated, they, on average, started to stabilize the resource pool.
This was mainly caused by moving their avatar more slowly, harvesting fewer tokens during the first 3 minutes,
and harvesting quickly in the last minute (Figure 1, Figure 12). Performance improved each round; they commu-
nicated, reversing the trends seen in the first three rounds (Figure 2). The groups sometimes left some tokens
behind if they started speeding up their harvesting rate too late. After communication stopped (beginning round
7), the average resource level started to decline again. Still, the resource supply remained quite high and did
not reach previously low levels seen in the first three rounds. This pattern indicates that individuals continued
to cooperate well, even after communication ceased.
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Figure 1: Mean of the resource size per second during each of the experiment’s 9 rounds (240 seconds each).
Values are averages across all 41 groups. Higher supplies of resource units (resource size) for a longer duration
indicates better resource management.
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Figure 2: Mean number of tokens harvested (and left behind) by the groups per round, averaged across all 41
groups.

As previously mentioned, the rate of avatar movement during a round is related to how quickly individuals har-
vest and indicates cooperation levels. Generally, movement is slower when individuals cooperate, waiting for
resource units to grow. We assessed this in the experiment data by counting each player’s avatar’s number of
movements every 5 seconds. As we surmised, the rate of movement was indeed higher for rounds 1-3 com-
pared to the later rounds (Figure 3). During the first three rounds (without communication), the avatars seem
to be sprinting (racing one another) during the first 90 seconds. By comparison, after having communicated in
rounds 4-6, this sprint did not happen in rounds 7-9 when communication was no longer possible. Communi-
cation in rounds 4-6 led to a long-term behavioral change. According to DeCaro et al. (2021) aggregate analyses,
this long-term improvement occurred because democratically communicating groups increased their rule in-
ternalization and acceptance, promoting trust and voluntary compliance. When we created the agent-based
model, it was important to replicate those movement rates to capture observed behavior adequately.
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Figure 3: Mean number of avatar movements every 5 seconds averaged across all 164 participants. Each line
represents one of the nine rounds of the experiment.

The harvesting rate (number of tokens collected per 5 seconds; Figure 4) and relative frequency that tokens
on a cell are collected (Figure 5) are also important indicators of cooperation that have informed our model
development. In rounds 1-3, the players started each round with a high harvesting rate until the resource was
entirely depleted. However, when the players had communicated, we saw that the initial harvesting rate in
rounds 4-9 was comparatively slow and peaked 20 to 30 seconds before the end of each round. This corresponds
with the common strategy to conserve the resource until the round ends to increase overall harvests. During
rounds 1-3, players harvested fewer units overall, and 74% of the harvest occurred during the first 60 seconds.
In contrast, players harvested more tokens overall during rounds 4-9, with about 21% occurring in the first 60
seconds and 40% in the last 60 seconds. Thus, communication during rounds 4-6 led to long-term behavioral
change in rounds 7-9.
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Figure 4: Mean number of tokens harvested per participant every five seconds for each of the nine rounds.
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Figure 5: Mean harvesting rate (tokens collected every five seconds divided by the total possible harvesting
opportunities) averaged over all players for each of the nine rounds.

Asillustrated by the distribution of trust among participants in each group (Figure 6), most groups reported low
trust levels immediately after the first three rounds (without communication). However, most groups reported
high levels of trust after communicating during rounds 4-6. DeCaro et al. (2021) demonstrated that group trust
emerged best when group members made decisions democratically (measured by counting how many group
members openly endorsed each major group decision: e.g., conservation proposals and agreements).
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Figure 6: Frequency distributions of trust before and after communication. The trust level is between 1 and 7,
and we put the self-reported trust responses in one of the seven bins for each participant for the survey before
and after communication.

Trust is an important indicator in the model. DeCaro et al. (2021) did not relate trust levels to round-by-round
cooperative behavior. Such information is needed to understand dynamic patterns of conditional cooperation
(i.e., trust and reciprocity) across rounds. Therefore, we computed the observed trust levels before and after
communication (Figure 6). We then used multi-level regression analyses to analyze these trust levels as a func-
tion of the relative share of tokens harvested by individuals compared to the rest of the group (relative harvest),
the overall group harvest, and the overall degree of inequality. As shown in Figure 6, the frequency of high levels
of trust increased after communication.
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Our multi-level analysis (Table 1) revealed that when communication was not possible relative earnings (har-
vests) in round 1 significantly impacted individuals’ trust by the end of round 3 (Table 1). For example, a person
who received a relatively small share of the tokens collected in round 1, due to aggressive harvesting by other
group members reported lower trust in the other group members. Similarly, when communication ended, co-
operative behavior during round 6 influenced trust formation prior to round 7. Specifically, three factors were
important: if (a) an individual’s relative share of earnings (tokens harvested) was high, (b) the total harvest by
the group was high, and (c) income inequality in the group was small during round 6, then trust was higher after-
ward. Thus, as proposed by Ostrom (1998), communication and democratic decision-making had the potential
to build trust by enabling group members to derive a fair and productive harvesting arrangement.

Predictors Predicted Trust Predicted Trust Predicted Trust
after round 3 after round 3 after round 6

Constant 1.569 (0.418) ***  1.537(0.428)***  Constant 4.194 (0.572)***

Relative Relative

Harvest 3.708 (1.193)***  4.648 (3.011) Harvest -3.036 (2.848)

round 1 round 6

Total Group Total Group

Harvest -0.004 (0.011) Harvest 0.026 (0.006)***

roundl round 6

Gini Coefficient Gini

(inequality) 0.087 (1.553) 0.218 (1.605) coefficient -6.033 (2.200) ***

round 1 round 6

Number of 164 164 163

observations

Number of 41 41 41

groups

-Log Likelihood 286.822 286.765 265.524

Variance components

Individual level 0.093 (0.136)
Group level 1.848 (0.236)
% 0.54 (p > 0.1)

0.098 (0.138)
1.843(0.235)
0.58 (p > 0.1)

0.089 (0.112)
1.440 (0.185)
0.74 (p > 0.1)

Table 1: Multi-level linear regression analysis of trust as a function of relative harvest, total group harvest, and
inequality. ** p < 0.05. *** p < 0.01.

To conclude, we have documented five important behavioral patterns from DeCaro et al. (2021) experiment that
an agent-based model would need to replicate to describe well the behavioral dynamics in the common-pool
resource dilemma:

« Lack of communication during rounds 1-3 yield rivalry and rapid overharvesting.

» Rounds1-3are, on average, harvested faster than rounds 4-9, and this harvesting rate escalates with each
subsequent round 2 and 3 as unabated rivalry increases.

« Immediately after communication, round 4 yields a substantially higher level of individual and total earn-
ings, with a correspondingly slower decline of the resource pool.

« Each subsequent round of communication (rounds 5 and 6) yields more restraint, with slower harvesting
rates and even fewer harvests at the start of the round.

« When communication is no longer possible (rounds 7, 8, and 9), cooperation and resource stability stay
high, with a small decline in restraint and harvest total.

These results suggest that communication combined with the observed behavior of others (rivalry vs. restraint)
impacts participants’ trust, along with their harvesting behavior and speed. The following section presents a
model to capture these major behavioral patterns.
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Model Description

We propose a simple agent-based model, extending Janssen et al. (2009) previous no-communication model of
cooperation in a commons dilemma by including trust formation effects. This model represents Ostrom (1998)
core behavioral theory of conditional cooperation, linking trust and reciprocity with dynamic processes of com-
munication and self-governance (see also DeCaro et al. 2021).

For simplicity, we did not include information about group communication’s content (i.e., what the participants
communicated about). We acknowledge that there is variation in how communication content impacts a spe-
cific group’s performance (see DeCaro et al. 2021 for detailed analysis and discussion). For this demonstration,
we focus on the dynamics of cooperation, driven by the overall (i.e., average) effects of communication and
trust. Thus, in this model, the communication effect is the same for all groups to capture the mean of the ob-
served harvesting activities, representing a typical group.

Our central goal in this modeling exercise was to emulate the moment-by-moment decisions and actions of the
participant. Human participants could choose where (direction), when (timing), and how fast (speed) to move
the avatar to harvest resource units. Therefore, the agents in our model are also designed to decide where,
when and how fast to move and harvest. We exactly replicated the dynamics of the renewable, spatially explicit
resource pool so that agents make these decisions in the same resource environment as participants. Thus, we
simulated a 26 x 26 landscape, where 169 cells (25%) initially contain a resource unit at the beginning of each
simulated 4-minute round. The probability that an empty cell would grow a new resource unit was defined
as Z¢t, where n; is the number of neighboring cells containing a green token, and N = 8 is the number of
neighboring cells. Like the experimental software, p is also equal to 0.01. The experimental software checks 10
times per second whether an avatar will move or harvest a resource unit, and the model checks up to 10 times
per second whether an agent decides to move or harvest.

Human participants clicked on one of the keys on their keyboard when making a movement decision or harvest
decision, and these actions took time. Therefore, our agents’ decisions and actions should take some analogous
time to execute in the simulation. As we will discuss below, the initial speed of movements is derived from an
empirical distribution. The movement speed could be adjusted based on trust in other agents during the round.
The decision whether to harvest or move is defined by parameters impacting the agent’s greediness and trust
in other agents. At the start of rounds 4, 5, and 6, trust is increased due to cheap talk. Agents have parameters
describing the impact of cheap talk on the change of trust levels.

The proposed model, therefore, used the variable trust as a key component (Figure 7). Trust in others is, itself,
impacted by the presence/absence of communication and the observed inequality of tokens harvested oneself
(versusthe harvest of all other agents in the group). If trust declines, the agent’s movement speed will increase,
and the agents are more likely to harvest a token on a cell. Here, we do not aim to capture the diversity of spatial
and temporal arrangements that groups devise during their communication (see DeCaro et al. 2021).

Move(%é’l\lz) —_
»  Trust —> Speed >

\ \ Harvest (yes/no) —
)

Inequality tokens collected €———

Communication <€

Figure 7: Flow diagram of the decision-making of each agent in the model. The flows within the box happen
during a round at a time resolution of 0.1 seconds. Communication occurs between rounds.

Base movement speed

The default movements of the agents are measured by the empirical data as three moves per second with a
standard deviation of 0.65. For simplicity’s sake, we assume that this is normally distributed, which follows the
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observed distribution (see Figure 3) of speed between 5 and 65 seconds (but we ignored the first two seconds
due to the start-up latency of human beings). A Shapiro-Wilk test supported the assumption of normality in the
speed distribution.

Movement direction

Agents define their direction to reach the closest token. If more than one token is equally closest, then one of
the tokens is drawn at random as the target.

Probability of harvesting a token

Human participants did not always harvest a token when available (Figure 5). Thus, when an agent moves to a
patch with a token, there is a certain probability p; to collect the token (where h stands for harvest). As men-
tioned earlier, we assume this probability is affected by the trust agents have in others. Furthermore, if trust
increases, agents start to pursue group equality and long-term earnings (i.e., longer time horizons). However,
if trust decreases, agents will act more selfishly, pursuing personal and short-term earnings (i.e., shorter time
horizons). The harvesting rate is assumed to be dependent on the variable T', which stands for an agent’s cur-
rent level of Trust in other agents. Hence, the probability p; that an agent harvests a token once it is on a patch
with a token is defined as:

ph =pr(l —apT) (1)

Where py, is the default probability of an agent to harvest a token when the agent does not trust other agents
(' = 0). The parameter «, captures the degree to which the harvesting rate declines when agent trust in-
creases. This assumption is based on the implications of Ostrom’s theoretical framework (Ostrom 1998).

To summarize what has been described so far, using pseudo code, the decisions of an agent each second are
determined as follows:

Repeat 10[

With probability speed / 10 do

L
Define closest token
Define heading up, down, right or left to move in the direction of the token
Move one step forward

1L
If a token on a cell harvest with probability computed in Equation 1

]

]

Trust

Trust is updated once per second due to observed inequality. At the start of each round, after a communication
period, trust gets a boost. The observed equality is captured by comparing the earnings =; between the agent
and the other agents. Prior theory debates how individuals are sensitive to inequalities (cf. Fehr & Schmidt
1999). The parameter 7 captures the sensitivity of an agent to the observed inequality (i.e., inequality aversion).
Inequality is captured by the average absolute difference in earnings between agent i and other agents in the
group. Trust can therefore change during the round when the agent observes the harvesting behavior of others.
The boost from communication in rounds 4, 5, and 6 depends on the value 6. A higher value of 8 brings the value
of T closer to 1, the maximum value of trust T'. Note that the component with @ is only used in rounds 4, 5, and
6 when there was communication. We assumed for simplicity that each agent type we discuss in our model
analysis has the same sensitivity to communication. This is obviously a major simplification but is needed since
we do not model the communication content itself nor have a theoretical foundation on how changes in trust
may differ among agents.

We assume now that we can represent trust can be defined using the following linear equation:

T

Tyi=Ti 1 —
t, t—1 N1

Z‘LL’Z —(Ej‘ +9(1—Tt,1) (2)
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In sum, trust levels are adjusted during the round based on observed inequality and get a boost with commu-
nication at the start of rounds.

Movement speed as a function of trust

Next, we explain how the model updates agents’ speed of movement and harvest as a function of trust within
each round. We mimic the experimental software update rate by using the speed level as the number of times
per second an agent may make a move. Speed, s, is defined as the default level of speed sy minus a relative
slowdown due to trust, T', in other agents. Hence if trust declines, agents speed up, leading to faster harvesting
of the shared resource. The parameter a; is the sensitivity of speed (where s stands for speed) to changes in
trust levels. For example, if T' = 0 (no trust), then s; = sq. If trust is maximal, T = 1, the speed is reduced to
st = so(1 — as). The model calibration aims to reveal a possible value of the sensitivity parameter «.

st = 59 — a5 1350 (3)

Delayed harvesting

In addition to its effects on trust and the speed of movement, communication also contributed to coordination.
As previously mentioned, after communicating, many groups delayed harvest until about 60 seconds before
the end of each round (Figure 4). When the maximum harvest rate is triggered, agents attempt to harvest every
token they can. To capture this behavior, we define parameter ¢, as the coordinated time when agents start
their maximum rate of harvest (where ¢ stands for “crazy” because human participants often refer to this as
“going crazy” at the end of the round).

Selective harvest strategy

Finally, communication may reducerivalry, allowing agents to leave tokens alone to facilitate renewal. The opti-
mal harvest strategy is to selectively harvest in a checkerboard pattern, leaving empty cells between individual
tokens to form a checkerboard matrix. This pattern maximizes the number of resource units surrounding empty
cells, thereby maximizing the renewal rate of the common-pool resource just like conventional logistic growth
resources (see Janssen et al. 2010). To mimic this strategy in our agents, we ensured that the agents left a mini-
mum number of adjacent cells, mn, unharvested. A checkerboard pattern implies a minimum number of 4. We
implemented this condition only during rounds 4-9 before the end-of-round “go crazy” time step .. Thisimple-
mentation reflects the fact that most individuals in the experiment coordinated their actions during rounds 4-9
(during and after communication) and transitioning from a conservation strategy (e.g., checkerboard pattern)
to a free harvesting period at the end of each round.

In total, the previous consideration resulted in eight model parameters to define agents’ decisions. These pa-
rameters are summarized in Table 2. Agents have an initial level of trust, Ty, and trust is updated using =~ when
observing inequality of harvested tokens, and cheap talk, # (Equation 2). The speed of the agents is influenced
by trust in agents, and agents have an individual sensitivity a; for this (Equation 3). When the agent is on a
cell with a token, it has a probability to harvest this token, p;, dependent on how sensitive «y, this agent is to
trust (Equation 1), and if the number of neighboring cells with tokens is more than mn. After communication
has happened, a time to go crazy at the end of the round ¢, which reduces the inhibitions of the agent (always
harvest tokens).

Description Range
Ph Initial harvest probability [0,1]
ap Adjustment rate harvest probability [0,1]
o Adjustment rate speed [0,1]

t.  Time after which agents maximize harvesting  [0,240]

T Sensitivity to the observed inequality [0,001]
0 Adjustment communication round [0,1]
To Initial Trust [0,1]
mn Minimum number of neighboring tokens [0,8]

Table 2: Model parameters to define the behavior of an agent type.
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Parameter estimation

We aim to explain the observed patterns in the data. Based on Ostrom’s behavioral theory of collective action,
we need to include variables like communication, trust, and inequality, aspects that were not considered in the
1980s and are still not part of the standard model of rational choice, one of the main communities studying
social dilemmas. If we can explain the data without including trust, inequality, and communication, that would
challenge the usefulness of Ostrom’s behavior theory.

Therefore, to evaluate the performance of a model, we will look at the number of the following two indicators, I,
averaged across all nine rounds:

1 (0, — [0, —X,|)

L=~ = 4
1= 5 (4)
r=1
9 48 = i3
1 (Pr,t — |Pr,t — YTJD
I = 9 ZZ P, ®
r=1t=1 ™

The first index, I; refers to the fit between the model simulations and the empirical data for tokens harvested.
The index has a maximum value of 1 if there is a perfect fit. O,. refers to the observed mean number of tokens
harvested by one of the 41 experimental groups in round r. X, refers to the mean number of tokens harvested
by a group in round r in 41 simulations.

The second index, I5 refers to the fit when replicating the resource’s state, which was captured every 5 seconds.
Therefore, P,.; is the mean observed level of tokens in the resource in round r for time stamp ¢,and Y, ; is the
simulated number of tokens in the resource in round r for timestamp ¢.

The mean of I; and I will be used to evaluate the fit between data and simulation using the genetic algorithm
BehaviorSearch of the NetLogo platform (Stonedahl & Wilensky 2010). If I; is smaller than 0, the difference
between the empirical and simulated data is bigger than the absolute value of the empirical data, and thus more
than a 100% error. We will use optimization, the genetic algorithm, to find parameter estimates to generate the
best fit.

We need a sufficient number of simulations per parameter setting to ensure reliable estimates. Based on the
standard deviation of 100 sample simulations of a set of 41 groups, about 30 simulations are required for a
maximum error of 0.01 (fitness function between 0 and 1) with p < 0.05. Note that this means that 9«41 30 =
11070 simulations of a four-minute round of harvesting tokens are done to calculate one evaluation (#) of
the fit between simulated and observed data.

Model Results

In this section, we present the results of our model, replicating the five patterns observed in the data from
DeCaro et al’s experiment. We first present a benchmark exercise with which to compare those results.

Benchmark exercise

When interpreting a model of a commons dilemma experiment, it is informative to consider two benchmarks, a
worst- and best-case scenario where agents are either unconditionally cooperative or selfish. Figure 8illustrates
these potential extremes for a representative round computed across 30 simulations of 41 experimental groups.

Unconditional cooperative agents start with high trust, ignore minor inequalities, and wait for 150 seconds
before harvesting, coordinating their behavior (p;, = 0.4; ap, = 0; a5 = 0;t. = 150; 7 = 0; 6 = 1; T, = 1).
Selfish agents start with no trust, do not respond to inequality, and start immediately harvesting the maximum
speed (p, = 1;ap = 0; a5 = 0;t. = 0; 7 = 0;0 = 0; T, = 0).

Groups consisting of unconditional cooperative agents achieve high levels of resource sustainability, collect-
ing 421.5 tokens on average. In contrast, selfish agents rapidly deplete the resource within approximately 60
seconds and collect only 201.2 tokens on average.
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Figure 8: Average resource size within a single round for two conditions involving either unconditional cooper-
ators (maximum) or selfish agents (minimum).

Calibration and replication

We now present the calibration results, attempting to maximize the fit of the simulated and experimental data.
We do a series of exercises with an increasing number of agent types. We start with calibrating the percentage of
unconditionally cooperative agents versus selfish agents. We then continue with a second and third calibration,
adding one type and two types of conditionally cooperative agents to evaluate potential improvement in the
model’s explanatory performance.

We recognize that assuming representative agent types is very simplistic. However, even within one type of
agent, agents can express different behaviors due to variations in opportunities (e.g., which tokens are available
nearby) and observed inequalities among agents.

The results of the calibration are presented in Table 3. Suppose we consider only selfish and unconditional
cooperative agents. In that case, a maximum fitness of 0.507 is derived if we use an agent population where 76%
of the agents are selfish, and 24% are unconditionally cooperative. Model performance increased substantially
when we added a third type of agent, a conditional cooperator. The fitness score is 0.842 when 75% of the agents
are conditional cooperators, 16% of the agents are selfish, and 9% of the agents are unconditional cooperators.
This distribution is consistent with empirical studies (e.g., Fischbacher et al. 2001). The model performance can
be improved slightly, to 0.857, if we have two types of conditional cooperators. Type A conditional cooperator
has low initial trust, while Type B conditional cooperator has high initial trust.

As a sensitivity test, we varied parameter values one parameter at a time for the basic model with one type of
conditional cooperator (see the Appendix). We find that for parameters «, T, and the minimum number of
neighboring cells with tokens, there is a wide range of values for which the fitness value remains close to the
maximum value. However, for other parameters, the fit declines substantially. This analysis suggests a mixture
of agents best explains the observations: mostly conditional cooperators with a small percentage of selfish or
cooperative.
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Model 1:

Parameter Description Value Range Self'|sh and Conditional Model 2: Model 2:
Basic model Type A Type B
Cooperator

Initial

Dh harvest [0,1] 0.38 0.82 0.86
probability
Adjustment

ap: rate harvest [0,1] 0.97 0.93 0.97
probability

s Adjustment [0,1] 0.30 0.64 0.56
rate speed
Timing of

te maximum [0,240] 176 194 181
harvesting rate
Sensitivity to

T the observed [0,0.001] 0.00009 0.00017  0.00004
inequality

0 Adjustment [0,1] 0.93 0.96 0.9
communication

To Initial trust [0,1] 0.35 0.08 0.85
Minimum number

o of neighbor [0, 8] 3 6 3
cells with ’
tokens
% of agent types
Selfish 76% 16% 6%
Altruist 24% 9% 5%
Conditional A 75% 52%
Conditional B 37%
Fitness 0.507 0.842 0.857

Table 3: Estimates of the model parameters for the different mixtures of agent types.

5.9 Takinga closer look at the estimated parameter values and their influence on agents’ behavior helps to further
clarify the interpretation of the models. First, when there was just one type of conditional cooperator in the
model (Model 1), the agent had a low initial probability to harvest tokens (0.38), indicating a tendency to con-
serve the resource. The harvesting probability is reduced as a function of trust, simulating individual restraint
(higher trust yields greater restraint), with adjustment rate a;, = 0.97). Initial trust was low (0.35) but could be
reduced more based on observed inequality, 7 = 0.00009, while when communication was permitted, trust
increased during each communication round (@ = 0.93). Overall, this model provided a strong fit to the data.

5.10 As noted earlier, distinguishing between two different types of conditional cooperators (Model 2) further im-
proves the model fit from 0.842 to 0.857. These agents mainly differed in their initial trust and sensitivity to ob-
served inequality: one agent, type B, had higherinitial trust and was less sensitive to inequality (high trust/inequity
tolerant conditional cooperator) compared to the other agent, type A, which had lower initial trust and was
more sensitive to inequity (low trust/inequity averse conditional cooperator). However, this model adds multi-
ple parameters for only a slight improvement in model performance. Therefore, it may not be necessary to use
Model 2 to explain the data.

5.11 When we evaluated the experimental data earlier, we identified 5 key qualitative data patterns that a good de-
scriptive model should reproduce. Figures 9 and 10 demonstrate our most basic model’s performance (using
Model 1) on these patterns. First, Figure 9 shows that, like the experimental participants, the agents in our
model rapidly overharvested the resource in the first 3 rounds. Second, agents’ harvest rate increased dur-
ing rounds 1-3, resulting in fewer total harvests. Third, communication prior to Round 4 leads to higher over-
all yields, as agents showed restraint allowing the resource pool to stabilize and replenish (Figures 9 and 10).
Fourth, the overall harvests increased with each subsequent communication round (rounds 5, 6), as agents ex-
hibited further restraint due to increased trust and observed reductions in inequality (Figure 10). Fifth, when
communication ended (rounds 7-9), overall harvests (resource stability) remained high but slowly declined
each round (Figure 10). Thus, Model 1 replicates well all five major behavioral patterns observed in DeCaro
et al. (2021) data.
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cates the 10% and 90% percentiles.
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What does the model analysis reveal about the experimental data? Within our theoretical framework, we cannot
explain the observed behavior without including the interaction between trust, inequality and communication.
Our results indicate that observed behavior in DeCaro et al. (2021) demonstrative experiment can be explained
well by groups consisting of majority conditional cooperative agents who respond positively to communication
by increasing their trust and by delaying their maximum harvesting level until near the end of each round. Con-
tinued communication during rounds 4-6 continues to enhance agent’s trust. Observing that the other agents
are sharing the available resource equitable also enhances trust. The accumulated trust ensures that the agents
cooperate at a high level after communication ends, rounds 7-9. However, lack of communication means that
the trust-enhancing opportunities of communication can no longer be directly maintained. Therefore, agents
become more reliant on observed behavior in the final rounds of the experiment. Trust erodes somewhat in
rounds 7-9 due to some observed inequality of harvesting, and this leads to a slow decline in cooperation and
resource sustainability. This finding suggests that groups need a continued period communication to main-
tain trust and therefore likely will not continue to cooperate ad-infinitum without such communication. This
finding also implies that Hardin (1968) worst-case scenario of the tragedy of the commons, at best, pertains
to conditions without communication (rounds 1-3). Agent’s observed behavior is better aligned with Ostrom
(1998) description of stakeholders as conditional cooperators, driven by trust and reciprocity (DeCaro 2019).

Robustness test: Generalization to a different environment

Finally, as an additional test of model robustness, we use Model 1 to explore an alternative experimental con-
figuration. This is an out-of-sample test where we used Model 1 to reproduce qualitative findings from similar
behavioral experiments. Janssen et al. (2014) ran a set of experiments where visibility of the resource and other
players was restricted. Participants could only see within a 5-cell radius surrounding their avatar, requiring them
to move around to observe the resource and other players’ behavior. In this setup, it is difficult for players to
observe other players’ behavior. Therefore, their trust may be less sensitive to inequality because they observe
inequality less frequently.

To test this assumption, we set agents to have a limited vision. We hypothesized that this would mean that
agents would rarely observe direct information about others’ behavior, potentially affecting their trust. We
assumed that trust would not be reduced as quickly due to observed inequality and that this would lead to
greater restraint (i.e., resource conservation), resulting in higher total harvests. We also expected agents to
coordinate less efficiently because they have limited vision (information) to observe the resource and other’s
actions. Experiments reported by Janssen et al. (2014) demonstrate that participants typically start harvesting
earlier to get a competitive advantage against the other group member in the second part of the round.

We performed simulations of Model 1, using different radii for additional diagnostic feedback. As shown in
Figure 11, limited vision increases the number of tokens agents collected in rounds before communication,
decreasing overall group harvests. In contrast, a limited vision has negligible effects on cooperation in rounds
with communication: number of tokens collected decreases (as seen in DeCaro et al. 2021), resulting in overall
higher group harvests.

The qualitative findings of this robustness test are similar to those found in experiments with radius 5 (Janssen
et al. 2014), further affirming the plausibility of the single-conditional cooperator model we developed. Thus, it
may be that not observing inequality of harvesting (due to limited visibility) lead to more sustainable use of the
resource in rounds 1-3, while it reduces the possibility of high performance when agents can coordinate their
performance in rounds 4-6.
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Figure 11: Model 1 generalization to an environment with limited visibility. The average number of tokens col-
lected in the different rounds (1-9) for different radius levels of visibility (1-23 cells).

Conclusions

We presented an agent-based model of a spatially-explicit common-pool resource dilemma to account for ob-
served behavior in behavioral experiments (DeCaro et al. 2021). The model was informed by Ostrom (1998)
and DeCaro (2019) behavioral theories, which describe how communication facilitates trust formation and re-
ciprocal cooperation. The model was unique because it used participants’ self-reported trust before and after
communication to emulate dynamic changes to trust during different moments in the experiment, as agents’
reacted to ongoing communication and observed levels of in/equality. Trust levels subsequently influenced
simulated in-game harvesting behavior, reproducing major behavioral patterns and resource management out-
comes observed in the original data.

The best explanation of the data used a mixture of agent types, broadly resembling distributions commonly
seen in other experimental studies. Specifically, 75% of the agents were conditional cooperators, with a mod-
erate level of initial trust that improved with communication and decreased with observed inequality. The other
agents were unconditional cooperators (9%) and selfish agents (16%). Overall, the best fitting model accounted
for five major qualitative patterns observed in the experimental data, providing a good description of the data.
Our model also generalized well to another test environment where visibility was restricted.

What do these results tell us about the interaction of inequality, trust, and communication? The observed out-
comes cannot be explained without including inequality, trust, and communication in agents’ decision-making,
thus confirming Ostrom’s behavior theory of collective action. However, this does not mean that each agent has
to consider these factors. Indeed, the heterogeneity of agent types is key to reproducing observed patterns.
However, although communication is assumed to increase trust among conditional cooperative agents, our
findings cannot fully capture the effect of communication on outcomes such as trust in other types of agents.
More research will be needed to provide a comprehensive picture of the impact of communication on trust
among various types of agents and on heterogeneous population.

This project has important theoretical implications. Agents were designed to adhere to behavioral principles
proposed by Ostrom (1998) theory of collective action and Humanistic Rational Choice Theory (HRCT; DeCaro
2019). According to Ostrom (1998), self-interested agents require trust to coordinate. DeCaro et al. (2021) show
that open, democratic communication and decision-making enable this trust to emerge, specifically by satisfy-
ing fundamental needs for procedural justice, self-determination, security, and equity. When group members’
only means of controlling behavior is communication, they rely on social sanctions such as praise and shame
to enforce cooperative agreements. This contradicts historically accepted assumptions that communication is
mere “cheap talk” unable to enhance security without tangible punishments (cf. Ostrom et al. 1992). The cur-
rent study supports a view of humans as capable to cooperatively self-govern, with sufficient opportunity to
communicate and monitor each other’s behavior (cf.Ostrom et al. 1992).
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In conclusion, our calibrated model on spatially explicit commons dilemmas confirms the empirically observed
diversity of agent types (Fischbacher et al. 2001) and that trust, inequality, and communication are important
driving factors (Ostrom 1998). Future research should continue exploring ways to examine and represent these
behavioral and institutional foundations of cooperative self-governance in subsequent experimental tests and
agent-based models.
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Model Documentation

The model is implemented in NetLogo 6.2, and the code is available at: https://www.comses.net/codebas
es/61faf9c9-3e93-44af-be74-2a60e8b3360e/releases/1.0.0/.

Appendix: Additional Analysis

In Figure 12, we show the time series of the resource level of each of the 41 groups. This shows the wide spread
of group behaviors and the qualitative change after round 3 when participants could communicate.

450

Resource size

Figure 12: Resource level of all 41 groups measured by the number of tokens available for each second in the 9
rounds of the experiment.

Next, we show that participants’ behavior within a round is correlated. We measure the number of movements
between 5.00 and 35.00 seconds. We ignore the first 5 seconds because participants do not start immediately
(reaction time) when the round begins, and after 35 seconds, a resource can be depleted quite a bit. Hence the
30-second interval used is pretty comparable.

The correlations in Table 4 show that the number of movements is not correlated in rounds 1 to 3. Participants
go their own way and do not adjust their speed quickly in the rounds without communication. After communi-
cation, the speed becomes more correlated over the rounds, which drops a bit again when communication is
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not allowed anymore. The number of harvested tokens starts to become correlated in round 2, which indicates
that after the first rounds, participants who did not harvest many tokens will increase their harvesting rate, so
they fall less behind the participants who harvested a lot already in round 1.

Movements Harvested tokens

Round 1 -0.0420 0.1416
Round 2 0.0760 0.2212
Round 3 0.0135 0.4329
Round 4 0.5652 0.3892
Round 5 0.6745 0.5367
Round 6 0.7222 0.7283
Round 7 0.6820 0.7764
Round 8 0.7017 0.8300
Round 9 0.6418 0.8493

Table 4: The correlation between self and mean of others for the number of movements and number of tokens
harvested between seconds 5 to 35 in 5-second increments. Bold represents a high level of correlation.

Is there a correlation between trust and the tokens harvested by a group? In Table 5, we see the average trust of
a group after round 3 is somewhat correlated with the total harvest of a group in rounds 2 and 3. Hence groups
with lower mutual trust led to lower harvest returns. Trust in round 3 negatively correlates with the tokens
harvested in round 4. This suggests that groups with low mutual trust reverse course and substantially increase
their harvest. The trust level measured after round 3 is not correlated with the number of tokens harvested in
rounds 5-9. This means that communication had a significant impact on trust. The trust after communication,
measured after round 6, is strongly correlated with the group’s performance in rounds 4-9. This shows that the
communication in round 4 already had a major impact. Since trust is likely a combination of observed behavior
and communication, it is no surprise that the highest correlation is in round 7, just after we measured the trust
levels.

Trust after round 3 Trust after round 6

Round 1 0.0337 0.0970
Round 2 0.2747 0.0503
Round 3 0.3301 -0.0820
Round 4 -0.2805 0.3636
Round 5 -0.1905 0.5585
Round 6 0.0164 0.5781
Round 7 -0.0356 0.6571
Round 8 -0.1211 0.6233
Round 9 -0.0658 0.5819

Table 5: Correlation between average trust of groups and their amount of tokens harvested.

In Figure 9, in the main article, we show the results of the best fit for the model with one type of conditional
cooperative agent. In Figure 13, we show similar results for the version of the model with 2 types of conditional
cooperative agents.
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Figure 13: The mean of the resource size of the 41 groups compared with the 10th, 50th, and 90th percentiles
of 100 simulations of samples of 41 groups of the 2 conditional cooperative types version of the model.

Figure 14 shows the average fitness level of different parameter values where we varied the parameter values
from 0 to 1 in steps of 0.1. We see that the initial harvesting probability between 0.3 and 0.4 lead to the best
performance, while values close to 1 for ay, are the only ones leading to good performance. This means that
harvesting probability is sensitive to trust in others. In contrast, the speed of agents should not be adjusted
rapidly to trust since high values of o lead to lower performance of the model.

Trust in others moves close to the maximum value after a communication period, as can we see for good fitness
values forvalues of # of 0.9 or higher. If the initial trust in others is lower than 50%, the performance of the model
is good. Sensitivity of trust to observed inequality in the group needs to be in the lower level of the parameter
range of 7 to derive high performance of the model.

Figure 15 shows the sensitivity of the time for the conditional cooperative agent to "go crazy." If this happens
with around 60 seconds left on the clock, the performance of the model with the data is good. Finally, in Figure
16, we show performance is slightly higher if agents do not harvest tokens in rounds after round 3 if there are
less than 3 neighboring cells of the cell with the token occupied with tokens. Performance drops quickly if more
than four tokens are on the neighboring cells.
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Figure 15: The average fitness level for different levels of the time to start harvesting at maximum rate (¢..).
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Figure 16: The average fitness level for different values of the minimum number of tokens on neighboring cells
before harvesting in rounds > 3.

Finally, in Table 6, we see the fitness levels for different mixtures of selfish, cooperative, and one type of condi-
tional cooperative agents. As long as 70% or more of the agents are conditional cooperative, the fitness level
of the modelis 70% or more. The best performance is still to have some selfish and cooperative agents and not
only have conditional cooperative agents.

Selfish/Coop 0 0.1 0.2 0.3 0.4

0 0.766 0.758 0.745 0.495 -0.131
0.1 0.784 0.803 0.781 0.458 0.302
0.2 0.710 0.719 0.595 0.492 -0.143
0.3 0.637 0.680 0.651 0.443 0.259
0.4 0.561 0.589 0.605 0.457 -0.373

Table 6: The numbers represent the average fitness of 100 simulations of 41 group experiments to explain ex-
perimental data. The shares of the different types of agents were changed by 10% for each combination. The
top row represents the fraction of cooperative agents, and the left column represents the share of the selfish
agents. The remaining agents are conditional cooperative.
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