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Abstract: There are currently no effective biomarkers for prognosis and optimal treatment selection
to improve non-small cell lung cancer (NSCLC) survival outcomes. This study further validated a
seven-gene panel for diagnosis and prognosis of NSCLC using RNA sequencing and proteomic
profiles of patient tumors. Within the seven-gene panel, ZNF71 expression combined with dendritic
cell activities defined NSCLC patient subgroups (1 = 966) with distinct survival outcomes (p = 0.04,
Kaplan-Meier analysis). ZNF71 expression was significantly associated with the activities of natural
killer cells (p = 0.014) and natural killer T cells (p = 0.003) in NSCLC patient tumors (1 = 1016) using
Chi-squared tests. Overexpression of ZNF71 resulted in decreased expression of multiple compo-
nents of the intracellular intrinsic and innate immune systems, including dsRNA and dsDNA sen-
sors. Multi-omics networks of ZNF71 and the intracellular intrinsic and innate immune systems
were computed as relevant to NSCLC tumorigenesis, proliferation, and survival using patient clin-
ical information and in-vitro CRISPR-Cas9/RNAi screening data. From these networks, pan-sensi-
tive and pan-resistant genes to 21 NCCN-recommended drugs for treating NSCLC were selected.
Based on the gene associations with patient survival and in-vitro CRISPR-Cas9, RNAi, and drug
screening data, MEK1/2 inhibitors PD-198306 and U-0126, VEGFR inhibitor ZM-306416, and IGF-
1R inhibitor PQ-401 were discovered as potential targeted therapy that may also induce an immune
response for treating NSCLC.

Keywords: non-small cell lung cancer; prognosis; diagnosis; CRISPR-Cas9/RNAi; drug screening;
targeted therapy

1. Introduction

Non-small cell lung cancer (NSCLC) has the second-highest cancer incidence rate
and the highest cancer mortality rate for both men and women [1]. The major histological
subtypes of NSCLC are lung adenocarcinoma (LUAD, 40% of NSCLC cases), squamous
cell carcinoma (LUSC, 25-30%), and large cell carcinoma (LCC, 5-10%). Each subtype rep-
resents a distinct prognosis for patients and informs treatment options [2,3]. According to
the current NCCN standard of care [4], stage 1A NSCLC patients do not receive adjuvant
therapy after surgery. Osimertinib is recommended for stage 1B patients with EGFR exon
19 deletion or L858R. Adjuvant therapy is recommended for patients in stage 1B with
high-risk features, i.e., tumor size > 4 cm, poor differentiation, vascular invasion, wedge
resection, visceral pleural involvement, and unknown lymph node status, stage 2, and
above. Patients in stages 3 and 4 receive additional radiotherapy [5]. Programmed Death
1 (PD-1) and its ligand PD-L1 compromise anti-tumor immunity while maintaining
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peripheral tolerance [6]. Anti-PD-L1 antibodies have revolutionized cancer immunother-
apy, including NSCLC treatment [7]. NCCN guidelines [4] recently changed to establish
adjuvant anti-PD-L1 immunotherapy (atezolizumab) after chemotherapy as the standard
of care for stages 2/3A NSCLC patients with PD-L1 > 1%, following the FDA approval [8].
Yet, resectable NSCLC has a 5-year mortality rate of 40% in stage 1, 66% in stage 2, and
85% in stage 3A because of recurrence [9-13]. At present, there are no accurate prognostic
tests that predict post-surgical recurrence/metastasis or inform the clinical benefits of ad-
juvant therapies, including chemotherapy and immunotherapy, in early-stage NSCLC pa-
tients—a significant unmet clinical need.

We recently discovered a seven-gene (ABCC4, CCL19, CD27, DAGI1, FUT7, SLC39AS8,
and ZNF71) signature that accurately predicts the risk of recurrence/metastasis in retro-
spective analyses of 1500 early-stage NSCLC patients for all histological subtypes, includ-
ing clinical trials [14,15]. Employing novel artificial intelligence (AI) methods and con-
firmed with gRT-PCR using frozen tumors (n = 331) [14], our assay also predicts the clin-
ical benefits of receiving adjuvant chemotherapy in both training and validation sets, in-
cluding a clinical trial JBR.10. Results from our seven-gene panel were corroborated in
The Cancer Genome Atlas (TCGA) cohort for risk stratification of early-stage NSCLC pa-
tients (n = 923) [15]. Within this seven-gene panel, CD27 is a target for immune checkpoint
inhibitors (ICIs) [16], and anti-CD27 mAb is being tested as an adjuvant immunotherapy
in phase I/II clinical trials for multiple tumor types with promising results [17,18]. Within
the seven-gene panel, ZNF71 protein expression quantified with AQUA produced robust
patient stratification in two separate NSCLC cohorts (1 = 191) in tissue microarrays [14].
We previously reported that the ZNF71 KRAB isoform was associated with epithelial-to-
mesenchymal (EMT) transition and poor prognosis in NSCLC patients [19].

ZNF71 is a member of a large family of KRAB zinc finger transcription factors,
KRAB-ZNFs, which due to the presence of the KRAB domain function as transcriptional
repressors. One of the main roles ascribed to KRAB-ZNFs is the repression of retrotrans-
poson class repetitive elements (TEs) [20] that comprise up to 36% of the human genome
[21]. Retro TEs are remnants of ancient invaded viruses, which could produce dsRNA
molecules and RNA/DNA hybrids. Although the vast majority of TEs in the human ge-
nome are inactivated by mutations, a small number of full-length functional elements in-
cluding long interspersed nuclear elements (LINEs) and human endogenous retroviruses
(HERVs) are capable of retrotransposition, mimicking viral infection. While normally si-
lenced, they could be reactivated in cancer or response to therapy [22,23]. The majority of
cellular dsRNA is the result of the TEs transcription [24]. Non-degraded dsRNAs are rec-
ognized by specific proteins of the intracellular innate immune system also called pattern
recognition receptors (PRRs), such as MDAS5/IFIH1 and others, ultimately leading to a
Type I interferon production [25]. Acting as specific dSRNA sensors downstream or in
parallel with PRRs, the OAS-RNase L and the PKR/EIF2AK2 pathways degrade endoge-
nous and viral dsRNA and block global cellular translation, respectively [26,27]. In addi-
tion, a growing number of host restriction factors of the intrinsic immune system can be
engaged in an anti-viral response, including SAMHD1, TRIM5a, MX, and IFITM proteins
[28].

Most human tumors display chromosomal instability (CIN) phenotype and aneu-
ploidy, which are often accompanied by the generation of micronuclei and the presence
of cytosolic dsDNA. Cytosolic dsDNA activates the cGAS-STING signaling pathway [29].
STING facilitates the activation of TBK1 kinase leading to its autophosphorylation on S172
[30] and subsequent phosphorylation of the IRF3 transcription factor, which in turn acti-
vates interferon response genes.

In this study, we sought to (1) further evaluate the diagnostic and prognostic impli-
cations of the seven-gene panel using both RNA-sequencing and proteomic profiles in
diverse NSCLC patient cohorts and examine the associated immune cell activities during
NSCLC tumorigenesis and progression; (2) investigate the functional involvement of
ZNF71 KRAB in innate immunity; (3) identify molecular networks mediated by ZNF71
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relevant to innate immunity in NSCLC tumors and normal adjacent lung tissues using a
novel Al technology based on Boolean implication networks; (4) discover pan-sensitive
and pan-resistant genes to a panel of 21 NCCN recommended drugs for treating NSCLC
from the above identified molecular association networks; and (5) explore therapeutic
compounds as new or repositioning drugs for treating NSCLC for designed mechanisms
of actions based on our analysis of patient tumor profiles and in-vitro CRISPR-Cas9/RNAi
and drug screening data using Connectivity Map (CMap) [31,32].

2. Results
2.1. Further Validation of the Seven-Gene Signature in Prognosis for NSCLC

Our previous work [14] developed a prognostic and predictive seven-gene assay in-
cluding ABCC4, CCL19, CD27, DAGI, FUT7, SLC39A8, and ZNF71 for early-stage NSCLC.
In this study, we further explored the prognostic capacity of the seven-gene signature us-
ing proteomic profiles in a Chinese LUAD cohort from Xu et al. [33] (n = 103) and TCGA-
NSCLC datasets (n = 923, TCGA-LUAD and TCGA-LUSC combined) of patient samples
with sufficient survival information. Immune cell-type activities associated with different
prognostic patient groups were investigated.

ABCC4, CCL19, CD27, DAGI, and SLC39A8 from the seven-gene assay were availa-
ble in logio transformed proteomics data of Xu’s LUAD cohort [33]. A multivariate Cox
model was built based on these five genes to calculate the coefficients for the risk score. A
stepwise model selection that dropped the least significant variable in each iteration was
used to reach an optimal model. The final risk-score equation was shown in Figure 1A. A
risk-score cutoff point of =35 was found to stratify the patient samples with significantly
different survival outcomes. The Kaplan-Meier analysis results showed that the patients
with a risk score lower than —35 had significantly better survival outcomes than the pa-
tients with a risk score higher than —35 in Xu’s LUAD proteomics data [33] (p = 0.0013, HR:
8.378 [1.774, 39.57]; Figure 1A).

The Kaplan—-Meier analysis results also showed significant stratifications for each of
these five genes (ABCC4, CCL19, CD27, DAGI, and SLC39A8) in RNA-sequencing/pro-
teomic profiling in Xu’s LUAD [33] or TCGA-NSCLC patient cohorts. Patients with a
higher expression of ABCC4 (cutoff = 10.45) in TCGA-NSCLC RNA-sequencing data sur-
vived significantly longer than those with a lower expression of ABCC4 (Figure 1B). Pa-
tients with a higher expression of ABCC4 (cutoff = 6.22; Figure 1C), CCL19 (cutoff = 6.31;
Figure 1D), DAG1 (cutoff = 6.72; Figure 1E), and SLC39A8 (cutoff = 6.48; Figure 1H) in
log1o transformed proteomics data in Xu’s LUAD cohort survived significantly longer than
those with a lower protein expression of these genes. Patients with a higher expression of
DAGI (cutoff = 3.9; Figure 1F) in Xu’s LUAD RNA sequencing data [33] survived signifi-
cantly longer than patients with a lower expression of DAGI. Patients with a higher ex-
pression of CD27 (cutoff = 8.72; Figure 1G) in Xu’s LUAD RNA sequencing data [33] sur-
vived a significantly shorter time than patients with a lower expression of CD27. ZNF71
and FUT7 did not have any protein expression measurements in Xu’s LUAD cohort [33].
In mRNA expression profiles of the TCGA NSCLC and Xu’s LUAD [33] cohorts, ZNF71
and FUT7 were not significantly associated with patient survival outcomes.

The xCell scores were computed for each patient sample in TCGA-NSCLC and Xu's
LUAD [33] cohorts with the corresponding RNA sequencing data. For each significant
patient stratification in survival analysis, immune cell types with a significant difference
in activities (two-sample f-tests; p < 0.05) between high-risk and low-risk patient tumors
were identified. The log: ratio of xCell scores between high-risk vs. low-risk tumors was
shown in Figure 1 for each stratification. A positive log: (xCell score) indicates that cell
type activity varies more in high-risk tumors; a negative logz (xCell score) indicates that
cell type activity varies more in low-risk tumors.

The log: ratios of significantly different xCell scores between Xu’s LUAD tumors and
their paired non-cancerous adjacent tissues (NATs) [33] were also shown in Figure 2A.
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The following cell types had more varied levels in NATSs than in tumors: smooth muscle,
CD4+ central memory T cells (Tcm), neutrophils, macrophages M2, and mast cells. The
following cell types had more varied levels in tumors than in NATs: basophils, lentivirus-
induced dendritic cells (IDC), pericytes, skeletal muscle, conventional dendritic cells
(cDCQ), ly endothelial cells, hepatocytes, natural killer T cells (NKT), activated dendritic
cells (aDC), mv endothelial cells, neurons, melanocytes, microenvironment score (the sum
of all immune and stromal cell types), plasmacytoid dendritic cells (pDC), mesangial cells,
dendritic cells, hematopoietic stem cells (HSC), endothelial cells, adipocytes, megakaryo-
cytes, Tregs, memory B-cells, erythrocytes, StromaScore (the sum of adipocytes, fibro-
blasts, and endothelial cells), CD8+ T-cells, Th2 cells, plasma cells, macrophages M1, fi-
broblasts, sebocytes, chondrocytes, epithelial cells, and astrocytes.
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Figure 1. The prognosis of the seven-gene panel using RNA sequencing and proteomic profiles in
NSCLC tumors. Kaplan-Meier analysis and log ratio of xCell scores of the high-risk group vs. the
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Figure 2. Classification of non-cancerous adjacent tissues (NATSs) and lung adenocarcinoma (LUAD)
tumors with the seven-gene panel. (A) Log: ratio of xCell scores of the LUAD tumor vs. NATs RNA
sequencing data. Two sample f-tests were performed to test the difference between the two groups
(*: p <0.05; **: p<0.01; **: p < 0.001). Boxplots of available RNA sequencing gene expression (B) and
protein expression (D) in tumors and NATSs of the 7-gene panel in LUAD patients [33]. Principal
component analysis (PCA) of RNA sequencing gene expression (C) and protein expression (E) in
separating NATs and LUAD tumors in patients.

2.2. Diagnostic Implication of the Seven-Gene Signature in NSCLC

We examined the potential of using the seven-gene panel to separate NSCLC tumors
from NATs. Within the seven-gene panel, there were six genes (ABCC4, CD27, DAGI,
FUT7, CCL19, and ZNF71) available in the RNA sequencing data of Xu’s LUAD cohort
[33] (Figure 2B). The principal component analysis (PCA) using the mRNA expression of
these six genes to separate tumors and NATSs in Xu’s LUAD cohort [33] is shown in Figure
2C. There were five genes (ABCC4, CCL19, CD27, DAG1, and SLC39A8) available in Xu’s
LUAD proteomics data [33] (Figure 2D). The separation of LUAD tumors and NATs using
these five protein expression data is shown in Figure 2E. ABCC4 was expressed signifi-
cantly higher in LUAD tumors than NATs in RNA sequencing data (p < 0.05, two sample
t-tests, Figure 2B) but was expressed significantly higher in NATSs than in tumors in pro-
teomics data (p < 0.001, two sample t-tests, Figure 2D). CCL19 was expressed significantly
higher in LUAD tumors than in NATSs in both RNA sequencing and proteomics data (p <
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0.05, two sample t-tests, Figure 2B,D). CD27 was expressed significantly higher in LUAD
tumors in RNA sequencing data (p < 0.01, two sample #-tests, Figure 2B) but was not sig-
nificantly different in protein expression between LUAD tumors and NATSs (Figure 2D).
DAGI and SLC39A8 were expressed significantly higher in NATs in LUAD proteomics
data (p <0.001, two sample t-tests, Figure 2D).

To evaluate the accuracy of using the seven-gene panel in classifying tumors from
NATs in Xu’s LUAD cohort [33], we applied seven commonly used machine-learning clas-
sification algorithms. These algorithms included decision tree, k-nearest neighbor (KNN),
logistic regression, Naive Bayes, random forests, support vector machine (SVM), and ra-
dial basis function (RBF) network. Classification methods were performed in Weka with
10-fold cross-validation. In LUAD RNA sequencing data [33], six genes (ABCC4, CCL19,
CD27, DAGI1, FUT7, and ZNF71) with available mRNA expression data were used in the
classification. Random forests and RBF networks had the highest overall classification ac-
curacy of 0.86. The random forests classification had a sensitivity of 0.882, a specificity of
0.837, a ROC of 0.927, and an odds ratio of 38.44 in the 10-fold cross-validation of tumors
vs. NATs (n=51). The RBF network had a sensitivity of 0.824, a specificity of 0.898, a ROC
of 0.896, and an odds ratio of 41.07 in the 10-fold cross-validation of tumors vs. NATSs.
Three genes (ABCC4, DAGI, and SLC39A8) with available protein expression data were
used in the classification. SVM had the highest overall classification accuracy of 0.941,
with a sensitivity of 0.867, a specificity of 0.978, a ROC of 0.922, and an odds ratio of 286
in classifying LUAD tumors from NATs (n = 103). Overall, the 7-gene panel generated
high accuracy in separating tumors from NATs using RN A-sequencing or proteomic pro-
files, indicating its diagnostic implications in NSCLC. Detailed information on the classi-
fication results is included in Tables S1 and S2 in Supplementary File S1.

2.3. ZNF71 Expression and Selected Immune Cells in NSCLC Prognosis

ZNF71 protein expression was not available in Xu’s LUAD cohort [33]. In our previ-
ous study, ZNF71 protein expression quantified with AQUA was associated with a good
prognosis in NSCLC patients (n = 191) in tissue microarrays [14]. Although ZNF71 overall
mRNA expression was not associated with NSCLC patient survival outcomes, ZNF71
KRAB, the transcriptional repression isoform, was an independent poor prognostic factor
in early-stage NSCLC [19]. Furthermore, ZNF71 KRAB was associated with EMT in
NSCLC patient tumors (1 = 197) and epithelial cell lines (n = 117). ZNF71 protein expres-
sion positively correlated with epithelial markers E-cadherin and Cytokeratin and nega-
tively correlated with mesenchymal markers ZEB1 and Vimentin in Western blots [15],
consistent with the association between ZNF71 protein expression and favorable patient
prognosis [19]. Based on the function of structurally relevant KRAB-ZNFs, we hypothe-
sized that ZNF71 could be involved in the suppression of endogenous transposable ele-
ments (TEs) expression, which is often activated in cancer and can trigger an innate im-
mune response.

Next, we tested if ZNF71 expression and specific immune cell activities have any as-
sociations with NSCLC prognosis. The Kaplan-Meier analysis results showed that if we
used the median value of ZNF71 mRNA expression as the cutoff to stratify TCGA-NSCLC,
the low-expression group and high-expression group did not have a significant difference
in the survival outcomes (Figure 3A). When we included the dendritic cell (DC) xCell
score and created a four quadrants stratification with the median of both ZNF71 mRNA
expression and DC xCell score, i.e., high DC xCell score-low ZNF71 expression, low DC
xCell score-low ZNF71 expression, high DC xCell score-high ZNF71 expression, and low
DC xCell score-high ZNF71 expression, the Kaplan—Meier analysis results showed a sig-
nificant difference in survival among the four groups (log-rank p = 0.04, Figure 3B). These
results showed that patients with different ZNF71 expressions and DC activities had dis-
tinct survival outcomes. Those with high DC xCell scores (representing more varied DC
levels) and low ZNF71 expression had the best survival outcomes, whereas those with low
DC xCell scores (representing less varied DC levels) and high ZNF71 expression had the
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A

worse survival outcomes (Figure 3B). Out of all available cell types analyzed with xCell,
the DC xCell score is the only metric that can generate significant prognostic stratification
when combined with ZNF71 gene expression in TCGA NSCLC patients. Furthermore, the
ZNF71 expression level had significant associations with the xCell scores of natural killer
(NK) cells and NKT in TCGA NSCLC patient tumors (p < 0.01, x? tests, Figure 3C). These
results are consistent with a proposed model that tumor-derived substances trigger the
early generation of IFN-f by host CD11c+ DCs. The cross-presentation of tumor-derived
antigens is then stimulated by this IFN-{ acting on the CD8a+ DC subset, resulting in the
cross-priming of CD8+ T cells specific for the tumor antigen. These reactivated T lympho-
cytes may then move toward the tumor and cause more tumor cell death [34].
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Figure 3. Association of ZNF71 and xCell scores of selected immune cells. Prognostic implications
of ZNF71 and xCell scores of dendritic cells in TCGA NSCLC patient tumors. (A) Kaplan-Meier
analysis of TCGA-NSCLC patients stratified by the median value of ZNF71 mRNA expression. (B)
Kaplan-Meier analysis of TCGA-NSCLC patients stratified by the median value of ZNF71 mRNA
expression and the median value of dendritic cells (DC) xCell scores. (C) x> test results of ZNF71
expression vs. xCell scores of NK cells and NKT in TCGA-NSCLC patient tumors.

2.4. Overexpression of ZNF71 KRAB, KRAB-Less Isoforms Suppresses Innate Immune Response

To investigate the potential function of ZNF71 in intracellular immune response, we
overexpressed its KRAB and KRAB-less isoforms in lung adenocarcinoma A549 cells (Fig-
ure 4). The latter is missing the KRAB domain (as a result of spliced-out exon 3) and en-
codes an approximately 55kDa protein. Interestingly, ZNF71 overexpression led to the
downregulation of STING and its downstream effector S172-phosphorylated TBK1, while
the total TBK1 level was not decreased. Similarly, we observed downregulation of OAS1,
while RNase L expression was not significantly changed. Two viral restriction factors
were either downregulated, TRIM5a, or inactivated by phosphorylation, SAMHD1 pT592
(Figure 4). These data suggest that overexpression of ZNF71 results in decreased expres-
sion of multiple components of the intracellular intrinsic and innate immune systems, in-
cluding dsRNA and dsDNA sensors. Although direct targets of ZNF71 have not been
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identified yet, these results are consistent with a hypothesis that ZNF71 suppresses the
transcription of genomic TEs.

A549¢
Q
22
g, b, Tl g
- N~
c L
o Z=Z
kDa O NN
65 ZNF71 KRAB
50 ZNF71 KRABIless
35 STING

80Ws & = TBK1 pS172
80mmemes TBK1
4088 W OAS1

80 W RNasel
50w TRIM5a

65 SAMHD1 pT592
40w CAPDH

Figure 4. ZNF71 suppresses components of the innate and intrinsic immune response. Western blot-
ting of control RFP, ZNF71 KRAB, and KRABIless isoforms overexpression, as well as of several
markers of intracellular innate and intrinsic immune systems in A549 cells. GAPDH is shown as the
loading control.

2.5. Gene Association Networks of ZNF71 and Intracellular Innate Response Genes

To explore gene interactions and pathways among ZNF71 and the intracellular in-
trinsic and innate immune systems, multi-omics association networks involving ZNF71
and genes examined in Western blot (Figure 4) were computed with the Boolean implica-
tion network method in Xu’s LUAD cohort [33] containing both mRNA and protein ex-
pression profiles in tumors and NATs. The intracellular innate immune response (IIIR)
genes included (1) interferons and their receptors: IFNA16, IFNA17, IFNA21, IFNA22P,
IFNA4, IFNA5, IFNAR1, IFNAR?2, IENE, IENG, IFNG-AS1, IFNGR1, IFNGR2, IFNK, IFNL1,
IFNL3, IFNLR1, IFNW1; (2) the cGAS-STING pathway: CGAS, TMEM173/STING1, TBK1,
IKBKB, IRF3, IRF7, AIM2, maybe JUN, and MAP3K7; (3) the OAS-RNase L pathway: OAS1
and RNASEL; (4) viral restriction factors: SAMHD1 and TRIMS5; (5) cyclin-dependent ki-
nase: CDK1; (6) the co-repressor for KRAB-ZNFs: TRIM28; and (7) the housekeeping gly-
colysis gene: PFKL. For the seven-gene panel and the IIIR genes, the status of proliferation
as measured in CRISPR-Cas9/RNAi in NSCLC cell lines and differential expression anal-
ysis in each studied patient cohort was included in Supplementary File S1 Table S3. First,
direct mRNA co-expression networks of ZNF71 and IIIR genes (p < 0.05, z tests) were
found when (1) ZNF71 was up-regulated in LUAD tumors (Figure 5A), (2) ZNF71 was up-
regulated in NATs (Figure 5B), and (3) ZNF71 was down-regulated in NATs (Figure 5C)
in the analysis of RNA-sequencing data from Xu et al. [33]. No significant direct gene co-
expression relations were found between ZNF71 and IIIR genes when ZNF71 was down-
regulated in LUAD tumors.
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Figure 5. Direct gene co-expression networks of ZNF71 and intracellular innate immune response
(IIIR) genes in lung adenocarcinoma (LUAD) patient samples using RNA sequencing data. (A) Di-
rect gene associations of ZNF71 and IIIR genes when ZNF71 is upregulated in LUAD tumors. (B)
Direct gene associations of ZNF71 and IIIR genes when ZNF71 is upregulated in NATs. (C) Direct
gene associations of ZNF71 and IIIR genes when ZNF71 is downregulated in NATs.
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The computed direct gene associations between ZNF71 and IIIR genes (Figure 5) did
not provide sufficient information to infer signaling pathways relevant to ZNF71-medi-
ated innate immune responses. Here, the computationally derived gene associations do
not represent the biological interactions one would expect to observe in genome-scale pro-
filing after ZNF71 overexpression/knockdown. To infer pathways and interactions be-
tween ZNF71 and IIIR genes, we expanded the gene association networks as follows.

Second, we also identified indirect gene association networks between ZNF71 and
ITIR genes using RNA sequencing data from Xu et al. [33]. ZNF71 had co-expression asso-
ciations with IIIR genes (p < 0.05, z tests) through some intermediate genes. To form a
manageable size of networks, we filtered the intermediate genes with the following crite-
ria: (1) the gene was differentially expressed between LUAD tumors vs. NATs (p < 0.05,
two-sample f-tests); (2) the gene was a proliferation gene that had a significant effect (de-
pendency score <—0.5) on 50% or more NSCLC cell lines in RNAi or CRISPR-Cas9 screen-
ing data; (3) the gene was a prognostic gene that can significantly stratify the patient sur-
vival in RNA sequencing data of both TCGA-LUAD and Xu’'s LUAD [33] patient cohorts.
The indirect gene association networks with intermediate genes that meet all three criteria
were found when ZNF71 was up-regulated in LUAD tumors (Figure 6A), when ZNF71
was down-regulated in NATs (Figure 6B), and when ZNF71 was up-regulated in NATSs
(Figure 6C). Again, no significant indirect gene co-expression relations were found be-
tween ZNF71 and IIIR genes when ZNF71 was downregulated in LUAD tumors.



Int. J. Mol. Sci. 2022, 23, 14978

11 of 30

A

* =
.0 iqo

[ Up regulation / nonDown regulation

O Intermediate gene . Down regulation / nonUp regulation

"\“\

i N
N

Figure 6. Indirect gene co-expression networks of ZNF71 and intracellular innate immune response
(IIIR) genes in lung adenocarcinoma (LUAD) patient samples using RNA sequencing data. (A) Gene
associations of ZNF71 with IIIR genes through intermediate genes in LUAD tumors when ZNF71 is
upregulated. (B) Gene associations of ZNF71 with IIIR genes through intermediate genes in NATs
when ZNF71 is downregulated. (C) Gene associations of ZNF71 with IIIR genes through intermedi-
ate genes in NATs when ZNF71 is upregulated. ZNF71 is in a rectangle.

Third, although ZNF71 was not available in LUAD proteomics data from Xu et al.
[33], ZNF71 mRNA expression had indirect associations with the protein expression of
some IIIR genes through intermediate genes. The indirect gene association networks of
ZNF71 (mRNA expression) — intermediate genes (mMRNA expression) — IIIR genes (pro-
tein expression) were found in LUAD tumors when ZNF71 was up-regulated (Figure 7A)
and when ZNF71 was down-regulated (Figure 7C), in NATs when ZNF71 was up-regu-
lated (Figure 7B), and when ZNF71 was down-regulated (Figure 7D).
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Figure 7. Multi-omics gene association networks of ZNF71 and intracellular innate immune re-
sponse (IIIR) genes in lung adenocarcinoma (LUAD) patient samples using RNA sequencing and
proteomics data. (A) Gene associations between ZNF71 and IIIR genes through intermediate genes
in LUAD tumors when ZNF71 is upregulated. (B) Gene associations between ZNF71 and IIIR genes
through intermediate genes in NATs when ZNF71 is upregulated. (C) Gene associations between
ZNF71 and IIIR genes through intermediate genes in LUAD tumors when ZNF71 is downregulated.
(D) Gene associations between ZNF71 and IIIR genes through intermediate genes in NATs when
ZNF71 is downregulated.

We examined the pathways in ZNF71 co-expression networks with ToppGene. Ge-
nome-scale ZNF71 co-expression networks containing all the genes with a significant as-
sociation (p < 0.05, z tests) with ZNF71 were constructed with the Boolean implication
networks using RNA sequencing data in LUAD tumors and NATs from Xu et al. [33],
respectively. For each disease state, the significantly (p < 0.05) enriched pathways of the
gene co-expression networks when ZNF71 was upregulated or downregulated were com-
pared. There were 30 common pathways between the networks when ZNF71 was upreg-
ulated or downregulated in NATs, focusing on DNA repair, RTK signaling, and transcrip-
tional regulation (Supplementary File 2). There were no common pathways between the
networks when ZNF71 was upregulated or downregulated in LUAD tumors. Of the 30
common pathways in NATSs, a generic transcription pathway (ToppGene ID: 1269650) and
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gene expression (ToppGene ID: 1269649) were present in the pathways when ZNF71 was
upregulated in LAUD tumors; whereas membrane trafficking (ToppGene ID: 1269877)
and vesicle-mediated transport (ToppGene ID: 1269876) showed up in the pathways as-
sociated with a ZNF71 downregulated network in LUAD tumors. Once we focused the
gene co-expression networks on ZNF71 and IIIR genes when ZNF71 was upregulated or
downregulated, 21 common pathways relevant to immune response were found in LUAD
tumors; two common pathways, gene expression and generic transcription pathways,
were found in NATs. Detailed significantly (p < 0.05) enriched pathways associated with
ZNF71 genome-wide co-expression networks, indirect networks of ZNF71 and IIIR genes
without any filtering criteria applied, and networks shown in Figures 6 and 7 are included
in Supplementary File 52.

2.6. Identification of Genes Associated with Drug Response

A total of 21 NCCN-recommended drugs for systemic or targeted therapy for treat-
ing NSCLC were available in the Cancer Cell Line Encyclopedia (CCLE) drug screening
data. We sought to identify pan-sensitive and pan-resistant genes to these 21 drugs using
CCLE RNA sequencing and proteomics profiles in human NSCLC cell lines. The follow-
ing genes were included in the drug-sensitivity analysis: (1) the seven-gene panel, (2) se-
lected epithelial genes (CDH1, EPCAM, ESRP1, ESRP2, DDR1, CTNNB1, CD24, CLDN7,
KRTS, KRT19, and RAB25) and mesenchymal genes (ZEB1, VIM, and FN1), (3) IIIR genes
(Figure 4), and (4) all the genes in the ZNF71-IIIR gene association networks (Figures 5-
7). Genes that were expressed significantly higher (p <0.05; two-sample -tests) in sensitive
NSCLC cell lines for a specific drug were defined as sensitive genes. The epithelial and
mesenchymal genes were included because the ZNF71 KRAB isoform was associated with
EMT, and a 14-gene EMT classifier containing these genes separated early-stage NSCLC
patients into distinct prognostic groups with disparate survival outcomes [19]. For a spe-
cific drug, genes that were expressed significantly higher (p < 0.05; two-sample t-tests) in
resistant NSCLC cell lines were defined as resistant genes. In this study, we only selected
the genes that were pan-sensitive or pan-resistant (Tables 1 and 2). Pan-sensitive genes
were the genes that were identified as either sensitive or not resistant to all the studied 21
drugs. Similarly, pan-resistant genes were the genes that were identified as either resistant
or not sensitive to all the studied 21 drugs. PRISM [35] and GDSC1/2 [36-38] drug screen-
ing data were included in this analysis.

Table 1. Pan-sensitive and pan-resistant genes to 21 drugs using RNA sequencing data in CCLE
NSCLC cell lines (n = 135).

Drug Systemic/Targeted Therapy Pan-Sensitive Genes Pan-Resistant Genes
EGEFR Exon 19 Deletion or IL411, LRP1, FAM156B,
afatinib L858R/EGFR S768I, L861Q), CDT1, INCENP DCUN1D4, ESPN, PTPR],
and/or G719X NMNAT?2

UCP3, CDC45, THSD7A,

alectinib ALK Rearrangement Positive CSNK2A3, DYNC1H1, PSME1 ANKRDS52, EIF2A, FAM156B,

KRTS, CFAP44

brigatinib =~ ALK Rearrangement Positive MYOF, ABHD10, TMTC4
RNASEL, TMTC4, SMC2, ASB7,
cabozantinib RET Rearrangement Positive CSNK2A3 CFAP44,11L17RA, ZXDA,
THSD7A
carboplatin Systemic ASB7, RAB1A

cisplatin

ARHGAP12, CDC45, ESPN,

Systemic ZNF507, CSNK2A3, WDR17 EIF2A, IL17RA, MYOF, TMT(C4,

NMNAT?2, PTPR], KRT8
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ALK Rearrangement Posi-
L. tive/ROS1 Rearrangement Posi- RFC4, CSNK2A3, MCM2, MDNI1,
tinib LRP1, IL17RA
CHZOMD 4ive/MET Exon 14 Skipping Mu- CDT1, INCENP
tation

dabrafenib  BRAF V600E Mutation Positive FBLN7, MAP2, CTNNBI1, RNF128, FAM156B, SLC39A8, SM(C2,

CSNK2A3, WDR17, ZNF507 KRTS8, NMINAT2
EGFR Exon 19 Deletion or MAP3K7, DCUN1D4, LRP1,
dacomitinib L858R/EGFR S768I, L861Q, CDT1 THOC5, FAM156B, ANKRD52,
and/or G719X THSD7A
SLC39A8, IL17RA, KRTS, RABI1A,
docetaxel Systemic RFC4, ABCC5, FBLN7, MAP2 THSD7A, DCUN1D4, MYOF,
NMNAT2
EGFR Exon 19 Deletion or
erlotinib L858R/EGFR S768I, L861Q, CSNK2A3, PSMB6, TGFB2 FAM156B, ASB7, TMTC4,
NMNAT?2
and/or G719X
etoposide Systemic PSMB3, CDT1, DYNC1H1, ZNF507 ESPN, NN;?’;;& ZNF324B,
EGEFR Exon 19 Deletion or 11411, ABHD10, FAM1568B,
gefitinib L858R/EGFR S768I, L861Q, BRMSI1L, CCNA2, CDT1, INCENP MAP3K7, DCUN1D4, NMNAT?2,
and/or G719X PTPR], KRT8
KRT8, ANKRD52, ASB7, RABI1A,
gemcitabine Systemic MDGA1, MDN1, ZNF507, WDR17 FAM156B, IL17RA, DCUN1D4,

IL411, LRP1, NMNAT2

ALK Rearrangement Posi-
lorlatinib  tive/ROS1 Rearrangement Posi- MDN1, PSMB6 ANKRDb52, ESPN, RAB1A
tive
EGFR Exon 19 Deletion or
osimertinib L858R/EGFR S768I, L861Q,
and/or G719X

ABCC5, MDGA1, TCF20, MAP2,

PSMB6 ASB7, DCUN1D4, THSD7A

RAB1A, THOCS, ASB7, IL17RA,
paclitaxel Systemic INCENP, CDT1, MCM2, TCF20 NMNAT2, KRT8, LRP1, SLC39AS,
THSD7A, UCP3
EIF2A, IL17RA, MYOF, THSD7A,

pemetrexed Systemic MCM2, CCNA2 ZXDA, ARHGAP12, LRP1
RNASEL, IL17RA, ANKRD52,
.. . " FAM156B, AP251, ARHGAP12,
trametinib BRAF V600E Mutation Positive CTNNBI1 SRRM2, UCP3, ZXDA, TMTC4,
DCUN1D4, NCOR1, RAB1A
vemurafenib BRAF V600E Mutation Positive RNASE L, IL17RA
RABI1A, SLC39A8, KRTS,
vinorelbine Systemic ABCC5, DYNC1H1, IRX1, TCF20 DCUN1D4, PTPR], IL17RA,

MYOF, NMNAT?2
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Table 2. Pan-sensitive and pan-resistant genes to 21 drugs using proteomics data in CCLE NSCLC

cell lines (1 = 64).

Drug Systemic/Targeted Therapy Pan-Sensitive Genes Pan-Resistant Genes
EGFR Exon 19 Deletion or
afatinib L858R/EGFR 57681, L861Q), DDX42, RFX7, FAT1, CREBBP IL411, KRT8, CDCA4, DIXDC1
and/or G719X
. s CCNAZ2, KIF14, CDK1, DAGI,
alectinib ALK Rearrangement Positive DDX42, ZNF507 ANKRDS52, MAP3K?
brigatinib =~ ALK Rearrangement Positive FAT1, PTPR], PSME1 TEN1, MAP3K7, FBLN7, CDK1

cabozantinib ~RET Rearrangement Positive

TJP1_G3V1L9, BPTF_E9PE19,
NSD1, SYNE2_Q8WXHO0_5, RDX,
ANKRD52

KANSL1, CHL1, TGFB2

carboplatin Systemic TJP1_G3V1L9
Lt Suster MYCL, DDX42, BRMSIL, KANSL1, BPTF_E9PE19, FBLN7, DIP2B,
c1spia ystermic ZNF507 MYOF, CDK1
ALK Rearrangement
crizotinip | OSitive/ROS1 Rearrangement /o0 ToMM7, KANSLI DAGI

Mutation

Positive/MET Exon 14 Skipping

dabrafenib BRAF V600E Mutation Positive

BRMSIL, RBBP4, ZNF507, DDX42, RDX, ANKRD52, DIP2B, CDK1,
KANSL1 DAGI, IL17RA

EGFR Exon 19 Deletion or
dacomitinib L858R/EGFR S768I, L861Q, PSME1, DDX42, GREB1, RBBP4 MAP2_P11137_4, KRT8, CDC45,
CDCAA4, 11411
and/or G719X
. TOMMY7, CREBBP, TCF20, DDX42,
docetaxel Systemic FAM208A, THOCS, ZNF507 DYNC1H1, MYOF
EGFR Exon 19 Deletion or
erlotinib L858R/EGFR S768I, L861Q, RFX7, THOC5, CREBBP KIF14, CDCA4
and/or G719X
etoposide Systemic CHL1, FAT1
EGFR Exon 19 Deletion or
gefitinib L858R/EGFR S768I, L861Q, DDX42, CREBBP, TCF20, CHL1 CDCAA4, IL4I1
and/or G719X
DIP2B, ANKRD52, CDK1,
gemcitabine Systemic DDX42, CREE?)I;/I?[I\;FSOZ RBBP4, MAP2_P11137_4,IL17RA,
SLC39A8
ALK Rearrangement
lorlatinib  Positive/ROS1 Rearrangement ASB7, PSME], PIR CCNA2, MYOF, CDK1, CDC45
Positive
EGFR Exon 19 Deletion or
osimertinib L858R/EGFR S768I, L861Q, CDCA4A%§§?‘%§(§?' 1AL,
and/or G719X !
. . SLC39A8, DIXDC1, DIP2B,
paclitaxel Systemic CHL1, THOC5, ZNF507, UCHL3 MYOF, IL17RA
pemetrexed Systemic THOC5 BPTF_E9PE19, RDX, DYNCI1H1

trametinib BRAF V600E Mutation Positive

CHL1, PSME1, TMTC4, JOSD2,

PTPR], RPS19 RDX, DAGI, IL17RA, MAP3K7

vemurafenib BRAF V600E Mutation Positive

FAM208A KRT8

vinorelbine Systemic

TCF20, UCHL3, RBBP4, THOCS,

ZNF507 TJP1_G3V1L9
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2.7. Functional Pathways Associated with the ZNF71 Co-Expression Networks and Discovery of
Therapeutic Targets

To discover functional pathways and therapeutic targets to improve NSCLC treat-
ment outcomes, pan-sensitive (1 =23) and pan-resistant (n = 31) genes in RNA sequencing
data (Table 1) were used as CMap input candidate genes. The up-regulation of pan-sensi-
tive genes and down-regulation of pan-resistant genes are expected to enhance NSCLC
treatment response. Thus, the pan-sensitive genes and the pan-resistant genes were used
as the initial up- and down-regulated gene lists in the CMap, respectively. The following
steps were further applied to the gene lists to inhibit NSCLC proliferation, reverse EMT,
and induce immune response: (1) excluding proliferation genes that had a significant ef-
fect (dependency score < -0.5) on at least 50% of NSCLC cell lines in both CRISPR-Cas9
and RNAIi from the up-regulated gene list; (2) excluding survival protective genes (p <
0.05, HR <1: univariate Cox model in RNA sequencing data of Xu’s LUAD cohort [33] and
TCGA-NSCLC data) from the down-regulated gene list; (3) excluding the hazard genes (p
<0.05, HR > 1; univariate Cox model in RNA sequencing data of Xu’s LUAD cohort [33]
and TCGA-NSCLC data) from the up-regulated gene list; (4) excluding the mesenchymal
genes from the up-regulated gene list; (5) excluding epithelial genes from the down-reg-
ulated gene list; and (6) adding CD27, PD1 (PDCD1), and PDL1 (CD274) in the downreg-
ulated gene list.

With the final up- and downregulated genes (Figure 8A) as CMap input, significantly
enriched (p < 0.05, connectivity score > 0.9) functional pathways (Supplementary File 1
Table 54), compound sets (Supplementary File 1 Table S5), and 28 potential new or repo-
sitioning drugs were identified. In addition to PDL1 and CD27, other immune checkpoint
inhibitors (ICIs) for treating advanced metastatic NSCLC include anti-PD-1 nivolumab
and anti-CTLA4 ipilimumab [39]. To confirm the compound inhibitory effects on ICIs, we
further checked if the compounds had a significant negative correlation (p < 0.05, R <0,
Pearson’s correlation test) between drug concentration and mRNA or protein expression
of major ICIs for NSCLC treatment, including CD27, CTLA4, PD1 (PDCD1), and PDL1
(CD274) in the CCLE NSCLC cell lines (1 = 135). ECso of AS-703026 had a significant neg-
ative correlation with PDL1protein expression in the PRISM drug screening data (Figure
8B). The drug concentration [ICso, ECso, In(ICs0), or In(ECso) value] of five compounds, PD-
198306, ZM-306416, selumetinib, PQ-401, and U-0126, had a significant negative correla-
tion with mRNA expression of CD27, CTLA4, or PD1, respectively, in the PRISM drug
screening data (Figure 8C-I).

To investigate if the identified compounds can effectively inhibit the growth of
NSCLC cells, the average ICso and ECso values in the CCLE NSCLC cell lines (n = 135) of
the drugs available in PRISM were examined (Table 3). PD-0325901 (Figure 8]) and da-
satinib had small average ICs0 and ECso values in the PRISM drug screening data, implying
their potential to inhibit the growth of NSCLC cells with a safe dose.
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Figure 8. Discovering repositioning drugs based on the selected genes: Selection of significant func-
tional pathways and repositioning drugs based on the selected genes (A). The Pearson correlations
of PDL1 (CD274) protein expression with AS-703026 ECso excluding outliers (B), CTLA4 mRNA ex-
pression with PD-198306 ICso excluding outliers (C), PD-198306 In(ICso) excluding outliers (D), ZM-
306416 In(ECso) excluding outliers (E), and selumetinib In(ICso) (F), CD27 mRNA expression with
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PQ-401 In(ECs0) excluding outliers (G) and U-0126 In(ICs0) (H), PD1(PDCD1) mRNA expression
with PQ-401 In(ECso) excluding outliers (I). Selected compounds that had a low average ICso and
ECs0 in the CCLE NSCLC cell lines (n= 64 [ICso]; n = 88 [ECs0]) (J)-

Table 3. Average IC50 and EC50 values of the selected therapeutic compounds in the PRISM da-
taset. Outliers (drug concentration value > 10) were removed in the calculation of average IC50 and
EC50 values.

Average Count of ICs (Count Average Count of ECso (Count

Src_Set Id Compound of ICso of ICso Outliers) of ECso of ECso Outliers)
CP_MEK_INHIBITOR PD-0325901 0.748 64 (0) 0.386 88 (0)
CP_SRC_INHIBITOR dasatinib 0.555 92 (0) 0.504 155 (4)

MAP_KINASE_INHIBITOR PD-98059 4.977 4(0) 0.607 56 (3)
LEUC;IIX];EIESI_—IIEEIETPC])EI? T indirubin 3.548 23 (0) 0.630 160 (7)
CP_MEK_INHIBITOR selumetinib 2.214 35 (0) 0.647 165 (7)
CP_MEK_INHIBITOR AS-703026 1.514 100 (2) 0.940 164 (8)
CP_SRC_INHIBITOR saracatinib 1.733 103 (0) 0.983 170 (6)
CP_IGF_1_INHIBITOR BMS-754807 1.744 97 (0) 1.022 168 (8)
CP_SRC_INHIBITOR ZM-306416 2.626 28 (0) 1.081 87 (1)
CP_SRC_INHIBITOR bosutinib 3.162 46 (0) 1.587 87 (0)
CP_MEK_INHIBITOR U-0126 4.533 77 (0) 1.868 177 (3)
CP_MEK_INHIBITOR PD-198306 3.164 67 (1) 2.034 92 (0)
CP_SRC_INHIBITOR PP-1 3.408 51 (0) 2.079 87 (0)
CP_IGF_1_INHIBITOR linsitinib 4.251 64 (1) 2.088 146 (9)
CP_MEK_INHIBITOR PD-184352 3.988 47 (1) 2.190 89 (0)
CP_MEK_INHIBITOR MEK1-2-inhibitor =~ 4.197 44 (7) 2.200 84 (1)
IGF-1_INHIBITOR PQ-401 5.344 30 (0) 2.204 79 (1)
CP_SRC_INHIBITOR PP-2 3.187 64 (0) 2.484 79 (1)

2.8. Potential Oncogenes and Tumor Suppressor Genes

To identify potential oncogenes and tumor suppressor genes among the seven-gene
panel, EMT genes, the intracellular innate immune response (IIIR) genes, and all the in-
termediate genes in previously identified networks (Figures 5-7), genes that were differ-
entially expressed between tumors and NATs and were significantly associated with pa-
tient survival in LUAD proteomics data (1 = 103) were selected [33]. Genes that had sig-
nificantly higher protein expression (p < 0.05; two-sample t-tests) in tumors and were sur-
vival-hazardous (p < 0.05, hazard ration [HR] > 1; univariate Cox proportional-hazards
model) were identified as potential oncogenes. Genes that had significantly higher protein
expression (p < 0.05; two-sample t-tests) in NATs and were survival-protective (p < 0.05,
HR < 1; univariate Cox proportional-hazards model) were identified as potential tumor
suppressor genes. The identified potential oncogenes included EIF4G3, GAPVD1, IKBKB,
MCM2, and RFC4. The identified potential tumor suppressor genes included DAGI,
SLC39A8, TMEM173/STING1, RDX, TJP1, CTNNBI1, and SMC3. Somatic copy number al-
terations and their correlations with mRNA, protein, and phosphoprotein of the selected
genes were extracted from Xu et al. [33]. Detailed information is provided in Supplemen-
tary File S3.

3. Discussion

This study further validated the seven-gene panel in patient recurrence risk stratifi-
cation using proteomic profiles in early-stage NSCLC patients. In addition, we showed
that the seven-gene panel can accurately classify tumors from NATs on both RNA se-
quencing and proteomic platforms, suggesting its potential diagnostic implications for
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NSCLC. These findings warrant further clinical studies on liquid biopsies in the early de-
tection of NSCLC. Blood-based assays for predicting NSCLC risk and metastasis are im-
portant for thoracic surgeons in clinical decision-making, given that the current accepted
benign rate is 5% in surgery and 20-30% in biopsies [40]. Developing minimally invasive
biomarker-based assays will reduce unnecessary surgeries and biopsies on patients who
do not have lung cancer.

In this study, we further extended our previous findings on the prognostic implica-
tion of the seven-gene signature for NSCLC patient survival using proteomics/RNA-Seq
data of Xu’s LUAD (n = 103) cohort and RNA-Seq data of TCGA-NSCLC patient cohort (1
= 923). From the available expression data, we found that ABCC4 was positively associ-
ated with patient survival in both Xu’s LUAD protein and TCGA-NSCLC RNA-Seq data.
DAGI1 was positively associated with patient survival at both mRNA and protein levels,
while CCL19 and SLC39A8 showed similar associations at the protein level in Xu’s LUAD
dataset. At the same time, CD27 mRNA expression was associated with worse patient
outcomes. It is noteworthy that the combined protein expression score of ABCC4, DAGI,
and SLC39AS8 efficiently stratified patient outcome (p = 0.0013, HR: 8.378 [1.774, 39.57];
Figure 1A), suggesting that these three proteins could potentially be used as prognostic
markers in NSCLC. Furthermore, we showed that ABCC4, DAG1, and SLC39A8 proteins
are significantly downregulated in tumors compared to NATs (Figure 2), suggesting that
they may play the role of tumor suppressors.

Expression of ZNF71 was only available at the mRNA level in the TCGA dataset, and
we found only a trend for its negative association with patient survival (Figure 3A), con-
sistent with our previous results in RNA-Seq dataset GSE81089 of NSCLC tumors (1 =
197) [19]. Based on its structure-inferred function, we hypothesized that ZNF71 could be
involved in the suppression of endogenous transposable elements (TEs) expression,
which is often activated in cancer and can trigger an innate immune response. We found
that overexpression of ZNF71 in A549 lung adenocarcinoma cells resulted in the down-
regulation of multiple components of the intracellular intrinsic and innate immune sys-
tems, including dsRNA (OAS1) and dsDNA (STING, pTBK1) sensors and viral restriction
factors (TRIM5, SAMDH]1) (Figure 4). Activation of dsRNA and dsDNA sensors often
leads to induction of type I interferons, which can later bridge to adaptive immune re-
sponse. In particular, type I interferons have been shown to influence the maturation and
migration of DC cells, which are important for the cross-priming of NK and CD8+ T cells
in the tumor microenvironment [34]. Therefore, we calculated the DC xCell score in the
TCGA dataset and combined it with ZNF71 expression levels. Interestingly, a high expres-
sion of ZNF71 and a low DC xCell score were associated with worse patient outcomes
(Figure 3B). ZNF71 gene expression is positively associated with immune infiltration in-
cluding DC and CD8+ T cells in TCGA NSCLC tumors as we previously reported [15].
These data indicate a potential interplay between ZNF71 expression in NSCLC and anti-
tumor immune response. Thus, future studies should be aimed at the identification of
ZNF71 targets and establishing a mechanistic link between ZNF71, innate immune re-
sponse, and ICI therapy outcomes.

To identify potential new and repositioning medication candidates, we developed
mechanisms of action to improve therapy response, extend patient survival, decrease pro-
liferation, and reverse EMT. Therapeutic targets were identified from pan-sensitive genes
and pan-resistant genes from the following list: (1) the seven-gene panel, (2) selected epi-
thelial genes and mesenchymal genes, (3) IIIR genes (Figure 4), and (4) all the genes in the
ZNF71-1IIR gene association networks (Figures 5-7). These genes are relevant to ZNF71.
Direct targets of ZNF71 will be identified from RNA-sequencing of NSCLC cell lines after
ZNF71 knockdown/overexpression, which is our ongoing research.

Several MEK1/2 inhibitors were selected as potential targeted therapy also with an
inhibitory effect on ICIs for treating NSCLC. Selumetinib is an FDA-approved drug to
treat neurofibromatosis type 1 with symptomatic, inoperable plexiform neurofibromas. It
is also a designated orphan drug for treating thyroid cancer. Selumetinib is being
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investigated as a secondary therapy for treating late-stage, metastatic, Kras-mutant
NSCLC in several trials [41]. Compared with various combination therapies, chemo-, and
immune therapy, selumetinib does not have superior efficacy but does have a better safety
profile in treating NSCLC [42]. AS-703026 (pimasertib) has a clinical activity of phosphor-
ylated extracellular signal-regulated kinase (pERK) inhibition in peripheral blood mono-
nuclear cells in patients with locally advanced/metastatic melanoma, particularly BRAF-
and NRAS-mutated tumors at clinically relevant doses in a phase I study [43]. In a phase
I trial of patients with solid tumors, pimasertib inhibited pERK and the recommended
phase II dose (RP2D) was defined as 60 mg bid [44]. PD-198306, an orally active inhibitor
of MEK1/2, acts as a potent mitochondrial protonophore and uncouples oxidative phos-
phorylation [45]. PD-198306 is being studied in rabies virus infection [46], neuropsychiat-
ric disorders [47,48], breast cancer [49], and osteoarthritis [50] research. Resulting from
direct inhibition of MEK1 and MEK?2, U-0126 inhibits endogenous promoters containing
activator protein 1 (AP-1) response elements but does not affect genes lacking an AP-1
response element in their promoters [51]. U-0126 inhibits anchorage-independent growth
of Ki-ras-transformed rat fibroblasts by concurrently suppressing both ERK and mamma-
lian targets of rapamycin (mTOR)-p70(S6K) pathways, and sensitizes human breast can-
cer MDA-MB-231 and HBC-4 cells to anoikis [52].

Among other selected compounds with an in vitro inhibitory effect on ICls, ZM-
306416 is a VEGFR antagonist and a potent inhibitor of EGFR function [53]. As an inhibitor
of placental growth factor (PGF) receptor FLT1, ZM-306416 impaired trophoblast prolif-
eration and migration in fetal growth restriction [54]. PQ-401 is an IGF-1R inhibitor that
induces apoptosis and inhibits in vitro viability, proliferation, and mobility of US7MG
glioma cells and in vivo glioma tumor growth in a mouse xenograft model [55]. In a sep-
arate study, PQ-401 inhibited osteosarcoma cell proliferation, migration, and colony for-
mation in U20S and 143B lines [56]. Overall, the above analysis identified several com-
pounds, including PD-198306, U-0126, ZM-306416, and PQ-401, as potential targeted ther-
apy that may also induce immune response for treating NSCLC, which was not known
before.

Dasatinib was reported as a potential repositioning drug for treating NSCLC in our
previous publication [15]. PD-0325901 was used to treat refractory NSCLC patients but
did not meet its primary endpoint in an open-label, phase II study [57]. Combinations of
indirubin and arylidene derivatives showed antimetastatic effects on human NSCLC
A549 and NCI-H460 cells [58]. Saracatinib, an orally available inhibitor of Src kinases, im-
proved progression-free survival in a subset of patients with advanced, platinum-pre-
treated NSCLC in phase II clinical trial [59]. BMS-754807 alone reduced cell survival and
wound closure and enhanced apoptosis in human NSCLC A549 and NCI-H358 cells, par-
ticularly in NSCLC cells expressing high levels of IGF-IR [60]. In addition, BMS-754807
enhanced cisplatin and carboplatin in A549 cells [60]. A combination of trametinib and
bosutinib can synergistically suppress the growth of NSCLC by inhibiting both the mito-
gen-activated protein kinase (MAPK) and proto-oncogene tyrosine-protein kinase (SRC)
pathways, suggesting the potential for treating NSCLC, especially in the treatment of er-
lotinib-resistant NSCLC [61]. Maintenance therapy of adding linsitinib to erlotinib did not
improve PFS or OS in non-progressing NSCLC patients in phase II randomized trial [62].
In a separate phase II study, adding linsitinib to erlotinib resulted in worse patient out-
comes compared with erlotinib alone, suggesting that biomarkers are needed to select re-
sponding patients [63]. Morphine, a p-opioid receptor (MOR) agonist, promoted the
growth of NSCLC H460 cells both in vitro and in vivo; a higher morphine dosage shortens
the survival time of patients with lung cancer [64]. Treatment with the Src inhibitor pro-
tein phosphatase 1 (PP-1) and the MOR antagonist methylnaltrexone (MNTX) decreased
the phosphorylation induced by morphine. Furthermore, the antiapoptotic impact of mor-
phine on NSCLC cells was reversed by MNTX, PP-1, and the PI3K/AKT inhibitor
deguelin. Lapatinib (EGFR and HER2 tyrosine kinase inhibitor (TKI)), gefitinib (EGFR
TKI), ZD4054 or BQ-123 (ETAR antagonist), GM6001 (matrix metalloprotease inhibitor),
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PP-2 (Src inhibitor) or Tiron (superoxide scavenger) all inhibited the increase in EGFR and
HER?2 transactivation induced by the addition of ET-1 to NSCLC cells [65]. These results
indicate that our Al pipeline is capable to select relevant compounds for further clinical
studies.

Among the identified potential NSCLC oncogenes, a reduction in the germline copy
number of EIF4G3 is linked to breast cancer susceptibility in the Japanese population [66].
IkappaB kinase (IKK) promotes tumorigenesis via inhibiting forkhead FOXO3a which can
be reversed by FOXO3a [67]. Conditional suppression of IKBKB inhibits melanoma tumor
development in mice, and IKBKB-mediated NFkB activity is required in mutant Hras-ini-
tiated tumorigenesis [68]. IKBKB also promotes osteosarcoma cancer progression [69].
Minichromosome maintenance proteins (MCMs) are essential in DNA replication, ge-
nomic stability, and cell proliferation [70,71]. MCMs, in particular, MCM2 and MCM4, are
potential biomarkers to identify high-risk NSCLC patients [72]. MCM2 was significantly
overexpressed in almost all human cancers/subtypes in TCGA and was associated with
tumor mutation burden, tumor stage, immune therapy response, immune infiltration, and
poor patient prognosis [73]. RFC4 is frequently overexpressed in colorectal cancer (CRC),
and RFC4 overexpression is associated with tumor progression and shorter patient sur-
vival, possibly due to RFC4-mediated cell cycle arrest and the regulation of CRC cell pro-
liferation [74]. RFC4, along with other genes and microRNAs, might promote osteosar-
coma initiation and development [75]. GAPVDI, a cytoplasmic trafficking factor, is in-
volved in the regulation of the mammalian circadian clock [76]. Mutations in GAPVD1
and other genes, estrogen- and growth factor-dependent regulation are involved in both
transcriptional and post-transcriptional dysregulation of syndecan-4 in breast cancer [77].
Together, our identified NSCLC oncogene genes are supported by the literature.

Among the identified potential tumor suppressor genes, DAGI1 was co-deleted with
the Von Hippel Lindau (VHL) tumor suppressor gene in clear cell renal cell carcinoma
[78]. In glioblastomas, DAGI correlated with tumor grade, and the patient group with
higher expression of DAGI survived for a shorter time than the patient group with lower
expression of DAG1 [79]. These results suggest that DAGI may have different functions
in tumor initiation and progression in different cancer types. SLC39A8 is responsible for
pasting zinc to the cytoplasm when zinc is depleted, for maintaining many critical biolog-
ical processes. SLC39A8 suppresses the progression of clear cell renal cell carcinoma [80].
TMEM173/STING1 was expressed higher in normal samples in lung adenocarcinoma,
lung squamous carcinoma, prostate adenocarcinoma, uterine corpus endometrial carci-
noma, but was expressed higher in tumor tissues in colorectal carcinoma, kidney renal
clear cell carcinoma, stomach adenocarcinoma, and thyroid adenocarcinoma [81]. MTA1-
induced inhibition of TJP1 protein co-localized in the cytoplasm and membrane of NSCLC
cells leads to weakened cell junctions and changes in the adhesion, migration, and inva-
sion capabilities of cells, putatively promoting the invasion and metastasis of NSCLC [82].
[-catenin/CTNNBI is an intracellular scaffold protein. Aberrant CTNNB1 signaling is one
of the fundamental processes in many human cancers [83,84]. Both gain-of-function and
loss-of-function CTNNB1 mutations are found in multiple human cancer types [85]. SMC3
haploinsufficiency accelerates lymphomagenesis in mice with constitutive BCL6 expres-
sion and is considered a putative tumor suppressor for germinal center B cells [86]. RDX
knockdown increased the intracellular SN-38 concentration, indicating enhanced anti-tu-
mor activity, in human clear cell renal cell carcinoma Caki-1 cells [87]. To date, the litera-
ture supports the tumor suppressor functions of DAG1, SLC39A8, TMEM173/STINGI,
TJP1, CTNNB1, and SMC3, but not RDX.

4. Materials and Methods
4.1. Non-Small Cell Lung Cancer (NSCLC) Patient Cohorts

This study obtained NSCLC patient sample data from public resources including Xu
et al. [33] and The Cancer Genome Atlas (TCGA Research Network:



Int. J. Mol. Sci. 2022, 23, 14978

22 of 30

https://www.cancer.gov/tcga, accessed on 28 April 2021). The primary lung adenocarci-
noma (LUAD) cohort collected samples from 103 randomly selected treatment-naive Chi-
nese patients between 2010 and 2016 from Xu et al. [33]. Proteomics data of 103 paired
LUAD tumors and non-cancerous adjacent tissues (NATs), and RNA sequencing data of
51 paired LUAD tumors and 49 NATSs were used in this study. RNA sequencing data of
the TCGA NSCLC patient cohort, i.e,, TCGA-LUAD (n = 515) and TCGA-LUSC (n = 501),
with patient clinical information were downloaded from an openly accessible entry
LinkedOmics (http://www.linkedomics.org, accessed on 28 April 2021) [88].

4.2. xCell

The xCell (https://xcell.ucsf.edu/, accessed on 12 July 2022) tool [89] was used to pre-
dict the levels for 64 immune and stroma cell types based on gene expression data. The
xCell scores for patient samples were calculated using single-sample gene set enrichment
analysis (ssGSEA) to analyze the immune microenvironment. Low xCell scores indicated
the cell type had similar levels across all samples, whereas high xCell scores indicated the
cell type had different levels across all samples

4.3. Weka

The Weka software (Version 3.8.6) [90] was utilized to conduct machine learning clas-
sifier approaches to differentiate between tumors and NATSs with selected genes in Xu's
LUAD RNA sequencing and proteomics data [33]. Commonly used machine learning
classification methods, including decision tree, k-nearest neighbors (KNN), logistic re-
gression, naive Bayes, random forests, support vector machine (SVM), and radial basis
function (RBF) network, were used. Ten-fold cross-validation was applied in each session.

4.4. Cell Lines

A549 cells (kind gift of Dr. Ivan Martinez, WVU) were grown in DMEM (Corning,
Corning, NY, USA, cat. #15-018-CV) supplemented with 10% FBS (HyClone, Logan, UT,
USA), 2 mM L-glutamine (Corning, cat. # 25-005-CI), and 1xAntibiotic Antimycotic Solu-
tion (Corning, cat. # 30-004-CI). All cells were maintained at 37C in a 5% CO2 incubator.

4.5. Vector Construction and Lentiviral Transduction

ZNF71 KRABIless isoform was PCR-amplified from cDNA obtained from MDA231
cells using PfuUltrall DNA polymerase using primers #5ZNF71 ex1-Mun: 5-AGAG-
CAATTGATGGCTGCTCAGCTGC-3' and #3ZNF71-X: 5-AGACTCGAG-
TCAGGTGTGAATCCGCAG-3', and cloned into Dox-inducible pLUT lentiviral vector
[91] using EcoRI and Xhol cloning sites. To generate the KRAB isoform, a 397 bp long
KRAB containing 5'-terminal fragment was synthesized at GenScript and cloned into
pLUT-ZNF71-KRABIless using Nhel and EcoRlI sites. The cloned cDNAs were sequenced
to verify the absence of mutations.

Lentiviral particles were packaged in HEK293T cells (RRID:CVCL_0063) following
calcium phosphate cotransfection of constructed pLUT-ZNF71 vectors, psPAX2
(Addgene, Watertown, MA, USA, 12260), and pCMV-VSV-G (Addgene, 8454) as previ-
ously described [91]. pLUT vector expressing turbo red fluorescent protein (RFP) was
used as control. After two rounds of infection, transduced A549 cells were selected in
puromycin (1 ug/mL) containing media for at least 5 days. Ectopic ZNF71 expression was
induced by culturing cells in media containing 0.5 ug/mL doxycycline for 7 days.

4.6. Western Blot

Whole-cell lysates were prepared in nonreducing Laemmli buffer as described in
[91]. Protein concentration was quantified by Pierce BCA Protein Assay (ThermoFisher,
Waltham, MA, USA, cat # 23225). Lysates with an equal amount of total protein were sep-
arated on 4 to 12% Bis-Tris NuPAGE Novex gels and transferred to a polyvinylidene
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difluoride (PVDF) membrane. Protein bands were detected using standard chemilumi-
nescence techniques using GE Healthcare Amersham Imager 680.

The following antibodies were used in Western blotting: ZNF71 (GeneTex, Irvine,
CA, USA, cat. # GTX116553), from Cell Signaling Biotechnology (Danvers, MA, USA),
STING (cat. #13647), TBK1 pSer172 (cat. #5483), TBK1 (cat. #3504), OAS1 (cat. #14498),
RNase L (cat. #27281), TRIM5« (cat. #14326), SAMHD1 pThr592 (cat. #89930), and GAPDH
(Millipore, Burlington, MA, USA, MAB374).

4.7. Boolean Implication Network

The Boolean implication network algorithm [92-94] was used in this study to gener-
ate gene associate networks. Details of the algorithm were included in our previous pub-
lications [15,95]. Thresholds of scope and precision for filtering the implication rules were
computed based on a one-tailed z-score of 1.64 (95% level of significance).

Xu’s LUAD cohort [33] was used to construct the gene association networks. Each
gene’s expression was divided into three categories: under-expressed (-1), normal (0), and
over-expressed (1). The categorization was based on the distribution of the selected house-
keeping genes (B2M, ESD, FLOT2, GAPDH, GRB2, HPRT1, HSP90AB1, LDHA, NONO,
POLR2A, PPP1CA, RHOA, SDCBP, and TFRC) [14,96-98]. The percentage of under-ex-
pressed and over-expressed samples for all the housekeeping genes was fixed to be 30%
in each dataset. Standard deviations were calculated for the normal range based on the
housekeeping genes and applied to the rest genes. The numbers of standard deviation
used for each dataset were: 0.68 for RNA sequencing data of LUAD tumors; 0.75 for RNA
sequencing data of NATs; 0.88 for proteomics and RNA sequencing data of LUAD tumors;
and 0.95 for proteomics data and RNA sequencing data of NATs. The networks were vis-
ualized with Cytoscape (version 3.9.1) [99].

4.8. CRISPR-Cas9 Knockout Assays

Genome-scale CRISPR-Cas9 knockdown data from project Achilles [100,101] were
obtained from the DepMap (release 21Q4) [102]. CRISPR-Cas9 dependency scores of hu-
man NSCLC cell lines (n = 94) from the DepMap portal (https://depmap.org/portal/down-
load/all/, accessed on 12 September 2022) were used in this study. The CERES method was
used to normalize gene-level dependency scores. The median of the normalized depend-
ency scores of common essential genes was —1.0, and that of non-essential genes was 0 in
each cell line. In this study, a dependency score of less than —0.5 indicated that the gene
had a significant effect on the cell line in CRISPR-Cas9 knockout.

4.9. RNAi Knockdown Assays

Genome-wide RNA interference (RNAi) knockdown screening data [103] in project
Achilles was analyzed in this study. RNAi dependency scores were processed with the
DEMETER?2 v6 algorithm [103] to distinguish between on- and off-target effects. The de-
pendency scores of human NSCLC cell lines (n = 92) were obtained from the DepMap
portal (https://depmap.org/portal/download/all/, accessed on 12 September 2022). The
median of the normalized dependency scores of the positive control gene set was -1, and
that of the negative control gene set was 0. The gene that had a dependency score less than
-0.5 was considered as having a significant effect on the cell line in RNAi knockdown.

4.10. Pathway Enrichment Analysis Using ToppGene

The ToppFun web tool (https://toppgene.cchmc.org/enrichment.jsp, accessed on 28
June 2022) from the ToppGene suite [104] is an online resource for gene list enrichment
analysis. We used the ToppGene application with default parameters (FDR correction, p-
value cutoff = 0.05, gene limits 1 < n <2000) to perform pathway enrichment analysis.
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4.11. Cancer Cell Line Encyclopedia (CCLE)

RNA sequencing data of 135 human NSCLC cell lines were obtained from the Cancer
Cell Line Encyclopedia (CCLE) in DepMap release 22Q2 (https://depmap.org/por-
tal/download/all/, accessed on 12 September 2022). Proteomics data of 64 human NSCLC
cell lines were obtained from Nusinow et al. [105].

4.12. Drug Sensitivity in CCLE

The drug sensitivity data of human NSCLC cell lines were taken from multiple re-
sources. The secondary PRISM repurposing dataset [35] was obtained from the DepMap
release 19Q4. It has 1448 compounds screened in 499 human cell lines, 84 of which were
NSCLC cell lines and were used in this study. The Genomics of Drug Sensitivity in Cancer
(GDSC) datasets (GDSC1 and GDSC2 [36-38]) were downloaded (https://www.cancer-
rxgene.org/downloads/bulk_download, accessed on 12 September 2022). A total of 64
NSCLC cell lines from GDSC1 and 58 NSCLC cell lines from GDSC2 were included in this
study. Details of the categorization of drug sensitivity in each cell line were included in
our previous publications [15,95].

4.13. Drug Repurposing Using Connectivity Map (CMap)

The connectivity map (CMap) online tool (https://clue.io/, accessed on 12 September
2022) [31,32] was used to explore functional pathways and potential repositioning of
drugs with selected gene expression signatures. Raw connectivity scores higher than 0.9
and a p-value < 0.05 were considered significant.

4.14. Statistical Methods

Statistical analysis was performed using R software (version 4.1.3) with RStudio (ver-
sion 2022.02.3 Build 492) [106]. Two sample t-tests (two-tailed) were performed for the
comparisons of two groups of continuous variables. The independence of categorical var-
iables was evaluated with x? tests. Principle component analysis (PCA) was used to gen-
erate the separation of NATs and LUAD tumors with selected genes. Visualization was
carried out in R and Cytoscape. The Kaplan-Meier method was performed to conduct
survival analysis and create survival curves. The difference between the survival rates of
patient groups was evaluated using log-rank tests. Univariate and multivariate Cox re-
gression analyses were performed to evaluate the prognostic capacity of the studied fac-
tors. R packages survival, survminer, and ggplot2 were used in survival analysis. Pearson’s
correlation coefficients were used to determine the association between the two sample
groups. All hypothesis tests were two-sided, and test results with a p-value < 0.05 were
considered statistically significant.

5. Conclusions

This study extended a seven-gene panel for NSCLC prognosis using proteomic pro-
files. The results also showed that the seven-gene panel can accurately classify NSCLC
tumors from NATs on both RNA-sequencing and proteomic platforms, suggesting its di-
agnostic implications for the early detection of lung cancer. Gene expression of ZNF71, a
marker within the seven-gene panel, when combined with dendritic cell activities, can
further stratify NSCLC into different prognostic groups. ZNF71 expression is associated
with the activities of NK cells and NKT cells. Overexpression of ZNF71 results in de-
creased expression of multiple components of the intracellular intrinsic and innate im-
mune systems, including dsRNA and dsDNA sensors, confirming a hypothesis that
ZNF71 suppresses the transcription of genomic transposable elements. Multi-omics net-
works of ZNF71 and the intracellular innate immune response genes were revealed in
NSCLC using a computational Boolean implication network algorithm. From these con-
structed networks, pan-sensitive and pan-resistant genes to 21 NCCN-recommended
drugs for treating NSCLC were selected. We designed mechanisms of action to enhance
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treatment response, prolong patient survival, inhibit proliferation, and reverse EMT to
screen candidates for new and repositioning drugs. PD-198306, U-0126, ZM-306416, and
PQ-401 were identified as potential targeted therapy that may also induce immune re-
sponse for treating NSCLC, which was not known before. Our future research will iden-
tify direct targets of ZNF71 for the development of novel therapeutic strategies to improve
NSCLC survival outcomes.

6. Patents

The seven-gene prognostic panel was included in the US 2021-0254173 A1. The arti-
ficial intelligence methodology for drug discovery was filed under PCT/US22/75136.
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