
1. Introduction
The Arctic is experiencing rapid change across all Earth system components including Arctic hydrology 
(Fox-Kemper et  al.,  2021; Yang & Kane,  2020). Specifically, Arctic Alaska is experiencing a multitude of 
changes. Abrupt increases in permafrost degradation and increasing active layer depth greatly influence the 
subsurface runoff process (Jorgenson et al., 2006; Lawrence & Slater, 2005; Lawrence et al., 2012; Osterkamp 
& Romanovsky, 1999). Larger surface energy fluxes due to increased atmospheric temperatures and moisture 
lead to earlier snow melt, lengthening of the snow-free season, reduced river ice, frozen soil warming, perma-
frost degradation, and related shifts in the fluvial freshwater seasonality (Cox et al., 2017; Hamman et al., 2017; 
Pavelsky & Zarnetske, 2017; Stone et al., 2002). These anthropogenic climate-driven transformations in hydrol-
ogy and river ice in the Alaskan and Yukon rivers will likely have substantial impacts on Indigenous community 
members who rely heavily on inland river systems for subsistence fishing and river-ice road transportation (Knoll 
et al., 2019; Pavelsky & Zarnetske, 2017; Sharma et al., 2019).

We urgently need “actionable science” to support policy and decision-making toward adapting or mitigating the 
potential climate impacts on arctic hydrology. In this study, we adopted the definition of “actionable science” 
from the Advisory Committee on Climate Change and Natural Resource Science, appointed to advise the Secre-
tary of the Interior. Actionable science provides data, analyses, projections, or tools that can support decisions 
regarding the management of the risks and impacts of climate change. We specifically focused on enhancing the 
actionability of process-based modeling in this study.

Hydrologic modeling of Arctic rivers is challenging due to the aforementioned complex and interacting terres-
trial processes. However, recent developments in advanced land models (LMs) are now enabling us to simu-
late complex land surface processes and their subsequent impacts on hydrology (Clark et al., 2015; Hamman 
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et al., 2016). Additionally, advances in computationally frugal optimization methods and improvements in LM 
agility (i.e., the capability to adjust model equations and parameters to faithfully represent observed processes; 
Mendoza, Clark, Barlage,  et  al., 2015), allow for parameter sensitivity and application-oriented optimization 
studies of these advanced LMs.

In this study, we focused on a state-of-the-science land model, the Community Terrestrial Systems Model 
(CTSM). CTSM includes complex vegetation and canopy representation, a multi-layer snow model, as well as 
hydrology and frozen soil physics necessary for the representation of streamflow and permafrost in the Arctic 
(Oleson et al., 2010). More recent updates to parameterizations and model structures for hydrology and snow 
(Lawrence et al., 2019) further improve the physical representation related to freshwater cycles in cold regions, 
including spatially explicit soil depth (Pelletier et al., 2016), representation of soil organic matter (Lawrence 
et  al.,  2008), revised canopy interception and canopy snow processes, and updated fresh snow density (van 
Kampenhout et al., 2017). Finally, a representative hillslope hydrology capability has recently been implemented 
into CTSM, which enables parameterization of the impacts of slope and aspect on lateral water transfer and inci-
dent radiation and subsequent impacts on hydrology (Fan et al., 2019; Swenson et al., 2019).

Earth System models are being applied at an increasingly higher resolution to improve the physical representa-
tion like convection or orographic impacts (Bierkens et al., 2015; Singh et al., 2015). Higher-resolution models 
can more faithfully represent varied and complex topography, and thus often more realistically simulate 
seasonal snow, orographic precipitation patterns, and potentially heterogeneous permafrost (Jafarov et al., 2012; 
Newman et al., 2021; Rasmussen et al., 2011). A more realistic physical representation of the landscape and 
land-atmosphere interactions increases the credibility of a model in regional applications, which can help to 
build stakeholder trust in model results and can help to facilitate a move toward a more actionable Earth Science 
paradigm (Giorgi, 2019).

This study is supported by the Arctic Rivers Project, which is guided by a 10-member Indigenous Advisory 
Council (IAC). The Council helps project investigators make decisions about research design, analyses, and 
deliverables to ensure that Indigenous knowledge and perspectives are included, valued, and protected, and that 
the project benefits the Indigenous peoples the project is intended to serve. A climate information survey was 
co-developed by the research team and Council (Herman-Mercer,  2021) and distributed to decision-making 
bodies in the communities of our study domain. Survey responses were received from 23 (10% response rate) 
Tribal Councils, Traditional Councils, First Nation Governments, City Councils, and Regional Indigenous 
Organizations. Among the survey respondents, there was agreement that the most useful information for Indig-
enous decision-makers would be sub-watershed scale (or high-resolution) streamflow and other land-surface 
and sensible (i.e., relatable) weather variables such as 2-m air temperature and precipitation. While the survey 
respondents cannot be considered a representative sample of decision-makers, the consensus among responses 
plus Council concurrence gives us confidence in applying this information to guide modeling efforts. Configur-
ing a high-resolution model is multi-faceted, which not only means a finer grid but also requires corresponding 
meteorological forcing data and land surface data sets that are often more difficult to work with if they even 
exist. In addition, high-resolution LMs require substantially more computational resources, which decreases the 
potential to run ensembles of simulations. Therefore, high-resolution modeling limits the ability to account for 
uncertainties in the modeled system.

Even with improved process representation and hydrologically focused model configurations (Choi & 
Liang, 2010; Jiao et al., 2017; Singh et al., 2015), optimization of parameters within complex LMs is often neces-
sary because of uncertainty in model parameters, model structural errors, and missing process representations 
(Lehner et al., 2019; Mendoza, Clark, Barlage, et al., 2015; Sankarasubramanian et al., 2001). In addition, as 
common practice for modelers and stakeholders, a model needs to be calibrated before it can be trusted to provide 
useful information and support decision-making. Optimization of complex LMs like CTSM is a substantial chal-
lenge given the high computational costs, and this challenge limits the usage of CTSM and similar models in 
large-scale hydrological or other stakeholder-specific applications. Although several sensitivity analyses have 
been conducted to examine the hydrological responses to CTSM model parameters (Jefferson et al., 2015; Ren 
et al., 2016; Srivastava et al., 2014), their limited spatial coverage or number of parameters cast few insights on 
sensitive parameters to Arctic terrestrial hydrology.

The sophisticated land process representations in CTSM with high spatial resolution make it a potentially robust 
tool in projecting climate impacts on hydrology, yet its complexity undermines its useability for real-world 
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applications. Therefore, in this study, we provide: (a) a methodology for effi-
cient optimization of CTSM to lower the barrier of using CTSM in real-world 
applications and enhance the actionability of CTSM; (b) a high-resolution 
Arctic CTSM configuration focused on improved hydrologic simulation 
fidelity; (c) an evaluation of the performance of the regional CTSM configu-
ration and its actionability; (d) tools available to the scientific community to 
apply our methodology to other regions and applications. We evaluated the 
model performance, or actionability, by using hydrology-related metrics that 
are related to events of concern from our IAC and the climate information 
survey available in Section 4.5. Additionally, this study lays the foundation 
for knowledge co-production research with Indigenous communities on a 
range of topics, including improving our understanding of climate-induced 
impacts on the rivers and fishes, and communities necessary to inform adap-
tation efforts in our study domain.

Truly actionable science involves a high-level of stakeholder engagement 
throughout the development, application, and evaluation of results to deter-
mine specific thresholds of performance for a specific use case. This study 
does not produce actionable science in that sense, but we aim to lower the 

barriers of using CTSM and other complex, process-rich land models in regional applications by developing an 
optimization workflow and providing an example evaluation for a specific application. Therefore we are moving 
models like CTSM toward a more actionable Earth Science paradigm (Findlater et al., 2021) with this exemplar 
hydrologic application.

2. Study Domain
Our study domain includes the Yukon River Basin (dark blue boundaries in Figure 1) and Alaska. Over 200 
Indigenous tribes and First Nations reside in this area and their culture and livelihood are deeply rooted in inland 
freshwater systems. Figure 1 highlights key river basins and gaging stations along the Yukon River that have 
minimal diversions and enough observations to be used for model calibration or validation. The Tanana River 
and Steward River are two major tributaries to the Yukon River. Along the North Slope, four river basins with 
quality flow observations are highlighted in Figure 1; the Colville River, Kuparuk River, Sagavanirktok River, 
and Wulik River. Six river basins south of the Yukon River Basin also have enough quality flow observations for 
our purposes; the Kuskokwim River, Iliamna River, Susitna River, Talkeetna River, Matanuska River, and Kenai 
River. We also used observations from two gauges along the main stem of the Yukon River, that is, one at the Pilot 
station and one near Stevens Village denoted as Yukon_P and Yukon_S in Figure 1.

3. Baseline CTSM Configuration
To configure a high-resolution CTSM application, we downscaled the available coarse meteorological forcing 
data (Section 3.1) and used finer-than-default soil texture data (Section 3.2). In addition, we used the hillslope 
hydrology scheme in CTSM to account for the remaining sub-grid topographic variability (Section 3.3) and used 
the satellite phenology CTSM configuration with default model parameter values. We used the vector-based 
mizuRoute to route runoff (Mizukami et al., 2016, 2021) and we extracted the river network from a high-resolution 
global hydrography map, that is, MERIT Hydro (Yamazaki et al., 2019). This constitutes our baseline CTSM 
model (Figure 2).

3.1. Downscaling Meteorological Forcing Data—ERA5
We used the fifth generation of ECMWF atmospheric reanalysis of the global climate (ERA5) as the mete-
orological forcing data (European Centre for Medium-Range Weather Forecasts,  2019). The forcing is at an 
hourly timestep and on a 0.25° (∼14 km) latitude-longitude grid. While a quarter degree resolution is a substan-
tial improvement over previous global reanalysis, it is still too coarse to fully resolve complex topography and 
small-scale variations in near-surface meteorology, for example, orographic precipitation, altitudinal temperature 
gradients (Monaghan et al., 2018; Rasmussen et al., 2011). Therefore, we performed a simple downscaling to add 

Figure 1. Study domain. The dark blue line denotes the boundary of the 
Yukon River Basin and black stars denote the outlets of the highlighted river 
basins.
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high-resolution information to our hourly forcing data. We used the monthly climatology from a 4 km simula-
tion of coupled WRF and Noah-MP (Monaghan et al., 2018) to downscale the ERA5 data. This simulation was 
shown to represent historical observations well (Monaghan et al., 2018) and is available from September 2002 to 
August 2016 (14 years), which we use to calculate ERA5 correction factors. For precipitation, we used a monthly 
multiplicative correction. Precipitation varies by orders of magnitude across regions and is bounded by zero so a 
multiplicative correction method is more appropriate than a delta method (Maraun & Widmann, 2018).

Π
!
M,H," =

!WRF

M,H,"

! ERA5

M,H,"

 (1)

! "#
$,ℎ,&

= ! ERA5

$,ℎ,&
× Π

!
M,H,& (2)

where P denotes precipitation. Π denotes the multiplicative correction factor, which has three dimensions, that 
is, month (M), hour of the day (H), and grid (g). For each combination of month and hour, we averaged the 
values across 14 years to calculate the correction factor. Lowercase m and h denote the month and day for the 
to-be-corrected precipitation time series. We used a simple delta method to downscale the remaining meteoro-
logical forcing variables.

Σ
!
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v denotes the meteorological forcing variables, that is, air temperature, specific humidity, surface pressure, wind 
speed, and longwave and shortwave radiation. Σ denotes the additive correction factor. In addition, corrected 
specific humidity was capped by its physically plausible upper limit, that is, the specific humidity when air 
temperature equals the dew point.

Figure 2. Community Terrestrial Systems Model baseline scenario and workflow for optimization.
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3.2. Soil Texture and Organic Matter—SoilGrids
Soil texture and organic matter directly affect the soil thermal and hydro-
logic properties and thus the hydrologic cycle. The spatial resolution of the 
default soil texture data in CTSM is very coarse, so we replaced it with the 
high-resolution soil property products from the SoilGrids system (Hengl 
et  al.,  2017). The SoilGrids prediction model utilized over 230,000 soil 
profile observations from the WoSIS database (Batjes et al., 2020) and envi-
ronmental covariates to generate global soil property maps at 250-m resolu-
tion for six standard depth intervals.

PCTSAND =
!sand

!sand + !silt + !clay
× 100% (5)

PCTCLAY =
!clay

!sand + !silt + !clay
× 100% (6)

!"# =
$% ⋅ !bulk ⋅ 10

−3

0.58
 (7)

Percentages of sand and clay, PCTSAND and PCTCLAY , were calculated based 
on the sand, silt, and clay contents (! "sand , ! "silt , ! "clay , unit: g/kg). Organic matter 
density (! "#$ , unit: kg/m 3) was calculated using the soil organic carbon (! "# , 
unit: dg/kg) and bulk density (! "bulk , cg/cm 3) with the assumption of carbon 
content 0.58gC per gOM.

3.3. Sub-Grid Variability—Hillslope Hydrology
Explicitly resolving hillslope-scale features can better capture the sub-grid distribution of water and energy 
within an LM grid cell (Fan et al., 2019), and has been implemented into CTSM (Swenson et al., 2019). The 
hillslope configuration used in this study consisted of four hillslopes per grid cell, each representing a different 
aspect (i.e., north, east, south, west), with each hillslope comprised of an upland column and a lowland column 
to explicitly simulate the flow of soil water along topographic gradients. In low-relief grid cells, only one column 
was specified.

4. Optimization Framework
We utilized a surrogate-based modeling optimization machine learning method to optimize CTSM parameters 
to provide improved hydrologic simulations across our study region. We specifically focused on river flow and 
snow and their objective functions were defined in Section 4.1. As a state-of-the-science land model, CTSM is 
computationally expensive to run, and it has over 200 tunable parameters. To constrain the computational cost, 
we first selected four representative medium-sized river basins for optimization: the Talkeetna, Salcha, Beaver, 
and Kuparuk river basins (Figure 3). Second, we determined the most sensitive parameters that impact the simu-
lation of Arctic hydrology (Section 4.2). In addition, we used a computationally frugal optimization method 
to reduce the total number of CTSM runs (Section  4.3). Based upon a preliminary optimization experiment 
for each basin, we found the optimized parameters showed substantial differences for the basin in the northern 
slope, that is, Kuparuk, as opposed to the three southern basins. A simple parameter regionalization method was 
adopted with corresponding modifications to CTSM to accommodate the spatial heterogeneity of model param-
eters (Section 4.4). The optimization workflow is shown in Figure 2.

4.1. Multi-Objective Functions for Flow and Snow Conditions
We aimed to provide optimized simulations of multiple components of the water budget. Given the limited 
observations in the region, we chose to optimize streamflow and snowpack as these two components of the water 

Figure 3. Selected representative medium-sized basins for parameter 
estimation. Triangles denote SNOTEL sites with snow observations. Salcha 
River Basin is a subbasin of the Tanana River Basin (thick blue line) and 
Beaver River Basin is a subbasin of the Steward River Basin (thick orange 
line).
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budget have direct measurements across our study domain over multiple years and locations. The flow objective 
function (! "# ) is the Kling-Gupta Efficiency (KGE, Gupta et al., 2009) using daily mean streamflow.

KGE = 1 −

√

(! − 1)
2
+ (" − 1)

2
+ (# − 1)

2 (8)

!" = 1 − KGE (9)

KGE is a comprehensive metric that integrates the linear correlation (! " ), a measure of flow variability error (! " ), 
and a bias term (! " ). For all USGS flow observations, we only used the data with a qualifier equal to A, which 
corresponds to the ice-free period. For snow, we designed an objective function (! "# ) that aggregates three bias 
terms in snow simulations; relative errors in annual peak SWE (! "#$% ), snow persistence time (! "#$%& ), and snow 
melting rate (! "#$%& ). Snow persistence time is defined as the annual number of days with SWE larger than 
0.1 mm. If it is perennial snow, the melting rate is calculated based upon the annual peak SWE and the SWE on 
31 August, which is close to the date with the lowest annual SWE. If it is not perennial snow, the melting rate is 
calculated based upon the annual peak SWE and the first day when SWE falls below 0.1 mm. The snow objective 
function is the quadratic mean of the three relative error terms,

!" =
(

#$%"
2
+ #$&"%

2
+ #$'"(

2
)

1

2 (10)

The aggregated snow metric ! "# is unitless.

4.2. Parameter Sensitivity
We were able to leverage ongoing CTSM parameter sensitivity experiments to inform our parameter optimiza-
tion experiments. Dagon et al. (2020) established the most sensitive CTSM parameters for global surface energy 
balance and hydrology among a subset of 34 parameters. An ongoing experiment, the CTSM Perturbed Parameter 
Ensemble (henceforth PPE), extends this work to a larger set of CTSM parameters. This work is ongoing, but 
we were able to access their one-at-a-time experiment, which varied over 200 parameters across expert-derived 
ranges. Data and description are available via https://github.com/djk2120/clm5ppe.

We adopted a two-step method to select sensitive parameters for optimization. First, we selected the top 40 
parameters that exert a strong influence on Arctic hydrology from over 200 parameters that were varied within 
the PPE. Because the CTSM configuration for the PPE did not utilize the hillslope hydrology nor did it include 
river routing, routed flow is not available in the PPE experiment and we thus performed an additional filtering 
step. We used the unrouted runoff as a substitute for routed flow when selecting sensitive parameters in the first 
step. While moving from over 200 to 40 parameters is a substantial simplification of the potential optimiza-
tion  space, it is still computationally expensive to tune 40 parameters within CTSM. Therefore, we further iden-
tified the most sensitive parameters by training a surrogate model to simulate the response surface of objective 
functions to each parameter. The top 14 out of the 40 pre-screened parameters were selected for optimization. 
Both steps are explained in detail as follows.

•  Step 1: We used the PPE one-at-a-time experiment to select which parameters exert the most control on total 
runoff (QRUNOFF) and snow water equivalent (SWE). To constrain computational costs, the PPE was run at 
400 grid cells globally to represent the parameter sensitivities at different land cover types and climatologies. 
Seven of those grid cells fall in our study domain and we used the mean response across the seven grid cells 
to evaluate parameter sensitivity for Arctic hydrology. For QRUNOFF, we evaluated the mean, seasonality, 
and amplitude; for SWE, we evaluated the snow persistence duration, maximum monthly SWE, and snow-
melt rate, which leads to a total of six variable-metric combinations. For each combination, we selected the 
top 15 most sensitive parameters and assigned a higher score to more sensitive parameters (e.g., 15 points to 
the most sensitive parameter, 1 point to the least sensitive parameter). As a pre-screen step, we would like to 
include as many sensitive parameters as possible within our capacity to handle complexity and we selected 
15 after experimenting with different numbers. The scores for each parameter were summarized across all six 
variable-metric combinations and the total score represents the general uncertainty of the parameters to runoff 

https://github.com/djk2120/clm5ppe
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and snow conditions in our study domain. A total of 40 parameters across all variable-metric combinations 
were pre-screened as candidate parameters and would be further selected in Step 2.

•  Step 2: To select the most sensitive parameters, we simulated the response of flow and snow objectives to 
the CTSM model parameters using surrogate models. For each river basin, we trained one surrogate model 
from 200 samples generated using the Latin Hypercube Sampling (LHS, McKay et al., 2000) method across 
the 40-dimension parameter space. Because the response of the objective function to one parameter in a 
multi-variate surrogate model is affected by other parameters, we can get a mean response by fixing the target 
parameter while perturbing the remaining 39 parameters. For example, to get the response to fff (Table 1) 
when fff equals 1, we utilized the 200 samples that were generated using LHS and fixed fff to 1, using the 
surrogate model to predict the response of the 200 modified samples, and average the responses to get a mean 
response. For one parameter, we calculated the mean responses at multiple points to get a two-dimensional 
response curve (Figure S1 in Supporting Information S1). The amplitude of the response curve was used to 
evaluate each parameter's sensitivity. For the basins where we conducted multi-objective optimization, we 
aggregated the amplitudes of the response surface across both objectives to make sure that the selected param-
eters should be generally sensitive for both objectives.

We used a simple weighting algorithm to select the final parameter list for optimization. For each river basin, 
the most sensitive 10 parameters were assigned non-zero scores, that is, 5, 3, 3, 2, 2, 2, 1, 1, 1, 1. In any single 

Category Parameters Relevant physical process Rank Default value Range
Optimized 

value in south
Optimized 

value in north

Acclimation 
parameters

vcmaxha Photosynthesis, activation energy for Vc,max 11 72,000 [20,000, 250,000] 235,175 155,394

Hydrology om_frac_sf Scalar adjustment for organic matter 
fraction

6 100%*DV [25%,200%]* DV 52.551%*DV 85.813%*DV

slopebeta Surface water storage 9 −3 [−10,-0.5] −6.936 −8.131
fff Delay factor for fractional saturated area 2 0.5 [0.01,10] 0.010 5.494

e_ice Ice impedance factor 4 6 [1,8] 7.994 2.335
liq_canopy_
storage_scalar

Maximum storage of liquid water on leaf 
surface

11 0.1 [0.025, 4] 3.695 2.372

Plant hydraulics krmax a Root segment max conductance 11 1.223 × 10 −9 [5.827 × 10 −11, 
6.896 × 10 −9]

3.626 × 10 −9 1.280 × 10 −10

Sensible, latent heat 
and momentum 
fluxes

d_max Heat and momentum flux for non-vegetated 
surface, dry surface layer (DSL) 
thickness

9 15 [5,100] 49.808 27.065

frac_sat_soil_dsl_
init

Heat and momentum flux for non-vegetated 
surface, Fraction of saturated soil for 
moisture value at which DSL initiates

4 0.8 [0.25,2] 0.250 1.782

cv Turbulent transfer coefficient between 
canopy surface and canopy air

11 0.01 [0.0025,0.04] 1.708 × 10 −2 1.801 × 10 −2

a_coef Drag coefficient under less dense canopy 8 0.13 [0.05,0.15] 5.009 × 10 −2 1.086 × 10 −1

Snow processes upplim_destruct_
metamorph

Upper limit for snow densification through 
destructive metamorphism

1 175 [10,500] 86.023 321.095

n_melt_coef Parameter controlling shape of snow 
covered area

2 200 [25,600] 25 232.078

Stomatal 
resistance and 
photosynthesis

medlynintercept a Medlynintercept of conductance-
photosynthesis relationship

6 100 [120,000] 7.326 × 10 3 1.200 × 10 4

Note. DV is short for default values. Hydrologic parameters are highlighted using blue (Hydrology) and navy (Snow processes) and non-hydrologic parameters are 
highlighted using red (Sensible, latent heat, and momentum fluxes) and green (plant parameters).
 adenotes that the parameter is plant functional type (PFT) dependent and the value shown in the table is the mean value across all PFTs.

Table 1 
Summary of 14 Parameters Selected for Optimization, Their Categories, Relevant Physical Processes, Ranking Based on Scores in Step 2, Parameter Default Values, 
Ranges, as Well as Optimized Values for Northern and Southern Basins
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basin, parameters with ranks lower than 10 barely show sensitivity to the objective functions. In addition, this 
weighting algorithm emphasizes the most sensitive parameters in any single basin, which may not be sensitive 
elsewhere. In total, 19 parameters were in the top 10 most sensitive across all basins. We selected all parameters 
with a total score higher than one, meaning they were at least one of the six most sensitive parameters in any one 
basin, or somewhat sensitive in multiple basins. This resulted in 14 parameters being selected for full optimiza-
tion (Table 1). It is possible that multiple parameters shared the same scores and therefore the same ranks, for 
example, om_frac_sf, medlynintercept (rank 6) and d_max, slopebeta (rank 9) in Table 1.

4.3. Adaptive Surrogate Based Modeling Optimization (ASMO)
Adaptive Surrogate Based Modeling Optimization (ASMO) is an emerging optimization method that can be used 
for tuning hydrologic model parameters (Wang et al., 2014). Compared to the widely used Shuffled Complex 
Evolution global optimization method (Duan et al., 1994), ASMO is much more efficient, which is especially 
important in this application because CTSM is more computationally expensive than most hydrologic models 
due to its comprehensive suite of processes. We adopted the workflow developed in Gong et al. (2016) for a 
multi-objective optimization, which is summarized below:
•  Initial Sampling: 200 samples were generated using the LHS method for the selected parameters. In this study, 

one sample denotes one set of parameter values. We ran CTSM using the 200 sets of parameter values and 
calculated their corresponding objective functions.

•  Main Loop (Iteration): We used the Gaussian Process Regression model to train a surrogate model, which 
mimics the response of the objective functions to parameters. In the first iteration, we used all 200 initial 
samples and corresponding objectives to train the surrogate model. In each subsequent iteration, all samples 
from the initial sampling and previous iterations were used to train a new surrogate model. Then we used 
a multi-objective optimization, that is, Non-dominated Sorting Genetic Algorithm II (NSGA-II, Deb 
et al., 2002), on the surrogate model, and obtained N (N = 20) Pareto optimal sets of parameter values. We 
then ran CTSM using the N sets of parameter values and calculated their objective functions.

The trained surrogate model better mimicked the response curves as the number of samples increased via iterating 
the Main Loop. In Wang et al. (2014), a 13-parameter optimization case converges in roughly 400 runs. In this 
study, we optimized 14 parameters and stopped after the fifteenth iteration given the limited improvement in the 
last iteration runs (500 runs in total). We used k-fold cross validation to evaluate the accuracy of the surrogate 
model (k = 5). We calculated the root-mean-square error (RMSE) of the simulated objectives from surrogate 
models versus the objectives calculated from CTSM runs.

The optimization run ranges from 1 September 2002 to 1 September 2009. The first 2 years are used for spin-up, 
with data from 2004 to 2009 used for optimization. Prior to the optimization simulations, as it takes a relatively 
long time for deep-layer soil moisture to reach equilibrium from the default initial condition, we used a 52-year 
spin-up forced by ERA5 data to generate the initial state for 1 September 2002 using the default CTSM param-
eters. For the optimization runs, a 2-year spin-up is sufficient as we already have an equilibrium soil moisture 
state. All simulations were performed on the NCAR Cheyenne supercomputer (Computational and Information 
Systems Laboratory, 2019).

4.4. Parameter Regionalization
Many parameters within CTSM are spatially uniform by default, which can be a limiting assumption when opti-
mizing a model as many parameters within hydrologic and land models should vary spatially to account for 
the heterogeneity across the landscape (Mizukami et al., 2017; Rakovec et al., 2019; Samaniego et al., 2010). 
For plant parameters, parameter spatial heterogeneity might result from different plant traits in different domi-
nant plant species. We conducted preliminary single basin optimizations which showed large optimal parame-
ter discrepancies between the northern river basin, that is, Kuparuk, and southern river basins, that is, Beaver, 
Salcha, and Talkeetna (not shown). The Kuparuk River Basin is located north of the Arctic Circle, much farther 
north than the other three basins. Therefore, we conducted two optimization runs in this study, one for the north-
ern river basin, and one for the three southern river basins. Note that no SNOTEL sites near the Kuparuk have 
records overlapping with our optimization period, thus we conducted a single-objective optimization on river 
flow for the Kuparuk River. For the southern basins, we conducted a dual-objective optimization by averaging the 
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flow objectives across the three basins and snow objectives across 10 SNOTEL sites, which serve as the repre-
sentative objectives across the entire southern region so the selected SNOTEL sites and basins do not necessarily 
need to overlap (triangles in Figure 3).

We leveraged the ecohydrology region classification level III by Environmental Protection Agency for our simple 
parameter regionalization (Gallant et al., 1995; Liu et al., 2020). The EPA ecohydrology region classification 
helps determine the boundary between the southern and northern regions. Because the Kuparuk mostly resides 
north of the arctic circle, optimized parameters for the Kuparuk are applied to the two Arctic ecohydrology 
regions, Arctic Coastal Plain and Arctic Foothills (highlighted in blue lines, Figure 4b). The remaining area uses 
the optimized parameters for the southern basins. Three out of the 15 basins intersect both southern and northern 
parameter regions, the Colville, Wulik, and Kuparuk rivers. The Colville is comprised of 54% northern and 46% 
southern areas, the Wulik contains 72% northern and 28% southern areas. Also, even though we optimized the 
Kuparuk to represent northern basins, 10% of the area in the Kuparuk watershed is located in our southern region 
(Figure 4a).

4.5. Actionability of CTSM
The definition of actionable science above suggests the necessity to set a performance benchmark that a model 
has to hit before it could be used to inform decision-making. We selected the following two hydrologic metrics, 
percent bias in flow duration curve (FDC) high-segment volume (%BiasFHV, Yilmaz et al., 2008) given the 
interest of the IAC and the results of the climate information survey focused on flooding, and percent bias in 
FDC low-segment volume during summer season (%BiasFLVsummer, May–October) because summer low flows 
have significant impacts on the juvenile production for salmon (Ohlberger et al., 2018). No universally accepted 
benchmarks exist for these metrics so we used the uncalibrated model performance as our benchmark. In addition, 
we selected an additional hydrologic metric, the Nash Sutcliffe Efficiency (NSE) for daily flow, because it is a 
widely used metric by water management authorities in the United States. We adopted a benchmark of daily NSE 
of 0.5 (Moriasi et al., 2015).

Complementary to solely evaluating flow simulations against observations, we conducted a climate sensitivity 
analysis to assess whether CTSM captures the response of flow simulations to changes in precipitation and air 
temperature. We followed the technique developed in Wood et al. (2004). For each river basin, regionally averaged 
flow (! ), air temperature (!  ), and precipitation (!" ) were calculated for each hydrologic year and for the obser-

Figure 4. Parameter regionalization based on ecohydrology region classification. In this figure panel (a), background colors denote the selection of optimized 
parameters, and river basins are highlighted using solid lines with colors corresponding to Figure 1. In this figure panel (b), regions using optimized parameters for 
northern regions are highlighted in blue boundaries.
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vations, baseline, and optimized simulations. To quantify the uncertainties in 
flow responses to climate variables, we conducted bootstrapping 300 times 
with each bootstrapping sample generating a new series of precipita tion, air 
temperature, and streamflow by resampling the available hydrological years 
with replacement (n = 5,000 times, Brunner et al., 2020). For each new series, 
we fitted a simple linear regression between the flow and climate variables 
and the slope denotes the corresponding responses. By assessing the baseline 
and optimized responses to the observed response, we can evaluate whether 
the optimization improves estimated climate sensitivities.

4.6. Parameter Performance Contributions
For each optimization region, we applied the Shapley decomposition to quan-
tify the contribution of each parameter to the total change in the objective 
functions (Roth, 1988). The Shapley decomposition originated from coop-
erative game theory, where it was applied to determine each player's unique 
contribution to a total surplus generated by a coalition of all players. Recently, 
this method has also been applied in energy and environmental analyses (Ang 
et al., 2003; Cheng et al., 2022; Yu et al., 2014). We performed the analysis 
on the 14 optimized parameters for the southern and northern regions sepa-
rately. The change in the objective function is calculated as

!" = # ($ ) (11)

Δ! = !optz − !base (12)

Δ! =
∑

"

#" ($ ) (13)

where O denotes objective functions, f denotes the trained surrogate model for one region, subscript s denotes 
scenarios (s = optz, base, denoting the optimized and baseline scenarios respectively), ! "  denotes the list of all 
parameters for optimization, and ! "# ($ ) denotes the unique contribution of parameter ! " for the selected region. For 
one selected parameter ! " , the unique contribution ! "# ($ ) is calculated as

!" (# ) = 1
$

∑
%⊆P∖{"}
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where n is the total number of parameters for optimization, that is, 14, !∖{"} denotes all parameters except the 
selected one ! " , S denotes the subset of !∖{"} , |!| denotes the length of the subset, ! "(#) denotes the objective 
function when we replace the baseline value using the optimized value for all parameters in subset S.

5. Results
5.1. Optimization
For the southern basins, flow simulation is improved substantially while snow simulation only sees minor 
improvements (Figure 5). Dots with the same color in Figure 5 constitute the simulated Pareto front for a given 
optimization iteration. A Pareto front consists of simulated Pareto optimal, that is, if none of the objective func-
tions can be improved in value without degrading some of the other objective values. In general, the simulated 
Pareto front shifts toward the origin, signifying improved model performance. Overlapping dots indicate the new 
iteration failed to improve the Pareto front at that point. The two-dimensional Pareto front serves as the basis for 
choosing our optimal parameter set. Future work could explore using an ensemble of optimal parameter sets along 

Figure 5. Simulated Pareto front of optimization for southern basins. Each 
colored dot corresponds to a Pareto optimal set of parameters. IS denotes 
initial sampling, I-1 denotes the first iteration, and so on, and BL denotes the 
baseline configuration. The red star denotes the selected optimized parameters.
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the Pareto front, but that is outside the scope of this initial investigation. We choose the set of optimized parame-
ters that correspond to the minimum averaged flow and snow objectives, highlighted using a red star in Figure 5. 
For this parameter set, the corresponding flow and snow objective functions for the southern basins are 0.319 
(0.681 KGE) and 0.531 respectively, while the baseline flow and snow objectives are 0.536 (0.464 KGE) and 
0.604 respectively. Flow simulation in the Kuparuk is also significantly improved through optimization. Since 
we conducted a single-objective optimization for Kuparuk, we simply selected the set of parameters resulting in 
the best flow simulation. The optimized flow objective is 0.311 (0.689 KGE) while the default flow objective is 
0.739 (0.261 KGE).

Interestingly, the northern and southern basins show very different hydrological responses to parameter perturba-
tions as noted above. The mean response curve of flow (blue dots) and snow (red triangles) objectives to model 
parameters are shown in Figure 6. We used the method in Section 4.2 (Step 2) to calculate the mean response 
curves. Transparent dots denote the initial samples, while solid dots denote samples during optimizations and 
large dots correspond to the selected optimized parameters (optimized parameter values are shown in Table 1). 
The parameter sensitivity differs across basins. For example, upplim_destruct_metamorph, which affects snow 
densification through destructive morphism, shows greater sensitivity on flow simulations in the southern basins 
and is only marginally sensitive in the Kuparuk. In addition, the flow performance in the south degrades as 
upplim_destruct_metamorph increases while the opposite trend was observed in the north. Some other param-
eters also show the opposite sensitivity across regions, including, d_max, e_ice, frac_sat_soil_dsl_init, and 

Figure 6. Mean response curve of flow (blue dots) and snow (red triangles) objectives to parameters. Transparent dots and triangles denote initial samples, solid dots, 
and triangles with black edges denote samples during optimization iterations, the large hallow dot and triangle with darker colors denote the default parameters, and the 
large dot and triangle with darker colors denote the selected optimized parameters.
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om_frac_sf. This intrinsic sensitivity difference leads to the divergence in optimized parameters across regions. 
In some extreme cases, the optimized parameters approach the upper and lower limits for the northern and 
southern basins, respectively, for example, frac_sat_soil_dsl_init and e_ice, which might result from differences 
in physical processes across the domain. For example, e_ice together with soil ice content affects the hydraulic 
conductivity in frozen soils and therefore has impacts on the vertical distribution of soil moisture and runoff 
(Swenson et al., 2012). There is ice-rich permafrost in the north while not in the south (Saito et al., 2020), so the 
differences in soil ice content might affect the optimized value of the ice impedance factor differently. In addition, 
parameter values approaching the specified limits could indicate that the ranges are not wide enough due to model 
structural or forcing data errors that are compensated for during parameter optimization.

The responses of flow and snow objectives may diverge for the same parameter perturbation. For the southern 
basins, as upplim_destruct_metamorph, n_melt_coef, and om_frac_sf increase, flow simulation becomes worse 
while snow simulation improves (Figure  6). These parameter divergences could be the result of compensat-
ing errors from model structure (either a lack of or incorrectly parameterized processes), meteorological forc-
ing, or indicative of the true CTSM parameter sensitivities for our study domain (Clark & Vrugt, 2006; Vrugt 
et al., 2005). In addition, the spread of the flow objective (blue dots) is much larger than that of the snow objective 
(red triangles) in Figure 6. The SWE simulation is likely more controlled by meteorological forcing than param-
eter perturbations. Therefore, runoff and flow simulations might show a stronger sensitivity to the parameter 
perturbations than SWE.

5.2. A 30-Year Out-Of-Sample Evaluation of Optimized Parameters
We further evaluate the optimized CTSM at 15 major river basins and 12 of them are out-of-sample from 1991 
to 2020 water year (WY). The daily KGE improves at 13 out of 15 basins and the mean KGE across the 15 
basins increases from 0.43 to 0.63 after optimization. Furthermore, even though we only conducted optimiza-
tions for four medium-sized river basins with a total confluence area of around 16,500 km 2, 2.1% of the total 
out-of-sample simulated area, the optimized flow simulations for the largest basins still substantially improved 
(Figure 7). For example, the daily KGE for the Yukon River at Pilot Station (824,393 km 2) increases from −0.36 
to 0.70 and the daily KGE for the Yukon River at Stevens Village (502,458 km 2) increases from −0.01 to 0.72. 
Only the Iliamna and Colville river basins show slightly worse performance, with daily KGE decreasing from 
0.62 and 0.80 to 0.51 and 0.75 respectively.

Improved model performance in cross-regional basins highlights the necessity of spatially variable parameters 
and parameter regionalization schemes. For Colville and Wulik, two uncalibrated basins, their model perfor-
mance using spatially distributed parameters is better or barely worse than that of any single optimized param-
eter set (Figure 8a). In addition, their default flow simulations are similar to the ones using spatially distributed 
parameters. Compared to the baseline, optimized flows in Wulik and Colville both show a smaller wet bias in 
spring, a larger dry bias in summer, and a smaller dry bias in fall (Figure 7). The optimized parameters in Kupa-
ruk represent the northern region while our regionalization algorithm categorized 10% of the area in Kuparuk 
to the southern region, which explains the slightly worse performance in Kuparuk using the spatially distributed 
parameters than that using only the northern optimized parameters.

Improved flow variability contributes the most to better flow simulation. KGE combines three components in 
model errors, that is, the linear correlation (! " ), a measure of flow variability error (! " ), and a bias term (! " ), so we 
decompose the KGE increment to the three components and calculate their relative contribution (RC) as follows

RC =
(!base − 1)

2
−
(

!optz − 1
)2

|(KGEbase − 1)
2
−
(

KGEoptz − 1
)2

|

,! = ", #, $ (16)

Since we used the absolute value of KGE difference as the denominator, regardless of KGEoptz being higher or 
lower than KGEbase , a positive RC value always denotes better flow simulation and a negative RC value always 
denotes worse flow simulation. Additionally, when the sum of RC is positive, the optimized flow simulation is 
improved, and vice versa. Improved flow variability, linear correlation, and volume bias contribute the most to 
the improved flow simulations in eight, three, and two river basins respectively (Figure 8b). Poorly simulated 
flow volume and correlation mostly contribute to the poorer flow simulation in Colville and Iliamna, respectively.
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Seasonal snowpack simulation performance was not greatly improved by optimization across the final Pareto 
front, or with our final optimized parameter set by choice. The median value of the aggregated snow metric (! "# , 
Equation 10) across all SNOTEL sites is 0.61 using our optimized parameters and 0.55 using default parame-
ters (Figure 9a). We also examined each component of the snow metric. Out of 40 SNOTEL sites, optimiza-
tion reduced relative biases in peak SWE, snowmelt rate, and snow persistence duration at 18, 13, and 12 sites 
respectively (Figures 9b–9d). The median values for the relative bias in peak SWE, snowmelt rate, and snow 
persistence duration are −0.07, −0.42, and 0.13 using optimized parameters, and −0.05, −0.38, and 0.10 using 
default parameters. In general, the snow simulation shows slightly worse performance against the 40 SNOTEL 
observations used for validation. However, 40 SNOTEL sites may not be spatially representative for the entire 
study domain and about 60% of them are located in the southern coastal and mountainous regions.

Given the limited number of SNOTEL sites and their uneven spatial distribution, we further evaluate the snow 
simulation against the satellite-derived Geographic Information Network of Alaska (GINA) data set, available 
from 2001 to 2020. We specifically evaluated three snow metrics, including the first snow date (FSD), last snow 
date (LSD), and snow duration. In general, the default and optimized snow simulations show similar performance 
and spatial patterns. For example, they show an earlier FSD (Figure 10a.IV, V), a later LSD (Figure 10b.IV, 
V), and thus longer snow duration (Figure 10c.IV, V) in the northern and southern mountainous regions. Addi-
tion ally, the optimized snow simulation shows slightly smaller biases than the baseline simulation. The biases 
in FSD, LSD, and duration are −0.95, 4.73, and 4.68 days for optimized snow simulations, and −2.01, 5.81, and 
6.82 days for baseline snow simulations.

Figure 7. Model evaluation for mean monthly flow time series (from 1991 to 2020 water year). Kling-Gupta Efficiency is based on qualified observed flow at a daily 
time step.
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5.3. Evaluation of CTSM Actionability
As discussed in Section 5.2, the optimized model has improved out of sample overall flow simulation. Specif-
ically using NSE, our actionability flow metric, the mean NSE of daily flow increases from 0.09 to 0.45 after 
optimization (Table 2). Nine out of 15 basins meet the 0.5 daily NSE benchmark of flow performance after opti-
mization while only two met the benchmark before optimization. In addition, 13 out of 15 basins have improved 
high flow (a proxy for flooding) magnitudes after optimization. The mean %BiasFHV across all basins is 0% and 
19.5% for optimized and baseline simulations respectively. However, the dry bias increases for low-flow events. 
After optimization, the mean %BiasFLVsummer across all basins decreases from −108.0% to −136.2% and only 7 
out of 15 basins show better performance in capturing low flow events (Table 2).

Streamflow climate sensitivities for large river basins are improved while climate sensitivities for small river 
basins are slightly degraded from the baseline simulation. Subplots in Figure 11 are organized based on the 
confluence area, with the smallest basin on the top left and the largest basin on the bottom right. When optimi-
zation improves the sensitivity to precipitation change, we marked “P” in the upper right corner. Similarly, we 

Figure 8. A 30-year evaluation from 1991 to 2020 water year (a) default model performance (blue dot), and model performance using southern optimized parameters 
(orange dot), northern optimized parameters (orange triangles), and spatially distributed parameters by parameter regionalization (orange stars) and (b) contribution of r, 

! " , and ! " to Kling-Gupta Efficiency changes using the spatially distributed parameters by parameter regionalization. Percent contribution values are noted below and the 
main contributing factors are highlighted in bold fonts.
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marked “T” when optimization improves the sensitivity to air temperature change. For the eight largest basins, 
at least one climate sensitivity is improved and both climate sensitivities are improved in four of them. However, 
the climate sensitivity for smaller river basins is generally slightly worse in the optimized simulation (Figure 11).

Interestingly, this implies that a better flow simulation does not necessarily lead to a better streamflow climate 
sensitivity. For example, the KGE for Kuparuk increases from 0.40 to 0.68 after optimization (Figure 8a) while 
both climate sensitivities are worse in the optimized simulation (Figure 11). Additionally, a worse flow simulation 
does not necessarily lead to worse climate sensitivity. For example, Colville has slightly lower daily streamflow 
performance after optimization with KGE decreasing from 0.80 to 0.75 (Figure 8b) but its climate sensitivities to 
precipitation and air temperature are both improved (Figure 11). This feature may be related to the fact that our 
optimization metrics are focused on daily flow and daily snowpack, leaving other components of the water budget 
that could impact climate sensitivities less constrained. It has been shown that metrics not closely related to the 
optimization metrics result in larger variations in optimized model performance (Mendoza, Clark, Mizukami, 
et al., 2015). This suggests that metrics more directly related to climate sensitivity should be included in optimi-
zation objective functions.

5.4. Shapley Decomposition
In the northern region, large variations exist in the contribution of individual parameter perturbations to simula-
tion performance changes. For example, reducing the frac_sat_soil_dsl_init value greatly improves flow perfor-
mance, which contributes over 40% of the KGE increment (Figure 12). Five other parameters made noticeable 
contributions to the improving flow simulation, that is, e_ice, slopebeta, liq_canopy_storage_scalar, fff, and 
medlynintercept. These parameters belong to multiple categories, including acclimation parameters relevant to 
photosynthesis, hydrology, and parameters affecting sensible, latent heat, and momentum fluxes.

Figure 9. A 30-year evaluation of model performance on snow simulations. Panel (a) shows the distribution of aggregated snow metrics (! "# ) across all SNOTEL 
sites in Alaska, 10 of them used in optimization are highlighted in yellow triangles and the remaining 30 are highlighted in yellow stars in Panel (b). Panels (c, d, f) 
summarize the distribution of individual snow metrics, including relative errors in annual peak SWE (! "#$% ), snow melting rate (! "#$%& ), and snow persistence time 
(! "#$%& ). In Panels (a, c, d, f) yellow corresponds with the model runs using optimized parameter values and blue corresponds with model runs using default parameter 
values.
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In the southern region, the variation of parameter contributions is much smaller than that in the northern region. 
The perturbation of n_melt_coef contributes the most to the flow improvement in the southern region, which only 
accounts for 30% of the KGE increment (Figure 12). Other than n_melt_coef, the top 6 parameters that contribute 
to the improved flow simulation include frac_sat_soil_dsl_init, liq_canopy_storage_scalar, upplim_destruct_
metamorph, om_frac_sf, e_ice. In addition, the same parameter perturbation leads to opposite contributions in 
our flow and snow simulations. The perturbation of upplim_destrct_metamorph, frac_sat_soil_dsl_init, and 
liq_canopy_storage_scalar improves flow simulation while degrading snow simulation, while the perturbation 
of d_max and vcmaxha worsens flow simulation while improving snow simulation.

6. Discussion and Conclusions
We have developed the first high-resolution application and optimization of CTSM for Arctic hydrology. River 
flow simulations are significantly improved after optimization, while the optimized snow simulation as compared 
to SNOTEL sites remains similar. The limited improvement in snow simulations depends more on the meteoro-
logical forcing such as precipitation than on model parameter choices (Günther et al., 2019; Raleigh et al., 2015). 
The mean NSE of daily flow increases from 0.09 to 0.45 across 15 river basins for a 30-year evaluation. For the 
Yukon River at Pilot Station, the USGS site with the largest confluence area in Alaska, and the fourth-largest river 
in North America, the NSE of daily flow increased from −0.55 to 0.50. In addition, the optimization is highly 
efficient given that the total area of the four optimized river basins only occupies 2% of the confluence area at 

Figure 10. Evaluation of the first snow date (FSD, row (a), last snow date (LSD, row (b), and snow duration (row c) using the Geographic Information Network of 
Alaska (GINA) data set (2001–2020). Columns I, II, III denote the GINA data set, baseline simulation, and optimized simulations, columns IV, V denote the biases in 
baseline and optimized simulations compared with the GINA data set, and column VI denotes the difference between optimized and baseline simulations. Figures (d–f) 
show the histogram of biases across all grid cells for FSD, LSD, and duration, respectively.
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the Pilot Station. To our knowledge, this study provides the most comprehensive evaluation and optimization of 
hydrological simulations across Alaska and the Yukon River Basin, which can be used as a benchmark for future 
Arctic hydrological modeling studies.

The optimization in this study generally improves the actionability of CTSM as defined using our application 
specific metrics. The overall daily flow simulation using NSE (or KGE), high flow, and streamflow climate 
sensitivities for large basins are all improved, but there is a degradation for low flow simulation and climate  sensi-
tivities for small basins. Optimizing for KGE has been shown to possibly negatively impact low flow simulation 
(Althoff & Rodrigues, 2021; Gupta et al., 2009). In addition, low flow events during the warm season are largely 
affected by subsurface flow regimes and thermal characteristics of frozen soils and permafrost. Sensitive param-
eters to these physical processes might not be identified in our existing workflow, and CTSM does not include 
many inter-grid cell lateral flow processes, which is an area of needed future research. In addition, we acknowl-
edge that the model results have not yet been used to inform decision-making but this will be further investigated 
as part of the Arctic Rivers Project.

For expensive land models, we should use computationally frugal optimization methods. As a state-of-the-sci-
ence land model, CTSM is expensive to run, let alone optimize. To reduce the computational cost, we selected 
representative basins and used surrogate modeling optimization. Since the representative basins only occupy a 
small portion (2%) of the study domain. Therefore, using the representative basin approach reduces the optimi-
zation cost to roughly 2% of the full domain cost. Additional savings are realized using an efficient optimization 
algorithm. For example, if we optimized CTSM using the widely used Shuffled Complex Evaluation algorithm 
(Duan et al., 1994), it would take roughly four times the computational resources to reach a similar model perfor-
mance (Wang et al., 2014), which is impractical for complex LMs. The detailed computational cost is discussed 
in Text S1 in Supporting Information S1.

The optimization model framework is transferrable to other CTSM applications and can be informative when 
developing optimization workflows for complex land models. The transferability largely results from the global 

Basin name Nation

NSE optz 
[−] NSE base [−]

%BiasFHV 
optz [%]

%BiasFHV 
base [%]

%BiasFLVsummer 
optz [%]

%BiasFLVsummer 
base [%]

Benchmark: NSE = 0.5 Benchmark: baseline Benchmark: baseline

Iliamna US 0.32 0.55 −14.0 −26.8 −415.4 −504.5
Wulik US 0.25 0.20 −5.6 −5.2 32.8 −56.4
Beaver Canada 0.51 −0.21 −5.1 32.3 −496.9 −272.0
Kuparuk US 0.35 0.22 −26.4 −36.6 55.9 67.7
Sagavanirktok US 0.53 0.01 −15.9 29.2 −15.9 −42.1
Matanuska US 0.59 0.55 −12.2 −22.0 −188.7 −134.0
Talkeetna US 0.55 0.37 15.4 16.4 −158.5 −145.0
Kenai US 0.43 0.26 3.3 −12.5 −466.3 −180.7
Steward Canada 0.64 0.17 −20.8 4.2 −113.0 −124.0
Susitna US 0.61 0.18 17.1 47.3 −45.4 −4.0
Colville US 0.47 0.35 −1.6 2.4 7.2 −160.8
Tanana US 0.56 0.17 31.9 35.5 −114.6 −78.9
Kuskokwim US −0.03 −0.33 24.2 85.7 −34.1 32.5
Yukon_S US 0.50 −0.57 1.4 61.8 −78.3 −36.2
Yukon_P US 0.50 −0.55 8.4 81.4 −11.2 18.2
Mean Value - 0.45 0.09 0.0 19.5 −136.2 −108.0
Note. If models outperform benchmarks, the metric is highlighted in bold font.

Table 2 
Nash-Sutcliffe Efficiency, Percent Bias in Flow Duration Curve (FDC) High-Segment Volume (%BiasFHV), and Percent 
Bias in FDC Low-Segment Volume During Summer Season (%BiasFLVsummer) for All River Basins (a 30-Year Evaluation 
From 1991 to 2020 Water Year)
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availability of the data sets used in this study, that is, the ERA5 meteorological forcing data (European Centre 
for Medium-Range Weather Forecasts, 2019), soil texture from SoilGrids (Hengl et al., 2017), MERIT Hydro 
vector-based river network (Yamazaki et al., 2019), and especially the CTSM PPE global parameter sensitiv-
ity analysis. There also exist high-resolution WRF runs available for CONUS (Liu et al., 2017; Rasmussen & 
Liu, 2017) and ongoing efforts for global coverage, which can be used for downscaling meteorological forcing 
data outside Alaska. Correctly selecting sensitive parameters provides the foundation for the success of parameter 
optimization. The PPE experiment can be extensively used in selecting sensitive CTSM parameters not only to 
runoff and SWE but to any other variable simulated by CTSM. Finally, Arctic Alaska and the Yukon is one of the 
most challenging regions in hydrological modeling due to the complicated land surface processes that are impor-
tant in this region. The improvements in hydrological simulation achieved by our optimization framework in the 
challenging Arctic environment may motivate the exploration of the effectiveness of this optimization framework 
for regions outside the Arctic.

We also show that Arctic hydrology is not only influenced by hydrological parameters but also by parameters 
related to vegetation and thermal conductance. Previous hydrological studies using CTSM mostly focused on 
hydrological parameters (Ren et al., 2016; Zhang et al., 2021). In this study, out of the 14 optimized parameters, 
half are not directly related to hydrology and snow processes (Table 1), which reveals the strong influence of 
non-hydrological parameterization on Arctic hydrology. In the northern region, according to the Shapley decom-
position, perturbations of the 7 non-hydrological parameters contribute a total of 56.5% to the KGE increment, 
and 2 out of the top 6 sensitive parameters are non-hydrological, including frac_sat_soil_dsl_init and medlynin-
tercept (Figure 10). In the southern region, the non-hydrological parameter perturbations contribute 15.5% of the 
flow KGE increment and a decrease of frac_sat_soil_dsl_init alone contributes 29.7% increment.

The Shapley decomposition analysis showed the different parameter contributions across regions, reflecting the 
spatial heterogeneity of parameter sensitivities. The heterogeneity manifests primarily in two ways. First, similar 
parameter perturbations lead to the opposite direction of effects across regions. For example, an increase in acti-
vation energy for Vc,max in photosynthesis (vcmaxha), that is, from the default value to the upper limit, contributes 
2.0% of flow KGE increment in the northern region but −8.2% in the south. Second, the opposite parameter 

Figure 11. A climate sensitivity analysis. The x-axis denotes the rate of basin-averaged discharge change with precipitation change, and the y-axis denotes the rate of 
basin-averaged discharge change with air temperature change. Black, orange, and blue denote observation, optimized simulation, and baseline simulation respectively.
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perturbation leads to the same direction of effects. A decrease of frac_sat_soil_dsl_init in the southern region, 
that is, 0.8 to 0.25, and an increase of frac_sat_soil_dsl_init in the northern region, that is, 0.8 to 1.78, both 
contribute positively to their flow KGE increments, with the RC value of 29.7% and 43.0% respectively. Because 
CTSM by default uses many spatially constant model parameters, we have modified CTSM to read in distributed 
parameters when they are available. This effort provides an important example of utilizing spatially distributed 
parameters, which should be informative to future CTSM development for allowing this feature.

The parameter regionalization in this study is simple and effective, yet can still be improved. Spatially distributed 
parameters in Colville and Wulik, that is, basins overlapping both southern and northern regions, generated better 
flow simulations than the parameters optimized for either region. However, for Iliamna, a southern basin, its 
flow simulation using northern optimized parameters is better than the one using southern optimized parameters, 
with daily flow KGE of 0.63 and 0.51, respectively (Figure 8a). The similarities between Iliamna and northern 
regions are neglected, likely because of either the oversimplified regionalization method or compensating errors. 
In addition, the large discrepancies in optimized parameters across regions only slightly affect the flow simula-
tions in Tanana and Matanuska (Figures 7 and 8a), which indicates that the selected parameters may not be very 
sensitive for those out-of-sample basins. Therefore, for future improvement of regional applications, it may be 
helpful to include more representative basins for optimization and to implement a more sophisticated parameter 
regionalization algorithm.

The surrogate model can only mimic the true response surface. For the southern region, the RMSE of the simu-
lated flow and snow objectives are 0.04 and 0.03 respectively, and the RMSE of the simulated flow objective is 
0.09 for the northern region. In addition, the Shapley decomposition analysis is based upon the surrogate model, 
so the contribution of each parameter perturbation reflects the simulated response surface. However, it is infeasi-
ble to disentangle each parameter's contribution without a surrogate model. We would need to run CTSM 16,384 

Figure 12. Contribution of each parameter to the changes in objective function using Shapley decomposition.
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(2 14) times for the Shapley decomposition while in this study we only ran CTSM 500 times. Additional benefits 
from using surrogate models might arise by incorporating other observational constraints, for example, Active 
Layer Thickness, snow depth, or evapotranspiration.

Finally, the development of the optimization framework and example application specific evaluation lowers the 
barrier of applying complex land models in regional applications and therefore enhances the actionability of the 
robust scientific tools. The authors hope this work lays the foundation for a process-focused, stakeholder-useful, 
high-resolution coupled land and atmospheric modeling for cold regions both historically and under future projec-
tions to quantify climate change impacts on inland freshwater systems. The authors cannot highlight enough the 
necessity to include end-users to make science fully actionable and call for more end-user involvement across the 
range of model development and global, regional, and basin studies using CTSM and other models to move to 
even higher levels of actionability.

Data Availability Statement
The optimization framework is available on GitHub (https://github.com/NCAR/ctsm_optz). The CTSM 
version used in this study is available on GitHub (https://github.com/YifanCheng/CTSM/tree/hh.ppe.n08_
ctsm5.1.dev023). For the full CTSM simulation results, please contact Yifan Cheng. The following sources 
were used to obtain the historical data sets used for evaluation in this research: discharge data for the US State 
of Alaska from the United States Geological Survey (USGS) National Water Information System, available 
at https://waterdata.usgs.gov/nwis; discharge data for the upstream Yukon River Basin from the Environment 
and Natural Resources in Canada, available at https://wateroffice.ec.gc.ca/search/historical_e.html; snow water 
equivalent data for the SNOTEL sites in the US State of Alaska from the USDA Natural Resources Conservation 
Service, accessed through a Python software package, ulmo, available at https://ulmo.readthedocs.io/en/latest/; 
satellite derived snow data from the Geographic Information Network of Alaska (GINA) data sets, available at 
https://gina.alaska.edu/. The high-resolution soil texture and organic matter fraction data are from the SoilGrids 
global gridded soil information, accessed through a Python software package, WebCoverageService in owslib, 
and the instructions for downloading SoilGrids data is available at https://www.isric.org/web-coverage-servic-
es-wcs. The ecohydrology region classification level III for the US State of Alaska is available at EPA website 
(https://www.epa.gov/eco-research/ecoregion-download-files-state-region-10#pane-01).
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