
Latency analysis of self-suspending task chains

Tomasz Kloda∗, Jiyang Chen†, Antoine Bertout‡, Lui Sha† and Marco Caccamo∗
∗Technical University of Munich, Germany †University of Illinois Urbana-Champaign, USA ‡Université de Poitiers, France

Abstract—Many cyber-physical systems are offloading
computation-heavy programs to hardware accelerators (e.g., GPU
and TPU) to reduce execution time. These applications will
self-suspend between offloading data to the accelerators and
obtaining the returned results. Previous efforts have shown that
self-suspending tasks can cause scheduling anomalies, but none
has examined inter-task communication. This paper aims to
explore self-suspending tasks’ data chain latency with periodic
activation and asynchronous message passing. We first present
the cause for suspension-induced delays and worst-case latency
analysis. We then propose a rule for utilizing the hardware
co-processors to reduce data chain latency and schedulability
analysis. Simulation results show that the proposed strategy can
improve overall latency while preserving system schedulability.

Index Terms—Self-suspension, Latency, Real-time, Hardware
Accelerator, Scheduling

I. INTRODUCTION

More cyber-physical systems (CPS) applications are adopting
a modular design in which a single program is decomposed
into several modules and a shared middleware, such as ROS
(Robot Operating System), is used for communication. Ex-
amples include automotive system with distributed electronic
control units [1], [2] and flight management systems [3].
In such systems, communication is of vital importance.

A data chain message-passing mechanism (a.k.a. asyn-
chronous [1] or passive [4]) is often preferred as it is easy to
implement and has low communication overheads [5]. There
is no inter-task synchronization, and all scheduling decisions
are made independent of the data flow between different tasks.
The system implementation and verification can be more cost-
and time-effective by separating these two concerns [6]. On
the downside, inter-task communication is less deterministic as
communication delay subjects to variation in execution time
and different phasings between tasks’ activations in a multi-
rate schedule.

Developers are offloading heavy computation to onboard
special-purpose hardware accelerators or a cloud edge server to
meet real-time requirements. The module that does offloading
suspends itself while waiting for the computation to finish,
a.k.a. self-suspending tasks. One would expect the end-to-end
data chain latency to improve with a better task response time.
However, self-suspending behavior can lead to several anoma-
lies and exhibits intractability even for simple task models and
standard scheduling policies [7], [8] also affecting the end-to-
end latency. Figure 1 shows one such example: a data chain
consisting of one producer τp and one consumer τc. These two
periodic tasks are scheduled with preemptive Rate-Monotonic
(RM) [9] policy (τp has higher priority than τc) and without
data synchronization. The worst latency for a) happens for
the second instance of the producer, which is 9 − 3 = 6

0 1 2 3 4 5 6 7 8 9 10 11 12

τp

τc

(a) Data chain schedule without offloading.

0 1 2 3 4 5 6 7 8 9 10 11 12

τp
S S S S

τc

(b) Data chain schedule with offloading.

Fig. 1: Latency comparison for task chain with and without
offloading. Offloading can increase data chain latency.

(i.e., τp reads data at 3 and τc yields the results at 9), while
for b) it happens for the first instance of the producer, which
is 7.5 − 0 = 7.5. Even though the producer benefits from
offloading (represented by S) by having a shorter execution
time, the task chain latency can be worse since the consumer
can start execution during the producer’s suspension interval.
Existing solutions make the consumer wait until the data is

ready, such as using semaphores for data synchronization [10],
or letting the producer task do busy-wait instead of yielding
the CPU during suspension [11]. The first approach introduces
synchronization, which increases system complexity and makes
it more challenging to pass certification [6], while the second
one wastes CPU cycles that other tasks could use.
This paper studies end-to-end latency of self-suspending

periodic tasks in an asynchronous communication system and
shows how to avoid priority-inversion in data passing without
unnecessary processor blocking, complex synchronization and
scheduler modifications. The main contributions are:

• worst-case latency analysis for data chains of self-
suspending periodic tasks (Section III),

• latency reduction method that chooses for each task job
between self-suspension and busy-wait (Section IV).

II. SYSTEM MODEL

We consider fixed-priority preemptive scheduling of a static
set of real-time periodic tasks on a single core. Each task τi

1299978-3-9819263-6-1/DATE22/ c©2022 EDAA

Authorized licensed use limited to: University of Illinois. Downloaded on January 30,2023 at 17:40:02 UTC from IEEE Xplore. Restrictions apply.

gives rise to an infinite sequence of identical instances (also
called jobs). We assume synchronous periodic task activa-
tion model, so all tasks release a job simultaneously at
time instant 0. Each task τi is characterized by a four-
tuple (Ci, Si, Ti, Di). Ci is task worst-case execution time,
Ti is task period, and Di ≤ Ti is task relative deadline.
Si is task suspension time and τi can self-suspend at most Si

time units during its execution. We assume the dynamic self-
suspending model where a task can self-suspend as long as
the accumulated suspension time is less than Si. Task τi’s
k-th instance (k ∈ N+), denoted as τi,k, has release time at
ri,k = (k−1) ·Ti and its absolute deadline at di,k = ri,k+Di.
The worst-case job response time of τi’s k-th job is defined
as Ri,k = fi,k − ri,k where fi,k is its latest finishing time.
The worst-case response time of task τi is its maximum
worst-case job response time: Ri = maxk{Ri,k}. A task is
schedulable iff Ri ≤ Di.
Each task τi is assigned a unique priority π(τi) and is said

to have a higher priority than task τj iff π(τi) > π(τj).
The priority-driven scheduler executes the highest priority job
among all active ones at a given time instant. We introduce the
notation hp(i) for the set of tasks with priorities higher than
the priority of task τi.

The tasks communicate via shared registers that only store
the least recently written data. We shall assume implicit commu-
nication [12] model: task’s input data is read at the beginning
of its execution, and the results are written at the end. Tasks
do not wait for new data to start its execution. The data
flow between the different tasks is described by a data chain.
Formally, a data chain Γm is a sequence of communicating
tasks (τ1, . . . , τn) in which every task receives the data from
its predecessor [13]. We use the terms data chain and task chain
interchangeably. We denote by head(Γm) = τ1 the first task
in the chain, last(Γm) = τn the last task in the chain and
by tail(Γm) = (τ2, . . . , τn) the chain obtained by removing τ1
from Γm. The first task τ1 = head(Γm) reads the input data
(e.g., sensor) at the start of the execution. When τ1 completes
its execution, it immediately writes the data into the register
of the next task, which will read this data at the start of its
execution. Each consumer task has a separate register for each
producer task. The data is passed down until the last task of the
chain τn = last(Γm), and the final result is written to chain’s
output (e.g., actuator). Each producer task τp can have multiple
consumers denoted by the set cons(p).

III. LATENCY ANALYSIS

In this section, we present task chain worst-case latency
analysis involving self-suspending tasks.
We define the chain’s latency as the time needed for the data

to be propagated from the first to the last task of the chain [14]
(i.e., delay between a stimulus and its first response [15])
assuming that the chain’s input data is sampled at the release
times of the first chain’s task. We assume that the data is present
at the input sufficiently long to be detected and processed.

Definition 1 (Worst-case latency). The worst-case latency L(Γ)
of data chain Γ is the maximal time that can elapse between

the arrival of the input at the first chain’s task head(Γ) and the
first output corresponding to this input produced by the chain’s
last task last(Γ).

The data chain’s propagation path can take different trajec-
tories depending on the relation between the tasks’ releases
and execution times. We will examine all possible input data
arrivals corresponding to the release times of the first task
τ1 = head(Γ) in the chain. We define L(Γ, r1,k) as a task
chain’s Γ maximal latency for the input sampled at r1,k. The
value of k for which L(Γ, r1,k) is maximal gives the worst-case
latency L(Γ) for data chain Γ.
We start by considering a pair of producer and consumer

tasks, τp, and τc respectively, directly communicating within
the same data chain. Let rp,k be the release time of a pro-
ducer task instance τp,k that writes a data. We search for the
largest possible (worst-case) release time rc,l of consumer task
instance τc,l that reads this data for the first time.

First, we show that τc,l is released at or after the release of
the producer τp,k: rc,l ≥ rp,k. We can build a schedule where
the consumer released before rc,l cannot read the data from the
producer released at rp,k. Let rc,l′ < rp,k be the last τc release
before rp,k. Since we assume that the task execution times can
vary and the tasks can terminate at any point in time, all hp(c)
tasks active at rc,l′ may terminate their executions immediately.
Consequently, τc,l′ can start at rc,l′ and is unable to read the
data from τp,k that has not yet been released.
We can now identify the latest release time rc,l of the

consumer that can read the data for the first time, which
depends on the priority relation between both tasks and the
self-suspending property of the producer task.
We first briefly summarize the previous results for

non-self-suspending tasks [15]–[17]. If τc has lower priority
than τp, a τc’s instance released while non-self-suspending τp
is still active can start its execution only after τp finishes its
instance. On the other hand, if τc has higher priority than τp, its
instance can preempt τp and start its execution by reading the
data from the previous τp’s instance. Thus, the data from the
current τp’s instance can be retrieved by the first τc’s instance
released after τp finishes.

The next lemma characterizes for self-suspending tasks the
latest possible release time of consumer tasks.

Lemma 1. The data written by a producer with dynamic self-
suspension interval is retrieved at the latest (worst-case) by the
first consumer job released after the producer execution end.

Proof. Let rp,k be the release of the current producer τp
instance τp,k. Suppose that the consumer task τc reads data
from τp. We consider two cases with regard to the task
priorities: π(τc) < π(τp) and π(τc) > π(τp).

Suppose first that τp has higher priority: π(τc) < π(τp).
Consequently, τc instance cannot start its execution as long
as τp,k and other higher-priority tasks are active. However,
the producer task follows the dynamic self-suspension model
and can self-suspend at any time during its execution. It is,
therefore, possible that τp,k self-suspends before the end of
its execution at fp,k, and all hp(c) tasks either self-suspend

1300 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: University of Illinois. Downloaded on January 30,2023 at 17:40:02 UTC from IEEE Xplore. Restrictions apply.

or terminate their executions. If this is the case, τc instance
active before fp,k starts its execution by reading the data from
the previous producer instance τp,k−1. Once τp,k completes its
execution, its data is read for the first time by the τc instances
released at or after fp,k.

We now suppose that τc has higher priority: π(τc) > π(τp).
Each consumer instance can preempt the current producer
instance τp,k. As for non-self-suspending tasks, the data will
be retrieved by the first τc instance released at or after the end
of τp,k execution.

We do not consider the case where the consumer is a self-
suspending task as this will not affect the start of its execution
(i.e., a task that starts its execution first reads its input and can
self-suspend only later).

To sum up, if producer τp is a non-self-suspending task
with higher priority than consumer τc, π(τp) > π(τc), then
the data from the producer instance τp,k released at rp,k is
retrieved at worst by the first consumer instance τc,l released
at or immediately after the producer release:

rc,l =

⌈
rp,k
Tc

⌉
· Tc (1)

Otherwise, if producer τp is a self-suspending task with higher
priority or a lower-priority task with or without self-suspension
interval, the data is retrieved by the first consumer instance
released after the end of the current producer’s job τp,k:

rc,l =

⌈
fp,k
Tc

⌉
· Tc (2)

The worst-case latency L(Γ) is given by the longest la-
tency of the chain Γ released at all eligible release times
of τ1 = head(Γ) within time interval [0, H] where H is
the least common multiple of all task periods in the sys-
tem [18]. Algorithm 1 computes the maximal latency for
Γ = (τ1, τ2, τ2, . . . , τn) released at a given time instant rp,k
where rp,k is an eligible release time of τp = head(Γ). The
algorithm starts with τp = τ1 and computes the release time rc,l
of consumer τ2. Then, τ2 becomes producer released at rc,l
and τ3 a new consumer. The algorithm terminates when it
reaches the last task of the chain last(Γ). The worst-case
latency is obtained by checking all rp,k within hyperperiod
resulting in an exponential complexity. We derive a simple
polynomial-time latency bound.

Algorithm 1 Data chain maximal latency at rp,k.

1: function L(Γ, rp,k)
2: τp ← head(Γ)
3: if len(Γ) = 1 then
4: return Rp,k

5: Γ′ ← tail(Γ), τc ← head(Γ′), Q ← 0
6: if π(τc) > π(τp) or Sp > 0 then Q ← Rp,k

7: rc,l ←
⌈
rp,k +Q

Tc

⌉
· Tc

8: return rc,l − rp,k + L(Γ′, rc,l)

First, we upper bound the distance between rc,l and rp,k
given by Equation (2). We use the fact that: fp,k = rp,k +
Rp,k ≤ rp,k +Rp and the following property: �x

y � <
x
y + 1.

rc,l − rp,k =

⌈
fp,k
Tc

⌉
· Tc − rp,k

≤
⌈
rp,k +Rp

Tc

⌉
· Tc − rp,k < Rp + Tc

The same transformation can be applied to Equation (1). We
can define a following upper bound:

L(Γ) ≤
n−1∑
i=1

dist(τi, τi+1) +Rn (3)

where:

dist(τp, τc) =

{
Tc if π(τc) < π(τp) and Sp = 0,

Tc +Rp otherwise
(4)

A tighter bound can be derived from [3], [15] by rounding
Equation (4) down to a value satisfying the relation between
two releases of tasks τc and τp. The results presented above
assume the knowledge of the task worst-case response times. In
the next section, we propose response-time analysis for latency-
aware self-suspending tasks.

IV. LATENCY REDUCTION METHOD

There are two common strategies for utilizing the hardware
accelerators [8]: busy-waiting, where the task does not give
up the processor to lower-priority tasks by spinning until the
accelerator finishes the work; suspension, where task suspends
its execution, letting all other tasks execute until the accelerator
sends an interrupt when its job has completed.

Suspension can usually improve the processing performance
but can also negatively affect the worst-case latency of data
chains. In the previous section, we showed that if a consumer
has a lower priority than the producer, the data passing delay
can be longer when the producer suspends compared to the
case when the producer is non-self-suspending or busy-waits.
Indeed, when a higher-priority producer suspends, a lower-
priority consumer might be no longer blocked and can start its
execution by reading the old data. In this section, we propose a
method to choose for each offloading job between suspension
and busy-wait to prevent additional delay in data passing.

The easiest solution to avoid an increase in latency caused by
self-suspending behavior is to always busy-wait. Each lower-
priority consumer released during the current producer instance
will not start its execution before the producer completes.
The response time analysis boils down to suspension-oblivious
approach where the suspension time of each task is converted
into an additional computation time [19]:

Ri = Ci + Si +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
· (Cj + Sj) (5)

However, allowing suspension can improve response times
and might not deteriorate data chain latencies in certain cases.
First, it is not necessary to busy-wait if task is not involved

Design, Automation and Test in Europe Conference (DATE 2022) 1301

Authorized licensed use limited to: University of Illinois. Downloaded on January 30,2023 at 17:40:02 UTC from IEEE Xplore. Restrictions apply.

in any data chain. Second, self-suspending behavior cannot
increase data passing delay if τp has lower priority than τc,
∀ τc ∈ cons(p) : π(τp) < π(τc). Finally, if τp has higher
priority than τc, it might be unnecessary to busy-wait in
every τp instance. In fact, busy-waiting cannot help when a
consumer job was released before the current instance of the
producer. Such consumer is assumed, in the worst case, to read
the data from the previous instance of the producer.

0 1 2 3 4 5 6 7

τp
S S

τc

(a) Task-level busy-waiting.

0 1 2 3 4 5 6 7

τp
S S

τc

(b) Job-level busy-waiting.

Fig. 2: The producer task with offloading is τp = (1, 1, 3, 3).
The consumer task τc = (1.5, 0, 6, 6) has lower priority.

Consider the data chain from Figure 2. We assume that τp has
higher priority than τc. In the first case, shown in Figure 2 a),
we apply the busy-waiting for every instance of the producer. In
the second case, shown in Figure 2 b), τp busy-waits during the
first τc instance and suspends during the second one. In both
cases, the tasks exchange the data at the same time. However,
in the latter case, τc’s response time is shorter as it can
execute during τp’s second instance self-suspension interval.
We propose Algorithm 2 to decide whether an offloading job
should busy-wait or suspend.

Algorithm 2 Busy-wait insertion for task τp released at rp,k

1: function ADD BUSY WAIT(τp, rp,k)
2: for τc ∈ cons(p) do
3: if π(τc) < π(τp) then
4: rc,l ← Equation (1), fp,k ← rp,k +Rp,k

5: if fp,k > rc,l then
6: return busy-wait

7: return suspend

The proposed method can reduce latency but at the same
time affect the response times. We derive the response time
analysis that accounts for self-suspension and busy-waiting.
We first evaluate the number of busy-waiting instances of

task τj within an arbitrary time interval Δ > 0. Getting its

exact value would involve, in the worst case, simulation over
hyperperiod and can have exponential complexity. We derive
therefore a simple linear-time upper bound.
Let there be two directly communicating tasks: τc and τp.

Task τc is a consumer and τp is a higher-priority self-
suspending producer: Sp > 0 and π(τp) > π(τc). If τp job
busy-waits while τc job is being active, then all following jobs
of τp released and completed before the next τc release do not
have to busy-wait (e.g., see the second τp job in Figure 2).
There might be at least np,c − 1 such jobs where np,c is the
biggest positive integer satisfying the following relation:

(np,c − 1) · Tp +Rp ≤ Tc (6)

and can be calculated as follows:

np,c =

⌊
Tc −Rp

Tp

⌋
+ 1 (7)

We conclude that among any np,c consecutive instances of τp
at most one busy-waits. If τp has more than one consumer,
we pessimistically assume that the τp busy-waiting instances
related to different consumers do not overlap. The number
of τp busy-waiting instances bwp(Δ) within an arbitrary time
interval Δ > 0 is upper bounded by:

bwp(Δ) ≤ min

⎛
⎝ ∑

τc∈cons(p)

⌈
Δ

np,c · Tp

⌉
,

⌈
Δ

Tp

⌉⎞⎠ (8)

We calculate the worst-case response time Ri of task τi.
Let τj ∈ hp(i) be a self-suspending task interfering with τi
execution. To upper bound its interference, we consider two
different cases with respect to τj’s first interfering instance: i) it
suspends or ii) it busy-waits. In the first case, we extend the self-
suspension response time analysis based on release jitter [20]. If
the first τj instance self-suspends whenever it can be granted
the processing time, then its computation beginning is being
pushed away from its actual release. If τj is schedulable,
we can upper bound its computation start by Jj = Rj − Cj .
Moreover, we consider that all subsequent τj instances busy-
wait as often as possible. In the second case, the first τj instance
busy-waits, and therefore there is no need to consider an extra
jitter, Jj = 0. Consequently, the time to the second instance is
more than in the former case, but the first instance produces
higher interference when busy-waiting.
Let �J = (J1, J2, . . . , Ji−1) be a vector assignment in which

Jj is either 0 (i.e., the first τj job busy-waits) or Rj − Cj

(i.e., the first τj job self-suspends). The worst-case response
time of task τi is upper bounded by the maximal value of Ri

for all arbitrary vector assignments �J given by the minimum
positive integer to satisfy the following recurrent relation:

Ri = Ci + Si +
∑

j∈hp(i)

Ij(Jj , Ri) (9)

with

Ij(Jj , Ri) =

⌈
Ri + Jj

Tj

⌉
· Cj + bwj(Ri − J ′

j) · Sj (10)

1302 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: University of Illinois. Downloaded on January 30,2023 at 17:40:02 UTC from IEEE Xplore. Restrictions apply.

where J ′
j = Tj − Jj if Jj > 0 and J ′

j = 0 otherwise (i.e., time
to the first τj busy-waiting job). If interfering task τj does
not self-suspend, Sj = 0, we consider only Jj = 0 and
bwj(Δ) = 0 for all Δ > 0. Testing task schedulability is of
complexity O(n · 2n ·maxi{Di}) where n is the number of
tasks. A test with pseudo-polynomial complexity can be derived
by considering in every iteration the maximal interference
generated by task τj among the two cases:

Ri = Ci + Si +
∑

j∈hp(i)

max{Ij(0, Ri), Ij(Rj − Cj , Ri)}

(11)

V. EXPERIMENTS

We investigate the impact of self-suspension on the task
chains’ worst-case latency. Based on the characteristic of an
automotive application [21], we generate random task sets and
random data chains. For a given total utilization U , we use
the Emberson et al. task generator [22] to obtain n = 40
random task utilizations: U1, . . . , Un. Task period Ti is ran-
domly drawn from the set {1, 2, 5, 10, 20, 50, 100, 200, 1000}
with an associated likelihood [21]. The offloading ratio r for
each task is drawn from [0.1, 0.6]. We obtain the task τi
worst-case execution time as Ci = Ui · Ti · (1 − r) and
its worst-case self-suspension time as Si = Ui · Ti · r. The
self-suspending behavior is applied to randomly selected tasks
with a uniform probability of ps = 0.6. The deadline of
each task is equal to its period (Di = Ti), and priorities
are assigned in RM order. We shall assume that each task
set has respectively 3, 4, 2, 1 chains of length 2, 3, 4, and
5 (the chains lengths and their ratios respect the characteristics
from [21]). We assume that 80% of chains can have on
average 2 common tasks. For each task set we apply: i)
suspension-oblivious approach (Formula (5)), ii) suspension-
aware response time analysis based on blocking time [23],
and iii) our proposed response time analysis for latency-aware
self-suspending tasks (Formula (11)). Using these response
times, for each data chain Γ we compute its worst-case latency
(Algorithm 1) using the following approaches: i) always busy-
wait Lobl(Γ), ii) always self-suspend Lsusp(Γ), and iii) busy-
wait when necessary Lours(Γ) described in Algorithm 2. For
each chain, we also compute its worst-case latency polynomial-
time bound (Formula (3)). When computing latency for i) and
iii), we assume Si = 0 for each task τi.
The results are shown in Figure 3. We vary the total

utilization of the generated task set from 0 to 1.5 with a step of
0.005. For each point in the plot, 100000 sample task sets were
evaluated. In the first experiment presented in Figure 3 a), we
compare the ratio L(Γ)/Lsusp(Γ) (i.e., latency ratio) where
L ∈ {Lobl, Lours}. We note that the proposed method can
reduce the latency of self-suspending tasks set up to 12%. In
Figure 3 b) we repeat the same experiment but for the bounds.
Generally, the bounds are ineffective, and our proposed method
provides a slight improvement only for low utilization. The
last experiment reported in Figure 3 c), shows the impact on
the schedulability (i.e., percentage of schedulable tasks). The

results demonstrate that while introducing busy-waiting, the
proposed method can still benefit from offloading.

VI. RELATED WORK

Most works on end-to-end latency assume classic non-
suspending tasks or logical execution models. The analysis
for the worst-case latency computation proposed by Davare
et al. [1] applies to the sporadic tasks or the tasks executing
on asynchronous nodes. Feiertag et al. [16] describe the data
traversal (timed path) in the periodic schedule. Based on this
concept, Becker et al. [24] analyze various end-to-end timing
constraints for periodic tasks independently of the concrete
scheduling algorithm. The authors propose to insert job-level
dependencies to ensure the end-to-end constraints by examining
the timed paths within the tasks hyperperiod. Günzel et al. [4]
study the latency computation in the globally asynchronized
locally synchronized systems and Kloda et al. [17] in the
globally synchronized ones. In [12] the latency analyses for
implicit, explicit, and logical execution time-based communica-
tion models are proposed. Dürr et al. [25] consider the sporadic
task activation model in the cause-effect chains. Choi et al. [26]
develop a latency-aware scheduling policy that prevents the
unnecessarily early start of jobs’ executions and integrate the
chain-aware scheduling into ROS2 [27].
The state-of-the-art research on real-time scheduling for self-

suspending tasks can be found in [8]. Besides the classic time
demand analysis, the timed-automata can be used to model
and verify the schedulability of the tasks with self-suspending
behavior. For instance, Yalcinkaya et al. [28] propose an exact
schedulability analysis based on such an approach for non-
preemptive self-suspending tasks.

VII. CONCLUSION

This paper has explored data chain latency involving self-
suspending tasks. We showed that self-suspending tasks could
negatively affect data chain overall latency and provided latency
analysis. To improve data chain latency, we proposed a method
that, for each suspending job, chooses between self-suspension
and busy-waiting. The method can be applied online and used
under standard schedulers without any further modification.
We used simulation experiments to show that the proposed
scheduling strategy can improve data chain latency.

ACKNOWLEDGMENT

The work is supported by the National Science Foundation
(NSF) under grant numbers CNS 1932529 and CNS 1815891.
Marco Caccamo was supported by an Alexander von Humboldt
Professorship endowed by the German Federal Ministry of
Education and Research.

REFERENCES

[1] A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and A. L.
Sangiovanni-Vincentelli, “Period optimization for hard real-time dis-
tributed automotive systems,” in 44th Design Automation Conference
(DAC), 2007, pp. 278–283.

[2] P. Deng, Q. Zhu, A. Davare, A. Mourikis, X. Liu, and M. D. Natale,
“An efficient control-driven period optimization algorithm for distributed
real-time systems,” IEEE Transactions on Computers, vol. 65, no. 12, pp.
3552–3566, 2016.

Design, Automation and Test in Europe Conference (DATE 2022) 1303

Authorized licensed use limited to: University of Illinois. Downloaded on January 30,2023 at 17:40:02 UTC from IEEE Xplore. Restrictions apply.

0 0.2 0.4 0.6 0.8 1 1.2

90%

100%

110%

120%

Utilization

L
at
en
cy

R
at
io

0.4 0.6 0.8 1 1.2

200%

250%

300%

350%

400%

Utilization

L
at
en
cy

R
at
io

oblivious suspension latency-aware (ours)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0%

20%

40%

60%

80%

100%

Utilization

S
ch
ed
ul
ab
il
it
y

(a) utilization vs latency (b) utilization vs latency bound (c) utilization vs schedulability

Fig. 3: Worst-case latency and schedulability for the data chains of self-suspending tasks.

[3] T. Kloda, A. Bertout, and Y. Sorel, “Latency upper bound for data chains
of real-time periodic tasks,” Journal of Systems Architecture, vol. 109, p.
101824, 2020.

[4] M. Günzel, K.-H. Chen, N. Ueter, G. v. d. Brüggen, M. Dürr, and
J.-J. Chen, “Timing analysis of asynchronized distributed cause-effect
chains,” in 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021, pp. 40–52.

[5] T. Klaus, M. Becker, W. Schröder-Preikschat, and P. Ulbrich, “Con-
strained data-age with job-level dependencies: How to reconcile tight
bounds and overheads,” in 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 66–79.

[6] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Schedul-
ing dependent periodic tasks without synchronization mechanisms,” in
2010 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2010, pp. 301–310.

[7] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling
independent hard real-time tasks with self-suspensions,” in 25th IEEE
International Real-Time Systems Symposium, 2004, pp. 47–56.

[8] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K. Blet-
sas, C. Liu, P. Richard, F. Ridouard, N. Audsley, R. Rajkumar, D. Niz,
and G. Brüggen, “Many suspensions, many problems: A review of self-
suspending tasks in real-time systems,” Real-Time Syst., vol. 55, no. 1,
p. 144–207, Jan. 2019.

[9] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, 1, pp. 46–61,
1973.

[10] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-time synchronization
protocols for multiprocessors.” in RTSS, vol. 88, 1988, pp. 259–269.

[11] R. Rajkumar, “Real-time synchronization protocols for shared memory
multiprocessors,” in 10th International Conference on Distributed Com-
puting Systems, 1990, pp. 116–123.

[12] J. Martinez, I. Sañudo, and M. Bertogna, “End-to-end latency characteri-
zation of task communication models for automotive systems,” Real Time
Syst., vol. 56, no. 3, pp. 315–347, 2020.

[13] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues, ex-
periences and a case study,” Computer Science and Information Systems,
vol. 10, no. 1, pp. 453–482, 2013.

[14] R. Wyss, F. Boniol, C. Pagetti, and J. Forget, “End-to-end latency
computation in a multi-periodic design,” in 28th Annual ACM Symposium
on Applied Computing (SAC ’13), 2013, pp. 1682–1687.

[15] J. Abdullah, G. Dai, and W. Yi, “Worst-case cause-effect reaction latency

in systems with non-blocking communication,” in 2019 Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2019, pp. 1625–1630.

[16] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in Workshop on Compositional Theory
and Technology for Real-Time Embedded Systems, 2008.

[17] T. Kloda, A. Bertout, and Y. Sorel, “Latency analysis for data chains
of real-time periodic tasks,” in 23rd IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA, 2018.

[18] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
no. 4, pp. 237–250, 1982.

[19] J. Chen, G. Nelissen, and W. Huang, “A unifying response time analysis
framework for dynamic self-suspending tasks,” in 2016 28th Euromicro
Conference on Real-Time Systems (ECRTS), 2016, pp. 61–71.

[20] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen,
“Errata for three papers (2004-05) on fixed-priority scheduling with self-
suspensions,” Leibniz Transactions on Embedded Systems, vol. 5, no. 1,
pp. 02–1–02:20, 2018.

[21] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmark for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, 2015.

[22] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in WATERS workshop at the Euromicro
Conference on Real-Time Systems, 2010, pp. 6–11.

[23] J.-J. Chen, W.-H. Huang, and G. Nelissen, “A note on modeling self-
suspending time as blocking time in real-time systems,” 2016.

[24] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-to-end
timing analysis of cause-effect chains in automotive embedded systems,”
Journal of Systems Architecture, vol. 80, no. Supp. C, 2017.

[25] M. Dürr, G. V. D. Brüggen, K.-H. Chen, and J.-J. Chen, “End-to-end
timing analysis of sporadic cause-effect chains in distributed systems,”
ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s, Oct. 2019.

[26] H. Choi, M. Karimi, and H. Kim, “Chain-based fixed-priority scheduling
of loosely-dependent tasks,” in 2020 IEEE 38th International Conference
on Computer Design (ICCD), 2020, pp. 631–639.

[27] H. Choi, Y. Xiang, and H. Kim, “Picas: New design of priority-driven
chain-aware scheduling for ROS2,” in 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 251–263.

[28] B. Yalcinkaya, M. Nasri, and B. B. Brandenburg, “An exact schedulability
test for non-preemptive self-suspending real-time tasks,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), 2019, pp.
1228–1233.

1304 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: University of Illinois. Downloaded on January 30,2023 at 17:40:02 UTC from IEEE Xplore. Restrictions apply.

